
Architectural Design Decisions for Machine
Learning Deployment

1st Stephen John Warnett
Research Group Software Architecture

University of Vienna
Vienna, Austria

stephen.warnett@univie.ac.at

2nd Uwe Zdun
Research Group Software Architecture

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Deploying machine learning models to production is
challenging, partially due to the misalignment between software
engineering and machine learning disciplines but also due to po-
tential practitioner knowledge gaps. To reduce this gap and guide
decision-making, we conducted a qualitative investigation into the
technical challenges faced by practitioners based on studying the
grey literature and applying the Straussian Grounded Theory
research method. We modelled current practices in machine
learning, resulting in a UML-based architectural design de-
cision model based on current practitioner understanding of
the domain and a subset of the decision space and identified
seven architectural design decisions, various relations between
them, twenty-six decision options and forty-four decision drivers
in thirty-five sources. Our results intend to help bridge the
gap between science and practice, increase understanding of
how practitioners approach deployment of their solutions, and
support practitioners in their decision-making.

Keywords-Architectural Design Decisions, Machine Learning,
Software Architecture, Grey Literature, Grounded Theory

I. INTRODUCTION

Software engineering (SE), software architecture (SA), and
machine learning (ML) are all established disciplines, but a
significant disparity between SE/SA on the one hand and
ML on the other has emerged, even though ML often in-
volves software engineering activities such as development,
maintenance and deployment [1]–[3]. ML practitioners have
various architectural design decision (ADD) options from
which to choose. Since SE/SA approaches to ML are still at a
relatively early stage compared to traditional SE/SA practices,
in addition to the lack of systematic approaches to solution
building and systems design, it may be hard for practitioners
to know which options are available to choose from, especially
when to decide on specific options.

We conducted a qualitative Grey Literature Study (GLS) [4],
[5], based on Grounded Theory (GT) [6]–[9], to formalise
current practitioner understanding and architectural concepts
of ML solution deployment. Other detailed aspects of ML
engineering such as data processing, big data and development
environments did not specifically form part of this study. We
covered data processing similarly in a prior publication [10]
and may address the remaining topics in future papers. We set
out to address the following research questions:

• RQ1 Which architectural design decisions are available

to choose from in the context of deployment for ML, and
what are their corresponding decision options?

• RQ2 What are the relations between these decisions and
their decision options?

• RQ3 Which decision drivers (forces) are relevant to the
decision options?

The result was a formal, UML-based model of ADDs, deci-
sion options, decision drivers, and their relations in the domain
of deployment for ML that serves to guide practitioners and
further the scientific knowledge of their practices, concerns
and understanding in the field of deployment for ML.

We discuss related studies in the field in Section II and
describe our research method in Section III. After that, in
Section IV, we present the various ADDs, decision options,
decision drivers and their relations – these represent the results
of our empirical study. Finally, in Section V, we interpret
our results and consider possible threats to validity before
concluding in Section VI.

II. RELATED WORK

There appear to be relatively few standardised methods and
processes in SE for ML. Thus, ML engineers wishing to apply
professional SE techniques have to contend with a multitude
of engineering and architectural decisions to carry out their
activities.

Washizaki et al. [11] conducted a systematic literature
review, which categorised and detailed a collection of software
(anti-) patterns for ML. Like our study, their work is based
on a GLS, but it also includes scientific literature sources.
In contrast to ours, their work focuses on ML pipeline and
software development patterns, not deployment patterns.

Sculley et al. [1] describe the technical debt incurred when
maintaining production ML systems, such as entanglement,
data dependencies, configuration challenges, reproducibility
debt and system anti-patterns. Some of these factors are
important motivations for our work and, in part, appear in our
decision drivers. In contrast to our work, they do not provide
detailed ADDs for ML deployment.

Lwakatare et al. [2] carried out an empirical investigation
into software engineering challenges for ML systems, devising
a taxonomy of common issues, including data dependency
management, deployment difficulties and result reproduction



challenges, without formally modelling design decisions.
Bosch et al. [12] document an overview of the software

engineering challenges associated with ML solutions, such
as model management, deployment, data pipeline challenges,
monitoring, logging, design methods and data quality man-
agement. They also identify unresolved research areas, includ-
ing distributed model creation, distributed data storage, data
generation and automated experimentation. Whereas our work
concentrates on concrete ADDs for deployment, their work
focuses on identifying challenges (which, in part, appear in
our decision drivers) and categorising relevant practices at a
high level of abstraction.

Nascimento et al. [3] provide a comprehensive systematic
literature review on software engineering for ML, document
the state of the art and identify open challenges, mainly
in testing, AI software quality, and data management. They
found that most SE practices proposed are guidelines, lessons
learned, and tools. We propose a formalised guidance model
in the form of ADDs for the deployment of ML models, a
field not yet adequately covered in the literature.

Mäkinen et al. [13] studied the importance of MLOps to
practitioners for rapid deployment in ML via a survey. They
discovered that most respondents were focused on how best
to use data, the initial building and deployment of models and
that MLOps is only beneficial when retraining and redeploying
models. Unlike our approach, they did not develop a model
of ADDs in the domain of ML deployment. Despite their
findings and the overlap with the subject of this study, our
research indicated that MLOps is a complex topic and includes
many non-deployment-related ADDs. It was thus deemed out-
of-scope1.

Our approach was to reduce the gap between science and
practice by studying methods and techniques documented by
ML practitioners in the context of deployment. We formally
modelled ADDs, decision options, practices, decision drivers,
and their relations. Valuable insights were gained, which may
guide practitioners in selecting suitable solutions to recurring
design decisions, help practitioners overcome challenges, mit-
igate problems and avoid suboptimal decisions. To keep this
publication concise, we restrict ourselves to decisions associ-
ated with the deployment of ML models. To our knowledge,
this is one of the first studies of its kind in the field.

III. RESEARCH METHOD

We conducted a GLS as a systematic investigation into
practitioner understanding of the deployment of ML models
using practitioner sources exclusively. Applying GT, we coded
the encountered phenomena in our sources and developed
a formal theory encoded as a UML-based model. We suc-
cessfully applied GT combined with a GLS in our previous
studies [10], [15], [16] and describe the method with the
reasoning for its application below.

