
Recent Advances in Fully Dynamic Graph
Algorithms
Kathrin Hanauer #

Faculty of Computer Science, Universität Wien, Austria

Monika Henzinger #

Faculty of Computer Science, Universität Wien, Austria

Christian Schulz #

Faculty of Mathematics and Computer Science, Universität Heidelberg, Germany

Abstract
In recent years, significant advances have been made in the design and analysis of fully dynamic
algorithms. However, these theoretical results have received very little attention from the practical
perspective. Few of the algorithms are implemented and tested on real datasets, and their practical
potential is far from understood. Here, we present a quick reference guide to recent engineering and
theory results in the area of fully dynamic graph algorithms.

2012 ACM Subject Classification General and reference → Surveys and overviews; Networks →
Network dynamics; Mathematics of computing → Graph algorithms

Keywords and phrases fully dynamic graph algorithms, survey

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.1

Category Invited Talk

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564, “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)”), as well as
from the Austrian Science Fund (FWF) and netIDEE SCIENCE project P 33775-N. Moreover, we
have been partially supported by DFG grant SCHU 2567/1-2.

1 Introduction

A (fully) dynamic graph algorithm is a data structure that supports edge insertions, edge
deletions, and answers certain queries that are specific to the problem under consideration.
There has been a lot of research on dynamic algorithms for graph problems that are solvable
in polynomial time by a static algorithm. The most studied dynamic problems are graph
problems such as connectivity, reachability, shortest paths, or matching (see [115]). Typically,
any dynamic algorithm that can handle edge insertions can be used as a static algorithm by
starting with an empty graph and inserting all m edges of the static input graph step-by-step.
A fundamental question that arises is which problems can be fully dynamized, which boils
down to the question whether they admit a dynamic algorithm that supports updates in
O(T (m)/m) time, where T (m) is the static running time. Thus, for static problems that
can be solved in near-linear time, the research community is interested in near-constant
time updates. By now, such results have been achieved for a wide range of problems [115],
which resulted in a rich algorithmic toolbox spanning a wide range of techniques. However,
while there is a large body of theoretical work on efficient dynamic graph algorithms, until
recently there has been very little on their empirical evaluation. For some classical dynamic
algorithms, experimental studies have been performed, such as for fully dynamic graph
clustering [76] and fully dynamic approximation of betweenness centrality [33]. However, for

© Kathrin Hanauer, Monika Henzinger, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 1; pp. 1:1–1:47

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5945-837X
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SAND.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Recent Advances in Fully Dynamic Graph Algorithms

other fundamental dynamic graph problems, the theoretical algorithmic ideas have received
very little attention from the practical perspective. In particular, very little work has been
devoted to engineering such algorithms and providing efficient implementations in practice.
Previous surveys on the topic [249, 10] are more than twenty years old and do not capture
the state-of-the-field anymore. In this work, we aim to survey recent progress in theory
as well as in the empirical evaluation of fully dynamic graph algorithms and summarize
methodologies used to evaluate such algorithms. Moreover, we point to theoretical results
that we think have a good potential for practical implementations. Hence, this paper should
help an unfamiliar reader by providing most recent references for various problems in fully
dynamic graph algorithms. Lastly, there currently is a lack of fully dynamic real-world graphs
available online – most of the instances that can be found to date are insertions-only. Hence,
together with this survey we will also start a new open-access graph repository that provides
fully dynamic graph instances12.

We want to point out that there are also various dynamic graph models which we cannot
discuss in any depth for space limitations. These are insertions-only algorithms, deletions-
only algorithms, offline dynamic algorithms, algorithms with vertex insertions and deletions,
kinetic algorithms, temporal algorithms, algorithms with a limit on the number of allowed
queries, algorithms for the sliding-windows model, and algorithms for sensitivity problems
(also called emergency planning or fault-tolerant algorithms). . We also exclude dynamic
algorithms in other models of computation such as distributed algorithms and algorithms in
the massively parallel computation (MPC) model. If the full graph is known at preprocessing
time and vertices are “switched on and off”, this is called the subgraph model, whereas
algorithms under failures deal with the case that vertices or edges are only “switched off”.
We do not discuss these algorithms either.

