RADIAL BASIS FUNCTION NETWORKS

. Katerina Hlavdékovd, Roman Neruda '

Abstract: An overview of feedforward networks with one hidden layer with Ra-
dial Basis Function (RBF) units is presented. The learning process of this type of
mnetwork can take advantage of other known algorithms such as clustering, Koho-
nen maps or regularization. The approximation capabilities of RBF networks are
compared with those of the multi-layer perceptron type.

1. Introduction

Radial basis functions have been studied since the middle of eighties. Earlier
works (for example [3]) were devoted to the mathematical analysis of that class of
functions from the point of view of interpolation and approximation. A detailed
mathematical theory can be found in [22].

With respect to neural network theory, the methods using radial basis func-
tions have been applied in approximation and interpolation methods designed for
multilayered functions. This work presents both a mathematical approach to the

functions of that type and their approximation properties.

- The second section introduces problems of interpolation and approximation
and shows their solutions by RBFs. A multilayered network with RBF units is
presented in section 3 together with a description of its learning process with various
extensions. Section 4 deals with the regularization method and the Gaussian bar
network is described in section 5. Finally, approximation properties of the presented
networks are compared with those of multi-layer perceptron-type network.

2. Multidimensional Interpolation and Approximation
by RBF

The problem of exact real multivariable interpolation can be formulated as
follows:

Given a set of m distinct vectors {x;;7 =1,...,m} in ®" and m real numbers
{yi;1=1,...,m}, find a function f satisfying the conditions:

f(xi) =Y Vi = 1,...,m (1)

Various interpolation methods use different additional conditions for the family
of functions f. The RBF approach introduces the set of m radial basis functions ¢;,

IKatefina Hlavickova, Roman Neruda
Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O.Box 5, 182 07 Prague 8, Czech Republic

©IDG VSP 1993

Neural Network World 1/93, 93-102

¢i R - Ri=1,...,m and uses the form ¢; = &(|| x —c; ||), where ¢ : RT — R,
xeRN™, c;eR™ are the centers of these functions and || - || denotes a norm on R
(usually Euclidean). Functions ¢;,i = 1,...,m form a basis of a linear function
space, so the interpolating function f is considered to be their linear combination:

Fx) = Mol x—c;) (2)

=1

Substituting the form (2) into the conditions (1), we obtain the following set of
linear equations for unknown coeflicients A;:

Y1 é11 o Pim A1
: = v B 3 : (3)
Ym ¢m1 d)mm)\m
or
y =@\,
where

q):(¢ij)i,j=¢(|l X; —Cj ”)7 ,7=1,...,m.

In the case that the matrix ® is regular, we can find the unique solution:

A=& 1y, (4)

The matrix ® can of course be singular for general function ¢. However, ac-
cording to results of Micchelli and Powell ([15],{22]), the large class of functions,
including the following ones, assures the regularity of the matrix ® (if the data
points x; are distinct):

L ¢(z) = =;
2. ¢(x) = z?logx;

ol

d(z) = (22 +¢)*c>0,0<a<;
4. ¢(z) = e’ ¢ >0
RBF interpolation scheme can be easily extended to a mapping F : R” — RP. F'
then equals to (f1,...,fp), ¥ i (y1,---,¥p) and the condition (1) is generalized to:
frl@)=vyix Vi=1,....m Vk=1,...,p. (5)
Thus, .fk has the form:

) =3 sl x—c;) xR k=1,...,p (6)

j=1
The coefficients \j; of the linear combination are obtained in the same way as
in (4).

94

The interpolation s
of RBFs ¢; equals to t
number of data points t
that we have m data p
first problem is how tq
can either be assigned
discuss this problem in

In this case, when 7
no longer square and a
of linear optimization 1{
and Lowe in [3] use th
property that ®T® =
® = ny. Moreover, tj
|| A]| among all the v
pseudoinverse matrix i

3. Feedforward T

The RBF interpola
three-layer feedforwar
consists of n units, cor
between i-th input no
1-th coordinate of the]
computes the distance
radial function ¢ to th
layer via the weight A;
of their inputs.

