
Conformance Assessment of Architectural Design
Decisions on the Mapping of Domain Model

Elements to APIs and API Endpoints
1st Apitchaka Singjai

Research Group Software Architecture
University of Vienna

Vienna, Austria
apitchaka.singjai@univie.ac.at

2nd Uwe Zdun
Research Group Software Architecture

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Microservice APIs are often identified and designed
based on Domain-Driven Design (DDD). To help in the continuous
analysis of mappings of domain model elements to APIs and API
endpoints, we aim to automate the assessment of conformance to
Architectural Design Decision (ADD) options. The ADDs, their
decision options, and relevant decision drivers studied in this
paper originate from an empirical study on the mapping of
domain model elements to APIs and API endpoints in practice.
We propose automated detectors to detect the decision options
of the ADDs taken in a given microservice API model, and an
assessment scoring scheme based on the empirical knowledge
codified in the ADDs. We evaluate our work, by first manually
creating a ground truth for 14 cases in a multi-case study, and
then comparing the results of our automated detectors to the
ground truth for each of the 14 cases. In the cases we were
able to identify 86% of the decision points correctly, and a
statistical analysis of our data shows only a negligible effect size
for differences to the ground truth.

Index Terms—Microservice Architecture, API Design, DDD,
Conformance Assessment, Architectural Design Decision

I. INTRODUCTION

Microservices are independently deployable, scalable, and
changeable services, each having a single responsibility [1].
They typically communicate via Application Programming
Interfaces (APIs) in a loosely coupled fashion. Such remote
APIs can be realized using various technologies, including
RESTful HTTP, queue-based messaging, SOAP/HTTP, or
remote procedure call technologies such as gRPC. A crit-
ical aspect in designing a microservice architecture is API
design [2]. Many microservices and API abstractions are
identified using Domain-Driven Design (DDD) [3]. It is an
approach that places the (business) domain at the center of
software designing and architecting.

This paper focuses on automating the assessment of Archi-
tectural Design Decisions (ADDs) [4] applied in the mapping
of domain model elements to APIs and API endpoints. In
particular, we focus on establishing a conformance relation be-
tween the DDD and API models. In general, the conformance
relation is defined as the consistency between models [5].
To guarantee the correctness of this consistency relation, an
assessment is needed. Conformance assessment is challenging

because it concerns the relation between a software system’s
architecture and its intended architecture [6]. The target audi-
ence of this work are software/API developers and architects
who are interested in the relations of DDD and APIs, as well
as software engineering researchers studying these concepts.

ADDs, in general, focus on the architecturally significant
design decisions of a system, in the sense that a single decision
change could significantly affect its entire architecture [7]. In
the field of microservice APIs and their relations to domain
models, many central design problems revolve around map-
ping domain model elements to APIs and their endpoints. We
have adopted the API endpoints definition from our earlier
work on patterns for deriving APIs and their endpoints from
domain models [8]. Changes in an API or its endpoints can
significantly affect the architecture of the API clients and of
the microservices in the backend serving the API [9]. We
selected three ADDs on the interrelation of microservice API
design and DDD from an empirical study on ADDs in the field
of DDD/API mapping [10]. These ADDs explain (1) how to
map the domain model and its elements to the API; (2) how to
map domain model elements to API endpoints; and (3) how to
formally describe or document the API. Each of these ADDs is
described with multiple possible decision options and decision
drivers along with positive and negative impacts practitioners
identified for each of the drivers on the various options.

Such an empirically grounded ADD model helps in guiding
the manual derivation of API designs from DDD models based
on current practices employed by practitioners. However,
assessing a given microservice API model on which ADD
options have been chosen and how well they support the
decision drivers is still a laborious and error-prone manual
task. It is problematic when continuous assessment is required,
e.g. in a continuous integration/delivery (CI/CD) pipeline. Just
consider today’s large-scale microservice deployments that are
deployed with high frequency (e.g. at least daily), such as
those of Uber [11], Google [12], or Netflix [13]. To manually
assess the services, whether the mapping of the APIs and their
endpoints to domain models are still in place and correct,
would be an extremely laborious and error-prone manual task.

To address this problem, in this paper we aim to automate
the assessment of conformance to ADD options. We set out
to answer the following research questions:

• RQ1 How can we automatically assess conformance to
ADD options used in the mapping of domain model
elements to APIs and API endpoints?

• RQ2 How well do such automated measures for assessing
ADD conformance in the mapping of domain model
elements to APIs and API endpoints perform?

To address the research questions, we first collected and
modeled 14 cases in a multi-case study. We then derived
a scoring scheme based on the decision drivers in the
empirically-grounded ADDs. This scheme is used to manually
assess each case, to create a ground truth for evaluating
our automated approach later on. To support the automated
assessment, we developed detectors that aim to identify each
of the decision points in our scoring scheme. With this, we
were able to automatically assess the cases in our case study
evaluation. We generated simple count metrics to compare our
detector results to our ground truth. Finally, we performed a
statistical analysis of the results.

In this paper, we first present the three ADDs covered
as background in Section II. After explaining the research
method in Section III, in Section IV we present the case study
preparation, while Section V presents our detectors approach
for automating ADD assessment. Next, Section VI presents
the multi-case study which evaluates our research, as well as a
statistical analysis of the results. Section VII discusses threats
to validity. Finally, in Section VIII we draw conclusions.

II. BACKGROUND: ADDS ON MAPPING OF DOMAIN
MODEL ELEMENTS TO APIS AND API ENDPOINTS

This section explains the three ADDs from an empirical
study on the mapping of domain model elements to APIs and
API endpoints [10], for which we aim to provide automated
conformance assessment support in this work.

