
Fair 𝑘-Center Clustering in MapReduce and Streaming Settings
Suman K. Bera

Katana Graph

sumankalyanbera@gmail.com

Syamantak Das

IIIT Delhi

syamantak@iiitd.ac.in

Sainyam Galhotra

University of Chicago

sainyam@uchicago.edu

Sagar Sudhir Kale

Faculty of Computer Science, University of Vienna

sagar.kale@univie.ac.at

ABSTRACT
Center-based clustering techniques are fundamental to many real-

world applications such as data summarization and social network

analysis. In this work, we study the problem of fairness aware 𝑘-

center clustering over large datasets. We are given an input dataset

comprising a set of 𝑛 points, where each point belongs to a specific

demographic group characterized by a protected attribute, such

as race or gender. The goal is to identify 𝑘 clusters such that all

clusters have considerable representation from all groups and the

maximum radius of these clusters is minimized.

The majority of the prior techniques do not scale beyond 100𝐾

points for 𝑘 = 50. To address the scalability challenges, we propose

an efficient 2-round algorithm for the MapReduce setting that is

guaranteed to be a 9-approximation to the optimal solution. Addi-

tionally, we develop a 2-pass streaming algorithm that is efficient

and has a low memory footprint. These theoretical results are com-

plemented with an empirical evaluation on million-scale datasets,

demonstrating that our techniques are effective to identify high-

quality fair clusters and efficient as compared to the state-of-the-art.

CCS CONCEPTS
• Theory of computation→Unsupervised learning and clus-
tering.

KEYWORDS
fairness, k-center clustering, disparate impact

ACM Reference Format:
Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale.

2022. Fair 𝑘-Center Clustering in MapReduce and Streaming Settings. In

Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022,
Virtual Event, Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.

org/10.1145/3485447.3512188

1 INTRODUCTION
In recent years, a significant body of work have analyzed bias in

various mainstream web applications, for example, pricing on e-

commerce sites [16], discriminatory service offerings on the basis of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512188

race and gender in online freelance market places [17] and targeted

ad placement [29]. Clustering is a fundamental algorithmic task in

a typical pipeline for many of the above applications in data integra-

tion [14], recommender systems [27], customer segmentation [10],

and feature generation [22, 23]. Naturally, recently, fairness in clus-

tering has emerged as an important area of research. This is reflected

in the flurry of recent works on this topic [3, 4, 6, 7, 11, 18, 19, 26]

that started with the seminal work of Chierichetti et al. [11].

In this paper, we study fair clustering in the distributed and

streaming models. These computational models are used when

dealing with massive-scale data. We focus on the popular 𝑘-center

clustering problem. In the classical 𝑘-center problem, we are given

a dataset X of 𝑛 data points embedded in some metric space and

a parameter 𝑘 . The objective is to find a set of 𝑘 points 𝐶 ⊆ X,
referred to as centers, and a clustering of X around these 𝑘 centers.

The objective is to minimize the maximum distance between a point

and its closest center in𝐶 . In the fair 𝑘-center problem, we are addi-

tionally given a set of protected groups 𝑋1, 𝑋2, . . . , 𝑋ℓ (𝑋𝑖 ⊆ X,∀ 𝑖).
Fair clustering, motivated by the notion of group fairness, requires
that the representation of the protected groups in all clusters should

be commensurate with their proportion in the entire dataset.

The fair 𝑘-center problem was introduced in the seminal work

of Chierichetti et al. [11], and it has been studied extensively [4,

6, 7, 18, 19, 26]. While the initial works focused on two or three

protected groups [11, 26], subsequently, more general fairness con-

straints were considered. Ahmadian et al. [4] consider arbitrary

number of non-overlapping protected groups. Their fairness crite-

rion imposes a restriction against over-representation of any group

in each cluster. Bera et al. [6] and Bercea et al. [7] strengthened

this notion by assuring protection against under-representation of

any group in each cluster. It is one of the most extensively studied

fairness notion in the context of clustering so far. In this paper, we

study the 𝑘-center clustering problem under this notion of fairness.

While the existing fair clustering algorithms are reasonably effi-

cient in terms of computational resource for modest-sized datasets

([6] runs for 𝑛 = 30, 000 and 𝑘 = 50 in less than 24 hours), once 𝑛

and/or 𝑘 increase, these sequential algorithms become impractical.

The main bottleneck in all the existing approaches is solving an

intermediate linear program (LP) with roughly 𝑛𝑘 variables and

𝑂 (𝑛) constraints. We empirically evaluate the time taken by CPLEX,

a well-known LP solver, for varying 𝑛 and 𝑘 . For web scale datasets

like pokec (1M), HMDA (15M) and 𝑘 = 100, the LP contains more

than ≈ 10
8
variables and CPLEX [20] does not run within 48 hours.

Motivated by the lack of existing scalable solutions, in this work,

we study the problem of fair clustering for large-scale datasets. Two

https://doi.org/10.1145/3485447.3512188
https://doi.org/10.1145/3485447.3512188
https://doi.org/10.1145/3485447.3512188

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale

models are particularly popular in practice when dealing with large-

scale data: the massively parallel computation (MPC) model and the

streamingmodel. TheMPCmodel effectively provides an abstraction

for various distributed models such as the MapReduce model [5, 12].

The classical 𝑘-center problem, even under noisy settings, is well-

studied in the MapReduce model [8, 13, 21, 24]. The streaming

model provides a mechanism to deal with large volumes of data

in a limited-memory single-core processor by making sequential

passes over the data. There have been several works on the classical

𝑘-center problem in the streaming model as well [8, 9, 25].

In this work, we overcome the computational bottleneck of state-

of-the-art fair 𝑘-center algorithms by designing efficient algorithms

in the MPC and streaming models. Our main technical contribution

is to show that one can utilize an LP of much smaller size in order to

massively speed up the computation. We reduce the given problem

to this small-sized LP by computing a small “summary” of the

given dataset. This summary preserves small-radius properties of

the original dataset. We, in fact, show that this summary can be

computed quickly in the distributed or streaming environments

without incurring too much loss in the quality of the solution.

Our Contributions. Our main contributions are efficient algo-

rithms for fair 𝑘-center clustering in the MPC and streaming models

of computation. We give the first constant factor approximation algo-
rithms for this problem in both these models. For the MPC setting,

we assume that there are𝑚 machines to process data in parallel

and one central machine which we call Machine 1. Also, let Γ be

the total set of protected groups in the fair 𝑘-center instance. Our

MPC algorithm uses two rounds of communication and produces a

9-approximation to the optimal fair 𝑘-center solution.

Theorem 1.1. Assuming that the data is initially partitioned
equally across different machines, there exists an MPC algorithm that
requires two rounds of communication among the machines, commu-
nicatesO(𝑚𝑘 |Γ | log𝑛) amount of data, and achieves 9-approximation
for the fair 𝑘-center problem with constant additive violation. More-
over, the memory used by any machine is O(max{𝑛/𝑚,𝑚𝑘 |Γ | log𝑛}).

Our streaming algorithm makes two passes over the data stream

and uses space almost linear in 𝑘 |Γ | to give a (7+ 𝜀)-approximation

for any given 𝜀 > 0. We state the following result in terms of the

aspect ratio Δ of the metric, which is defined as the ratio of the

largest possible distance to the smallest possible distance.

Theorem 1.2. There is a (7+𝜀)-approximation two-pass streaming
algorithm for the fair 𝑘-center problem, with constant additive
violation, that uses 𝑂 (𝑘 |Γ |𝜀−1 log(Δ)) space.