A training set for]J
where x;eR" presen_ts(

Unlike their back-
three step process. Tq
resented &s weights b
solved easily by choosi
to them. Another tri
over the input space.

It is required, how
more sophisticated alg
learning cathegory, ‘j
to Kohonen feature
advantage that they

Moody, Darken [1
clustering algorithm, -
tances between the ce

Hlavéd¢kova: Tutorial

The interpolation scheme just defined has the disadvantage that the number
of RBFs ¢; equals to the number of data points. Typically, one would expect the
number of data points to be significantly bigger (approximation problem). Consider
that we have m data points and ng functions ¢ such that ng < m. In this case the
first problem is how to determine positions of the centers ¢;,i = 1,...,ny. They
can either be assigned to some of the data points or be defined in another way. We
discuss this problem in section 3 of this contribution.

In this case, when ng < m, the problem becomes overspecified, the matrix ® is
no longer square and a unique inverse does not exist. The solution is found in terms
of linear optimization using any of various linear least square methods. Broomhead
and Lowe in [3] use the Moore-Penrose pseudo-inverse matrix ®*, which has the
property that ®*® = E,,,, where E,, is the ng x ng identity matrix and rank
® = ny. Moreover, the solution A obtained by A\ = ®*y has the smallest norm
|| A || among all the vectors 3 that minimize the squares sum || ®+3 —y ||2. The
pseudoinverse matrix is computed as:

ot = (oT®) T, (7)

3. Feedforward Network with RBF units

The RBF interpolation and approximation scheme is naturally represented as a
three-layer feedforward network with fully interconnected layers. The input layer
consists of n units, corresponding to n-dimensional input vectors. Each connection
between i-th input node and j-th hidden unit is assigned a weight ¢ji, which is the
i-th coordinate of the j-th unit centre. The hidden unit (also called RBF unit) first
computes the distance between the input x and the center ¢; and then applies the
radial function ¢ to this value. The hidden unit’s output is connected to the output
layer via the weight A;;. Output units are linear, i.e. they compute weighted sums
of their inputs.

A training set for RBF networks consists of vector pairs (xz,yx),k=1,...,m,
where x;eR™ presents the input and yeRP is the desired network output.

Unlike their back-propagation counterparts, RBF networks are trained in a
three step process. The first step consists of determining hidden unit centers rep-
resented as weights between the input and hidden layer. This problem can be
solved easily by choosing ng input data randomly and assigning the centers’ values
to them. Another trivial approach generates the uniform distribution of centers
over the input space.

It is required, however, that the centers map the structure of input patterns, so
more sophisticated algorithms should be used. The task falls into the unsupervised
learning cathegory, which enables us to use various algorithms from clustering
to Kohonen feature maps and their variations ([11],[12],[8]). They all have the
advantage that they do not use the values yj from the training set.

Moody, Darken [16] and others have used the adaptive formulation of k-means
clustering algorithm, which looks for a (local) minimum of the overall sum of dis-
tances between the centers (’clusters’) ¢; and data points x;:

95

Neural Network World 1/93, 93-102

m ng

Eyi(ey, ... cnp) = 2261] I %; — <5 |12 (8)

i=1 j=1
8;j is the cluster membership function represented as a m x no matrix of 0’s and
1’s with exactly one 1 in each row. §;; = 1 iff x; is a member of the cluster around
center c¢;j. The algorithm itself has the following form:

(i) distribute centers c¢; randomly over the input space
(%) in time t do the following:

(a) find the center c, which is closest to the input x;

(b) shift the center c. towards x; according to this formula:

Cc:=Cc+ Q(t) ” Xt — Cc “7 (9)

where 0(t) is a learning rate, having real values between 0 and 1. It is usually set
large initially and decreases to zero in time.

An alternative way of determining the centers has been presented by Chen,
Cowan and Grant [4] who use the orthogonal least square method for selecting ng
data points, which minimizes the interpolation error. Coordinates of these data
points are then assigned to the centers.