1) Model Mapping Decision (MMD): This ADD focuses
on how to map the domain model and its elements to an API.
There are five alternative design options practitioners com-
monly apply in this ADD. Firstly, one can Expose the Whole
Domain Model in 1:1 Relation as API, but this is seen rather
negatively as it increases coupling and adversely impacts many
API maintainability aspects. An often better working solution
is Expose Domain Model Subset as API as it can reduce
some of those negative impacts. Many practitioners use DDD’s
Bounded Context pattern [3] for defining boundaries of the
APIs with the options Expose Selected Bounded Contexts as
APIs being seen more positive than the option Expose Each
Bounded Context as an API. Still, even in selected Bounded
Contexts, domain model elements that do not belong to the
API might get exposed, thus the options Introduce and Expose
Interface Bounded Context as an API and Expose a Shared
Kernel between Client and Server as an API are seen as the
most favourable options, as in them a special Bounded Context
or a Shared Kernel [3] is designed with the goal to specify an
API interface.

2) API Endpoints Decision (API-ED): This ADD addresses
the problem which domain model elements should be offered
as endpoints in an API. Please note that it includes endpoints
in various kinds of technologies such as RESTful HTTP,
messaging, SOAP, gRPC, and so on. The options for this ADD
are related to the basic patterns in tactical DDD [3]. The
most positive options of this decision are those that expose
Aggregate roots or Service as API endpoints. The option to
expose Entities as API endpoints is often discussed, but also
has many negative impacts e.g. on exposing domain model
details in the API, data consistency, and chatty APIs. Broader
concepts such as Bounded Contexts and Processes are also
options, but issues regarding API complexity, data consistency,
and coupling are reported for these options.

3) API Documentation Decision (API-DD): This ADD is
about how to document the API. There are two main options
that can be combined in different ways: API Contract and API
Description [9], [14]. The API Contract specifies structural
information about the API in a formal language, e.g., based
on Open API or RAML for RESTful APIs, WSDL for
SOAP APIs, and so on. The API Description is a detailed
specification of the API and contains more information than
the contract, such as invocation sequences, pre-conditions,
post-conditions, quality management policies, and so on. API
Descriptions can be classified into informal or structured
descriptions. Combinations of API contracts and structured
descriptions available for all APIs are seen as the most positive
option. More incomplete or less formal combinations are
gradually seen as more negative.

III. RESEARCH METHODS

Figure 1 illustrates the research methods used. Firstly, we
performed a Case Studies Inspection, in which we have pre-
pared 14 cases in total for the later evaluation of our approach.
In this, we followed the guidelines for conducting and report-
ing case study research in software engineering by Runeson
et al. [15]. We used major search engines (e.g., Google, Bing,
DuckDuckGo) and topic portals (e.g., InfoQ, DZone) to find
relevant cases. To avoid personal bias in the research, we
used as search words those keywords that provided decision
categories (i.e. the most general categorization) in the used
gray literature [10], in particular: “Application Programming
Interface” or “API”, “Domain Driven Design” or “DDD”, and
“Microservices” (all in singular and plural form). We had to
check that the found cases contained information on their
domain modeling, which substantially limited the possible
cases we could consider. Further, we checked for each found
case whether it was realized by authors with a substantial
background in industrial practice. Finally, we selected systems
from many different domains and covering a broad range of
our ADDs’ decision options and their combinations (for details
see Table I explained below). We assume that our evaluation
systems are, or reflect practical examples of microservice
architectures. As many of them are open source systems with
the purpose of demonstrating practices or technologies, they
are at most of medium size and modest complexity, though.

Derivation of
Scoring
Scheme

 Modeling of
Case Study

System
Models

Model
Case

Studies
Inspection

Case
Studies

Ground
Truth

Definition

Development
of Detectors
Algorithms

Automatic
Detection &

Metrics
Calculation

Statistical
Analysis

Fig. 1: Research Method Overview

Next, we performed Modeling of Case Study System Models:
We defined models and meta-models to precisely model the
case study systems as UML models. We used the Code-
ableModels tool1, a Python implementation for this purpose.
Based on these models, we realized automated code generators
to generate graphical visualizations of all meta-models and
models in PlantUML2.

After that, we conducted the Derivation of a Scoring Scheme
in which we have selected the three ADDs on the interre-
lation of microservice API design and DDD (summarized
in Section II). We derived the scoring for the practitioner
views on the practices as objectively as possible, consisting
of the following possible scores on an ordinal scale: [++: very
positive, + : positive, o : neutral, -: negative, - -: very negative].
The ordinary scale helped us turn qualitative judgments in the
practitioner texts into numerical assessments. We also defined
the Ground Truth Assessment based on this scoring scheme.

As explained before, it is the goal of our study to provide
support to automate this manual assessment as far as possible.
In the next step, Development of Detectors Algorithms, we de-
veloped our DDD/API mapping assessment detectors approach
as our main contribution. The major focus of our detectors
approach is on automating the assessment provided by the
scoring scheme. For this, we developed detector algorithms to
detect each relevant criterion deciding on scores in the scheme.

In the next research step, Automatic Detection and Met-
rics Calculation, we mapped the detection algorithms to the
assessments by calculating simple count metrics. Finally, we
performed an Empirical Assessment of our approach using a
multi-case study using the cases prepared and inspected earlier.
We used the ground truth truth assessment and compared them
to our automatically derived scores from the detectors.

Besides analyzing and discussing the results on a case-by-
case basis for each decision option, we performed a statis-
tical analysis. We use R’s shapiro.test() function to perform
Shapiro-Wilk normality tests [16]. As the data sets are non-
normally distributed, we used the Wilcoxon signed rank test
with Pratt method [17], provided by the wilcoxsign test()
function from R’s coin package, to test for a significant
difference between the ground truth and the automated detector
results. Finally, Cliff’s δ [18] is used for effect size estimation
via cliff.delta() function from R’s effsize package. Moreover,
this way it was easier to provide an audit trail of the research,
and thus enable the repeatability of the study through public

1https://github.com/uzdun/CodeableModels
2https://plantuml.com/en/

access to original data 3.