We perform an extensive evaluation of our techniques on four

real-world datasets of varied scale. We used two large scale social

networks, gplus [1] containing ≈ 100K records of individuals in a

Google+ circle and pokec dataset [2] consisting of 1.6M individuals.

Gender is considered sensitive in both of these datasets. Other

datasets used in experiments are credit-card dataset with 30K

data points, each referring to a credit card holder from Taiwan with

Marital status as the sensitive attribute and HMDA dataset comprising

of around 15M records of loan-level information about mortgages in

the US market with race as the sensitive attribute. We demonstrate

that our fair-clustering technique is upto 7 times more efficient

than the state-of-the-art for million-scale datasets.

High Level Idea. Prior fair 𝑘-center clustering algorithms follow a

two-step procedure. The first step is to identify a set of “potentially

good” centers. An obvious choice for this is the centers identified

by the vanilla 𝑘-center clustering algorithm. Vanilla 𝑘-center itself

is NP-hard but one can use any standard classical approximation

algorithms, e.g., greedy 2-approximation [15]. Why are these cen-

ters good in terms of the cost of the solution? Imagine any optimal

fair 𝑘-center solution and say a point 𝑥 ∈ X is assigned to a center

𝑐 ∈ C in that solution. Now, suppose 𝑐 ′ is the center in the greedy

𝑘-center solution which is nearest to 𝑐 and hence at a distance of

at most twice the optimal cost. Now assigning 𝑥 to 𝑐 ′ instead of 𝑐

only incurs an additional cost of at most twice the optimal.

Once these centers are identified, the next step is to assign all

points in 𝑥 ∈ X such that the fairness constraints are satisfied. It

turns out to be a non-trivial problem and requires sophisticated

tools based on rounding an LP. However, solving an LP is the main

computational bottleneck of the existing solutions. Even the state-

of-the-art [18] contains O(min{2𝑘−1, 𝑛𝑘}) variables in the LP and

hence is difficult to scale for large values of 𝑛 and 𝑘 . We overcome

this drawback using the distributed and streaming environments.

In the distributed MPC model (Section 3), we have the data dis-

tributed across𝑚 machines. We first compute a vanilla 𝑘-center

solution on each machine in parallel. On any machine, these local

centers act as “representatives” of the original data points. We en-

code this information using a notion of weights associated with

each center that reflects the total number of points in each group

that are represented by this center. Our algorithm communicates

total O(𝑚𝑘 |Γ | log𝑛) bits of data in one round of MPC communica-

tion. Now we solve a weighted version of the above assignment

problem on the central machine. However, the size of the LP reduces

dramatically—we need only𝑚𝑘2 |Γ | variables. We show a careful

analysis that this local summarization and then solving the assign-

ment problem returns a solution with constant approximation.

In the streaming model (Section 4), given a guess of the optimum

value, we compute a set C of 𝑘 points (potentially good centers) in

the first pass such that each forgotten point has a close represen-

tative in C. At the end of the pass, we compute a fair assignment

of the appropriately weighted representatives to the centers in C
using the same procedure as in the MPC setting. The second pass is

then used to output the assigned center for each point. We run the

above procedure for 𝑂 (𝜀−1 log(Δ)) guesses of the optimum value.

2 DEFINITIONS AND PRELIMINARIES
In this section, we present the notation and formally define the

problem statement. Let X denote a set of 𝑛 points embedded in a

metric space with 𝑑 denoting the pairwise distance function. We

define the distance 𝑑 between any point 𝑥 ∈ X and subset 𝑆 ⊆ X as

𝑑𝑆 (𝑥) = min𝑥 ′∈𝑆 𝑑 (𝑥, 𝑥 ′). Let 𝑘 be an integer parameter denoting

the desired number of clusters. For any positive integer 𝑝 , let [𝑝]
denote the set {1, 2, 3, · · · 𝑝}. We now define the different groups of

points characterized by their protected attributes.

Definition 2.1. (Protected Groups). The set X is partitioned into

𝑡 disjoint protected groups, X1,X2, · · · X𝑡 where all points in a pro-

tected group denote the same attribute value (also referred to as

color). We use Γ to denote the set of 𝑡 protected attribute values.

Fair 𝑘-Center Clustering in MapReduce and Streaming Settings WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Throughout the paper, we interchangeably use the terms pro-

tected groups and colors to mean the above partition of point set.

Definition 2.2. (𝑘-clustering). A 𝑘-clustering of input points con-

sists of a set of 𝑘 points (also known as centers), C = {𝑐1, 𝑐2, · · · 𝑐𝑘 },
C ⊆ X and an assignment function 𝜙 : X → C of each point in X
that maps each point to exactly one center in C. All points that are
mapped to the same center 𝑐𝑖 ∈ C are referred to as a cluster and

we denote the clustering as (C, 𝜙).

Problem 2.3. (vanilla 𝑘-center) Given an input set of pointsX
and a parameter 𝑘 , the vanilla 𝑘-center problem aims to generate
a 𝑘-clustering (C, 𝜙) that minimizes the maximum distance of points
from respective centers, max𝑥 ∈X 𝑑 (𝑥, 𝜙 (𝑥)).

Note that for vanilla 𝑘-center , the 𝜙 corresponds to sim-

ply assigning 𝑥 ∈ X to the closest center in C. The classical 2-

approximation greedy algorithm by Gonzalez [15] is the best known

algorithm to solve vanilla 𝑘-center —we refer to this algorithm

as Greedy-𝑘C .

Problem 2.4. (fair 𝑘-center). Consider an input set of points X
and a parameter 𝑘 . Additionally, for each such group ℓ ∈ Γ, we are
given two input fairness parameters 𝛼ℓ and 𝛽ℓ . The fair 𝑘-center
problem aims to generate a 𝑘-center clustering C, 𝜙 that satisfies
group fairness: for each cluster center 𝑐𝑖 ∈ C, and group ℓ ∈ Γ,

𝛼ℓ ≤
|{𝑥 ∈ Xℓ : 𝜙 (𝑥) = 𝑐𝑖 }|
|{𝑥 ∈ X : 𝜙 (𝑥) = 𝑐𝑖 }|

≤ 𝛽ℓ

The objective function is to minimize max𝑥 ∈X 𝑑 (𝑥, 𝜙 (𝑥)).

In other words, the fairness constraints require fraction of points

from group ℓ in cluster 𝐶𝑖 lies between 𝛼ℓ and 𝛽ℓ .

While describing our algorithms, we denote the fairness param-

eters concisely as vectors (®𝛼, ®𝛽) ∈ [0, 1] |Γ | . We denote the optimal

solution cost of vanilla 𝑘-center and fair 𝑘-center to be 𝑂𝑃𝑇𝑣
and 𝑂𝑃𝑇𝑓 , respectively. The following observation follows from

that fact that the optimal fair 𝑘-center solution is also a feasible

solution for vanilla 𝑘-center .

Observation 2.5. For any instance of fair 𝑘-center ,
𝑂𝑃𝑇𝑣 ≤ 𝑂𝑃𝑇𝑓 .

Our algorithm to solve fair 𝑘-center uses a reduction to a

problem called weighted fair assignment which we define next.

We are given a set of points𝑈 ⊆ X and let𝑈1,𝑈2, · · ·𝑈𝑡 denote the
disjoint protected groups, where𝑈ℓ ⊆ 𝑈 and Γ denotes the set of

all possible protected classes. Further, each point 𝑢 ∈ 𝑈ℓ , ℓ ∈ Γ, is
associated with an integer weight𝑤𝑢 . We further have a set of fixed
𝑘 centers C = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }.