Note that fully dynamic graph algorithms (according to our definition) are also sometimes
called algorithms for evolving graphs or for incremental graphs or sometimes even maintaining
a graph online.

2 Preliminaries

Let G = (V, E) be a (un)directed graph with vertex set V and edge set E. Throughout
this paper, let n = |V | and m = |E|. The density of G is d = m

n . In the directed case,
an edge (u, v) ∈ E has tail u and head v and u and v are said to be adjacent. (u, v) is
said to be an outgoing edge or out-edge of u and an incoming edge or in-edge of v. The
outdegree deg+(v)/indegree deg−(v)/degree deg(v) of a vertex v is its number of (out-/in-)
edges. The out-neighborhood (in-neighborhood) of a vertex u is the set of all vertices v such
that (u, v) ∈ E ((v, u) ∈ E). In the undirected case, N(v) := {u : {v, u} ∈ E} denotes the
neighbors of v. The degree of a vertex v is deg(v) := |N(v)| here. In the following, ∆ denotes
the maximum degree that can be found in any state of the dynamic graph. Our focus in
this paper are fully dynamic graphs, where the number of vertices is fixed, but edges can be
added and removed. We use Õ(·) to hide polylogarithmic factors.

1 If you have access to fully dynamic instances, we are happy to provide them in our repository.
2 https://DynGraphLab.github.io

https://DynGraphLab.github.io

K. Hanauer, M. Henzinger, and C. Schulz 1:3

2.1 Conditional Lower Bounds
There are lower bounds for fully dynamic graph algorithms based on various popular
conjectures initiated by [183, 3, 117]. These lower bounds usually involve three parameters:
the preprocessing time p(m, n), the update time u(m, n), and the query time q(m, n). We
will use the notation (p(m, n), u(m, n), q(m, n)) below to indicate that no algorithm with
preprocessing time at most p(m, n) exists that requires at most update time u(m, n) and
query time q(m, n). Note that if the preprocessing time is larger than p(m, n) or if the
query time is larger than q(m, n), then it might be possible to achieve an update time better
than u(m, n). In the same vein, if the preprocessing time is larger than p(m, n) or if the
update time is larger than u(m, n), then it might be possible to achieve a query time better
than q(m, n). We will write poly to denote any running time that is polynomial in the
size of the input.

Any conditional lower bound that is based on the OMv (Online Boolean Matrix-Vector
Multiplication) conjecture [117] applies to both the (amortized or worst-case) running time
of any fully dynamic algorithm and also to the worst-case running time of insertions-only
and deletions-only algorithms. We will not mention this for each problem below and only
state the lower bound, except in cases where as a result of the lower bound only algorithms
for the insertions-only or deletions-only setting have been studied.

3 Fully Dynamic Graph Algorithms

In this section, we describe recent efforts in fully dynamic graph algorithms. We start by
describing fundamental problems that we think belong to a basic toolbox of fully dynamic
graph algorithms: strongly connected components, minimum spanning trees, cycle detec-
tion/topological ordering, matching, core decomposition, subgraph detection, diameter, as
well as independent sets. Later on, we discuss problems that are closer to the application
side. To this end we include fully dynamic algorithms for shortest paths, maximum flows,
graph clustering, centrality measures, and graph partitioning.

3.1 (Strongly) Connected Components and BFS/DFS Trees
One of the most fundamental questions on graphs is whether two given vertices are connected
by a path. In the undirected case, a path connecting two vertices u and w is a sequence
of edges P = ({u, v0}, {v0, v1}, . . . , {vk, w}). A connected component is a maximal set of
vertices that are pairwise connected by a path. A graph is connected if there is exactly
one connected component, which is V . In a directed graph, we say that a vertex u can
reach a vertex w if there is a directed path from u to w, i.e., a sequence of directed edges
P = ((u, v0), (v0, v1), . . . , (vk, w)). A strongly connected component (SCC) is a maximal set
of vertices that can reach each other pairwise. A directed graph is strongly connected if there
is just one strongly connected component, which is V . The transitive closure of a graph G is
a graph on the same vertex set with an edge (u, w) ∈ V × V if and only if u can reach w in
G. Given an undirected graph, we can construct a directed graph from it by replacing each
undirected edge {u, w} by a pair of directed edges (u, w) and (w, u) and translate queries of
connectedness into reachability queries on the directed graph. A breadth-first search (BFS)
or depth-first search (DFS) traversal of a directed or undirected graph defines a rooted,
spanning subtree that consists of the edges via which a new vertex was discovered. Apart
from connectivity or reachability, BFS and DFS trees can be used to answer a variety of
problems on graphs, such as testing bipartiteness, shortest paths in the unweighted setting,
2-edge connectivity, or biconnectivity.