IV. CASE PREPARATION AND INSPECTION

This section explains the case studies’ preparation and
inspection. Table I summarizes the 14 case studies we have
manually modeled based on descriptions in the referenced
sources. We have modeled DDD domain models, microservice
API models, and the mapping of DDD domain models to API
models for each case. The information in the table includes
the number of domain elements, number of API elements, a
brief description, the solutions for each of the ADDs, and a
URL for the original sources of the cases.

A. Derivation of Scoring Scheme

In this section, we explain the scoring scheme to assess the
ADDs in Section II. For each of the decisions introduced in
Section II, we present precise decision points in conditional
statements and boolean logic operators based on the possible
decision options of the ADDs.

For example, consider the MMD decision, as discussed
in [10]. According to the empirical evidence in the practitioner
sources, Expose the Whole Domain Model in 1:1 Relation
as API is seen as working only for small examples, as it
leads to negative impacts on coupling and maintainability
decision drivers such as Brittle Interfaces, API Complexity,
and Avoiding Exposing Domain Model Details in API. A
usually better working solution is Expose Domain Model
Subset as API which partly improves on the negative decision
driver impacts. Both solutions have benefits like little required
Design and Implementation Effort. For complex domains, it
can be advisable to consider the Bounded Contexts as well.
Then there are the options to Expose Each Bounded Context as
an API or Expose Selected Bounded Contexts as APIs. In most
large domains, the latter solution is seen as being better suited
to avoid Brittle Interfaces, Exposing of Domain Model Details
in the API, and API Complexity, and improve API Usability
and API Modifiability. Both solutions offer positive impact
on Design and Implementation Effort, but require more effort
than the first two solutions. The downside of those solutions is
that Clients Need to Manage Crossing Model Boundaries, i.e.,
the boundaries between the Bounded Contexts. One suggested
solution to this problem is to Introduce and Expose Interface
Bounded Context as an API (or alternatively realized as a
Shared Kernel [3]). That is, a new special Bounded Context
or Shared Kernel that represents the API interface is exposed.
These solutions are neutral or positive on all so far mentioned
decision drivers, except the Design and Implementation Effort
where they lead to additional effort compared to all other so
far mentioned solutions. All those solutions are better than
any combinations of API and domain model where no fully
traceable mapping between them can be discerned.

These considerations have led to a literal derivation of the
scoring scheme presented in the next section of the Decision
MMD. For the other two decisions, their scoring scheme based
on the empirical study results from [10].

3(https://doi.org/10.5281/zenodo.5176174).

https://github.com/uzdun/CodeableModels
https://plantuml.com/en/
https://doi.org/10.5281/zenodo.5176174

TABLE I: Overview of the case study models

ID Elements Description and Summary of ADD Inspection
MD1 domain: 5 api: 14 Purchase Order System; applies DDD concepts and CQRS to decompose components. ADD Options used: MMD (Expose Each Bounded

Context as an API), API-ED (Aggregate Roots as API Resources), API-DD (Each API has an API Contract). https://dzone.com/articles/
bounded-contexts-with-axon

MD2 domain: 10 api: 11 Publication Management System; applying DDD concepts to API design, detailed API specifications and code generation. ADD Options
used: MMD (Expose Selected Bounded Context as an API), API-ED (Aggregate Roots as API Resources), API-DD (Each API has an API
Contract and a structured API Description). https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

MD3 domain: 8 api: 3 Bank Account System; focuses on event-based architecture, CQRS and event sourcing patterns. ADD Options used: MMD (Expose Domain
Model Subset as API), API-ED (some API resources it is unclear on which domain model elements they are based, and some are Domain
Services as API Resources), API-DD (Each API has an API Contract). https://github.com/cer/event-sourcing-examples

MD4 domain: 19 api: 18 Online Shop System; uses DDD and pattern-based modelling of APIs. ADD Options used: MMD (Expose Selected Bounded Contexts as
API), API-ED (Some Aggregate Roots and Entities as API Resources), API-DD (Each API has API Contract and structured API Desc.).
https://github.com/socadk/design-practice-repository/blob/master/tutorials

MD5 domain: 12 api: 52 Cinema Microservice System; models multiple frontends and REST-based APIs. ADD Options used: MMD (Expose Each Bounded Context
as an API), API-ED (Domain Services as API Resources), API-DD (Most APIs have an API Contract). https://github.com/Crizstian/cinema-
microservice

MD6 domain: 4 api: 142 E-Shop on Containers System; follows both simple CRUD and DDD/CQRS patterns; uses pub/sub for event-based interaction. ADD Options
used: MMD (Expose Each Bounded Context as an API), API-ED (For some API resources it is unclear on which domain model elements
they are based), API-DD (Each API has an API Contract). https://github.com/dotnet-architecture/eShopOnContainers

MD7 domain: 8 api: 15 Customers and Orders System; implements transaction with the SAGA pattern and implements queries using CQRS. ADD Options used:
MMD (Domain Model Subset Exposed to API), API-ED (Some Aggregate Roots as API Resources), API-DD (Each API has an API
Contract). https://github.com/eventuate-tram/eventuate-tram-examples-customers-and-orders

MD8 domain: 3 api: 3 E-commerce Application; has a Web UI directly accessing microservices and an API gateway for service-based API. ADD Options used:
MMD (Expose Each Bounded Context as API), API-ED (N/A), API-DD (No API description or contract). https://microservices.io/patterns/
microservices.html