Problem 2.6. (weighted fair assignment .) The weighted

fair assignment problem asks for an assignment function 𝜙 : (𝑈 ×
C) → N∪{0} such that∑𝑐∈C 𝜙 (𝑢, 𝑐) = 𝑤𝑢 ,∀𝑢 ∈ 𝑈 . The assignment
function, further, needs to satisfy the fairness condition. Let𝑊𝑐 =∑
𝑢∈𝑈 𝜙 (𝑢, 𝑐) and𝑊𝑐,ℓ =

∑
𝑢∈𝑈ℓ

𝜙 (𝑢, 𝑐) be the total weight of all
points and total weight of points of color ℓ ∈ Γ, respectively, assigned
to the center 𝑐 ∈ C. Then the fairness condition is 𝛼ℓ ≤𝑊𝑐,ℓ/𝑊𝑐 ≤ 𝛽ℓ .

The objective is to find 𝜙 that minimizes max𝑢∈𝑈 𝑑C (𝑢), where
𝑑C (𝑢) denotes the maximum distance between a point 𝑢 ∈ 𝑈 and a
center 𝑐 ∈ C such that 𝜙 (𝑢, 𝑐) > 0.

Informally, we want to “distribute” the total weight of points in

𝑈 among the set of fixed centers in C in a way that satisfies the

weighted fairness constraints.

Big Data Models. In this work, we consider two computational

models for dealing with large volume of data: the streaming model
and the massively parallel computational (MPC) model.

In the streaming model, we have limited working memory and

the input data, usually too large to fit into the memory, is streamed

in a sequential manner. We can, however, make multiple passes

over the data (the relative ordering of the data remains the same).

The goal in this model is to optimize the memory requirement as

well as the number of passes over the data.

TheMPCmodel is an abstraction of various distributed data mod-

els such as the MapReduce [5] model. In this model, the input data

is distributed arbitrarily across various machines. The computation

occurs in rounds. In each round, each machine performs some local

computation on its input and communicates with other machines at

the end of the round. In our algorithm, all machines communicated

data to and from a central machine which we refer to as Machine 1.

The goal of this model is to optimize the communication overhead

as well as the number of rounds.

3 FAIR 𝑘-CENTER IN THE MPC SETTING
In this section, we describe the first constant factor approximation

algorithm for fair 𝑘-center in the MPC setting. Algorithm 1 gives

the pseudocode of the algorithm. The algorithm assumes that the

input set of points are partitioned across𝑚 machines, denoted as

{𝑋1, . . . , 𝑋𝑚} where
⋃𝑚

𝑖=1 X𝑖 = X. Our MPC algorithm operates in

three phases. In the first phase, it solves vanilla 𝑘-center sepa-

rately on each machine using the classical greedy algorithm [15]

- let (C𝑖 , 𝜙𝑖) be the solution on machine 𝑖 . Based on this solution,

we define a weighted set of points 𝑈𝑖 of size |Γ |𝑘 as follows. For

each center 𝑐
𝑗
𝑖
∈ C𝑖 , 𝑗 = 1, 2, · · ·𝑘 , and each color ℓ ∈ Γ, we add a

co-located point 𝑥
(𝑗,ℓ)
𝑖

with color ℓ and weight𝑤
(𝑗,ℓ)
𝑖

equal to the

total number of points 𝑥ℓ ∈ 𝑋1 of color ℓ for which 𝜙𝑖 (𝑥ℓ) = 𝑐
𝑗
𝑖

. Each machine 𝑖 = 1, 2 · · ·𝑚 communicates this weighted set 𝑈𝑖
to Machine 1. On Machine 1 we solve weighted fair 𝑘-center

on the set 𝑈 = ∪𝑚
𝑖=1
𝑈𝑖 . This is also carried out in two stages. First,

we obtain a set of 𝑘 centers C = {𝑐1, 𝑐2, · · · 𝑐𝑘 } using Greedy-𝑘C

on the set 𝑈 . The following lemma and theorem from [24] can be

invoked directly

Lemma 3.1. On every machine 𝑖 ∈ [𝑚], for every point 𝑥𝑖 ∈ 𝑋𝑖
𝑑 (𝜙𝑖 (𝑥𝑖), 𝑥𝑖) ≤ 2𝑂𝑃𝑇𝑣 .

Theorem 3.2. There exists a center 𝑐 ∈ C for every point 𝑥 ∈ X
such that 𝑑 (𝑐, 𝑥) ≤ 4𝑂𝑃𝑇𝑣 .

Using Observation 2.5, we can conclude that there exists a center

𝑐 ∈ C for every point 𝑥 ∈ X at a distance of at most 4𝑂𝑃𝑇𝑓 .

The final clustering is obtained by solving weighted fair as-

signment on the set of points𝑈 and centers C.

3.1 Algorithm for weighted fair assignment

The input to weighted fair assignment is the set of centers C
as obtained in the previous section and a set of weighted points

𝑈 = ∪𝑚
𝑖=1
𝑈𝑖 . Recall that by construction of the sets𝑈𝑖 , 𝑖 = 1, 2, · · ·𝑚

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale

Algorithm 1: A distributed algorithm for fair 𝑘-center

Input: Points X1, . . .X𝑚 distributed across𝑚 machines,

number of clusters 𝑘 , fairness bounds ®𝛼, ®𝛽 , a guess
𝑂𝑃𝑇𝑓

1 for 𝑖 ∈ {1, . . . ,𝑚} do
/* run in parallel on individual machines */

2 (C𝑖 , 𝜙𝑖) ← Run Greedy-𝑘C (𝑋𝑖 , 𝑘) to obtain 𝑘 centers

3 𝑈𝑖 ← {}
4 for 𝑗 ∈ {1, 2, . . . , 𝑘}, 𝑙 ∈ Γ do
5 𝑥

(𝑗,𝑙)
𝑖
← Add a point co-located at 𝑐𝑖

𝑗
with color 𝑙

6 𝑤
(𝑗,ℓ)
𝑖

= |{𝑣 : 𝑣 ∈ Xℓ ∩ 𝑋𝑖 , 𝜙𝑖 (𝑣) = 𝑐𝑖𝑗 }|
7 𝑈𝑖 ← 𝑈𝑖 ∪ {𝑥 𝑗,𝑙𝑖 }

8 All weighted sets𝑈𝑖 , 𝑖 ∈ [𝑚] are sent to the first machine.

9 (C, 𝜙) ← Greedy-𝑘C (⋃𝑚
𝑖=1𝑈𝑖 , 𝑘)

10 𝛾 ←WtFairAssign(

⋃𝑚
𝑖=1𝑈𝑖 , 𝑑, C, ®𝛼, ®𝛽 , 7𝑂𝑃𝑇𝑓)

11 for 𝑖 ∈ {1, 2, . . . ,𝑚} do
/* run in parallel on respective machines */

12 for 𝑡 ∈ {1, 2, . . . , 𝑘}, 𝑥 ∈ 𝑈𝑖 do
13 Greedily assign points 𝛾 (𝑥, 𝑐𝑡) points from

{𝑣 : 𝑣 ∈ Xℓ ∩ 𝑋𝑖 , 𝜙𝑖 (𝑣) = 𝑥} to 𝑐𝑡

in the previous section, each point 𝑥
𝑗,ℓ
𝑖
∈ 𝑈𝑖 corresponds to a local

center 𝑐
𝑗
𝑖
∈ C𝑖 , 𝑗 = 1, 2, · · ·𝑘 and belongs to color class ℓ ∈ Γ. For

notational convenience, we drop the indices 𝑖, 𝑗, ℓ while referring

to a point in 𝑈 in the subsequent description of the algorithms.