1All project artefacts, including those for MLOps, are provided in our
replication package [14].

A. Grounded Theory

GT is a qualitative, inductive research method that links data
analysis with theory. Iterative steps are taken when interpreting
data, whereby the focus and central goal is to build a theory
grounded in said data. Data analysis should occur during data
collection and not afterwards.

The most important activity in GT is constant comparison:
the researcher continuously and iteratively compares pre-
existing data and concepts with new data. Any newly-arising
abstract concepts should then be compared with pre-existing
concepts and data. The concepts are organised into categories
(or codes) and are compared and linked to properties and
each other via relations [9]. The concepts, categories and
properties derived from the data should guide the next iteration
of research activities.

Another central activity is memo-writing, which documents
the theory-building process, provides a basis for reflection,
improves transparency by creating an audit trail, and facilitates
reproducibility. Theoretical sampling involves actively seeking
out new data based on the results of the previous iteration,
considering the kinds of data that should be collected next [17].
This is continued until theoretical saturation is reached, i.e.
“the point in category development at which no new properties,
dimensions, or relationships emerge during analysis” [7].

We applied the methodology of Strauss and Corbin [9],
which is characterised by three types of coding activity:

• Open coding involves developing concepts based on the
data sources. It entails asking specific (and consistent)
questions of the data, precise (and consistent) coding, and
memo writing with minimal assumptions.

• Axial coding is the development of categories and the
linking of data, concepts, categories and properties.

• Selective coding refers to the integration of the categories
that have been developed and their grouping around a
central core category.

B. Grey Literature

According to Garousi et al. [5], grey literature in the context
of software engineering is “any material about SE that is
not formally peer-reviewed nor formally published”, such as
blog posts, articles, presentations and audio-video material [4].
Grey literature was chosen as the sole data source for this study
because we wished to focus on understanding practitioners’
views within this domain, and such data sources are most
representative of these views. This is confirmed by Rainer
and Williams [18], who describe various benefits to grey
literature sources in software engineering research, including
that they “promote the voice of the practitioner” and “provide
information on practitioners’ contemporary perspectives on
important topics relevant to practice and to research”.

C. Methodology

Figure 1 illustrates our research method. We searched
for practitioner sources using standard search engines (e.g.
Google, StartPage, DuckDuckGo) and topic portals (e.g. In-
foQ, DZone). The search term for the initial source was



“machine learning deployment”. We then repeatedly and iter-
atively applied GT coding practices and constant comparison
to identify concepts, categories, properties, and relations. The
resulting entities were modelled in Python code, from which
a UML model was generated. The subsequent sources were
then searched for using appropriate search terms based on
topics identified in the previous iteration and guided by the
research so far, with particular consideration given to topics
needing coding and their potential contribution to the model.
Practitioner articles were deemed candidates if they were
relevant to the topic under consideration and did not appear to
be marketing a business or product, and each author reviewed
the other author’s selection of sources for suitability.

Data Collection Open Coding Axial Coding Selective Coding

Th
eo

re
tic

al
 

Sa
m

pl
in

g

Theory/Model

Constant Comparison with Memos

Next Iteration

Start Coding

Fig. 1. Research Method

We applied open coding to transform conceptual details into
conceptual labelling. Next, while axial coding, we identified
categories based on recurring, synonymous and related con-
cepts. During open and axial coding, we studied each source
line by line. Our thought processes, conceptual understanding,
interpretation and reasoning behind each coding decision was
documented in memos for the various sources, facilitating
traceability of codes back to their sources. While selective
coding, we carved out the main ideas of the theory, gaining
an understanding of the big picture by considering the data and
analysis results. We also revisited and refined previous sources
during selective coding. Finally, we used formal UML-based
modelling for axial and selective coding to develop a precise,
consistent theory as a formal UML model. Once around five to
seven additional sources no longer added value to our model,
theoretical saturation was understood to have been reached.
Our knowledge sources are summarised in Table I.

Modelling was achieved using CodeableModels2 – a Python
tool that can be used to define models and model instances
in code and record memos. Based on the Python code,
PlantUML3 code generators were used to generate graphical
visualisations of the model4, in addition to a textual model
specification in Markdown5 and Latex [19].

IV. ARCHITECTURAL DESIGN DECISIONS

This section presents our study results as ADDs derived
from practitioner views and practices sourced from grey lit-
erature within the context of deploying ML models. Table II
presents an overview of the various ADDs, decision options,

2http://github.com/uzdun/CodeableModels
3http://plantuml.com
4Generated UML figures have been optimised for space and readability.
5https://daringfireball.net/projects/markdown

grey literature sources6,7 and decision drivers (forces)8, the
associated ADDs for which are described in this section.

A. Deployment Approach Decision

Deployment in an ML context is the process of making
a trained ML model available so clients may avail of its
predictions. When planning to deploy ML models, a decision
surrounding the level of automation that shall be applied must
be made. Our sources identified three initial decision options
addressing automated deployments, each encompassing vary-
ing levels of automation.

As illustrated in Figure 2, the trivial decision solution is
to opt for no automated deployment; however, this option
hinders iterative development and precludes process and work
automation, along with reducing observability. An alternative
deployment decision option that offers at least some degree
of automated delivery is building, testing, and deploy-
ing models to be served and other system components
in a semi-automated fashion by deploying pre-prepared
pipelines. This process is considered semi-automated because
even though the pipeline execution itself can be automated, the
pipeline itself must be manually created each time it changes
in some aspect. The advantage of adopting this approach
is increased support for process and work automation and
iterative development, plus increased observability.

An option that yields more automation is to build, test,
and deploy machine learning models based on CI/CD
pipeline automation. “CI/CD” stands for “continuous inte-
gration/continuous delivery”. CI is “the practice of building
and running automated tests against every change you make to
your application so you can ensure that your software is always
in a working state.” [20], whereas CD “provides the ability to
release new, working versions of your software several times
a day” [20] and thus CI/CD is understood as the combination
of both approaches. Applying this level of automation leads to
a dramatic increase in support for all three forces. Noteworthy
is that both the semi-automated and CI/CD pipeline decision
options can both include a data pipeline (automation of the
data processing steps involved in building an ML model),
a model building pipeline (automation of the training and
evaluation steps of building an ML model), or both, since
these practices may also be combined.