MD9 domain: 11 api: 34 Kanban Board System; a multi-user collaborative application using event-sourcing and pub/sub. ADD Options used: MMD (Expose Each
Bounded Context as an API), API-ED (Bounded Contexts and Domain Services as API Resources), API-DD (Some APIs have an API
Contract). https://github.com/eventuate-examples/es-kanban-board

MD10 domain: 8 api: 72 Disease Statistics App; a public API providing a wide range of virus information. ADD Options used: MMD (Map Domain Model Fully
to the API), API-ED (Entities as API Resources), API-DD (Each API has an API Contract and a structured API Description). https:
//github.com/disease-sh/API

MD11 domain: 63 api: 215 Pokemon App; a RESTful API for infos on Pokemon game series. ADD Options used: MMD (Domain Model Exposed 1:1 (except Bounded
Contexts)), API-ED (Entities as API Resources), API-DD (Each API has an API Contract and a structured API Description). https://github.
com/PokeAPI/pokeapi

MD12 domain: 6 api: 56 Realworld Example App; provides API specs that support technology stack diversity. ADD Options used: MMD (Expose Selected Bounded
Context as API), API-ED (Bounded Context as API Resources), API-DD (Each API has API Contract and structured API Description).
https://github.com/gothinkster/realworld

MD13 domain: 12 api: 6 Taxi hailing Application; uses REST APIs, multiple frontends, and databases per services. ADD Options used: MMD (Expose Each Bounded
Context as an API), API-ED (N/A), API-DD (no formal or informal description or API contract). https://www.nginx.com/blog/introduction-
to-microservices

MD14 domain: 170 api: 92 Lakeside Mutual System; demonstrates DDD in microservices of an insurance product. ADD Options used: MMD (Expose Selected
Bounded Context as an API), API-ED (Bounded Contexts as API Resources), API-DD (Each API has an API Contract). https:
//github.com/Microservice-API-Patterns/LakesideMutual

1) MMD: How to Map a Domain Model and its Elements
to an API?:

• IF for some APIs no traceable mapping to domain model
elements can be discerned, THEN assessment = (- -).

• ELSE IF the options Introduce and Expose Interface
Bounded Context as an API and/or Expose a Shared
Kernel between Client and Server as an API are used
AND no other kinds of Bounded Contexts are exposed
to the API, THEN assessment = (++).

• ELSE IF Expose the Whole Domain Model in 1:1 Rela-
tion as API is used, THEN assessment = (-).

• ELSE IF for all APIs Expose Domain Model Subset as
API is used (where some of those might be realized using
Introduce and Expose Interface Bounded Context as an
API OR Expose a Shared Kernel between Client and
Server as an API), THEN assessment = (+)

• ELSE IF for all APIs Expose Selected Bounded Context
as an API, THEN assessment = (+)

• ELSE assessment = (o) (e.g. Expose Each Bounded
Context as an API).

2) API-ED: Which Domain Model Elements Should be
Offered as Endpoints in an API?:

• IF for some API endpoints it cannot be discerned on

which domain model elements they are based, THEN
assessment = (- -).

• ELSE IF for all API endpoints Entities as API Endpoints
OR other domain model elements than [Services, Ag-
gregates, Domain Processes, Bounded Contexts] as API
Endpoints are used, THEN assessment = (-).

• ELSE IF for all API endpoints either Domain Services
as API Endpoints OR Aggregate Roots as API Endpoints
OR Domain OR Business Processes as API Endpoints are
used, THEN assessment = (++).

• ELSE IF for some API endpoints, Entities as API End-
points OR other domain model elements than (Services,
Aggregates, Domain Processes, Bounded Contexts) as
API Endpoints are used, THEN assessment = (o).

• ELSE: assessment = (+) (e.g., if Bounded Contexts are
used as Endpoints).

3) API-DD: How to formally describe the API?:

• IF no API has a formal OR informal API Description OR
API contract, THEN assessment = (- -).

• ELSE IF each API has an API Contract AND a structured
API Description, THEN assessment = (++).

• ELSE IF each API has an API Contract AND an informal
API Description, THEN assessment = (+).

https://dzone.com/articles/bounded-contexts-with-axon
https://dzone.com/articles/bounded-contexts-with-axon
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://github.com/cer/event-sourcing-examples
https://github.com/socadk/design-practice-repository/blob/master/tutorials
https://github.com/Crizstian/cinema-microservice
https://github.com/Crizstian/cinema-microservice
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/eventuate-tram/eventuate-tram-examples-customers-and-orders
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/eventuate-examples/es-kanban-board
https://github.com/disease-sh/API
https://github.com/disease-sh/API
https://github.com/PokeAPI/pokeapi
https://github.com/PokeAPI/pokeapi
https://github.com/gothinkster/realworld
https://www.nginx.com/blog/introduction-to-microservices
https://www.nginx.com/blog/introduction-to-microservices
https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual

• ELSE IF each API has an API Contract OR a structured
API Description, THEN assessment = (o).

• ELSE: assessment = (-) (e.g. only an informal API
Description or some APIs are not documented).

V. DETECTORS FOR ADD CONFORMANCE ASSESSMENT

In this section, we describe details about our detectors
approach for automatically assessing conformance to decision
options in the mapping of domain model elements to APIs
and API endpoints. We propose a modular detector approach,
in which one or more detectors are responsible for detecting
each of the decision points in the scoring scheme from
Section IV-A. Table II provides an overview of all detectors we
have defined for the three decisions. The assessment column
indicates how each detector helps in making a decision on the
scoring scheme: s means that the detector must be successful
for leading to the respective assessment, f means that the
detector must fail to contribute to the assessment; u means
that the detectors is unused in the respective assessment.