We denote the color classes as U1,U2, · · · U𝑡 . Any point 𝑥 ∈ Uℓ

for some ℓ ∈ Γ should be thought of as simply a weighted point

belonging to color class ℓ in Γ. The weighted fair assignment

problem can be naturally defined as an assignment problem on

the bipartite graph 𝐺 , where 𝑈 and C form the two sides. Suppose

we can correctly guess the value of 𝑂𝑃𝑇𝑓 (this assumption can be

easily removed through standard binary search techniques). Now

define an edge between 𝑥 ∈ 𝑈 and 𝑐 ∈ C if and only if 𝑑 (𝑥, 𝑐) ≤ 𝑟 ,
where 𝑟 is a parameter which we specify shortly. The following is

a linear programming relaxation for weighted fair assignment .

LP-WFA :

∑
𝑐∈C

𝑧𝑥,𝑐 = 𝑤𝑥 , ∀𝑥 ∈ 𝑈 (1a)

𝛽ℓ

∑
𝑥∈𝑈

𝑧𝑥,𝑐 ≤
∑

𝑥′∈Uℓ

𝑧𝑥′,𝑐 , ∀𝑐 ∈ C, ℓ ∈ Γ (1b)

𝛼ℓ

∑
𝑥∈𝑈

𝑧𝑥,𝑐 ≥
∑

𝑥′∈Uℓ

𝑧𝑥′,𝑐 , ∀𝑐 ∈ C, ℓ ∈ Γ (1c)

𝑧𝑥,𝑐 ≥ 0, ∀𝑥 ∈ 𝑈 ,𝑐 ∈ C (1d)

We solve the above LP to obtain a feasible solution 𝑧★, which

might be fractional solution. The following crucial lemma proves

that such a feasible solution always exists for a suitable choice of 𝑟 .

Lemma 3.3. LP-WFA has a feasible solution for 𝑟 = 7𝑂𝑃𝑇𝑓 .

The following claim in the main ingredient to prove Lemma 3.3.

We show that the optimal clusters C★ can be transformed to a

feasible solution of weighted fair assignment where every point

Algorithm 2: Algorithm for weighted fair assignment; we

call this algorithm by name WtFairAssign.

Input:Weighted points𝑈 , distance metric 𝑑 , set of centers

C , fairness bounds ®𝛼, ®𝛽 and a parameter 𝑟 ≥ 0

1 Initialize 𝜙 (𝑥, 𝑐) ← 0,∀𝑥 ∈ 𝑈 , 𝑐 ∈ C
2 Solve LP-WFA : let 𝑧★ be an optimal solution.

3 𝜙 (𝑥, 𝑐) ← ⌊𝑧★𝑥,𝑐 ⌋,∀𝑥 ∈ 𝑈 , 𝑐 ∈ C
4 Compute𝑤𝑥 , 𝑍𝑐 , 𝑍𝑐,ℓ ,∀𝑥 ∈ 𝑈 , 𝑐 ∈ C, ℓ ∈ Γ as given in (2), (3)

and (4)

5 Construct LP-RES using the definitions above.

6 while ∃𝑥 ∈ 𝑈 such that
∑
𝑐∈C 𝜙 (𝑥, 𝑐) ≠ 𝑤𝑥 do

7 Solve LP-RES : let 𝑧 be a vertex solution

8 for each 𝑧𝑥,𝑐 = 0, remove the variable from LP-RES .

9 for each 𝑧𝑥,𝑐 = 1, 𝜙 (𝑥, 𝑐) ← 𝜙 (𝑥, 𝑐) + 1. Reduce 𝑍𝑐 , 𝑍𝑐,ℓ
by 1, remove variable 𝑧𝑥,𝑐 from LP-RES

10 for each 𝑐 ∈ C, if |{𝑧𝑥,𝑐 : 0 < 𝑧𝑥,𝑐 < 1, 𝑥 ∈ 𝑈 }| ≤ 3,

remove the respective constraints of type (5b) from

LP-RES

11 for each 𝑐 ∈ C, ℓ ∈ Γ, if
|{𝑧𝑥,𝑐 : 0 < 𝑧𝑥,𝑐 < 1, 𝑥 ∈ Uℓ }| ≤ 3, remove the

respective constraints of type (5c) from LP-RES

12 Return the assignment 𝜙

is within 3𝑂𝑃𝑇𝑓 from its center (Claim 3.4). We can extend this to

consider the output of vanilla 𝑘-center and show that the feasible

solution of LP-WFA is within 7𝑂𝑃𝑇𝑓 , thus proving the lemma.

Claim 3.4. Let C★ = {𝑐★
1
, 𝑐★
2
, · · · 𝑐★

𝑘
} denote the set of centers in

an optimal fair 𝑘-center solution for the original point set X. Then
there exists a solution to weighted fair assignment on the set of
points𝑈 with C★ as the centers such that for every point𝑈 is assigned
to a center in C★ within a distance 3𝑂𝑃𝑇𝑓 .

Proof. We show that the optimal solution of fair 𝑘-center

on X with centers C★ can be converted to a feasible solution of

weighted fair assignment such that any point in𝑈 is assigned

to a center within a distance of 3𝑂𝑃𝑇𝑓 . We iterate over all points

𝑥
(𝑗,ℓ)
𝑖

∈ 𝑈𝑖 for 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑘] and ℓ ∈ Γ and assign its total

weight 𝑤
(𝑗,ℓ)
𝑖

to different centers in C. Recall that 𝑤 (𝑗,ℓ)
𝑖

is the

number of ℓ color points in set 𝑋𝑖 - call this set 𝑋
′
- such that 𝑥

(𝑗,ℓ)
𝑖

is the closest center for all points in 𝑋 ′ in the local vanilla 𝑘-

center solution on machine 𝑖 . Suppose a particular point 𝑥 ′ ∈ 𝑋 ′
is assigned to center 𝑐★𝑝 in the optimal fair 𝑘-center solution.

Then in the weighted fair assignment solution, we assign 1

unit of weight of the point 𝑥
(𝑗,ℓ)
𝑖

to 𝑐★𝑝 . Clearly 𝑑 (𝑥
(𝑗,ℓ)
𝑖

, 𝑐★𝑝) ≤
𝑑 (𝑥 (𝑗,ℓ)

𝑖
, 𝑥 ′) + 𝑑 (𝑥 ′, 𝑐★𝑝) ≤ 2𝑂𝑃𝑇𝑣 + 𝑂𝑃𝑇𝑓 ≤ 3𝑂𝑃𝑇𝑓 . In the above

inequality, we used the fact that 𝑑 (𝑥 (𝑗,ℓ)
𝑖

, 𝑦) ≤ 2𝑂𝑃𝑇𝑣 ≤ 2𝑂𝑃𝑇𝑓
which follows from Lemma 3.1 and Observation 2.5.