A related decision to consider, either from the outset or
when evaluating whether to apply CI/CD pipelines, is a more
inclusive approach, specifically how to automate integration
and delivery in a machine learning context. We shall consider
this decision in Section IV-C. Finally, should MLOps be
applied and, if so, when is another related decision and is
discussed in Section IV-B.

6The following colour scheme in Table II indicates the source and
evidence frequency:

< 5%, < 10%, < 20%, < 35%, < 50%, < 70%,
≥ 70%.
7Source archive URLs may be found in our replication package [14].
8Force impacts in Table II range from “very negative” (--) to “very

positive” (++) based on our interpretation of the grey literature sources.

http://github.com/uzdun/CodeableModels
http://plantuml.com
https://daringfireball.net/projects/markdown


TABLE I
LIST OF KNOWLEDGE SOURCES INCLUDED IN THE STUDY

ID Title Source Type Example Source
Code

s1 How to power up your product by machine learning with python microservice, pt. 1 Practitioner Audience Article True False
s2 Architecting a Machine Learning Pipeline: How to build scalable Machine Learning systems - Part 2/2 Practitioner Audience Article True False
s3 Some Thoughts on Modularization in Machine Learning Practitioner Audience Article False False
s4 Productionizing Machine Learning with a Microservices Architecture Presentation Video False False
s5 Microservices Suck for Machine Learning (and what we did about it) Practitioner Audience Article True True
s6 MLOps: Continuous delivery and automation pipelines in machine learning Practitioner Audience Article True False
s7 Composing Deep-Learning Microservices for the Hybrid Internet of Things Practitioner Audience Article True False
s8 Continuous Intelligence: Moving Machine Learning Application into Production Reliably Slides True False
s9 Architecture of a real-world Machine Learning system Practitioner Audience Article True False
s10 Architecting a Machine Learning System for Risk Practitioner Audience Article True False
s11 Architecting a Scalable Real Time Learning System Practitioner Audience Article True False
s12 System Architectures for Personalization and Recommendation Practitioner Audience Article True False
s13 Architectural thinking in the Wild West of data science Practitioner Audience Article True False
s14 Machine Learning Architecture: The Core Components Practitioner Audience Article False False
s15 Scalable Software and Big Data Architecture - Big Data and Analytics Architectural Patterns Practitioner Audience Article False False
s16 Machine Learning in Production: Software Architecture Practitioner Audience Article True False
s17 AutoML Practitioner Audience Article False False
s18 AutoML is Overhyped Practitioner Audience Article True False
s19 Three Levels of ML Software Practitioner Audience Article True False
s20 MLOps: Methods and Tools of DevOps for Machine Learning Practitioner Audience Article False False
s21 MLOps: What It Is, Why it Matters, and How To Implement It (from a Data Scientist Perspective) Practitioner Audience Article False False
s22 MLOps Principles Practitioner Audience Article False False
s23 Machine Learning Monitoring: What It Is, and What We Are Missing Practitioner Audience Article False False
s24 Automated monitoring of your machine learning models with Amazon SageMaker Model Monitor and

sending predictions to human review workflows using Amazon A2I
Blog Post False False

s25 MLOps: Model management, deployment, and monitoring with Azure Machine Learning Practitioner Audience Article False False
s26 The Pros and Cons of Using Jupyter Notebooks as Your Editor for Data Science Work TL;DR: PyCharm’s

probably better
Practitioner Audience Article False False

s27 10 reasons why data scientists love Jupyter notebooks Practitioner Audience Article False False
s28 5 reasons why jupyter notebooks suck Practitioner Audience Article False False
s29 Jupyter Notebook is the Cancer of ML Engineering Practitioner Audience Article False False
s30 Comparing Data Version Control Tools - 2020 Blog Post False False
s31 How to test your ML models from hypothesis to production Blog Post False False
s32 Evaluate ML Classifier Performance using Statistical Hypothesis Testing in Python Blog Post True False
s33 Testing Your Machine Learning Pipelines Blog Post True False
s34 Performance Testing ML Serving APIs With Locust Blog Post True False
s35 Machine Learning at Scale with Parallel Processing Blog Post True False

How to approach deployment of machine
learning models? : Decision

No automated deployment : Practice

Build, test, and deploy models
to be served and other system

components in a semi-automated
fashion by deploying pre-prepared

pipelines : Practice

Build, test, and deploy machine
learning models based on
CI/CD pipeline automation

: Practice

Model building pipeline : Practice

Data pipeline : Practice

How to automate
integration and delivery in a

machine learning context? : Decision

«Consider If Not Decided Yet»
whether to perform integration

and delivery automation

«Consider If Not Decided Yet»
whether to apply MLOps

«Option» «Option» «Option»

«Can Include»

«Can Include»

«Can Include»

«Can Include»

«Consider If Not Decided Yet»
consider a holistic integration

and delivery approach in a
machine learning context

«Can Be Combined With»

Should MLOps be applied and, if
so, when? : Decision

«Consider If Not Decided Yet»
whether to apply MLOps

Fig. 2. Deployment Approach Decision



TABLE II
STUDY RESULTS: OVERVIEW OF DESIGN DECISIONS, DECISION OPTIONS, EVIDENCES AND RELATED DECISION DRIVERS

Design Decision # Decision Option (Solution) Evidences (from Practi-
tioner Sources)

Decision Drivers (Forces)

How to approach
deployment of
machine learning
models?

1. No automated deployment s1, s2, s3, s4, s6, s15, s16,
s26, s27, s28, s35

f1(--), f2(-), f3(--)

2. Build, test, and deploy models to be served and
other system components in a semi-automated fashion
by deploying pre-prepared pipelines

s1, s2, s4, s6, s19, s20 f1(+), f2(+), f3(++)

16 3. Build, test, and deploy machine learning models
based on CI/CD pipeline automation

s1, s2, s6, s19, s20, s25 f1(++), f2(++), f3(++)

How to automate
integration and
delivery in a machine
learning context?

