
Department: Head
Editor: Name, xxxx@email

Architectural Design Decisions
for the Machine Learning
Workflow
S. J. Warnett and U. Zdun
University of Vienna, Faculty of Computer Science

Abstract—Bringing machine learning models to production is challenging as it is often fraught
with uncertainty and confusion, partially due to the disparity between software engineering and
machine learning practices, but also due to knowledge gaps on the level of the individual
practitioner. We conducted a qualitative investigation into the architectural decisions faced by
practitioners as documented in gray literature based on Straussian Grounded Theory and
modeled current practices in machine learning. Our novel Architectural Design Decision model
is based on current practitioner understanding of the topic and helps bridge the gap between
science and practice, foster scientific understanding of the subject, and support practitioners via
the integration and consolidation of the myriad decisions they face. We describe a subset of the
Architectural Design Decisions that were modeled, discuss uses for the model, and outline areas
in which further research may be pursued.

Introduction
Software engineering (SE), software archi-

tecture (SA), and machine learning (ML) are
established disciplines, but a noticeable mismatch
between engineering and architectural practices
on one side and more data-focused activities on
the other is evident, despite the latter often con-
stituting complex software solutions. As a conse-
quence, a rift has formed between the SE and ML
communities [1]. This apparent discrepancy could
partially be explained by acknowledging the fact
that, generally speaking, ML developers are not
typically from a software engineering background
and thus do not routinely apply common engi-

neering and architectural techniques. Conversely,
software engineers and architects do not typically
work as ML engineers, and so do not regularly
concern themselves with developing appropriate
solutions for ML systems [2, 3].

The issues resulting from the divergence of
these disciplines are further compounded by the
technical challenges customarily arising in ML
projects that are generally non-existent in non-
ML projects, such as the development and main-
tenance of ML solutions [4, 5, 6].

To address these issues, we conducted an em-
pirical gray literature study [7] based on Straus-
sian Grounded Theory (GT) [8, 9]. We aimed

Published by the IEEE Computer Society © 2021 IEEE 1



Department Head

to identify relevant architectural concepts applied
by practitioners in ML data processing, model
building, and Automated Machine Learning (Au-
toML). The result is a model of Architectural
Design Decisions (ADDs), decision options, con-
siderations, practices, and their relations.

In this article, we briefly describe a simplified
ML pipeline workflow to illustrate our research
context. We then describe our research methods
and study design. Next, related studies in the field
are discussed. After that, we present the ADDs
resulting from our study. Finally, we conclude
by briefly outlining future directions and further
research possibilities based on our work.

The Machine Learning Workflow
To illustrate the parts of the ML architecture

we consider in this article, Figure 1 depicts a
typical ML workflow. An ML pipeline generally
starts via a triggering event – perhaps manually
or following a commit to the code base. This
initiates the data ingestion step, where the data
sets are updated, e.g. by fetching the data afresh
from a repository or using data received via a
stream. The data is then processed in various
ways and is typically transformed (e.g. normal-
ized then cleaned) before features are extracted.
The features and processed data are then passed to
the model building components, in which models
are trained. The trained models are then deployed,
and can subsequently be used for predictions.

Research Methods and Study Design
We studied methods and techniques currently

applied by practitioners in the context of ML so-
lution development and gained valuable insights
into the software engineering and architectural
state of the art as applied to ML. The study
was based on Straussian GT [8, 9] and involved
the qualitative analysis of gray literature [7]. We
describe our research method in detail in our prior
work [10]. We aimed to identify relevant ADDs,
options, considerations, practices, and their re-
lations and strove to reduce the gap between
science and practice and between SA/SE and ML.

Initially, we used search engines (e.g. Google,
StartPage, DuckDuckGo) and topic portals (e.g.
InfoQ, DZone) to search for practitioner sources
consisting of blog posts, presentations, and
videos. Sources were considered if they were rele-

vant and weren’t marketing a business or product.
The authors checked each other’s selection for
suitability.

We open-coded each source in depth and per-
formed axial and selective coding steps, in which
we formally modeled each ADD, ADD relation,
and decision driver in Python-based models and
realized automated generators for UML models in
PlantUML. Further sources were actively sought
out based on preceding findings during the coding
process. This involved continuous consideration
of the topics needing to be coded and their
potential contribution to the model. We continued
coding sources until theoretical saturation (i.e.
“the point in category development at which
no new properties, dimensions, or relationships
emerge during analysis” [9]) was reached. The
result was a formal UML-based ADD model
covering decision options, the relations between
them, and relevant decision drivers.

Twenty-nine sources were considered in total,
and these are listed in Table 1. Due to space
constraints, we only describe a subset of the
ADDs that were modeled in this article. Aspects
such as deployment, continuous integration and
delivery, MLOps, and development environments
are omitted. To support the reproducibility of our
study and provide the full models, we offer the
detailed coding data and the resulting models, as
well as our Python implementation to generate
UML diagrams and tables from the models, in a
long-term online archive [11].

Sidebar: Related Studies on the
Relations of SE/SA and ML

Some headway has already been made in the
field of SE/SA for ML. The systematic literature
review conducted by Washizaki et al. [12] pro-
vides a comprehensive, categorized collection of
software (anti-)patterns for ML, and several other
publications [4, 5, 13] document the challenges
and open research topics in the field.

Lwakatare et al. [5] conducted an empirical
investigation into software engineering challenges
for ML systems and propose a taxonomy of issues
that includes data dependency management, de-
ployment difficulties as well as model and result
reproduction challenges.