A second optional learning phase sets the additional RBF parameters, if there
are any. Let us focus on the very often used Gaussian radial function in the form

pay=e (=) (10)

Its parameter o represents the width of ¢ and thus controls the radial area around
the center c in which a certain hidden unit has a reasonable response. The widths
effect the generalization capabilities of the network - the smaller they are (compar-
ing with the input set diameter), the worse is the generalization one can expect.
A general way of finding widths’ values is by minimizing the error function of

the form:

0o no co—crll\2 " 2 2
EZ(Ul,...,Uno)Z%Z[Ze—(-H——G—T—u) (“ csa Cr ”) _P
s=1 T

p=]

(11)

with respect to o, (see [17]). The parameter P controls overlapping between areas
controlled by different units. In practice, however, various heuristics are used to
avoid another minimalization. One of them sets the unit width to the root mean
square value of unit distances to its ¢ nearest neighbour units. The number of
nearest neighbours is often chosen to be 1. A most simple but frequently used
heuristics considers the uniform width of all RBF units. It is important that even
the form (11) directly depends neither on the input vectors y;, nor on x;. It depends
only on the positions of centers c;, so it is not necessary to present input patterns
during the second phase of learning.

After setting weights ¢; and RBF unit parameters o;, it remains to set the
weights \s.. This is done by the minimalization of the error function:

96

E3(A) =

where f(x;) (resp. J
sponse on the mput :
By setting the
the following formulﬁ
1
|
|

where

|

and @7 is the Mooxj

|
4. Regularizat,{

To improve the
mapping realized lj
especially when th
the smoothness of
theory, which can

An additional t]
form: |

FER is chosen to b
lations. This term
approximating maj
Eg. The proper s
say that by settm
will cause the ma
The concrete fq

7

ER penalizes func]
the weights A, W

By setting the
weights A, as in |

|

Hlavaékova: Tutorial

SN (yw — frl@))® (12)
I=1 k=1

where f(x;) (resp. fx(x;)) denotes the network (resp. the k-th output unit) re-
sponse on the input x;,A = (A)sr,s=1,...,pand r=1,...,m9

By setting the first partial derivatives of F3 according to s to zero, we obtain
the following formula:

to|»—-

By =3 3l = f(e0) IP==

>‘sr = Z);((I)+)jr [l_zl ¢j(xl)ykl]) (13)

where

(®)jr =D _ ¢(z1)¢r(m1) (14)
=1

and ®7 is the Moore-Penrose pseudoinverse (see section 2).

4. Regularization

To improve the generalization capabilities of the network, it is necessary for the
mapping realized by network to be sufficiently smooth, which may be a problem
especially when the data are noisy. A classical and general approach to controlling
the smoothness of the approximating mapping was developed in regularization
theory, which can be applied in the third step of the learning process.

An additional term Eg is added to the error function Es5, which now has the
form:

E4(A) = E3 ++ER (15)

Ep is chosen to be large for fufictions with undesired properties such as big oscil-
lations. This term reflects our implicit assumptions about the desired behaviour of
approximating mapping. The real parameter + controls the ratio between Ej3 and
Epg. The proper setting of y is important but task dependent. In general, we can
say that by setting v very small, the term Ep will have no effect, while a large
will cause the mapping to be very smooth but not to represent the data well.

The concrete form of the regularization term is:

m p N 2 P 2
' Er(A) = %ZZZ (——8 Jac';(z ')) ; (16)

7

Eg penalizes functions with large second derivatives and moreover, it is bilinear in
the weights Ay, which retains the advantage of the linear learning algorithm.

By setting the first derivatives of (15) to zero, we can compute the formulas for
weights g, as in (13). The result is:

97

Neural Network World 1/93, 93-102

Asr =D mo(T)jr [Z ; (wt)ykz] ; (17)
j=1 =1

where ¥ has the form of:

n 62¢j(w1)82¢r($l)] (18)

m

The regularization technique was used by Bishop [20] on the task of recovering
the sine function from noisy data. He used an RBF network where the number
of hidden units was equal to the number of data points with Gaussian RBFs of
uniform weights.

Poggio and Girosi [20] proceeding from general regularization scheme, have
derived the so called HyperBF networks with a general Green function used as
the activation function ¢ in the hidden units. HyperBF networks include RBF
networks as a special case.