1. No integration or delivery automation s1, s6, s20 f1(--), f2(-), f4(-), f5(--), f6(--), f7(--), f8(-), f9(--), f10(--),
f11(-), f12(--), f13(--)

2. Build and deployment scripts s1, s9, s10 f1(+), f2(+), f4(+), f5(++), f6(-), f7(-), f10(+), f8(o), f9(-),
f11(o), f12(-), f13(-)

3. CI/CD pipeline s1, s2, s4, s6, s8, s9, s10,
s13, s20, s25, s31, s32, s33

f1(++), f2(++), f4(++), f5(++), f6(++), f7(+), f8(+), f9(++),
f10(++), f11(++), f12(++), f13(++)19

4. Machine learning orchestrator s4, s6, s8, s9, s14, s21, s29 f1(+), f14(+)

Which tasks can be
performed by a
delivery pipeline or
component?

1. Packaging s2, s4, s6, s25 ∅
2. Testing s2, s4, s5, s6, s31, s33, s34 ∅
3. Building s4, s6, s8 ∅
4. Deployment s4, s6, s8, s13, s17, s18,

s19, s20, s23, s24, s25
∅24

5. Containerization s4, s7, s8, s9, s11, s19 ∅

How to trigger a
machine learning
pipeline or
orchestrator?

1. On-demand trigger s2, s4, s6, s9, s12, s21, s22 ∅
2. On commit trigger s4, s8, s22, s25 ∅
3. On schedule trigger s1, s2, s6, s9, s12, s14, s21,

s22, s33
∅

4. On availability of new training data trigger s6, s21, s22 ∅
5. On model performance degradation trigger s6, s19, s21, s23 ∅

15

6. On changes in the data distribution trigger s6, s21, s22 ∅

How to version data?
1. No data versioning s4, s21, s22, s30, s31 f15(-), f10(--)
2. Data version repository s4, s8, s20, s22, s25, s30,

s31
f15(++), f10(++), f4(++)

8 3. Data versioning in code repository s4, s22, s30, s31 f15(--), f10(--), f4(--), f16(--)
Which model
versions should be
deployed and how?

1. Single model in production s2, s6, s13 f17(--), f18(--)
2. N versions in production s2, s4, s6, s9, s20, s25 f17(++), f18(++), f19(++)8 3. Rollback to previous model version s4, s6 f17(+), f18(+)

Should MLOps be
applied and, if so,
when?

1. No MLOps s4, s6, s19, s20, s21, s22,
s25

f20(o), f1(o), f21(o), f22(o), f23(o), f24(o), f25(o), f26(o),
f10(o), f14(o), f6(o), f27(o), f28(o), f19(o), f29(o), f30(o),
f31(o), f32(o), f33(o), f34(o), f35(o), f36(o), f37(o),
f38(o), f39(o), f40(o), f13(o), f41(o), f42(o), f43(o),
f44(o), f2(o), f4(o), f5(o), f12(o)

8 2. MLOps s4, s6, s19, s20, s21, s22,
s23, s25

f20(+), f1(+), f21(+), f22(+), f23(+), f24(+), f25(+),
f26(+), f10(+), f14(+), f6(+), f27(+), f28(+), f19(+),
f29(+), f30(+), f31(+), f32(+), f33(+), f34(+), f35(+),
f36(+), f37(+), f38(+), f39(+), f40(+), f13(+), f41(+),
f42(+), f43(+), f44(+), f2(+), f4(+), f5(+), f12(+)

Forces Codes/Sources: f1: Process and work automation [s1, s8, s15, s18, s20, s22], f2: Iterative development [s1, s4, s22], f3: Observability [s4, s8, s12, s19], f4: Development
velocity [s5, s17, s18, s19, s25, s26, s29, s30, s31], f5: Deployment velocity [s25, s29], f6: Dependable releases [s20], f7: Reliability [s2, s5, s8, s10, s23], f8: Independent
development [s1, s3, s4, s5, s6, s7, s19], f9: Modifiability [s5, s6, s8, s33], f10: Reproducibility [s6, s8, s13, s17, s20, s21, s22, s25, s26, s27, s28, s29, s30, s31, s33], f11: Testability
[s8, s28], f12: Auditability [s8, s25, s33], f13: Continuous improvement [s8, s21], f14: Ability to identify whether data has changed over time [s20, s24, s25], f15: Handling large
data files [s30, s31], f16: Flexibility [s10, s26, s27, s30, s31], f17: Safe transition between production models [s2, s6], f18: Rolling upgrades [s4, s6], f19: Shadow mode testing [s6,
s20, s25, s31], f20: Division of labour [s1, s3, s4, s5, s7, s20], f21: Reduced time to market [s20, s21, s29], f22: Better user experience [s20, s21], f23: Better customer satisfaction
[s20], f24: Higher quality of predictions [s20, s21, s25], f25: Ability to recognise model degradation [s20, s24], f26: Ability to address model degradation [s20, s24], f27: Improve
model management [s20, s21], f28: Change tracking [s20, s26], f29: Simplified deployment [s20, s21, s29], f30: Align models with business needs [s21, s23, s33, s34], f31: Align
models with regulatory requirements [s21, s23, s25, s33], f32: Explainability [s17, s21, s25, s29, s33], f33: Reusability [s7, s13, s19, s21, s25, s26], f34: Infrastructure costs [s5, s21],
f35: Development agility [s10, s13, s17, s21, s26, s27, s28], f36: Model consistency [s21, s25, s33], f37: Unlock new sources of revenue [s21], f38: Save time [s21], f39: Reduce
cost [s21, s23, s34], f40: Management agility [s21], f41: Experimental operational symmetry [s6, s13, s21], f42: Modularity [s7, s10, s16, s19, s21, s25], f43: Rapid experimentation
[s21, s25, s26], f44: Reduce technical debt [s22, s26, s29]

B. MLOps Decision

Should MLOps be applied and, if so, when is a recurring de-
cision throughout this study. MLOps has become increasingly
relevant to practitioners [13] and encompasses techniques for
the rapid deployment of ML models and includes data-related
practices such as data sourcing, data analysis and data
labelling; model-related practices like model benchmarking,
model training and model validation; and various other
practices including experiment tracking, hardware scaling
and model service profiling. As evident in Table II, MLOps
is associated with thirty-five decision drivers out of the forty-
four we discovered and thus represents a significant design

decision. Since MLOps is a complex domain in its own right,
it lies outwith the scope of this study to describe it in any
more detail, but it shall be mentioned where appropriate for
completeness and to emphasise its significance, such as when
evaluating related decisions.