Further, observe that in the above procedure, the total weight

of any particular color assigned to a center 𝑐★𝑝 ∈ C, 𝑝 ∈ [𝑘], is
exactly equal to the number of points of this color assigned to 𝑐★𝑝 in

the fair 𝑘-center solution. Hence, the fairness constraints remain

feasible in the created weighted fair assignment solution. □

Fair 𝑘-Center Clustering in MapReduce and Streaming Settings WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

𝑐1
1

𝑐1
2

𝑐1
3

𝑐1
4

𝑐1
5

𝑐1
6

𝑐1∗

𝑐2
1

𝑐2
2

𝑐2
3

𝑐2
4

𝑐2
5

𝑐2
6

𝑐2∗

𝑐2
𝑏

𝑐4
1

𝑐4
2

𝑐4
3

𝑐4
4

𝑐4
5

𝑐4
6

𝑐4∗

𝑐3
1

𝑐3
2

𝑐3
3

𝑐3
4

𝑐3
5

𝑐3
6

𝑐3∗

𝑐3
𝑏

𝑐0

𝑏

Machine 1’s input Machine 2’s input

Machine 4’s input Machine 3’s input

Figure 1: A tight example for the MPC algorithm with 𝑘 = 6. Each solid circle represents a point, and the metric is the shortest
path metric on the depicted graph. A hollow circle represents a vertex which is used to define the metric but is not part of the
input. The fill-color of the circle denotes the color of the point: all points except 𝑏, 𝑐0, 𝑐2𝑏 , and 𝑐

3

𝑏
are black. A black point is

thought of as one blue and one red point co-located. Fairness constraints: 𝛼blue = 𝛼red = 2/3, and 𝛽blue = 𝛽red = 1/3;

Rounding the solution 𝑧★. We present a mechanism to construct

an integral solution to weighted fair assignment from the feasi-

ble fractional solution 𝑧★. We first do partial integral assignment

based on 𝑧★ in the natural way – assign a weight of ⌊𝑧★𝑥,𝑐 ⌋ to the

edge (𝑥, 𝑐),∀𝑥 ∈ 𝑈 , 𝑐 ∈ C. However, note that this integral assign-
ment is not a feasible solution to weighted fair assignment . To

round the fractional parts of 𝑧★, we define a residual LP as follows.

𝑤𝑥 = 𝑤𝑥 −
∑
𝑐∈C
⌊𝑧★𝑥,𝑐 ⌋ (2)

𝑍𝑐 =
∑
𝑥∈𝑈

(
𝑧★𝑥,𝑐 − ⌊𝑧★𝑥,𝑐 ⌋

)
, ∀𝑐 ∈ C (3)

𝑍𝑐,ℓ =
∑
𝑥∈Uℓ

(
𝑧★𝑥,𝑐 − ⌊𝑧★𝑥,𝑐 ⌋

)
, ∀ℓ ∈ Γ, 𝑐 ∈ C (4)

The quantity𝑤𝑥 can be thought of as the residual weight of the

point 𝑥 ∈ 𝑈 after the partial assignment. Note that, since𝑤 is an

integer vector, so is𝑤 . Now we are ready to define the residual LP.

LP-RES :

∑
𝑐∈C

𝑧𝑥,𝑐 = 𝑤𝑥 , ∀𝑥 ∈ 𝑈 (5a)

⌊𝑍𝑐 ⌋ ≤
∑
𝑥∈𝑈

𝑧𝑥,𝑐 ≤ ⌈𝑍𝑐 ⌉, ∀𝑐 ∈ C (5b)

⌊𝑍𝑐,ℓ ⌋ ≤
∑
𝑥∈Uℓ

𝑧𝑥,𝑐 ≤ ⌈𝑍𝑐,ℓ ⌉, ∀𝑐 ∈ C, ℓ ∈ Γ (5c)

0 ≤ 𝑧𝑥,𝑐 ≤ 1, ∀𝑥 ∈ 𝑈 ,𝑐 ∈ C (5d)

Claim 3.5. Let 𝑧𝑖𝑛𝑡 be a feasible integral solution to LP-RES . Then
⌊𝑧⌋ + 𝑧𝑖𝑛𝑡 forms a feasible integral solution to LP-WFA and hence a
feasible solution to the weighted fair assignment instance.

Algorithm 2 rounds a feasible fractional solution of LP-RES it-

eratively. We use Algorithm 2 and the following theorem from [6]

for this mechanism.

Theorem 3.6. Given a feasible solution to LP-WFA where the
fractional assignment of each point in 𝑈 is restricted to a center at
distance at most 𝑟 , Algorithm 2 outputs an integral assignment of all
points which can violate any fairness constraint by an additive factor
of at most 7. Further, any weighted point 𝑢 ∈ 𝑈 is assigned to a center
𝑐 ∈ C such that 𝑑 (𝑢, 𝑐) ≤ 𝑟 .

Remark 3.7. We note that the algorithm of Shmoys and Tardos [28]
for the generalized assignment problem can be adapted to round LP-
RES with a violation of +2 instead of +7 that we get in Theorem 3.6.
However, in practice, we found that the iterative rounding approach
is scalable and have minimal violation.

Remark 3.8. Our algorithm can be easily adapted to the case where
a single point can belong to multiple color classes in Γ. Specifically,
suppose Λ is the maximum number of color classes to which a point
belongs. Then our LP-WFA will have O(2Λ𝑚𝑘 |C|) many variables.
All other bounds remain exactly the same as in Theorem 3.6.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale

Theorem 3.6 can now be used to prove Theorem 3.2. Firstly, by

Lemma 3.3, LP-WFA has a feasible solution for 𝑟 = 7𝑂𝑃𝑇𝑓 and

hence by Theorem 3.6 an integral solution of the same cost. Finally,

we need to use this solution for the weighted point to produce

an assignment of the original points in X. To this end, any point

in 𝑥 ∈ X is assigned to a center 𝑐 ∈ C where 𝑐 is the center to

which the representative weighted point of 𝑥 in𝑈 is assigned in the

integral weighted fair assignment solution. Due to Lemma 3.1,

we incur an additional distance of 2𝑂𝑃𝑇𝑣 ≤ 2𝑂𝑃𝑇𝑓 in the above

process in the assignment cost of 𝑥 to 𝑐 .

3.2 A tight example on which the MPC
algorithm achieves 9-approximation

Figure 1 shows an example which proves that our analysis for Al-

gorithm 1 is tight. An optimum solution is {𝑐1∗, 𝑐2∗, 𝑐3∗, 𝑐4∗} with one

of {𝑐2
𝑏
, 𝑐3
𝑏
} and one of {𝑏, 𝑐0}, say 𝑐2𝑏 and 𝑐0. Each black point can be

assigned to its nearest picked center, 𝑐2
𝑏
and 𝑐3

𝑏
can be assigned to 𝑐2

𝑏
and 𝑏 and 𝑐0 can be assigned to 𝑐0; this maintains the fairness condi-

tions keeping the cost to be 1. Note that a black point is thought of as

one blue and one red point co-located. Each Machine 𝑖 , sends the set

{𝑐𝑖
1
, . . . , 𝑐𝑖

6
} of centers to the coordinator machine: when Machine 𝑖

runs Greedy-𝑘C , say it starts with 𝑐𝑖
1
, keeps adding centers that are

farthest, i.e., distance 2 away, from chosen centers, and must end

up with {𝑐𝑖
1
, . . . , 𝑐𝑖

6
} (this is called 𝑈𝑖 in Algorithm 1). Note that on

Machine 3, we can further assume that Greedy-𝑘C does not select

𝑏 in the worst case. We use Machine 1 as the coordinator machine

in our algorithm that computes the set, say, {𝑐1
1
, 𝑐1
2
, 𝑐1
3
, 𝑐4
1
, 𝑐4
2
, 𝑐4
3
}:

suppose it starts with 𝑐1
1
, next it must select one of 𝑐4

1
, . . . , 𝑐4

6
, all

of which are at distance 9 from 𝑐1
1
. Then all the remaining points

to choose from are distance 2 away from the first two points, and

the worst the algorithm can do is select 3 points from Machine 1’s

summary𝑈1 and 3 points from Machine 2’s summary𝑈2. Now, Ma-

chine 2 assigns the blue point 𝑐2
𝑏
to, say, 𝑐2

1
, and Machine 3 assigns

the red point 𝑐3
𝑏
to, say 𝑐3

1
. Moreover, Machine 3 assigns the points 𝑏

and 𝑐0 to 𝑐
3

6
. (By assign, we mean defining appropriately weighted

point at the location; see the algorithm description in Section 3.)