5. Gaussian Bars

Each RBF unit responds to a localized region in the input space. On the
other hand, perceptrons with a sigmoidal activation function represent the global
part made by dividing the input space by more or less fuzzy hyperplane. As a
compromise between these two architectures, Hartman and Keeler [7] introduced
semi-local units called Gaussian bars.]

To describe Gaussian bars, let us first look at the Gaussian RBF from another
point of view. A Gaussian function of n-dimensional argument x can be understood
as a multiplication of n one-dimensional Gaussian functions. A one-dimensional

Gaussian function represents a locality condition for its dimension. The Gaussian
RBF unit computes the logical conjuction of these conditions, regarding them to
hold simultaneously.

The Gaussian bar unit does not multiply the responses of each input dimension,
it computes their weighted sum. This approach corresponds to a logical disjunction
of conditions from single dimensions. Thus, one Gaussian bar unit computes the
function ¢ : R* — R

n Tpr—Ccr\2
hilitis s ey Bp) = Zwre_() (19)
r=1

Gaussian bars were designed in order to avoid slow learning of perceptron type
networks and rather non-effective dealing with the irrelevant input dimensions of
RBF networks and it shows good performance in some practical tasks. However, in
terms of approximation cappabilities, this architecture is weaker than both RBFs
and multilayer perceptrons, as was pointed out by Kiirkova [14] (see next section).

6. Approximatio:

From the theoretic
imation capabilities of
which we can use for d
imation and the capab

An approximation
a set A of approximat:
any given function of

Poggio and Girosi
the best approximatio
functions. (It can, how

Generally, the clas
property. Supposing |
the class of functions :
approximation proper
centers and widths wh

The universal appr
ical topology by a den
and p a metrics on U.
if it is dense in U wi
approximator with re:
universal approzimato
perceptron with sigmo
([9]) and Kirkovéa ([1:
any continuous multic
sult is also proved by
activation function th
number of units, is a

The universal apr
authors ([21],[19],[6]),
radial function ¢. Mc
networks have the san

As opposed to mu
works in the form de:
ering a more complic:
second hidden layer
Gaussian bar output

References

[1] Bishop C.M.: Imp
works. Neural Cor

[2] Braess D.: Nonline

g

Hlavackovéa: Tutorial

6. Approximation Capabilities

From the theoretical point of view, the important question is to study approx-
imation capabilities of a given network architecture. There are two approaches
which we can use for describing those properties: the existence of the best approx-
imation and the capability of universal approximation.

An approximation scheme is said to have the best approrimation property if in
a set A of approximating functions there is one that has minimum distance from
any given function of a larger set U.

Poggio and Girosi [21] proved that a multilayered perceptron does not have
the best approximation property in the class of real multidimensional continous
functions. (It can, however, approximate them arbitrarily well.)

Generally, the class of RBF networks does not have the best approximation
property. Supposing the RBF ¢ is Gaussian and has fixed centers and widths,
the class of functions realized by the corresponding network then posses the best
approximation property. The first two steps of the learning process set values of
centers and widths which are fixed in the third step.

The universal approximation property can be described in terms of mathemat-
ical topology by a dense subset of a set. Let U be a class of functions, T its subset
and p a metrics on U. The class T is called an approzimator with respect to (U, p)
if it is dense in U with respect to the topology induced by p. If class T is an
approximator with respect to the class of continous real functions, it is called a
universal approzimator. The question of universal approximation of a multilayered
perceptron with sigmoidal nonlinearities was investigated by Cybenko ([5]), Hornik
([9]) and Kiurkova ([13]), who found that functions of that type can approximate
any continuous multidimensional function arbitrarily well ([9]). The strongest re-
sult is also proved by Hornik, who claims that for any bounded and non-constant
activation function the set of networks with one hidden layer, having an arbitrary
number of units, is a universal approximator [9].

The universal approximation property for RBF has been proved by several
authors ([21],[19],[6]), whose claims slightly differ in their assumptions about the
radial function ¢. Moreover, Poggio and Girosi ([21]) have shown that HyperBF
networks have the same property.