SAND 2022

1:4 Recent Advances in Fully Dynamic Graph Algorithms

Undirected Graphs (Connectivity)

Patrascu and Demaine [184] gave an (unconditional) lower bound of Ω(log n) per operation
for this problem, improving a bound of Ω(log n/ log log n) [123]. The first non-trivial dynamic
algorithms for connectivity, and also for 2-edge connectivity, and 2-vertex connectivity [86,
121, 79, 80, 122] took time Õ(

√
n) per operation. Henzinger and King [125] were the first to

give a fully dynamic algorithm with polylogarithmic time per operation for this problem.
Their algorithm is, however, randomized. Holm et al. [127] gave the first deterministic
fully dynamic algorithm with polylogarithmic time per operation. The currently fastest
fully dynamic connectivity algorithm takes O(log n(log log n)2) amortized expected time per
operation [132]. There also is a batch-dynamic parallel algorithm that answers k queries in
O(k log(1 + n/k)) expected work and O(log n) depth with O(log n log(1 + n/B)) expected
amortized work per update and O(log3 n) depth for an average batch size of B [6].

The fully dynamic connectivity problem can be reduced to the maintenance of a spanning
forest, using, e.g., dynamic trees [222, 7] or Euler tour trees [124, 232] (see also Section 3.2),
for the components. If the graph is a forest, updates and queries can be processed in amortized
O(log n) time, whereas the theoretically fastest algorithms [141] to date for general graphs
have polylogarithmic worst-case update time and O(log n/ log log n) worst-case query time,
the latter matching the lower bound [123, 168]. The key challenge on general graphs is to
determine whether the deletion of an edge of the spanning forest disconnects the component
or whether a replacement edge can be found. There are also fully dynamic algorithms
for more refined notions of connectivity: Two-edge connectivity [125, 126] and two-vertex
connectivity [126] can also be maintained in polylogarithmic time per operation. See [134]
for a survey on that topic.

Building on an earlier study by Alberts et al. [10], Iyer et al. [137] experimentally compared
the Euler tour tree-based algorithms by Henzinger and King [124] and Holm et al. [126]
to each other as well as several heuristics to achieve speedups in both candidates. The
instances used in the evaluation were random graphs with random edge insertions and
deletions, random graphs where a fixed set of edges appear and disappear dynamically,
graphs consisting of cliques of equal size plus a set of inter-clique edges, where only the latter
are inserted and deleted, as well as specially crafted worst-case instances for the algorithms.
The authors showed that the running time of both algorithms can be improved distinctly via
heuristics; in particular a sampling approach to replace deleted tree edges has proven to be
successful. The experimental running time of both algorithms was comparable, but with the
heuristics, the algorithm by Holm et al. [126] performed better.

Baswana et al. [25] gave the first algorithm for maintaining an undirected DFS tree with
o(m) update time and showed a conditional lower bound of Ω(n) on the update time in case of
vertex updates and, if the tree is maintained explicitly, an unconditional lower bound of Ω(n)
under edge updates. Their algorithm has a preprocessing time of O(m log n), a worst-case
update time of O(

√
mn log2.5 n), and uses O(m log2 n) bits. Nakamura and Sadakane [172]

improved the update time by polylog n factors and the space required to O(m log n). Recently,
Baswana et al. [27] further reduced the update time down to O(

√
mn log n). A parallel

algorithm that uses m processors and O(polylog n) update time was given by Khan [145].
To the best of our knowledge, experimental evaluations have only been conducted to date
with algorithms designed for the incremental setting, but not for fully-dynamic algorithms.
No experimental studies on dynamically maintaining BFS trees are known to us.