All detectors are implemented in Python and mainly operate
by traversing models. All models are implemented using
CodeableModels a Python tool for the precise specification
of meta-models, models, and model instances in code. We
create the association to identify which API elements are
derived from domain elements. Based on the meta-models
and decision models, we manually created model instances for
every case study systems, and realized automated PlantUML
code generators to generate graphical visualizations of all
model instances.

VI. MULTI-CASE STUDY RESULTS

Here, we discuss the results of our multi-case study. We
analyze them on a case-by-case basis for each decision option.
In doing so, we simply count the correctly identified results
and discuss interesting findings. Next, we statistically analyze
our dataset and show that there is no significant difference
between the ground truth data and the detector results and the
effect size between the two variables is negligible.

A. Discussion of the Results

Table III shows the results of the assessment. We show
the expected results (E: the results of the ground truth as-
sessment) and actual results (A: automated detector result).
For the ground truth assessment, we have assessed each of
our case studies manually based on our scoring scheme from
Section IV-A. Some assessments are not applicable (“n/a”),
if specific aspects are not explained in the case study source,
meaning that we could not judge the decision based on this
case’s model.

The column Reason shows which specific detectors from
Table II have failed or been a success, and thus led to the
automated assessment. Comparing the results to our ground
truth in Table III, we can summarize the matching score
ratios of MMD as 8/14 (57%), API-ED as 14/14 (100%), and
API-DD as 14/14 (100%), respectively. In total, 86% of the
decision points in our multi-case study have been correctly

identified by the automated detectors. The places where ground
truth and detector results diverge illustrate well those cases
where human judgment is needed. This indicates, especially
in the ADD MMD where we observe divergence, the detectors
should not be applied “blindly” as automated tests but rather
as indicators of possible conformance violations. When we
apply the detectors, we also get the violation set as part of the
detector result. These violations can help to spot the aspects
humans need to inspect more closely.

Firstly, it can be observed that all decision points of API-ED
and API-DD are matching. For API-ED to be 100% correctly
assessed, we needed to extend our scoring scheme slightly,
to also cover the case that no API endpoints are modeled
(yielding “n/a” instead of the default case). This is because
this decision is about the concrete mapping of DDD model
elements to API endpoints, which is rather easy to specify
precisely in automated detectors. In contrast to the other
ADDs, the API-DD decision is pretty straightforward to model
and realize with detectors, and thus no ambiguous cases have
been observed.

Let us discuss a few notable cases where MMD diverges
in detail. One case where the ground truth and the detector
assessment can diverge is the option Expose Domain Model
Subset as API of the MMD ADD. For instance, consider MD3.
Here, a domain model subset is exposed as API elements, but
this is only modeled at the level of API endpoints, not for
the API. If the model would be corrected, to expose also the
API, the detector would yield the correct result. So, here the
detector has spotted an omission in the model, which could
be fixed. A correctly identified case is the MMD ADD for
MD7 where again a domain model subset is exposed as an
API (here services). This could easily be wrongly modeled as
in MD3, e.g. by exposing the services to API endpoints. But
here this is not the case because aggregates are used as well,
and they are exposed to API endpoint. In summary, for the
option Expose Domain Model Subset as API of MMD there
might be modeling issues in those cases where MMD and
API-ED overlap. Here, modelers might feel the relations to
APIs and API endpoints are redundant and thus omit them.
The detectors deliver precise results on where the problem
occurred and can thus help to fix the problem.

Another critical case is the detection of no traceable map-
ping to domain model elements can be discerned for MMD.
This option can in a number of cases take precedence in
detectors over other options. Interestingly, again this concerns
cases where MMD and API-ED overlap: For example, in
MD11, the assessment result should be “-” because the domain
model is exposed 1:1 to the API. As some Bounded Contexts
in the model are pure aggregation elements not exposed to
the API (but all their members are exposed), formally the
model is not fully exposed, leading to the difference in human
and automatic judgment. A similar issue occurs in MD12
where selected Bounded Contexts are exposed. But as those
are mapped to API endpoints for the API-ED decision, they
are not mapped to the API again, leading to the difference
in the assessment results. Finally, in MD14 the same issue as

TABLE II: Overview for Detectors for ADD Conformance Assessment

ADD ID Detectors Description Assessment
++ + o - - -

MMD

d1 detect is each domain model element exposed to api
(input: Domain Model)

To detect if each domain model element is exposed to the API. u u u s u

d2 detect is each bounded context exposed to api
(input: Domain Model)

To detect if each Bounded Context is exposed to the API. f f s u u

d3 detect are selected bounded ontext exposed to api
(input: DomainModel)

To detect selected Bounded Contexts are exposed to the API. f s u u u

d4 detect all apis are exposed by subset of domain model
elements (input: Domain Model)

To detect all APIs are exposed by a subset of domain model
elements (Services or Processes).

u s u u u

d5 detect is each api element exposed by domain model
element (input: API Elements)

To detect all APIs have a traceable mapping to domain model
elements.

u u u u f

d6 detect interface bounded context (input: Domain Model) To detect if a dedicated Interface Bounded Context is used. s s u u u
d7 detect shared kernel (input: Domain Model) To detect if a Shared Kernel is used as interface between

Bounded Contexts.
s s u u u

API-ED

d8 detect is each api endpoint exposed to domain model
element (input: API Elements)

To detect if all API endpoints have a traceable mapping to
domain model elements.

u u u u f

d9 detect all api endpoints exposed by an entity
(input: API Elements)

To detect all API endpoints are exposed by Entities which are
not Aggregate roots.

u u u s u

d10 detect api endpoints exposed by a bounded context
(input: API Elements)

To detect API endpoints are exposed by Bounded Contexts. u s u f u

d11 detect all endpoints exposed by aggregates services
process (input: API Elements)

To detect all API endpoints are exposed by Aggregates roots,
Services, or Processes.