Sculley et al. [4] describe the significant tech-
nical debt incurred when attempting to maintain

2



Table 1. List of Knowledge Sources Included in the Paper

ID Title Archive URL Source Type Example Source
Code

s1 How to power up your product by machine
learning with python microservice, pt. 1

https://tinyurl.com/
ml-adds-u1

Practitioner Audience Article True False

s2 Architecting a Machine Learning Pipeline:
How to build scalable Machine Learning sys-
tems - Part 2/2

https://tinyurl.com/
ml-adds-u2

Practitioner Audience Article True False

s3 Some Thoughts on Modularization in Machine
Learning

https://tinyurl.com/
ml-adds-u3

Practitioner Audience Article False False

s4 Productionizing Machine Learning with a Mi-
croservices Architecture

https://tinyurl.com/
ml-adds-u4

Presentation Video False False

s5 Microservices Suck for Machine Learning
(and what we did about it)

https://tinyurl.com/
ml-adds-u5

Practitioner Audience Article True True

s6 MLOps: Continuous delivery and automation
pipelines in machine learning

https://tinyurl.com/
ml-adds-u6

Practitioner Audience Article True False

s7 Composing Deep-Learning Microservices for
the Hybrid Internet of Things

https://tinyurl.com/
ml-adds-u7

Practitioner Audience Article True False

s8 Continuous Intelligence: Moving Machine
Learning Application into Production Reliably

https://tinyurl.com/
ml-adds-u8

Slides True False

s9 Architecture of a real-world Machine Learning
system

https://tinyurl.com/
ml-adds-u9

Practitioner Audience Article True False

s10 Architecting a Machine Learning System for
Risk

https://tinyurl.com/
ml-adds-u10

Practitioner Audience Article True False

s11 Architecting a Scalable Real Time Learning
System

https://tinyurl.com/
ml-adds-u11

Practitioner Audience Article True False

s12 System Architectures for Personalization and
Recommendation

https://tinyurl.com/
ml-adds-u12

Practitioner Audience Article True False

s13 Architectural thinking in the Wild West of data
science

https://tinyurl.com/
ml-adds-u13

Practitioner Audience Article True False

s14 Machine Learning Architecture: The Core
Components

https://tinyurl.com/
ml-adds-u14

Practitioner Audience Article False False

s15 Scalable Software and Big Data Architecture -
Big Data and Analytics Architectural Patterns

https://tinyurl.com/
ml-adds-u15

Practitioner Audience Article False False

s16 Machine Learning in Production: Software Ar-
chitecture

https://tinyurl.com/
ml-adds-u16

Practitioner Audience Article True False

s17 AutoML https://tinyurl.com/
ml-adds-u17

Practitioner Audience Article False False

s18 AutoML is Overhyped https://tinyurl.com/
ml-adds-u18

Practitioner Audience Article True False

s19 Three Levels of ML Software https://tinyurl.com/
ml-adds-u19

Practitioner Audience Article True False

s20 MLOps: Methods and Tools of DevOps for
Machine Learning

https://tinyurl.com/
ml-adds-u20

Practitioner Audience Article False False

s21 MLOps: What It Is, Why it Matters, and
How To Implement It (from a Data Scientist
Perspective)

https://tinyurl.com/
ml-adds-u21

Practitioner Audience Article False False

s22 MLOps Principles https://tinyurl.com/
ml-adds-u22

Practitioner Audience Article False False

s23 Machine Learning Monitoring: What It Is, and
What We Are Missing

https://tinyurl.com/
ml-adds-u23

Practitioner Audience Article False False

s24 Automated monitoring of your machine learn-
ing models with Amazon SageMaker Model
Monitor and sending predictions to human
review workflows using Amazon A2I

https://tinyurl.com/
ml-adds-u24

Blog Post False False

s25 MLOps: Model management, deployment, and
monitoring with Azure Machine Learning

https://tinyurl.com/
ml-adds-u25

Practitioner Audience Article False False

s26 The Pros and Cons of Using Jupyter Note-
books as Your Editor for Data Science Work
TL;DR: PyCharm’s probably better