K. Hanauer, M. Henzinger, and C. Schulz 1:5

Directed Graphs (Reachability, Strong Connectivity, Transitive Closure)

For directed graphs that are and remain acyclic, the same algorithms can be employed
for reachability as for (undirected) connectivity in forests (see above). On general graphs,
there is a conditional lower bound of (poly, m1/2−δ, m1−δ) for any small constant δ > 0
based on the OMv conjecture. This bound even holds for the s-t reachability problem,
where both s and t are fixed for all queries. The currently fastest algorithms for transitive
closure are three Monte Carlo algorithms with one-sided error: Two by Sankowski [205]
with O(1) or O(n0.58) worst-case query time and O(n2) or O(n1.58) worst-case update time,
respectively, and one by van den Brand, Nanongkai, and Saranurak [234] with O(n1.407)
worst-case update and worst-case query time. There exists a conditional lower bound based
on a variant of the OMv conjecture that shows that these running times are optimal [234].
Moreover, there are two deterministic, combinatorial algorithms: Roditty’s algorithm with
constant query time and O(n2) amortized update time [198], as well as one by Roditty and
Zwick [201] with an improved O(m + n log n) amortized update time at the expense of O(n)
worst-case query time.

Frigioni et al. [89] and later Krommidas and Zaroliagis [153] empirically studied the
performance of an extensive number of algorithms for transitive closure, including those
mentioned above. They also developed various extensions and variations and compared
them not only to each other, but also to static, so-called “simple-minded” algorithms such as
breadth-first and depth-first search. Their evaluation included random Erdős-Renyí graphs,
specially constructed hard instances, as well as two instances based on real-world graphs. It
showed that the “simple-minded” algorithms could outperform the dynamic ones distinctly
and up to several factors, unless the query ratio was more than 65 % or the instances were
dense random graphs.

In recent experimental studies by Hanauer et al. [110, 109], two relatively straightforward
algorithms for single-source reachability could outperform the “simple-minded” algorithms of
the earlier studies in a single-source setting by several orders of magnitude in practice both on
random graphs as well as on real-world instances: SI maintains an arbitrary reachability tree
which is re-constructed via a combined forward and backward breadth-first search traversal
on edge deletions if necessary and is especially fast if insertions predominate, which can be
handled in O(n + m) time. By contrast, it may take up to O(nm) time for a single edge
removal. SES is an extension and simplification of Even-Shiloach trees [220], which originally
only handle edge deletions. Its strength are hence instances with many deletions. As a plus,
it is able to deliver not just any path as a witness for reachability, but even the shortest path
(with respect to the number of edges). Furthermore, it internally maintains a BFS tree, which
makes it viable also for numerous other applications, see above. Its worst-case update time is
O(n+m), and, like SI, it answers queries in constant time. One key ingredient for the superior
performance of both algorithms in practice are carefully chosen criteria for an abortion of the
re-construction of their data structures and their re-building from scratch [110]. To query the
transitive closure of a graph, a number of so-called “supportive vertices”, for which both in-
and out-reachability trees are maintained explicitly, can be picked either once or periodically
anew and then be used to answer both positive and negative reachability queries between a
number of pairs of vertices decisively in constant time [109]. The fallback routine can be a
simple static graph traversal and therefore be relatively expensive: With a random initial
choice of supportive vertices and no periodic renewals, this approach has been shown to
answer a great majority of reachability queries on both random and real-world instances in
constant time already if the number of supportive vertices is very small, i.e., two or three.

SAND 2022

1:6 Recent Advances in Fully Dynamic Graph Algorithms

These experimental studies clearly show the limitations of worst-case analysis: All
implemented algorithms are fully dynamic with at least linear worst-case running time per
operation and, thus, all perform “(very) poor” in the worst case. Still on all graphs used in
the study the relatively simple new algorithms clearly outperformed the algorithms used in
previous studies.