As opposed to multilayered perceptron and RBF networks, Gaussian bar net-
works in the form described above are not universal approximators [14]. Consid-
ering a more complicated network architecture, one Gaussian bar hidden layer, a
second hidden layer linear (computing only weighted sums of their inputs) and a
Gaussian bar output layer, the universal approximation property is preserved.

References

[1] Bishop C.M.: Improving the generalization properties of radial basis function neural net-
works. Neural Computation 3, 1991, 579-588.

[2] Braess D.: Nonlinear approximation theory. Springer, Berlin, Heidelberg, New York, 1986.

(3]

[5

(6]

(7]

(8]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

23]

100

Neural Network World 1/93, 93-102

Broomhead D.S., Lowe D.: Multivariable functional interpolation and adaptive networks.
Complex Systems 2, 1988, 321-355.

Chen S., Cowan C.F.N., Grant P.M.: Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks, 2, 2, 1991.

Cybenko G.: Approximation by superposition of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2, 1989, 303-314.

Hartman E.J., Keeler J. D., Kowalski J. M.: Layered neural networks with Gaussian hidden
units as universal approximations. Neural Computation 2, 1990, 210-215.

Hartman E. J., Keeler J. D.: Predicting the future: advantages of semilocal units. Neural
Computation 3, 1991, 566-578.

Hlavackova K.: On some variants of adaptive rules of feature maps. Neural Network World,
5, IDG, 1991, 287-293.

Hornik K.: Approximation capabalities of multilayer feedforward networks. Neural Net-
works, 2, 1991, 251-257.

Kittler J., Devijver P.A.: Pattern recognition: A statistical approach. Prentice-Hall Inter-
national, Inc., London, 1982.

Kohonen T., Ritter H.: Self-organizing semantic maps. Biol. Cybern.61, 1989, 241-254.
Kohonen T.: The self-organizing map. Proc. of the IEEE, 78, 9, September 1990.

Kirkovd V.: Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5,
1992, 501-506.

Kiurkovd V.: Universal approximation using feedforward neural networks with Gaussian
bar units. Proceedings of ECAI ’92, Vienna, 1992, 193-197.

Micchelli C. A.: Interpolation of scattered data: Distance matrices and conditionally pos-
itive definite functions. Construct. Approx. 2, 11, 1986.

Moody J., Darken C.: Learning with localized receptive fields. In: Proceedings of the 1988
Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, eds.
Morgan Kaufmann, San Mateo, CA, 1989a.

Moody J., Darken Ch. J.: Fast adaptive k-means clustering: some empirical results. Proc.
IJCNN, San Diego ’90, 2, 1990, 233-238.

Nash J.C.: Compact numerical methods for computers: linear algebra and function mini-
mization. Adam-Hilger Ltd., Bristol, 1980.

Park J., Sandberg I. W.: Universal approximation using radial-basis-function networks.
Neural Computation 3, 1991, 246-257.

Poggio T., Girosi F.: Networks for approximation and learning. Proceedings of the IEEE,
78, 9, September 1990.

Poggio T., Girosi F.: Networks and the best approximation property. Biological Cyber-
netics, 63, 1990, 169-176.

Powell M. J. D.: The theory of radial basis function approximation in 1990. DAMPT/1990/NA11,

1990.

Rumelhart D.E., Hinton G.E., Williams R.J.: Learning internal representations by error
propagation. Parallel Distributed Processing, ch. 8, MIT Press, Cambridge, MA, 1986,
318-362.

[24] Stinchcombe M., Wh
sigmoid hidden layer
on Neural Networks.
1/607-611.

[25] Stone C.J.: Optimal
10, 1982, 1040-1053.

1/607-611.

[25] Stone C. J.: Optimal global rates of convergence for non-parametric regression. Ann. Stat.,

10, 1982, 1040-1053.

Hlavaékova: Tutorial

[24] Stinchcombe M., White H.: Universal approximation using feedforward networks with non-
sigmoid hidden layer activation functions. Proceedings of the Intern. Joint. Conference
on Neural Networks. Washington DC, IEEE TAB Neural Network Commitee, June 1989,