C. Automatic Integration and Delivery in an ML Context
Decision

When deciding how to automate integration and delivery in
a machine learning context, the simplest solution is to opt for
no integration or delivery automation. Several practitioners
strongly advise against this approach due to its detrimental
impact on many forces, including process and work automa-



tion, iterative development, deployment velocity, dependable
releases, reliability, independent development, modifiability,
reproducibility, testability, auditability and continuous im-
provement.

An alternative option for continuous automation of the
deployment processing is again to use a CI/CD pipeline,
which was previously an option for the initial deployment
approach decision. Our sources recommend this, particularly
regarding the above forces. CI/CD pipelines are related to
several other practices. For instance, they can be combined
with a machine learning orchestrator to coordinate pipelines
and experiments. An ML orchestrator is a component that can
take responsibility for the automation of data set preparation
and cleansing or for coordination of model development with
respect to specific data sources and features.

Applying a CI/CD pipeline enables automated provision-
ing, that is, automation of the actual deployment step. The
CI/CD pipeline can use a model registry to access models
and model candidates. Pipeline parameters and versions can
be stored in a machine learning metadata store where e.g.
data and parameters can be tracked so that the practitioner can
understand how specific models were built. It is worth noting
that the two aforementioned practices entail a related design
decision – How to store data used in machine learning appli-
cations – but this decision shall not be explored further since
it is concerned with operational aspects of ML applications
and no longer falls within the scope of this study.

An alternative solution is to manually perform automated
deployments using build and deployment scripts, which is
beneficial for process and work automation, iterative devel-
opment, deployment velocity, dependable releases and repro-
ducibility. The machine learning orchestrator (previously
described in relation to CI/CD pipelines and for which two
forces are described in the literature) is yet another potential
decision option. Using an orchestrator allows monitoring data
changes, which is beneficial for identifying whether data has
changed over time. This can prove advantageous since it en-
ables the data and model building pipelines to be triggered as
early as possible based on changes to the data distribution (see
Section IV-E), reducing the chance that sub-optimal models
remain in production for longer than necessary. Process and
work automation is also improved by using an orchestrator:
by not running everything manually, we reduce the scope for
human error and free up engineers for other tasks.

Two related practices (build and deployment scripts and
CI/CD Pipeline) invite the practitioner to consider which tasks
can be performed by a delivery pipeline or component. This
decision shall be described in Section IV-D. Various other
top-level decisions present themselves for consideration, e.g.
how to trigger a machine learning pipeline or orchestrator,
how to version data and which model versions should be
deployed and how. These decisions shall likewise be described
below. Finally, as shown in Figure 3, every decision involving
automation also suggests considering MLOps as a design
decision.

D. Delivery Tasks Decision
When planning how to deploy ML models, the practitioner

needs to consider which tasks can be performed by a delivery
pipeline or component, as presented in Figure 4. For this ADD,
the list of forces in Table II for the corresponding decision op-
tions described below is empty (∅) because they are inherited
from two parent decision options: CI/CD pipeline and build
and deployment scripts.

One essential task that can be performed by a delivery
pipeline or component is building, which, in the context of
delivery tasks, may involve creating models, container images,
executables, services or ML pipelines.

Another vital task is packaging, which involves taking
build artefacts and suitably assembling them for further use.
Packaging goes hand in hand with containerisation, which
uses, e.g. Docker [21] to prepare application images and
execute them in a containerised environment.

Testing is yet another delivery task and may include various
techniques, such as canary testing (initially releasing new
versions of an application to a subset of traffic/users), A/B
testing (randomised, statistical comparison of versions) and
hypothesis testing (a comparison of ML algorithms before
deployment). The related decision of what to test in a machine
learning pipeline also uses these techniques. This decision
shall not be explored further since it is not concerned with
deployment specifically. Deciding whether MLOps should be
applied and, if so, when can be considered from the outset or
when deciding what to test in a machine learning pipeline.

E. Trigger Pipeline or Orchestrator Decision
ML pipelines and orchestrators (“components”) can be ini-

tialised through triggers. Triggers vary in nature and may, for
example, be based on events during the development process,
based on feedback from a live system, be scheduled or manual.
The corresponding ADD is how to trigger a machine learning
pipeline or orchestrator, presented in Figure 5.

As in Section IV-D, the decision options’ forces for this
ADD are inherited from a parent; in this case, the ADD how
to automate integration and delivery in a machine learning
context. Thus, the list of forces for the following trigger-
specific decision options is empty (∅) in Table II:

• An on-demand trigger initiates a pipeline or orchestrator
via manual execution, such as by a human operator.

• An on commit trigger activates components following
a commit event in a source control management or data
version repository system.

• An on schedule trigger starts a component at a given
time or with specified regularity.

• If new training data becomes available, this may also
prompt a component to start.

• If model performance degradation is detected, this
event may also serve as a component trigger. Note that
model performance monitoring is a prerequisite for this
option.

• Changes to the data distribution may trigger a compo-
nent when statistical changes to any data set used to train



How to automate integration
and delivery in a

machine learning context? : Decision

CI/CD pipeline : Practice

Machine learning orchestrator
: Practice

No integration or delivery automation
: Do Nothing

Build and deployment scripts : Practice

How to trigger a machine learning
pipeline or orchestrator?

: Decision

Automated provisioning : Practice
Machine learning metadata store

: Practice

Model registry : Practice

Which tasks can be performed by
a delivery pipeline or component?

: Decision

Which model versions should be
deployed and how?

: Decision

How to store data used in
machine learning applications?