Based on these assignments by the machines, a fair assignment

is computed by the coordinator machine. Now, 𝑐3
1
and 𝑐3

6
are at

distance 7 from any of {𝑐1
1
, 𝑐1
2
, 𝑐1
3
}, and 𝑐2

1
is at distance 7 from any

of {𝑐4
1
, 𝑐4
2
, 𝑐4
3
}. In any fair assignment, either the blue point at 𝑐2

1

must be assigned to one of {𝑐4
1
, 𝑐4
2
, 𝑐4
3
} or the red point at 𝑐3

1
must be

assigned to one of {𝑐1
1
, 𝑐1
2
, 𝑐1
3
}. This means that the cost of any fair

assignment is at least 7. Moreover, the fair-assignment routine can

output that the blue point at 𝑐3
6
be assigned to one of {𝑐1

1
, 𝑐1
2
, 𝑐1
3
}.

The blue point at 𝑐3
6
is in fact 𝑏, which is at distance 9 from any

of {𝑐1
1
, 𝑐1
2
, 𝑐1
3
}, giving us an approximation ratio of 9. To address

the fact that our algorithm allows for constant additive violation

in fairness constraints, we just increase the number of “copies” of

each point by a large enough constant.

4 A TWO-PASS STREAMING ALGORITHM
We give a (7+ 𝜀)-approximation two-pass streaming algorithm that

uses 𝑂 (𝑘 |Γ |𝜀−1 log(Δ)) space, where Δ is the aspect ratio of the

metric, which is the ratio of the largest possible distance to the

smallest possible distance. Suppose we are given a guess 𝜏 for the

Algorithm 3: A streaming algorithm for fair 𝑘-center

Input: Set of points X, ®𝛼, ®𝛽 , Guess 𝜏
1 C ← ∅
2 for 𝑥 ∈ X do // The first pass

3 if 𝑑 (𝑥, C) > 2𝜏 then
4 C ← C ∪ {𝑥}
5 Profile[𝑥] ← 0

Γ
; Profile[𝑥] [Color(𝑥)] ← 1

6 else
7 𝑐 ← Earliest(𝑥, C, 2𝜏)
8 Profile[𝑐] [Color(𝑥)] ← Profile[𝑐] [Color(𝑥)] + 1

9 Asgn←WtFairAssign(⋃𝑐∈C Profile[𝑐], 𝑑, C, ®𝛼, ®𝛽, 5𝜏)
10 Asgn(𝑐,𝛾, 𝑐 ′) denotes the number of points represented by

11 𝑐 of group 𝛾 that are assigned to 𝑐 ′

12 for 𝑥 ∈ X do // The second pass

13 𝑐 (𝑥) ← Earliest(𝑥, C, 2𝜏).
14 Let 𝑐 ′ be earliest center in C such that

15 Asgn(𝑐 (𝑥),Color(𝑥), 𝑐 ′) > 0.

16 𝑥 is assigned to the center 𝑐 ′.
17 Decrement Asgn(𝑐 (𝑥),Color(𝑥), 𝑐 ′) by 1.

optimum. In the first pass, the algorithm computes a maximal set

of centers C such that the distance between any two centers is

greater than 2𝜏 ; then |C| ≤ 𝑘 . Each point 𝑥 is within distance 2𝜏 of

C. The algorithm chooses a center 𝑐 ∈ C as a representative of 𝑥

that arrived earliest among all centers within 2𝜏 of 𝑥 ; this center is

called 𝑐 (𝑥). This gives us an instance of fair 𝑘-center that is more

succinct to describe than the original instance. This instance has

a fair assignment of cost at most 5𝜏 (we will prove this). Using

WtFairAssign, we solve this instance, and use the second pass

to output for each 𝑥 the assigned center from C; this assignment

has cost at most 7𝜏 , which gives us the approximation ratio. See

Algorithm 3: for a point 𝑥 and an ordered set of points 𝐶 , define

Earliest(𝑥,𝐶, 𝑅) to be the earliest point 𝑐 in𝐶 such that 𝑑 (𝑥, 𝑐) ≤ 𝑅.
Also, in the pseudocode, the operation

⋃
𝑐∈C Profile[𝑐] is to be

thought of as for each 𝑐 ∈ C, creating Γ copies of 𝑐 with weight

of copy 𝛾 to be Profile[𝑐] [𝛾] and color set to 𝛾 . Hence, for each

forgotten point 𝑥 , its “copy” is present at its representative 𝑐 (𝑥).
Let 𝐼 be the original fair 𝑘-center instance. We denote by 𝐼 (C)

the instance of fair 𝑘-center where at each center 𝑐 ∈ C, we place
Profile[𝑐] [𝛾] points of color 𝛾 .

Lemma 4.1. Let 𝜏 ≤ cost(𝑂𝑃𝑇𝑓 (𝐼)). Then cost(𝑂𝑃𝑇𝑓 (𝐼 (C))) ≤
5𝜏 , andWtFairAssign returns a fair assignment 𝜙 ′𝑐 with constant
additive violation and cost at most 5𝜏 .

Proof. We show that there is a fair assignment of cost at most 5𝜏

for 𝐼 (C). Consider any point 𝑥 . Fix an optimum 𝑂𝑃𝑇𝑓 (𝐼) for 𝐼 . Let
𝜙∗ (𝑥) denote the optimum center for 𝑥 in 𝐼 ; then 𝑑 (𝑥, 𝜙∗ (𝑥)) ≤ 𝜏 .
For 𝑥 ∈ X, define 𝜙 (𝑥) := 𝑐 (𝜙∗ (𝑥)) (recall that 𝑐 (𝑥) is defined in

the algorithm). Now, 𝜙 is a fair assignment because all points in a

cluster in 𝑂𝑃𝑇𝑓 (𝐼) are assigned to the same center in C.
Moreover, by the triangle inequality and the facts𝜙 (𝑥) = 𝑐 (𝜙∗ (𝑥))

and 𝑑 (𝜙∗ (𝑥), 𝑐 (𝜙∗ (𝑥)) ≤ 2𝜏 :

𝑑 (𝑥,𝜙 (𝑥)) ≤ 𝑑 (𝑥,𝜙∗ (𝑥)) + 𝑑 (𝜙∗ (𝑥), 𝑐 (𝜙∗ (𝑥))) ≤ 3𝜏 . (6)

Fair 𝑘-Center Clustering in MapReduce and Streaming Settings WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(a) creditcard

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

k

vkc

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(b) gplus

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

k

vkc-mpc

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(c) pokec

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

k

fair-mpc

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(d) hmda

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

k

kfc

Figure 2: k-center objective comparison for varying 𝑘 in the MPC setting. All values are relative to vkc.