s u u f u

d12 detect some endpoints exposed by entities
(input: API Elements)

To detect some API endpoints are exposed by Entities or domain
elements other than (Services, Aggregates, Processes, Bounded
Contexts).

u u s u u

API-DD

d13 detect each api has structured description and contract
(input: API Elements))

To detect if each API has a structured API description and an
API contract.

s u u u u

d14 detect each api has informal description and contract
(input: API Elements)

To detect if each API has an informal API description and an
API contract.

u s u u u

d15 detect each api has structured description or contract
(input: API Elements)

To detect each API has either a structured API description or
an API contract.

u u s u u

d16 detect api has description or contract
(input: API Elements)

To detect an API has either an (informal or structured) API
description or an API contract.

u u u u f

TABLE III: Assessment Results (E: Expected Results, A: Actual Results)

ID MMD Reason API-ED Reason API-DD ReasonE A E A E A
MD1 o o Successful Detectors: d2, d3, d5

Failed Detectors: d1, d4, d6, d7
++ ++ Successful Detectors: d8, d11, d12

Failed Detectors: d9, d10, d13
o o Successful Detectors: d16, d17

Failed Detectors: d14, d15
MD2 + + Successful Detectors: d3, d5

Failed Detectors: d1, d2, d4, d6, d7
++ ++ Successful Detectors: d8, d11, d12

Failed Detectors: d9, d10, d13
++ ++ Successful Detectors: d14, d16, d17

Failed Detectors: d15
MD3 + - - Successful Detectors: d4

Failed Detectors: d1, d2, d3, d5, d6, d7
- - - - Successful Detectors: d12

Failed Detectors: d8, d9, d10, d11, d13
o o Successful Detectors: d16, d17

Failed Detectors: d14, d15
MD4 + + Successful Detectors: d3, d5

Failed Detectors: d1, d2, d4, d6, d7
o o Successful Detectors: d8, d12, d13

Failed Detectors: d9, d10, d11
++ ++ Successful Detectors: d14, d16, d17

Failed Detectors: d15
MD5 o o Successful Detectors: d2, d3, d5

Failed Detectors: d1, d4, d6, d7
++ ++ Successful Detectors: d8, d11, d12

Failed Detectors: d9, d10, d13
- - Successful Detectors: d17

Failed Detectors: d14, d15, d16
MD6 o - - Successful Detectors: d2, d3, d4

Failed Detectors: d1, d5, d6, d7
- - - - Successful Detectors: d10

Failed Detectors: d8, d9, d11, d12, d13
o o Successful Detectors: d16, d17

Failed Detectors: d14, d15
MD7 + + Successful Detectors: d2, d3, d4, d5

Failed Detectors: d1, d6, d7
++ ++ Successful Detectors: d8, d11, d12

Failed Detectors: d9, d10, d13
o o Successful Detectors: d16, d17

Failed Detectors: d14, d15
MD8 o o Successful Detectors: d2, d3, d5

Failed Detectors: d1, d4, d6, d7
n/a n/a Successful Detectors: d11

Failed Detectors: d8, d9, d10, d12, d13
- - - - Successful Detectors: none

Failed Detectors: d14, d15, d16, d17
MD9 o o Successful Detectors: d2, d3, d5

Failed Detectors: d1, d4, d6, d7
+ + Successful Detectors: d8, d10, d12

Failed Detectors: d9, d11, d13
- - Successful Detectors: d17

Failed Detectors: d14, d15, d16
MD10 - - - Successful Detectors: d4

Failed Detectors: d1, d2, d3, d5, d6, d7
- - Successful Detectors: d8, d9, d13

Failed Detectors: d10, d11, d12
++ ++ Successful Detectors: d14, d16, d17

Failed Detectors: d15
MD11 - - - Successful Detectors: d4

Failed Detectors: d1, d2, d3, d5, d6, d7
- - Successful Detectors: d8, d9, d13

Failed Detectors: d10, d11, d12
++ ++ Successful Detectors: d14, d16, d17

Failed Detectors: d15
MD12 + - - Successful Detectors: d2, d3, d4

Failed Detectors: d1, d5, d6, d7
+ + Successful Detectors: d8, d10

Failed Detectors: d9, d11, d12, d13
++ ++ Successful Detectors: d14, d16, d17

Failed Detectors: d15
MD13 o o Successful Detectors: d2, d3, d5

Failed Detectors: d1, d4, d6, d7
n/a n/a Successful Detectors: d11

Failed Detectors: d8, d9, d10, d12, d13
- - - - Successful Detectors: none

Failed Detectors: d14, d15, d16, d17
MD14 + - - Successful Detectors: d2, d3, d4

Failed Detectors: d1, d5, d6, d7
+ + Successful Detectors: d8, d10

Failed Detectors: d9, d11, d12, d13
o o Successful Detectors: d16, d17

Failed Detectors: d14, d15

in MD12 has happened. Also selected bounded contexts are
exposed, but this is modeled only at for the API-ED decision,
not for the API. All of these cases can be fixed by exposing
the respective elements to the API as well, and the detectors
pinpoint the problem location.

Both problems have their root cause in the fact that there
is a slight overlap in the MMD and API-ED decisions, and

redundant modeling of API and API endpoint mapping is
needed to avoid issues. Instead of requiring the redundant
modeling, we could modify the named detectors to fall back
to the exposed API endpoints, if the API is not exposed.

Another issue occurred in MD6 and MD10 for decision
MMD: Here “--” is reported as in each case one of many APIs
(a “helper” API) is not linked to any domain model elements.

For a human it is obvious how the overall mapping logic is
constructed, the machine identifies no traceable mapping for
those. Here, completing the model would be needed for fixing
the model, and the detectors clearly indicate where to fix this.