https://tinyurl.com/
ml-adds-u26

Practitioner Audience Article False False

s27 10 reasons why data scientists love Jupyter
notebooks

https://tinyurl.com/
ml-adds-u27

Practitioner Audience Article False False

s28 5 reasons why jupyter notebooks suck https://tinyurl.com/
ml-adds-u28

Practitioner Audience Article False False

s29 Jupyter Notebook is the Cancer of ML Engi-
neering

https://tinyurl.com/
ml-adds-u29

Practitioner Audience Article False False

2021 3

https://tinyurl.com/ml-adds-u1
https://tinyurl.com/ml-adds-u1
https://tinyurl.com/ml-adds-u2
https://tinyurl.com/ml-adds-u2
https://tinyurl.com/ml-adds-u3
https://tinyurl.com/ml-adds-u3
https://tinyurl.com/ml-adds-u4
https://tinyurl.com/ml-adds-u4
https://tinyurl.com/ml-adds-u5
https://tinyurl.com/ml-adds-u5
https://tinyurl.com/ml-adds-u6
https://tinyurl.com/ml-adds-u6
https://tinyurl.com/ml-adds-u7
https://tinyurl.com/ml-adds-u7
https://tinyurl.com/ml-adds-u8
https://tinyurl.com/ml-adds-u8
https://tinyurl.com/ml-adds-u9
https://tinyurl.com/ml-adds-u9
https://tinyurl.com/ml-adds-u10
https://tinyurl.com/ml-adds-u10
https://tinyurl.com/ml-adds-u11
https://tinyurl.com/ml-adds-u11
https://tinyurl.com/ml-adds-u12
https://tinyurl.com/ml-adds-u12
https://tinyurl.com/ml-adds-u13
https://tinyurl.com/ml-adds-u13
https://tinyurl.com/ml-adds-u14
https://tinyurl.com/ml-adds-u14
https://tinyurl.com/ml-adds-u15
https://tinyurl.com/ml-adds-u15
https://tinyurl.com/ml-adds-u16
https://tinyurl.com/ml-adds-u16
https://tinyurl.com/ml-adds-u17
https://tinyurl.com/ml-adds-u17
https://tinyurl.com/ml-adds-u18
https://tinyurl.com/ml-adds-u18
https://tinyurl.com/ml-adds-u19
https://tinyurl.com/ml-adds-u19
https://tinyurl.com/ml-adds-u20
https://tinyurl.com/ml-adds-u20
https://tinyurl.com/ml-adds-u21
https://tinyurl.com/ml-adds-u21
https://tinyurl.com/ml-adds-u22
https://tinyurl.com/ml-adds-u22
https://tinyurl.com/ml-adds-u23
https://tinyurl.com/ml-adds-u23
https://tinyurl.com/ml-adds-u24
https://tinyurl.com/ml-adds-u24
https://tinyurl.com/ml-adds-u25
https://tinyurl.com/ml-adds-u25
https://tinyurl.com/ml-adds-u26
https://tinyurl.com/ml-adds-u26
https://tinyurl.com/ml-adds-u27
https://tinyurl.com/ml-adds-u27
https://tinyurl.com/ml-adds-u28
https://tinyurl.com/ml-adds-u28
https://tinyurl.com/ml-adds-u29
https://tinyurl.com/ml-adds-u29


Department Head

Figure 1. A simplified ML pipeline.

real-world ML systems. Such risk factors include
entanglement, data dependencies, configuration
issues, reproducibility debt, and system-level anti-
patterns.

Bosch et al. [13] provide an overview of
the software engineering challenges associated
with ML solutions, including model management,
reuse and deployment, data pipeline challenges,
monitoring and logging, design methods, and
data quality management. They also identify open
research areas, such as distributed model creation,
distributed data storage, data generation, and au-
tomated experimentation.

Nascimento et al. [6] conducted a comprehen-
sive systematic literature review on the subject
of software engineering for artificial intelligence
(AI) and ML. They summarize the state of the
art and identify various unsolved challenges in
testing, AI software quality, and data manage-
ment. They also identify several other topics such
as architecture design, AI engineering, model
development, model deployment, integration, in-
frastructure, operation support, requirements en-
gineering, project management and education.

Serban et al. [14] mined academic and gray
literature, identifying twenty-nine engineering
best practices for ML applications. They also
surveyed practitioners to determine the degree
of adoption of these practices and validate their
perceived effects. Their findings helped improve
understanding of the relationship between team
size and practice adoption, and the relative adop-
tion rate of SE practices compared to ML-specific

practices.
Martı́nez-Fernández et al. [15] conducted a

systematic mapping study, considering 248 stud-
ies, and identified and classified various SE ap-
proaches for AI-based systems, identifying preva-
lent and neglected areas of study.

Alves et al. [16] identified existing product
engineering methods and practices for industrial
ML applications and platforms. They conducted
a Gray Literature Review to investigate methods
and practices applied to ML product lifecycles.

In contrast to the state-of-the-art, our approach
was to formally model real-world practices to
assist practitioners in finding suitable options
to common design decisions and mitigate or
avoid challenges common to the field. Our ADDs
could potentially be used to assess uncertainty
or complexity of the ML system design space,
assess architectural conformance or identify anti-
patterns.

Architectural Design Decisions
Table 2 presents an overview of the vari-

ous ADDs, the decision options, gray literature
sources, and decision drivers discussed in this
article. We describe each of the ADDs in this
section. Our replication package contains detailed
UML models of all ADDs and relations described
here.

Data processing
Data processing involves ingesting raw data

into an ML workflow and transforming it into

4



Table 2. Study Results: Overview of Design Decisions, Decision Options, Evidences and Related Forces
Design Decision # Decision Option (Solution) Evidences (from Practitioner

Sources)
Decision Drivers (Forces)

How to automatically
process the data used for
model building?

1. No data processing automation s1, s6, s13 f1(--), f2(-), f3(-), f4(--), f5(+)

2. Data pipeline s1, s2, s4, s5, s6, s8, s9, s13, s14,
s15, s16, s17, s18, s19

f1(++), f2(++), f3(+), f4(+), f5(-)

3. ETL pipeline s4, s5, s9, s13, s15 f1(+), f2(+), f3(o), f4(+), f5(-)16

4. Data processing component s9, s13, s14 f1(+), f2(+), f3(-), f4(o), f5(-)

Which data processing
tasks can be performed
by a data processing
pipeline or component?