Wedefine𝜙𝑐 thatmaps points in 𝐼 (C) to C based on𝜙 in a natural

way. Consider a point 𝑥𝑐 in 𝐼 (C). Let 𝑥 (𝑥𝑐) denote the (original)
point in X whose “copy” is 𝑥𝑐 . Then define 𝜙𝑐 (𝑥𝑐) := 𝜙 (𝑥 (𝑥𝑐)); by
construction, 𝜙𝑐 is also fair. Now we bound cost(𝑂𝑃𝑇𝑓 (𝐼 (C))). For
any point 𝑥𝑐 in 𝐼 (C), the distance:

𝑑 (𝑥𝑐 , 𝜙𝑐 (𝑥𝑐) ≤ 𝑑 (𝑥𝑐 , 𝑥 (𝑥𝑐)) + 𝑑 (𝑥 (𝑥𝑐), 𝜙 (𝑥 (𝑥𝑐))) ≤ 5𝜏 ,

by the triangle inequality, noting that 𝜙𝑐 (𝑥𝑐) = 𝜙 (𝑥 (𝑥𝑐)), and
(6). The lemma follows by the guarantees of WtFairAssign. □

Lemma 4.2. Algorithm 3 outputs a fair solution of cost at most 7𝜏
with constant additive violation if 𝜏 ≤ 𝑐𝑜𝑠𝑡 (𝑂𝑃𝑇𝑓 (𝐼)).

Proof. In the second pass, our algorithm assigns a center to

each point 𝑥 in X based on the output of WtFairAssign. This

assignment is similar to first moving 𝑥 to 𝑐 (𝑥), which is at most 2𝜏

away, then using the assignment𝜙 ′𝑐 referred in Lemma 4.1, resulting

in another additive 5𝜏 in the cost. The proof is finished by Lemma 4.1.

□

If we have a lower bound 𝐿 and an upper bound 𝑈 such that

𝐿 ≤ cost(𝑂𝑃𝑇𝑓 (𝐼)) ≤ 𝑈 , then by running Algorithm 3 for 𝜏 =

𝐿, 𝐿(1+𝜀), 𝐿(1+𝜀)2, . . . ,𝑈 , we get a (7+𝜀)-approximation algorithm.

If we do not have such bounds, then we can use the aspect ratio Δ.

Theorem 4.3. There is a (7+𝜀)-approximation two-pass streaming
algorithm for the fair 𝑘-center problem, with constant additive
violation, that uses 𝑂 (𝑘 |Γ |𝜀−1 log(Δ)) space.

5 EXPERIMENTS
In this section, we evaluate our techniques over a variety of real-

world datasets. We answer the following questions. Q1: Are the
presented algorithms effective in identifying fair clusters and ensur-

ing low k-center objective? Q2: How does the quality of generated

clusters compare with the state-of-the-art? Q3: Are the presented
algorithms scalable to million-scale datasets?

Datasets. We consider the following real-world datasets.

(1) credit-card dataset contains 30K data points, each referring to

a credit card holder from Taiwan. Marital status of individuals is

used as the sensitive attribute to generate two protected groups,

and the individuals are clustered based on their billing details.

(2) gplus [1] contains around 100K records of individuals in a Google+
circle. Gender is considered sensitive and embedding of textual

features are used for distance estimation.

(3) pokec dataset [2] contains 1.6M records of individuals from one

of the largest social networks in Slovakia. Gender is considered

sensitive and individuals are compared based on their features

including hobbies, interests, etc.

(4) HMDA dataset comprises of around 15M records of loan-level infor-

mation about mortgages in the US market and race is considered

as the sensitive attribute.

Baselines. We compare our techniques with the following base-

lines for the MPC setting.

(1) vkC denotes the greedy single-machine algorithm for vanilla k-

center clustering. vkC is known to achieve 2-approximation of

the optimal clustering objective, and identifying clusters that

identify clusters with lower radius is NP-hard.

(2) fkC denotes the fair k-center clustering algorithm [6] that as-

sumes access to all points on a single machine.

(3) vkc-mpc denotes the vanilla k-center clustering algorithm in the

MPC setting that does not guarantee fairness. It is a 2-round

algorithm that is guaranteed to achieve 4-approximation of the

optimal clustering objective.

(4) kfc [18] corresponds to the state-of-the-art fair clustering tech-

nique for k-center objective. It is a two-step procedure that first

runs vkC to identify 𝑘-centers and then generates an LP with

𝑂 (min(2𝑘−1, 𝑛𝑘)) variables.
Our algorithm is denoted by fair-mpc for the MPC setting and

fair-str for the streaming setting. In the streaming setting, we

compare fair-str with the state-of-the-art coreset based fair k-

center algorithm [19]with its parameter 𝜖 = 0.5 (denoted as coreset).
To compare the objective values, we plot the ratio of the k-center

objective of different techniques with that of vkC.
Setup.All techniques were implemented in Python 3.6 and we used

IBM CPlex to solve the linear program. The MPC algorithm is tested

on a cluster of 10 machines. We used the original implementation

of kfc. We chose the default parameter settings for kfc and used

𝛿 = 0.01 fairness parameter for all algorithms. For fair-mpc, we
increased the number of rounds of vkc-mpc such that the number

of variables in the LP is less than 50K.

5.1 Evaluation Results
Solution Quality. Figure 2 compares the quality of clusters identi-

fied by our technique along with other baselines. Since the cluster-

ing objective has been normalizedwith respect to the best clustering

objective, vkC achieves the normalized approximation ratio of 1.

Theoretically,vkc-mpc provides a 4-approximation of the best k-

center objective as compared to 2-approximation by vkc. However,

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

(a) creditcard

T
im

e
 (

s
e
c
)

k

vkc

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

(b) gplus

T
im

e
 (

s
e
c
)

k

vkc-mpc

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90 100

(c) pokec

T
im

e
 (

s
e
c
)

k

fair-mpc

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 10 20 30 40 50 60 70 80 90 100

(d) hmda

T
im

e
 (

s
e
c
)

k

kfc

Figure 3: Running time comparison in the MPC setting.

we observe that it is consistently within a factor of 1.3 of vkc, vali-
dating its effectiveness to identify low radius clusters in practice.

However, vkC and vkc-mpc do not ensure fairness and the identified
clusters contain a skewed representation of different colors.

Among the techniques that ensure fairness, we do not plot fkc
as it did not finish for 𝑘 > 50 for (creditcard and gplus, and
𝑘 > 10 for million-scale datasets. fair-mpc and kfc achieve similar

clustering objective for all values of 𝑘 . The k-center objective of fkc
and fair-mpc is generally expected to be much worse than vkc due
to an additional fairness constraint incorporated while clustering.

However, empirically these techniques have approximation ratio

less than 7 across all datasets (better than 4 for the majority of the

cases). One of the reasons for this behavior is the presence of nodes

of different colors across different regions in the euclidean space.

Running Time. Figure 3 compares the running time for MPC set-

ting. Across all datasets and values of 𝑘 , vkc-mpc requires the least

amount of time because of parallel processing of points across dif-

ferent machines and it does not ensure fairness. fkC is the slowest

technique and does not run for larger values of 𝑘 across all datasets.

fkc requires more than two times the time taken by kfc for smaller

datasets and more than 9 times for large scale datasets. We provide a

high level overview of these techniques to explain these differences.

Both fair-mpc and kfc perform vanilla clustering over the input

points to identify 𝑘 centers and then use an LP solver to optimize

for fair assignment of points. fair-mpc runs vkc-mpc to identify 𝑘

centers and then writes an LP with𝑂 (𝑘2) variables (independent of
𝑛). In contrast, kfc uses vkC to identify centers and the assignment

LP contains 𝑂 (min(2𝑘−1, 𝑛𝑘)) variables. Since LP solver is the bot-

tleneck in the execution of these techniques, the running time of

kfc grows faster than that of fair-mpc.
Effect of number ofmachines. In this experiment, we considered

the credit-card dataset with 𝑘 = 50 and varied the number of

machines from 5 to 50. We observed a minor improvement in the

quality of clusters but it increased the number of variables in the

assignment LP. Therefore, the time taken by assignment phase

increased from around 20 seconds to 450 seconds for 50 machines.