: Decision
Should MLOps be applied and, if

so, when? : Decision

«Consider If Not Decided Yet»

How to version data? : Decision

«Consider If Not Decided Yet»

«Consider If Not Decided Yet»

«Consider If Not Decided Yet»
whether to apply MLOps

«Option»

«Option»
{name = "manually perform automated

deployments"}

«Option»
{name = "continuously automate the

deployment e.g. upon commits"}

«Option»
{name = "orchestrate multiple pipelines

and/or components"}

«Can Use»
store all pipeline parameters and

versions as metadata

«Can Use»
access models and model candidates

«Can Be Combined With»
orchestration of pipelines and

experiments

«Enables»

«Consider If Not Decided Yet»
tasks to be performed by the delivery

pipeline

«Consider If Not Decided Yet»
tasks to be performed by the deployment

scripts

«Consider If Not Decided Yet»
whether to apply MLOps

«Consider If Not Decided Yet»
whether to apply MLOps

«Consider If Not Decided Yet»

«Consider If Not Decided Yet»

«Consider If Not Decided Yet»
whether to apply MLOps

«Consider If Not Decided Yet»
whether to apply MLOps

«Consider If Not Decided Yet»
whether to apply MLOps

Fig. 3. Automated Integration and Delivery in an ML Context Decision

the model cross a predefined threshold.
When evaluating this decision and the model performance
monitoring practice required for detecting model perfor-
mance degradation, deciding whether MLOps should be
applied and, if so, when can be considered at this stage, if
the practitioner has not already done so.

F. Data Versioning Decision

Managing data is central to all phases of ML model develop-
ment. Furthermore, deciding how to version data (presented
in Figure 6) is directly related to model deployment since
a significant design decision – discussed in Section IV-G –
surrounds which model versions should be deployed and how.

Three decision options were identified in the literature, and
it is crucial to consider these practices carefully since not all
forces were described for each practice. For instance, handling
large data files and reproducibility are defined for all three
practices, whereas development velocity was defined for two
practices and flexibility was only defined for one.

The simplest option is no data versioning, but practitioners
consider this undesirable for handling large data files, which
is not ideal since ML routinely uses large files. It is also
detrimental with respect to reproducibility because it becomes
highly challenging to keep track of changes made to data when
practising either technique.

Data versioning in a code repository is a typical pattern
that uses version control repositories such as Git9 to store
ML data files. This may initially appear to be an appealing
and intuitive approach since such repositories are excellent
for versioning, e.g. source code. However, several drawbacks
may be attributed to such systems when handling large files
typically used in ML. Such code versioning systems are not
suited to versioning large files and do not aid reproducibility
since data file versions are hard to keep track of when code
is updated simultaneously, and the development velocity is
hindered because code versioning systems are slow when

9http://git-scm.com

http://git-scm.com


Packaging : Practice Testing : Practice Building : Practice Deployment : Practice

Containerization : Practice

Canary testing : Practice A/B testing : PracticeHypothesis testing : Practice

Which tasks can be performed by
a delivery pipeline or component?

: Decision

What to test in a machine
learning pipeline? : Decision

Should MLOps be applied and, if
so, when? : Decision

«Can Include»
testing technique

«Can Include»
testing technique

«Can Include»
testing technique «Consider If Not Decided Yet»

«Consider If Not Decided Yet»
whether to apply MLOps

«Option» «Option» «Option» «Option»

«Option»

«Consider If Not Decided Yet»
whether to apply MLOps«Option» «Option»

«Option»

Fig. 4. Delivery Tasks Decision

How to trigger a machine learning
pipeline or orchestrator?

: Decision

On-demand trigger : Practice On commit trigger : Practice On schedule trigger : Practice

On availability of new training
data trigger : Practice

On model performance degradation
trigger : Practice

Model performance monitoring : Practice

On changes in the data distribution
trigger : Practice

Should MLOps be applied and, if
so, when? : Decision

«Consider If Not Decided Yet»
whether to apply MLOps

«Option»
{name = "ad-hoc manual execution

of the pipeline, or triggered
by other pipeline or service"}

«Option»
{name = "when a commit to a source

or data version control repository
happens"}

«Option»
{name = "frequent pipeline runs

e.g. on a daily, weekly, or monthly
basis"}

«Option»
{name = "when new data is collected
and made available in data stores"}

«Option»
{name = "when a noticeable performance

degradation is observed"}

«Option»
{name = "when a significant changes
in the data distributions of features

is observed"}

«Requires»
«Consider If Not Decided Yet»

whether to apply MLOps

Fig. 5. Trigger Pipeline or Orchestrator Decision

handling large files. Finally, the tight coupling with the same
system used for source control reduces flexibility. This practice
is considered unsuitable in the literature with respect to all four
practices.

Our sources indicate that if the practitioner wishes to
increase support for handling large data files, reproducibility
and development velocity, using a data version repository
designed to support large files in an ML context, such as
DVC10, appears to be an ideal approach. Note that no impact
on flexibility was documented in our sources when using a
data version repository. Finally, the only related decision to
consider, if not already decided, is whether MLOps should be
applied and, if so, when.

10http://dvc.org

G. Deploying Model Versions Decision

As mentioned previously, another significant ADD to con-
sider is which model versions should be deployed and how.
This ADD is depicted in Figure 7. The sources used in this
study identified three main decision options, each related to
two possible forces.

The decision to deploy a single model in production is the
most straightforward option but is unsuitable if the practitioner
is aiming for safe model transitions or rolling upgrades,
primarily due to the necessary downtime involved in swapping
out a single model version and the lack of availability of
multiple model versions. The practice of rolling back to a
previous model version, on the other hand, is more suited
to both safe model transitions and rolling upgrades since the
practitioner is easily able to revert to a previously-deployed
model version. Finally, N versions in production is a pattern

http://dvc.org


How to version data? : Decision

No data versioning : Do Nothing

Data version repository : Pattern

Data versioning in code repository
: Pattern

Version control repository : Practice

Should MLOps be applied and, if
so, when? : Decision

«Consider If Not Decided Yet»
whether to apply MLOps

«Option»

«Option»
{name = "version repository with
specific technology-support for

data versioning"}

«Option»

«Uses»

Fig. 6. Data Versioning Decision

that is highly recommended in the literature for both safe
model transitions and rolling upgrades because it enables
smooth swapping out of model versions without downtime.
This pattern is also suited to shadow mode testing, thus
enabling A/B testing and canary testing, increasing confidence
in new model versions being production-ready. Notably, N
versions in production does not appear to impact reliability.