1. Data extraction s1, s2, s6, s8, s13, s14, s15 ∅

2. Data transformation s2, s5, s6, s10, s13, s14, s15, s19 ∅

3. Data preparation s1, s2, s4, s5, s6, s9, s10, s11,
s13, s14, s15, s17, s18, s19, s20,
s23, s24, s25

∅

4. Data validation s6, s9, s13, s19, s20, s24 ∅

5. Data selection s2, s6, s14 ∅

6. Feature engineering s1, s2, s4, s5, s6, s8, s9, s10, s13,
s14, s15, s17, s18, s19, s23, s25

∅

20

7. Data processing hyperparameter tuning s9, s11, s17, s18 ∅
How to persist and
provide access to
features?

1. Store features in data stores without specific support s2, s4, s5, s6, s13 f6(-), f7(-), f8(-), f9(-), f10(o), f11(o), f12(o), f13(o), f14(o)
10 2. Feature store s2, s4, s5, s6, s9, s10, s11, s13,

s15
f6(+), f7(+), f8(+), f9(+), f10(+), f11(+), f12(+), f13(+), f14(+)

Should data be processed
in batches or in realtime?

1. Batch-based data processing s1, s2, s5, s6, s8, s10, s13, s15 f15(++), f12(++), f13(-), f14(--), f10(-), f11(+)
10 2. Real-time, stream-based data processing s1, s2, s4, s5, s6, s8, s9, s10, s13,

s15
f15(+), f12(+), f13(++), f14(++), f10(++), f11(o)

How to ingest data into
ML projects or
applications?

1. Streamed data ingestion s2, s4, s5, s7, s9, s11, s13, s14,
s15, s19

f10(+), f11(-), f12(+), f13(++), f14(++), f5(-)

2. Data ingestion by request s2, s4, s5, s9, s13, s14, s15, s19 f10(o), f11(+), f12(o), f13(o), f14(+), f5(-)

3. Data ingestion in batches s4, s5, s13, s14, s15, s19 f10(-), f11(o), f12(++), f13(-), f14(--), f5(-)16

4. Manual data ingestion s4, s5, s6 f10(--), f11(-), f12(--), f13(--), f14(--), f5(+)

How to trigger a
machine learning
pipeline or orchestrator?

1. On-demand trigger s2, s4, s6, s9, s12 ∅

2. On-commit trigger s4, s8, s25 ∅

3. On-schedule trigger s1, s2, s6, s9, s12, s14 ∅

4. On availability of new training data trigger s6 ∅

5. On model performance degradation trigger s6 ∅

11

6. On changes in the data distribution trigger s6 ∅

How to perform model
building in an ML
project?

1. Model building in development tool s2, s4, s6, s10, s13, s15 f16(-), f17(+), f13(--), f18(-), f19(--), f3(+), f20(-), f21(-), f4(-),
f22(-), f23(-), f5(+)

2. Model building pipeline s2, s4, s6, s8, s9, s10, s13, s14,
s17, s19, s25

f16(+), f17(-), f13(+), f18(++), f19(+), f3(o), f20(+), f21(+), f4(+),
f22(+), f23(+), f5(-)13

3. Model builder component s9, s11, s13, s14 f16(+), f17(-), f13(+), f18(o), f19(o), f3(o), f20(o), f21(+), f4(o),
f22(o), f23(-), f5(-)

Which tasks can be
performed by a model
building pipeline or
component?

1. Model training s1, s2, s4, s5, s6, s7, s8, s9, s10,
s11, s12, s13, s14, s15, s17, s18,
s19, s20, s23, s24, s25

∅

2. Data splitting s2, s4, s8, s9, s14, s19 ∅

3. Data checkpoints s2 ∅

4. Model validation s4, s6, s8, s9, s10, s13, s14, s17,
s18, s19, s20, s25

∅

5. Model selection s2, s4, s9, s11, s14, s17, s18, s19 ∅

6. Train multiple model versions with different parameters and/or
algorithms

s2, s4, s6, s8, s9, s11, s19 ∅

7. Model packaging s9, s19 ∅

8. Model hyperparameter tuning s2, s6, s9, s11, s17, s18, s19,
s24, s25

∅

9. Development tool facade s2, s4, s6 ∅

22

10. Development tool export s10, s15 ∅

When and how to train
the model?

1. Batch-based learning s2, s6, s10, s11, s12, s19 f24(--), f25(--), f26(++), f10(-), f11(+), f27(--), f14(-), f19(+),
f28(++)

2. Incremental learning s6, s10, s11, s12, s19 f24(++), f25(++), f26(--), f10(+), f11(-), f27(+), f14(+), f19(-),
f28(-)7

3. Hybrid batch-based and incremental learning s12, s19 f24(+), f25(+), f26(+), f10(+), f11(+), f27(o), f14(o), f19(+), f28(-
-)

Should AutoML be used
and if so where?

1. No AutoML s4, s6, s9, s10, s17, s18, s19,
s22, s23

f4(o), f29(o), f30(o), f22(o), f5(o), f2(o), f20(+)

9 2. AutoML s4, s6, s9, s10, s17, s18, s19,
s22, s23

f4(+), f29(+), f30(+), f22(+), f5(o), f2(+), f20(-)