Streaming Setting. In this experiment, we test the effectiveness of

fair-str as compared to coreset and other baselines. We observe

that the quality of clusters identified by fair-str is very similar to

that of fair-mpc (Figure 4) but the running time is similar to that

of vkC (Figure 5). The main reason for this is 𝑂 (𝑛𝑘) complexity to

identify the 𝑘 centers. The overhead of solving a linear program

is not high because the number of variables is independent of 𝑛.

Among baselines, coreset generates fair clusters but is slower than
fair-str because the number of variables in its fair assignment

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(a) gplus

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

k

vkc vkc-str

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

(b) pokec

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

k

fair-str coreset

Figure 4: k-center objective comparison in the streaming set-
ting for varying 𝑘 .

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

(a) gplus

T
im

e
 (

s
e
c
)

k

vkc vkc-str

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60 70 80 90 100

(b) pokec
T

im
e
 (

s
e
c
)

k

fair-str coreset

Figure 5: Running time comparison in the streaming setting.

LP rely exponentially on the dataset dimension as compared to

fair-str, which contains 𝑂 (𝑘) variables in the LP.

Key Takeaways.Our experiments in MPC setting demon-

strate that the running time of our methods is more than 7

times better than kfc for million scale datasets. Addition-

ally, the quality of identified clusters is stable across pa-

rameters like number of machines. Overall, our presented

techniques are highly efficient and generate low-radius

clusters for all values of 𝑘 .

6 CONCLUSION
In this work, we design scalable techniques to perform fair 𝑘-center

clustering over large-scale datasets. We consider two commonly

studied models: the massively parallel computation model and the

streaming model. Our key contribution is a simple algorithm to

formulate a linear program where the number of variables and

constraints is independent of 𝑛. We prove constant factor approxi-

mation of our techniques and empirically demonstrate its efficacy.

Fair 𝑘-Center Clustering in MapReduce and Streaming Settings WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] [n.d.]. Google+ dataset, SNAP, http://snap.stanford.edu/data/ego-Gplus.html.

[2] [n.d.]. Pokec dataset, SNAP, http://snap.stanford.edu/data/soc-Pokec.html.

[3] Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. 2020. Fair

Correlation Clustering. CoRR abs/2002.03508 (2020). arXiv:2002.03508 https:

//arxiv.org/abs/2002.03508

[4] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. 2019.

ClusteringWithout Over-Representation. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 267–275.

[5] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for

Parallel Query Processing. Journal of the ACM (JACM) 64, 6 (2017), 40.
[6] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani.

2019. Fair algorithms for clustering. In Conference on Neural Information Process-
ing Systems. 4955–4966.

[7] Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner,

Daniel R. Schmidt, and Melanie Schmidt. 2019. On the cost of essentially fair clus-

terings. In International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems.

[8] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. 2019. Solving

K-Center Clustering (with Outliers) in MapReduce and Streaming, Almost as

Accurately as Sequentially. Proc. VLDB Endow. 12, 7 (2019), 766–778.
[9] Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. 2015. On (1, 𝜀)-restricted

assignmentmakespanminimization. InAnnual ACM-SIAM Symposium onDiscrete
Algorithms.

[10] Daqing Chen, Sai Laing Sain, and Kun Guo. 2012. Data mining for the online

retail industry: A case study of RFM model-based customer segmentation using

data mining. Journal of Database Marketing & Customer Strategy Management
19, 3 (2012), 197–208.

[11] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair clustering through fairlets. In Proc. 31st Conference on Neural Information
Processing Systems. 5029–5037.

[12] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-

cessing on Large Clusters. In 6th Symposium on Operating System Design and
Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004.
137–150.

[13] Alina Ene, Sungjin Im, and Benjamin Moseley. 2011. Fast clustering using MapRe-

duce. In Proceedings of the 17th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 681–689.

[14] Sainyam Galhotra. 2021. Robust Algorithms for Clustering with Applications to

Data Integration. (2021).

[15] Teofilo F. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster

Distance. Theor. Comput. Sci. 38 (1985), 293 – 306.

[16] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.

2014. Measuring Price Discrimination and Steering on E-Commerce Web Sites.

In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC
’14). Association for Computing Machinery, New York, NY, USA, 305–318.

[17] Anikó Hannák, Claudia Wagner, David Garcia, Alan Mislove, Markus Strohmaier,

and Christo Wilson. 2017. Bias in Online Freelance Marketplaces: Evidence from

TaskRabbit and Fiverr. In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing. Association for Computing

Machinery, New York, NY, USA, 1914–1933.

[18] ElfaroukHarb andHo Shan Lam. 2020. KFC: A Scalable Approximation Algorithm

for k-center Fair Clustering. In Advances in Neural Information Processing Systems.
14509–14519.

[19] Lingxiao Huang, Shaofeng Jiang, and Nisheeth Vishnoi. 2019. Coresets for

clusteringwith fairness constraints. In Proc. 33rd Conference on Neural Information
Processing Systems. 7587–7598.

[20] IBM. 2019. IBM ILOG CPLEX 12.9. (2019).

[21] Sungjin Im and Benjamin Moseley. 2015. Fast and better distributed mapreduce

algorithms for k-center clustering. In Proceedings of the 27th ACM symposium on
Parallelism in Algorithms and Architectures. 65–67.

[22] Srinivasa KG, K Venugopal, and L Patnaik. 2006. Feature extraction using fuzzy

c-means clustering for data mining systems. IJCSNS 6, 3A (2006), 230.

[23] Bjornar Larsen and Chinatsu Aone. 1999. Fast and effective text mining us-

ing linear-time document clustering. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining. 16–22.

[24] Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and

Benjamin Moseley. 2015. Fast distributed k-center clustering with outliers on

massive data. Advances in Neural Information Processing Systems 28 (2015), 1063–
1071.

[25] Richard Matthew McCutchen and Samir Khuller. 2008. Streaming algorithms for

k-center clustering with outliers and with anonymity. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques. Springer,
165–178.

[26] Clemens Rösner and Melanie Schmidt. 2018. Privacy Preserving Clustering with

Constraints. In Proc. 45th International Colloquium on Automata, Languages and
Programming. 96:1–96:14.

[27] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2002. Recom-

mender systems for large-scale e-commerce: Scalable neighborhood formation

using clustering. In Proceedings of the fifth international conference on computer
and information technology, Vol. 1. 291–324.

[28] David B. Shmoys and Éva Tardos. 1993. An approximation algorithm for the

generalized assignment problem. Mathematical programming 62, 1-3 (1993),

461–474.

[29] Till Speicher, Muhammad Ali, Giridhari Venkatadri, Filipe Nunes Ribeiro, George

Arvanitakis, Fabrício Benevenuto, Krishna P Gummadi, Patrick Loiseau, and Alan

Mislove. 2018. Potential for Discrimination in Online Targeted Advertising. In

Conference on Fairness, Accountability and Transparency. 5–19.

http://snap.stanford.edu/data/ego-Gplus.html
http://snap.stanford.edu/data/soc-Pokec.html
https://arxiv.org/abs/2002.03508
https://arxiv.org/abs/2002.03508
https://arxiv.org/abs/2002.03508

	Abstract
	1 Introduction
	2 Definitions and Preliminaries
	3 Fair k-center in the MPC Setting
	3.1 Algorithm for weighted fair assignment
	3.2 A tight example on which the MPC algorithm achieves 9-approximation

	4 A Two-Pass Streaming Algorithm
	5 Experiments
	5.1 Evaluation Results

	6 Conclusion
	References