In summary, our case studies have shown that all ADD
options could automatically be detected based on our scoring
scheme (RQ1). Regarding RQ2, 86% of the decision points
have been correctly identified, and the remaining cases are
those where a modeling omission has occurred due to the
conceptual overlaps of the MMD and API-ED decisions.
Would we use the detector modification explained in this
section, we could even reach 12/14 (86%) for MMD, and
thus 95% in total. Please note that this modification would
be only based on the experiences of this study, not on the
empirical data from [10]. In cases, where case study models
were missing certain redundant expose-relations, our detectors

B. Statistical Analysis

To confirm the results for RQ2 and get a more precise
estimate for the effect size, we statistically analyzed the results
in R. In our data set, we had to deal with ordinal variables,
a rather small sample size, and data that is not normally
distributed. We first confirmed the non-normal distribution
with a Shapiro-Wilk test [16] using R’s shapiro.test() function.
The data in Table IV shows that, as the p-values for both
ground truth (0.0002982) and detector results (0.0004204) data
are significant, we must reject the null hypothesis that the
data is normally distributed for both variables. Thus, the t-
test, which assumes the normal distribution, is not applicable.
For our problem the Wilcoxon signed-rank test would be
applicable, but as many data points are identical, we get many
zero values, which are in Wilcoxon’s method removed from
the test, making the results non-exact for our data set. The
Wilcoxon signed rank test with Pratt method can handle those
zero values [17], which means that it is more appropriate for
our data set. For Wilcoxon-Pratt Signed-Rank Test calculation,
we used the wilcoxsign test() function from R’s coin package.
The test’s result (0.3173) is not significant (see Table IV),
meaning that the null hypothesis cannot be rejected. Thus, we
must assume the true µ is close to 0.

To confirm this result and assess the relevance of the
result further, we computed the effect size. Here, Kitchenham
et al. [19] suggest Cliff’s δ [18] as a robust method for
empirical software engineering. For this calculation, we used
the cliff.delta() function from R’s effsize package. As shown
in Table IV, the delta estimate is 0.009375, which is to be
interpreted as: the effect size is negligible [20].

VII. THREATS TO VALIDITY

To avoid system composition and structure bias, we investi-
gated multiple cases from a number of third-party authors.
The search procedure of these systems might have led to
unconscious exclusion of certain sources. We mitigated this by
collecting a relatively high number of cases (14), and checking
for each the background (e.g. all case authors are practitioners

TABLE IV: Statistical Analysis Results

Shapiro-Wilk Test for Ground Truth Data
p-value 0.0002982
Shapiro-Wilk Test for Detector Results Data
p-value 0.0004204
Wilcoxon-Pratt Signed-Rank Test
p-value 0.3173
Cliff’s Delta
delta estimate 0.009375 (negligible)

or have a practitioner background). The wide range of third-
party systems increases the generalizability (external validity).
Nonetheless, the threat to validity remains that most of our
systems and the case authors have a business/enterprise system
background (where DDD is usually applied). Thus our results
might not be easily transferable to other contexts such as
embedded systems. This threat is mitigated by the fact that
the selected systems are from many different domains in this
context and use various ADDs and ADD option combinations
(see Table I). Further, some systems are built for demonstration
purpose. Thus, it is possible that some aspects important in
full-scale commercial systems are missing.

Regarding internal validity, we avoided researcher bias
with faithful modeling from the evidence-based information.
However the modeling process can be another source of an
internal validity threat. We mitigated this threat by inde-
pendently cross-checking our results numerous times in the
author team. Lastly, the ground truth assessment depends on
the decision maker’s interpretation, and different practitioners
might provide different assessment results. We mitigated this
subjective point by comparing the ground truth assessment
carefully to multiple data points from [10] in which a relatively
high number of practitioner sources are studied (32). But some
misinterpretation or bias cannot be entirely excluded here.

The construction of our scoring scheme is based on an
interpretation and aggregation of practitioner texts in a qual-
itative, empirical study [10]. While precise decision drivers
and impacts have been identified in the empirical study and
followed by us in our scheme, an exact mapping e.g. to crisp
numerical assessments would have introduced a significant
threat of misinterpretations. In contrast, the used ordinal scale
enabled us to turn the qualitative practitioner judgments into
numerical information, significantly reducing this threat.

While ordinal scales are commonly used to reflect qual-
itative judgments [21]–[23], the threat to validity remains
that some interpretations might not reflect the practitioner
judgments accurately. Please note that this threat is mitigated
by the fact that our study in first place provides a method
for automation, not an empirical assessment of 14 system.
If others have a different interpretation of some practitioner
judgments in [10], it is easily possible to adapt the respective
failing detector(s) accordingly. As we provide all artifacts
(code, data set) as open access artifacts to enable reproducibil-
ity, such a calibration of our approach can be performed with
low effort. Our approach even provides traceability helping to
locate the failing detectors. The concrete system assessment

results in Table III would then change, but the automation
approach would not require any alterations.