Forces Codes/Sources: f1: Automated data collection [s1], f2: Process and work automation [s1, s8, s15, s18, s20], f3: Iterative development [s1, s4], f4: Reproducibility [s6, s8, s13, s17, s20], f5: Tool development
effort [s1, s2, s10, s17], f6: Feature reuse [s5, s6], f7: Feature discovery [s5, s6], f8: Maintainability [s1, s5, s6, s13, s16], f9: Avoid training/serving skew [s6, s8], f10: Online support [s2, s6, s9, s10, s11, s12,
s13, s19], f11: Offline support [s2, s6, s9, s10, s11, s12, s13, s19], f12: Data throughput [s2, s4, s6, s9, s12, s15], f13: Low latency [s2, s4, s6, s15, s16], f14: Near real-time support [s1, s2, s4, s6, s10, s11, s12,
s13, s15, s19], f15: Reliability [s2, s5, s8, s10], f16: Interchangeability of machine learning algorithms [s2], f17: Interactive prototyping [s2, s13], f18: Loose coupling [s2, s5, s6, s7, s16, s19], f19: Scalability [s1,
s2, s3, s4, s5, s7, s11, s12, s13, s15], f20: Production-ready development [s4, s13, s16, s18, s19], f21: Experimental operational symmetry [s6, s13], f22: Development agility [s10, s13, s17], f23: Flexibility [s10],
f24: React to unforeseen changes in the data [s11, s19], f25: Memory requirements [s11], f26: Handling massive amounts of data [s11, s12, s15], f27: Speed performance [s2, s3, s4, s5, s6, s9, s10, s11, s15], f28:
Variety of machine learning algorithm choices [s11, s12, s19], f29: Explainability [s17], f30: Development velocity [s5, s17, s18, s19]

Note on Empty Forces(∅): Please note that some ADDs do not report decision drivers as they are sub-decisions of the respective prior ADD, and share the same forces (see explanations in the remainder of the
article).

2021 5



Department Head

usable data that can be further processed by ML
algorithms. Data is central to ML, and the main
benefits of an ML approach lie in the processing
of large volumes of it at scale [17]. Typical phases
of the data processing task involve data selection,
transformation, and output, as well as the genera-
tion, storage, and versioning of data artifacts such
as features and data subset samples [5].

As with many other ML tasks, data processing
can be performed manually or in an automated
fashion, with the latter yielding many potential
benefits. The data processing stage also presents
various data collection options. Once again, this
is a task that may be automated. Data may be
ingested manually, in real-time (e.g. streamed),
batched, online, or offline with various implica-
tions for latency, throughput, reliability, and so on
– the various options are discussed below. Data
labeling (e.g. for classification tasks) is another
activity that may be performed manually or au-
tomated and we consider the implications. Gen-
erated artifacts, such as features, may be stored
in various ways and each option has different
implications when it comes to their respective
benefits. Finally, the data processing stage needs
to be triggered in one way or another. Again,
there is a multitude of options to choose from,
including triggering on-demand, on-commit, on-
schedule, on new data availability, on model
performance degradation, or on changes to the
data distribution.

Data processing automation decision
A core ADD is how to automatically process the
data used for model building. A simple option is
to provide no data processing automation.

The most common automated architecture
proposed by practitioners in our sources is a
data pipeline, i.e. to perform data processing in
a dedicated, flexible pipeline. A similar option is
using an ETL pipeline which is a kind of data
pipeline in which a specific selection and order
of steps are used: extract, transform, and load.
While pipeline architectures are often proposed,
proposals for data processing components that do
not follow a pipeline architecture also exist.

The primary benefits of these options are
supporting automated data collection and a po-
tentially high degree of process and work automa-
tion. These, in turn, may lead to faster data in-

gestion and more rapid model training turnaround
times, more frequent deployments, a reduction in
human error, an improvement in iterative devel-
opment and reproducibility, not to mention the
resulting cost savings of all of the above. Our
sources indicated that the data pipeline is the
most flexible of the automated options. These op-
tions require some tool development effort which
potentially represents an overhead – especially in
the initial phases of a project.

Data processing tasks decision
If a data processing pipeline or data processing
component is chosen, the tasks to be performed
during automated data processing can be decided
in a subsequent decision. Common tasks per-
formed in automated data processing flows are ex-
traction, transformation, preparation, validation,
selection, and feature engineering.

Data processing hyperparameter tuning –
which refers to the tuning of hyperparameters
during automated data processing – is a less
frequently applied method. For example, if an
automated featurizer is utilized during feature
engineering, this component has hyperparameters
that can be tuned. Automation is again possible,
e.g. in AutoML (see the discussion on AutoML
below).

Feature persistence and access decision
The data processing tasks decision and its feature
engineering option generate the features in ML.
It is often important to provide persistence and
access for these features – frequently beyond
the current run of data processing and model
building. One option to achieve this is to store
features in a data store without specific support
for features. The alternative option is a dedicated
feature store, in which features are accessible
for training following standards for definition,
storage, and access. To facilitate access to the
features, the feature store can include either a
batch feature API or a real-time feature API, or
both. Some practitioners also suggest using event-
driven abstractions here, e.g. using event sourcing
as a technique to realize the feature store.

Compared to the alternative, a dedicated fea-
ture store facilitates easier feature reuse, feature
discovery, and maintainability. It also helps avoid
training-serving skew, i.e. making sure that the
features used for training are the same as the

6



ones used during serving. If dedicated APIs are
supported, it can additionally offer better support
for offline and/or online training and serving.
Finally, those APIs can be optimized for data
throughput (e.g. when large volumes of data or a
large number of clients are expected), low latency
(e.g. in safety-critical systems), or near real-time
support (e.g. when user interaction is intended).

Data processing in batches or in real-time
decision
Automated data processing can occur either in
batches or in real-time. Thus, batch-based data
processing and real-time, stream-based data pro-
cessing are two options of this follow-on decision
to be taken for all automated options of the data
processing automation decision.