All three practices use a machine learning metadata store,
which was previously encountered when considering how
to automate integration and delivery in a machine learning
context. The practitioner may also wish to consider MLOps if
this has not been decided.

V. DISCUSSION

A. Discussion of the Research Questions

RQ1: After analysing thirty-five sources, we discovered
evidence for seven ADDs, various relations between them,
twenty-six decision options and forty-four decision drivers in
the context of deployment for ML. We note that the decision
options can be grouped into two main categories: automation-
specific decisions and decisions that can be taken to enhance
the benefits of automation.

Examples of automation-specific decisions are how to ap-
proach deployment of machine learning models, how to auto-
mate integration and delivery in a machine learning context
and should MLOps be applied and, if so, when. Once a level
of automation has been selected, the practitioner may consider
other decisions, e.g. what the automation process should
support, based on associated force impacts and specific re-
quirements. For instance, the practitioner may consider which
tasks they would like their delivery pipeline or orchestrator to
perform and how to trigger it. Furthermore, the practitioner
may consider how to version data and which model versions
should be deployed and how. Opting for automation opens up
new possibilities – many of which might not have even been
considered if automation had been disregarded – that can aid
ML considerably.

RQ2: A curious phenomenon involving one decision in
particular emerged. MLOps appears multiple times as a related
decision for all six other decisions. MLOps is so prevalent
throughout the model that it may be worth considering MLOps
first when planning the deployment. If they are identified,
giving precedence to such recurring decisions makes sense

since they potentially lead to solutions in multiple contexts.
This discovery also indicates that MLOps may be a significant
area for further research.

Similarly, when considering decision options, CI/CD
pipeline appeared more than once. Interestingly, when con-
sidering CI/CD pipeline in the context of how to approach
deployment, the practitioner is invited to consider how to
automate integration and delivery, which also includes the
CI/CD pipeline option and is a more comprehensive approach
to automation. This represents the natural thought process of
a practitioner searching for and choosing from solutions: upon
considering a potential solution, the practitioner is led towards
an all-encompassing approach that opens up new possibilities.

RQ3: Our research has helped us discover which decision
drivers (forces) practitioners are most concerned with. When
evaluating a given decision option, these are relevant factors
and fall broadly into two categories: qualitative (e.g. modi-
fiability) and functional (e.g. iterative development). Forces
(codes of which can be cross-referenced in Table II) can also
be categorised as follows:

• Automation: f1.
• Development: f2, f4, f8, f9, f13, f15, f18, f35, f44.
• Understanding: f3, f10, f12, f32.
• Deployment: f5, f6, f16, f17, f29.
• Performance: f7, f22.
• Quality: f11, f20, f28.
• Support for ML-specific needs: f14, f23, f24, f25, f26,

f27, f33, f36, f41, f42, f43.
• Business needs: f19, f21, f30, f31, f34, f37, f38, f39,

f40.

The top three categories based on the number of forces
were support for ML-specific needs, business needs and de-
velopment. Out of all the decision options, using a CI/CD
pipeline for the automated integration and delivery decision
was mentioned most (in thirteen sources), whereas rolling
back to a previous model when deciding which model
versions should be deployed and how was mentioned least
(in just two sources). For those decision options in Table II
without force relations, the reader is reminded that any out-
of-scope forces were excluded from the study and that these
options inherit forces from their parent decisions and practices.



Which model versions should be
deployed and how?

: Decision

Single model in production : Do
Nothing

Rollback to previous model version
: Practice

Should MLOps be applied and, if
so, when? : Decision

«Consider If Not Decided Yet»
whether to apply MLOps

«Option»

«Option»
{name = "deploy multiple model versions

at the same time"}

«Option»
{name = "redeploy previous model

version and then switch to previous
model"}

«Can Use»
manage version metadata

manage version metadata

N versions in production : Pattern

Canary testing : Practice

A/B testing : Practice

«Can Use» «Enables»
canary testing

«Enables»
A/B testing

«Can Use»
keep previous version in production

to enable immediate rollback

Machine learning metadata store
: Practice

«Can Use»
manage version metadata

Fig. 7. Deploying Model Versions Decision

B. Threats to Validity

Stol et al. [22] describe method slurring, which encom-
passes common methodological errors that undermine GT and
may generally occur when one claims “to use a research
method without actually following its guidelines” – precisely
(in the case of GT) when researchers “adopt an arbitrary
subset of GT practices that are not recognisable as GT”. The
likelihood of this study exhibiting method slurring is low since
we include all the steps necessary for a GT study according to
Stol et al. (simultaneous data collection and analysis, constant
comparison, coding, memoing and theory development). We
did not collect our data before beginning analysis; neither did
we collect or categorise data according to existing theory, nor
did we base our analysis on seed categories or preconceived
analytical frameworks. We also specify the exact version of
GT we applied (Straussian GT).

Our study is based on a subjective methodology, so it cannot
be ruled out that our interpretation of the sources involved
a certain degree of bias. This threat cannot be eliminated,
but since both authors iteratively cross-checked each other’s
activities, we believe any bias or inaccuracies were reduced.

A methodological threat to validity may arise when using
unreliable or irrelevant sources or, conversely, excluding reli-
able or relevant sources. To mitigate this threat, we continued
to code sources until we reached theoretical saturation to
reduce the impact of outliers.

Hagstrom et al. [23] and Piasecki et al. [24] describe using
Web search engines for finding sources when conducting
literature reviews. Any search-based bias was mitigated by
consistently applying such search methods and inclusion-
exclusion criteria and allowing our findings to guide us.

GT aims to discover and explain phenomena that exist –
it neither claims to exhaustively capture all such phenomena,
nor does it claim to quantify their frequency or guarantee a

specific distribution or coverage [25]. We similarly make no
such claims, nor do we claim to document best practices or
universally applicable recommendations, since the modelled
practices and decisions are merely observed phenomena.