VIII. CONCLUSION

In this paper, to answer RQ1, we introduced an automated
assessment approach for conformance to ADDs on the map-
ping of domain model elements to APIs and API endpoints.
We started with case study inspections and modeling. Next,
we derived an empirically grounded scoring scheme based on
the data from an empirical study on this subject. Then, we
developed automated detectors to identify each of the decision
points in our scoring scheme. We evaluated this approach in
a multi-case study in which we compared a manually created
ground truth to the detector results. Finally, we confirmed our
results with a statistical analysis. To answer RQ2, in the case
studies we were able to identify 86% of the decision points
from our scoring scheme correctly. To confirm our results, we
performed a statistical evaluation which showed no statistically
significant difference between the two variables (ground truth
and automated detector results), as well as a negligible effect
size between the two variables. The remaining 14% were
mainly cases where redundant modeling at the overlap of two
of the ADDs was necessary, but was not correctly performed
in the case study models. In two cases, for one of many
APIs (a helper API) the mapping to the domain model was
omitted. As shown in Section VI with a simple extension of
our detectors to cover the redundant cases, we could even
reach 95% correct identification. Our detectors delivered for
each of the diverging cases regarding precise results where the
problem was located and how to fix it. Thus, in summary, our
detectors always yielded clear results for human architects to
either assess the models correctly, or inspect and potentially
fix modeling issues. Due to the proposed modeling framework
and the traceability supported by our detector results, it is
relatively easy to adapt or calibrate the approach to a given
system setting and set of best practices, and create or improve
detectors in a straightforward manner with low effort. Due
to the high level of automation and accuracy achieved, our
approach is applicable in frequent release and/or large-scale
system setting, in which a frequent manual inspection would
be clearly infeasible.

In our future work, we plan to work on other ADDs for API
design and related design patterns. It is also possible to apply
weighted scoring when we would focus on each API instead
of each system in future work.

Acknowledgments: This work was supported by FWF
(Austrian Science Fund) project API-ACE: I 4268. Our work
has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No
952647 (AssureMOSS project).

REFERENCES

[1] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 301–310, Jul. 2017.

[2] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Introduction to microservice api patterns (map),” Post-proceedings of
Microservices 2017/2019, vol. 78, no. 4, pp. 1–17, 2020.

[3] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Reading, MA.: Addison-Wesley, 2003.

[4] J. S. van der Ven, A. G. Jansen, J. A. Nijhuis, and J. Bosch, “Design
decisions: The bridge between rationale and architecture,” in Rationale
management in software engineering. Springer, 2006, pp. 329–348.

[5] D. Quartel and M. van Sinderen, “On interoperability and conformance
assessment in service composition,” in 11th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007), 2007,
pp. 229–229.

[6] F. Deissenboeck, L. Heinemann, B. Hummel, and E. Juergens, “Flexible
architecture conformance assessment with conqat,” in 2010 ACM/IEEE
32nd International Conference on Software Engineering, vol. 2, 2010,
pp. 247–250.

[7] L. Lee and P. Kruchten, “A tool to visualize architectural design
decisions,” in International Conference on the Quality of Software
Architectures. Springer, 2008, pp. 43–54.

[8] A. Singjai, U. Zdun, O. Zimmermann, and C. Pautasso, “Patterns on
deriving apis and their endpoints from domain models,” in The 25th
European Conference on Pattern Languages of Programs, 2021.

[9] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Microservice api patterns,” https://microservice-api-patterns.org/, 2021.

[10] A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner views on the
interrelation of microservice apis and domain-driven design: A grey
literature study based on grounded theory,” in 18th IEEE International
Conference on Software Architecture (ICSA 2021). Washington, DC,
USA: IEEE, March 2021.

[11] M. Schwarz, “Uber engineering’s micro deploy: Deploying daily with
confidence,” https://eng.uber.com/micro-deploy-code/, 2016.

[12] Google, “Devops tech: Architecture,” https://cloud.google.com/
architecture/devops/devops-tech-architecture, 2021.

[13] C. D. Nguyen, “A design analysis of cloud-based microservices archi-
tecture at netflix,” https://medium.com/swlh/a-design-analysis-of-cloud-
based-microservices-architecture-at-netflix-98836b2da45fe, 2020.

[14] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker,
“Interface evolution patterns: Balancing compatibility and extensibility
across service life cycles,” in Proceedings of the 24th European Con-
ference on Pattern Languages of Programs, ser. EuroPLop ’19. ACM,
2019.

[15] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[16] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[17] J. W. Pratt, “Remarks on zeros and ties in the wilcoxon signed rank
procedures,” Journal of the American Statistical Association, vol. 54,
no. 287, pp. 655–667, 1959.

[18] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[19] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton,
S. Charters, S. Gibbs, and A. Pohthong, “Robust statistical methods
for empirical software engineering,” Empirical Software Engineering,
vol. 22, no. 2, pp. 579–630, 2017.

[20] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
vol. 13, 2006.

[21] O. Larichev and H. Moskovich, “Unstructured problems and devel-
opment of prescriptive decision making methods,” in Advances in
multicriteria analysis. Springer, 1995, pp. 47–80.

[22] W. D. Perreault Jr and L. E. Leigh, “Reliability of nominal data based
on qualitative judgments,” Journal of marketing research, vol. 26, no. 2,
pp. 135–148, 1989.

[23] G. Canfora, L. Cerulo, and L. Troiano, “Transforming quantities into
qualities in assessment of software systems,” in Proceedings 27th
Annual International Computer Software and Applications Conference.
COMPAC 2003. IEEE, 2003, pp. 312–319.

https://microservice-api-patterns.org/
https://eng.uber.com/micro-deploy-code/
https://cloud.google.com/architecture/devops/devops-tech-architecture
https://cloud.google.com/architecture/devops/devops-tech-architecture
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45fe
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45fe

	Introduction
	Background: ADDs on Mapping of Domain Model Elements to APIs and API Endpoints
	Model Mapping Decision (MMD)
	API Endpoints Decision (API-ED)
	API Documentation Decision (API-DD)

	Research Methods
	Case Preparation and Inspection
	Derivation of Scoring Scheme
	MMD: How to Map a Domain Model and its Elements to an API?
	API-ED: Which Domain Model Elements Should be Offered as Endpoints in an API?
	API-DD: How to formally describe the API?

	Detectors for ADD Conformance Assessment
	Multi-Case Study Results
	Discussion of the Results
	Statistical Analysis

	Threats to Validity
	Conclusion
	References