Real-time, stream-based data processing is
especially beneficial for online data processing,
and, unlike offline data processing, is beneficial
for low latency and near real-time processing,
e.g. when the practitioner wishes to gain fast
insights, or when a system needs to be able to
react instantly to events at runtime. While modern
online architectures offer high data throughput
and reliability, the extra processing steps at run-
time make them inferior to offline architectures
for those forces. Offline data processing is well-
supported by batch-based data processing, for
instance, when processing high volumes of data,
performing particularly deep data analyses, or
when processing speed does not take precedence.

Data ingestion decision
Another central ADD is how to ingest data into
ML projects or applications to facilitate data
processing and consequently model building.

An initial option is to ingest data manually.
Alternatively, automated options exist, such as
data ingestion in batches and streamed data in-
gestion. One can also actively acquire raw data
from sources via data ingestion by request. It
is customary to store the raw data that is in-
gested and this is typically done in a raw data
store. The automated options can be abstracted
and orchestrated in a dedicated data ingestor
component, with the two variants data ingestor
queue (a data ingestor that queues up ingested
data, e.g. for online, incremental learning) and
ground-truth collector (a data ingestor collecting
data on predictions in production, e.g. with input

from users when predictions are wrong). The
data ingestor can be used in the context of data
labeling. For example, a ground-truth collector
can support an automatic data labeler which is
used instead of manual data labeling.

Data ingestion needed for experimental or
offline learning is often performed using data
ingestion in batches or by manual data ingestion.
Streamed data ingestion and data ingestion by
request are suitable for online learning or ingest-
ing data online into the ML-based application.
Streamed data ingestion is ideal for continu-
ously incoming data and offers relatively high
data throughput, low latency, and near-real-time
support. Data ingestion by request can receive
specific data as needed, but this increases latency
and is usually not best suited for reaching high
data throughput as each new item of data requires
an additional request. Data ingestion in batches
offers a very high data throughput, but is offline,
and therefore not well suited to data ingestion
in model training or applications that require
low latency or near real-time support. Manual
data ingestion has even more negative impacts on
those forces. Its main advantage is that it does not
require tool development effort for engineering a
custom automated ingestion solution.

Trigger pipelines or ML orchestrator decision
ML components, such as data processing
pipelines, ML orchestrators, and model building
components, can be triggered at various points.
For each of these, we are required to decide on
how they should be triggered. The first option is
an on-demand trigger either by an ad-hoc, manual
execution of a pipeline or component (e.g. by
a human operator) or via a call coming from
another pipeline or component.

Another option is an on-commit trigger which
can start a pipeline when changes are made
in a version control system. Some pipelines or
components need to run at regular intervals, e.g.
daily, weekly, or monthly, in which case an on-
schedule trigger is used.

Triggering can also occur on the availability
of new training data. Further, pipelines can be
triggered by model performance degradation or
changes in the data distribution. Each of these
options requires monitoring of the model or data
respectively.

2021 7



Department Head

Model building
Building an ML model involves applying a

learning algorithm to features of a pre-prepared
data set to yield predictions of a specific type,
such as qualitative (classification) or quantitative
(regression) values.

Hyperparameter tuning is the practice of ad-
justing values used by ML algorithms to optimize
their performance metrics. This task may be au-
tomated or manual.

The actual work involved in model building
may be performed using tools, such as an inte-
grated development environment (IDE) or com-
putational notebook, or automated using AutoML
or a model building pipeline.

These approaches each have their respective
advantages and disadvantages and are discussed
in the following sections.

Model building decision
A core ADD is how to perform model building in
an ML project. Many practitioner sources claim
that providing some level of automation is key to
successful production delivery and that many ML
projects never progress beyond the experimental
phase. Very often the model building is performed
using tools, such as computational notebooks
or IDEs. The main benefits of model building
using a tool are that this option better supports
interactive prototyping and iterative development
than the other options. This option also offers low
tool development effort, since the tools don’t have
to be engineered from scratch.

While this is useful for development and
experimentation, a model building pipeline for
projects that are intended for delivery to produc-
tion is recommended due to the higher degree of
automation. While pipeline abstractions are com-
mon for this automation task, some practitioners
also suggest other kinds of model builder com-
ponents, such as one architectured in a pipeline-
based style or a dedicated ML orchestrator which
coordinates disparate components at the next
higher level of abstraction.

Automated model building enables inter-
changeability of ML algorithms, low latency in
the model building process, symmetry between
experimental and operational tasks (in the sense
that the same software components are used
for both pre-production and production), repro-

ducibility of each step in the model building
phase, and enhanced support for production-ready
development. The main drawback is increased
tool development effort.

Our sources indicate that, when comparing
the two automation options above, the pipeline
abstraction is usually preferred, since it is a highly
flexible architecture that supports a greater level
of development agility. Pipelines are also known
to be scalable and loosely coupled.

Model building tasks decision
If a model building pipeline or model builder
component is chosen, the tasks to be performed
during automated model building can be decided
in a subsequent decision. Common tasks typically
performed in such components are data splitting
(e.g. into training and test data), model train-
ing, model validation, and automated or semi-
automated model selection if multiple models
were built. Model selection is usually needed if
the practice of training multiple model versions
with different parameters and/or algorithms is
applied. Model hyperparameter tuning and op-
timization describes the challenge of selecting
optimal hyperparameters for the learning algo-
rithm(s). Some approaches automate hyperpa-
rameter tuning for the model (e.g. in AutoML)
as a model building subtask. Our sources describe
the tasks of model packaging (e.g. in storage or
exchange formats). To enable model training with
error tolerance, data checkpoints can be defined to
enable retraining if a previous attempt failed due
to a transient issue (e.g. a timeout). Some auto-
mated pipelines or components do not only use
development tools in early, experimental stages
but also integrate them in the automated flows.
This can either be done using a development tool
export or more elegantly using a development tool
facade component integrated into the automated
flow. This way, the “best of both worlds” can be
achieved.