Considering every possible source would have been infeasi-
ble and would have likely brought little additional benefit be-
cause we coded to theoretical saturation. For the same reason,
it is unlikely that a multivocal literature review would have led
to dramatically different results. Thus, we are confident that
our results accurately model practitioner understanding of the
domain.

VI. CONCLUSIONS

This GT-based grey literature study modelled ADDs, deci-
sion options, relations and decision drivers in SE/SA for ML
within the context deployment. Our findings uncovered various
significant interrelated design decisions when deploying for
ML. We identified decisions involving automated integration
and delivery, pipeline triggering, model version deployment,
delivery pipeline component tasks, testing within a pipeline,
data versioning and MLOps, with each decision being associ-
ated with various options that may be selected. The resulting
UML-based model can be used by evaluating the specific
decision drivers associated with each option for a given
decision to guide practitioners and advances the scientific
understanding of typical practices. Potential applications of
our ADDs could also be to reduce uncertainty or complexity
in the ML decision space, assess conformance to established
architectural practices, or identify anti-patterns in existing
systems. Our work forms the basis for continued research in
this domain.

ACKNOWLEDGEMENT

This work was supported by the FFG (Austrian Research
Promotion Agency) project AMMONIS (no. 879705).



REFERENCES

[1] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p.
2503–2511.

[2] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic,
“A taxonomy of software engineering challenges for machine learning
systems: An empirical investigation,” in Agile Processes in Software
Engineering and Extreme Programming, P. Kruchten, S. Fraser, and
F. Coallier, Eds. Cham: Springer International Publishing, 2019, pp.
227–243.

[3] E. Nascimento, A. Nguyen-Duc, I. Sundbø, and T. Conte, “Software
engineering for artificial intelligence and machine learning software: A
systematic literature review,” 2020.

[4] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Inf. Softw. Technol., vol. 106, pp. 101–121, 2019.

[5] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer, “Benefitting
from the grey literature in software engineering research,” CoRR, 2019.
[Online]. Available: http://arxiv.org/abs/1911.12038

[6] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. New York, NY: Aldine de Gruyter,
1967.

[7] A. L. Strauss and J. M. Corbin, Basics of qualitative research: techniques
and procedures for developing grounded theory. Sage Publications,
Thousand Oaks, Calif, 1998.

[8] K. Charmaz, Constructing grounded theory: a practical guide through
qualitative analysis. London; Thousand Oaks, Calif.: Sage Publications,
2006.

[9] J. Corbin and A. L. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, pp. 3–
20, 1990.

[10] S. J. Warnett and U. Zdun, “Architectural design decisions for the
machine learning workflow,” Computer, accepted for publication, 2022.

[11] H. Washizaki, H. Uchida, F. Khomh, and Y. Guéhéneuc, “Studying
software engineering patterns for designing machine learning systems,”
in 2019 10th International Workshop on Empirical Software Engineering
in Practice (IWESEP), 2019, pp. 49–495.

[12] J. Bosch, H. Olsson, and I. Crnkovic, Engineering AI Systems: A
Research Agenda. IGI Global, Jan. 2021, pp. 1–19.

[13] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who
needs MLOps: What data scientists seek to accomplish and how can
MLOps help?” CoRR, vol. abs/2103.08942, 2021. [Online]. Available:
https://arxiv.org/abs/2103.08942

[14] S. J. Warnett and U. Zdun, “Architectural design decisions for machine
learning deployment: Dataset and code,” Zenodo, https://doi.org/10.
5281/zenodo.5823459, Jan 2022.

[15] A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner views on the
interrelation of microservice APIs and domain-driven design: A grey
literature study based on grounded theory,” in 18th IEEE International
Conference On Software Architecture (ICSA 2021), 2021. [Online].
Available: http://eprints.cs.univie.ac.at/6780/

[16] A. Singjai, G. Simhandl, and U. Zdun, “On the practitioners’
understanding of coupling smells – a grey literature based grounded-
theory study,” Information and Software Technology, vol. 134, June
2021. [Online]. Available: http://eprints.cs.univie.ac.at/6804/

[17] R. B. Johnson and L. Christensen, Educational research: Quantitative,
qualitative, and mixed approaches. SAGE Publications, Incorporated,
2019.

[18] A. Rainer and A. Williams, “Using blog-like documents to investigate
software practice: benefits, challenges and research directions,” Journal
of Software: Evolution and Process, 8 2019.

[19] L. Lamport, LaTeX - A Document Preparation System. Addison-Wesley,
1986.

[20] J. Humble and D. G. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Upper
Saddle River, NJ: Addison-Wesley, 2010.

[21] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[22] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 120–131.

[23] C. Hagstrom, S. Kendall, and H. Cunningham, “Googling for grey:
Using Google and Duckduckgo to find grey literature,” in 23rd Cochrane
Colloquium. Cochrane database systematic reviews supplements, 2015,
pp. 1–327.

[24] J. Piasecki, M. Waligora, and V. Dranseika, “Google search as an
additional source in systematic reviews,” Science and engineering ethics,
vol. 24, no. 2, pp. 809–810, 2018.

[25] F. Zieris and L. Prechelt, “On knowledge transfer skill in pair program-
ming,” in Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM’14.
New York, NY, USA: Association for Computing Machinery, 2014.

http://arxiv.org/abs/1911.12038
https://arxiv.org/abs/2103.08942
https://doi.org/10.5281/zenodo.5823459
https://doi.org/10.5281/zenodo.5823459
http://eprints.cs.univie.ac.at/6780/
http://eprints.cs.univie.ac.at/6804/

	Introduction
	Related Work
	Research Method
	Grounded Theory
	Grey Literature
	Methodology

	Architectural Design Decisions
	Deployment Approach Decision
	MLOps Decision
	Automatic Integration and Delivery in an ML Context Decision
	Delivery Tasks Decision
	Trigger Pipeline or Orchestrator Decision
	Data Versioning Decision
	Deploying Model Versions Decision

	Discussion
	Discussion of the Research Questions
	Threats to Validity

	Conclusions
	References