When and how to train the model decision
The model training task entails a follow-on deci-
sion on when and how to train the model. Model
training can occur via batch-based learning or by
an incremental learning approach. Alternatively,
hybrid batch-based and incremental learning is
possible, where some factors of the model are
trained in batches and others incrementally.

8



Significant benefits of batch-based learning
lie in offline training, especially when mas-
sive amounts of data are to be handled. Thus,
it usually has high memory requirements and
rather poor speed performance, leading to pre-
computation, which is beneficial for scalability
(provided incremental updates are not needed).

Incremental learning has the opposite effect
on those forces. Thus, it is rather applicable when
a reaction to unforeseen changes or the near real-
time support for model training is required. A
downside is that the variety of ML algorithm
choices supporting incremental learning is lim-
ited.

AutoML
AutoML is a relatively recent and trending

practice in which many of the tasks usually per-
formed manually by ML engineers, such as data
preparation, feature engineering, model training,
hyperparameter tuning, model validation, and se-
lection, are automated. To achieve this, AutoML
provides search algorithms for finding the optimal
solutions for those tasks in the ML pipeline.

AutoML decision
The AutoML decision consists of two parts:

1) whether AutoML should be applied, and,
2) if so, to further decide which practices

should be automated.
In particular, AutoML can automatically pre-

process the data during data preparation. It
can be used while feature engineering to auto-
generate new features and select meaningful ones.
Throughout model training, it can be applied to
automatically train models, maybe using different
parameters and/or ML algorithms by applying
automated hyperparameter tuning of data pro-
cessing and model building components and then
make an automated model selection, e.g. based
on ML or domain-based metrics. In this context,
it can use model validation to score the models.

The goals of applying AutoML are e.g. re-
quiring less manual tool development effort, and
thus supporting higher development velocity and
agility. This is achieved through increased pro-
cess and work automation, which also offers two
further key benefits: via automation, AutoML
offers a greater level of explainability and re-
producibility in the data processing and model

building tasks, as every step follows precisely-
specified algorithms. Unfortunately, existing Au-
toML solutions do not always deliver results to
the desired quality standards, which often results
in a negative impact on production-ready devel-
opment, potentially leading to additional devel-
opment effort. Extra tool development effort for
engineering the AutoML solution would also be
required in this case.

Discussion: Lessons Learned,
Limitations and Threats to Validity

Modeling ADDs as performed in this study
yields numerous benefits. In particular, the ADD
model can be used to assist scientists in their un-
derstanding of practitioners’ needs and the chal-
lenges they face, in addition to guiding architec-
tural decision-making on the part of practitioners
based on existing practices. The study and its
resulting model also open up new avenues for
exploration and further research in this domain.

One topic that is mentioned in several sources
(s4, s6, s13, s21, and s26) is security, which
appears in the general context of operations and
infrastructure (e.g. serverless, enterprise infras-
tructure, and fully-managed platforms) rather than
the ML workflow, and thus falls outside the scope
of this article.

The validity of the study is premised on the
correct application of GT as well as consistent
and correct coding practices. We have endeavored
throughout to apply the method correctly (as
documented in our replication package), but mis-
takes cannot be fully excluded. Validity may also
potentially be threatened by unreliable sources or
by neglecting to include relevant sources. Since
we continued coding sources until theoretical sat-
uration was reached, this increased the likelihood
that a fair representation of the literature was
achieved, and the risk that relevant sources were
not considered was reduced.

Bias poses a potentially significant threat to
any study and we have attempted to reduce the
risks associated with it. One of the main advan-
tages of applying GT to gray literature rather
than interviews conducted by the authors is the
prevention of authors influencing the results of
their findings. Furthermore, the authors of this
article were not connected in any way with the
practitioner sources used in the study, thus lower-

2021 9



Department Head

ing the potential for bias even further. Finally, the
modeling conducted by each author was indepen-
dently checked by the other author, thus reducing
the risk of individual bias during the modeling
process.

Not all possible sources were considered
while conducting this study, so it cannot be ruled
out that some relevant sources were not found for
inclusion, resulting in important factors not hav-
ing been discovered and thus not being included.
This cannot be avoided, since it is infeasible to
include all available sources. However, since we
coded to theoretical saturation, we believe this
limitation does not invalidate our results. Also,
please note that GT does not claim to achieve
completeness [8, 9] but rather describes phenom-
ena that exist. In the same sense, our study does
not claim to document “best practices” – these
are extensively covered in Serban et al. [14].
The modeled practices, decisions, etc. are merely
phenomena that have been observed to exist – no
further claims are made in this regard and the
options, decisions, etc. may not apply universally
in every practical case.

CONCLUSIONS
Our study modeled practitioner practices,

ADDs, and decision drivers in the field of SE/SA
for ML. The resulting ADD model can help
researchers better understand practitioners’ needs
and the challenges they face, and guide their
decisions based on existing practices. The study
also opens new avenues for further research in the
field, and the design guidance provided by our
ADD model can also help reduce design effort
and risk. In future work, we plan on using our
findings to provide automated design advice to
ML engineers.

Acknowledgments
This work was supported by: FFG (Austrian

Research Promotion Agency) project AMMO-
NIS, no. 879705.

References
1. Foutse Khomh, Bram Adams, Jinghui Cheng,

Marios Fokaefs, and Giuliano Antoniol. Soft-
ware engineering for machine-learning ap-
plications: The road ahead. IEEE Software,
35(5):81–84, 2018.

2. Miryung Kim, Thomas Zimmermann, Robert
DeLine, and Andrew Begel. Data scien-
tists in software teams: State of the art and
challenges. IEEE Transactions on Software
Engineering, 44(11):1024–1038, 2018.

3. Miryung Kim, Thomas Zimmermann, Robert
DeLine, and Andrew Begel. The Emerging
Role of Data Scientists on Software De-
velopment Teams. In Proceedings of the
38th International Conference on Software
Engineering, pages 96–107, New York, NY,
USA, 2016. ACM.

4. D. Sculley, Gary Holt, Daniel Golovin, Eu-
gene Davydov, Todd Phillips, Dietmar Ebner,
Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden
technical debt in machine learning systems.
In Proceedings of the 28th International
Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’15, page
2503–2511, Cambridge, MA, USA, 2015.
MIT Press.

5. Lucy Ellen Lwakatare, Aiswarya Raj, Jan
Bosch, Helena Holmström Olsson, and Ivica
Crnkovic. A taxonomy of software engi-
neering challenges for machine learning sys-
tems: An empirical investigation. In Philippe
Kruchten, Steven Fraser, and François Coal-
lier, editors, Agile Processes in Software En-
gineering and Extreme Programming, pages
227–243, Cham, 2019. Springer International
Publishing.

6. Elizamary Nascimento, Anh Nguyen-Duc,
Ingrid Sundbø, and Tayana Conte. Soft-
ware engineering for artificial intelligence
and machine learning software: A systematic
literature review, 2020.

7. Vahid Garousi, Michael Felderer, Mika V.
Mäntylä, and Austen Rainer. Benefitting
from the grey literature in software engineer-
ing research, 2019.

8. Barney G. Glaser and Anselm L. Strauss. The
Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine de Gruyter,
New York, NY, 1967.

9. Anselm L. Strauss and Juliet M. Corbin. Ba-
sics of qualitative research: techniques and
procedures for developing grounded theory.
Sage Publications, Thousand Oaks, Calif,

10



1998.
10. Apitchaka Singjai, Georg Simhandl, and Uwe

Zdun. On the practitioners’ understanding
of coupling smells – a grey literature based
grounded-theory study. Accepted for publica-
tion in Information and Software Technology,
134:106539, 2021.

11. Stephen John Warnett and Uwe Zdun. Ar-
chitectural Design Decisions for the Ma-
chine Learning Workflow: Dataset and
Code. Zenodo, https://doi.org/10.5281/
zenodo.5730291, Nov 2021.

12. H. Washizaki, H. Uchida, F. Khomh, and
Y. Guéhéneuc. Studying software engineer-
ing patterns for designing machine learning
systems. In 2019 10th International Work-
shop on Empirical Software Engineering in
Practice (IWESEP), pages 49–495, 2019.

13. Jan Bosch, Helena Olsson, and Ivica
Crnkovic. Engineering AI Systems: A Re-
search Agenda, pages 1–19. IGI Global, jan
2021.

14. Alex Serban, Koen van der Blom, Holger
Hoos, and Joost Visser. Adoption and effects
of software engineering best practices in ma-
chine learning. Proceedings of the 14th ACM
/ IEEE International Symposium on Empiri-
cal Software Engineering and Measurement
(ESEM), Oct 2020.

15. Silverio Martı́nez-Fernández, Justus Bogner,
Xavier Franch, Marc Oriol, Julien Siebert,
Adam Trendowicz, Anna Maria Vollmer, and
Stefan Wagner. Software engineering for ai-
based systems: A survey, 2021.

16. Isaque Alves, Leonardo Alexandre Fer-
reira Leite, Paulo Meirelles, and Carla Silva
Rocha Aguiar. Product engineering for
machine learning: A grey literature review,
2020.

17. Wo Chang and Nancy Grady. Nist big data
interoperability framework: Volume 1, defi-
nitions, 2019-10-21 2019.

Stephen John Warnett is a researcher at the Fac-
ulty of Computer Science, University of Vienna,
Austria. His research interest is the intersection of
software engineering/architecture and artificial in-
telligence. Stephen received a master’s degree in
software engineering from the University of Applied
Sciences Technikum Wien, Austria. Contact him at

stephen.warnett@univie.ac.at.

Uwe Zdun is a full professor for software architecture
at the Faculty of Computer Science, University of
Vienna, Austria. His research focuses on software de-
sign and architecture, empirical software engineering,
distributed systems engineering, software patterns,
domain-specific languages, and model-driven devel-
opment. Uwe has published more than 210 articles in
peer-reviewed journals, conferences, book chapters,
and workshops, and is co-author of several books.
Contact him at uwe.zdun@univie.ac.at.

2021 11

https://doi.org/10.5281/zenodo.5730291
https://doi.org/10.5281/zenodo.5730291

	Introduction
	The Machine Learning Workflow
	Research Methods and Study Design
	Architectural Design Decisions
	Data processing
	Model building
	AutoML

	Discussion: Lessons Learned, Limitations and Threats to Validity 
	CONCLUSIONS
	Acknowledgments
	Biographies
	Stephen John Warnett
	Uwe Zdun