Yang et al. [246] were the first to give a fully dynamic algorithm for maintaining a DFS
tree in a directed graph along with several optimizations to achieve speedups in practice. In
an experimental evaluation on twelve real-world instances, they showed that the optimized
version of their algorithm can handle edge insertions and deletions within few seconds on
average for instances with millions of vertices. With regard to BFS trees, the already
mentioned SES algorithm [110] is the only fully dynamic algorithm we are aware of that
maintains a BFS tree on a directed graph.

3.2 Minimum Weight Spanning Trees
A minimum weight spanning tree (MST) of a connected graph is a subset of the edges
such that all nodes are connected via the edges in the subset, the induced subgraph has no
cycles and, lastly, has the minimum total weight among all possible subsets fulfilling the first
two properties.

The lower bound of Ω(log n) [184] on the time per operation for connectivity trivially
extends to maintaining the weight of a minimum spanning tree. Holm et al. [127] gave the
first fully dynamic algorithm with polylogarithmic time per operation for this problem. It
was later slightly improved to O(log4 n)/ log log n) time per operation [128].

Amato et al. [133] presented the first experimental study of dynamic minimum spanning
tree algorithms. In particular, the authors implemented different versions of Frederickson’s
algorithm [85] which uses partitions and topology trees. The algorithms have been adapted
with sparsification techniques to improve their performance. The update running times of
these algorithms range from O(m2/3) to O(m1/2). The authors further presented a variant
of Frederickson’s algorithm that is significantly faster than all other implementations of this
algorithm. However, the authors also proposed a simple adaption of a partially dynamic
data structure of Kruskal’s algorithm that was the fastest implementation on random inputs.
Later, Cattaneo et al. [56, 57] presented an experimental study on several algorithms for
the problem. The authors presented an efficient implementation of the algorithm of Holm
et al. [127], proposed new simple algorithms for dynamic MST that are not as asymptotically
efficient as the algorithm by Holm et al. but seem to be fast in practice, and lastly compared
their algorithms with the results of Amato et al. [133]. The algorithm by Holm et al. uses a
clever refinement of a technique by Henzinger and King [119] for developing fully dynamic
algorithms starting from the deletions-only case. One outcome of their experiments is that
simple algorithms outperform the theoretically more heavy algorithms on random and worst-
case networks. On the other hand, on k-clique inputs, i.e. graphs that contain k cliques of
size c plus 2k randomly chosen inter-clique edges, the implementation of the algorithm by
Holm et al. outperformed the simpler algorithms.

Tarjan and Werneck [227] performed experiments for several variants of dynamic trees
data structure. The evaluated data structures have been used by Ribero and Toso [196], who
focused on the case of changing weights, i.e. the edges of the graph are constant, but the edge
weights can change dynamically. The authors also proposed and used a new data structure
for dynamic tree representation called DRD-trees. In their algorithm the dynamic tree data
structure is used to speed up connectivity queries that check whether two vertices belong to
different subtrees. More generally, the authors compared different types of data structures

K. Hanauer, M. Henzinger, and C. Schulz 1:7

to do this task. In particular, the authors used the dynamic tree data structures that have
been evaluated by Tarjan and Werneck [227]. The experimental evaluation demonstrated
that the new structure reduces the computation time observed for the algorithm of Cattaneo
et al. [56], and at the same time yielded the fastest algorithms in the experiments.

3.3 Cycle Detection and Topological Ordering
A cycle in a (directed) graph G = (V, E) is a non-empty path P = (v1, . . . , vk = v1) such that
(vi, vi+1) ∈ E. A topological ordering of a directed graph is a linear ordering of its vertices
from 1 to n such that for every directed edge (u, v) from vertex u to vertex v, u is ordered
before v. In the static case, one can use a depth-first search (DFS) to compute a topological
ordering of a directed acyclic graph or to check if a (un)directed graph contains a cycle.

Let δ > 0 be any small constant. Based on the OMv conjecture [117] it is straightforward
to construct a lower bound of (poly, m1/2−δ, m1−δ) for the (amortized or worst-case) running
time of any fully dynamic algorithm that detects whether the graph contains any cycle. As
any algorithm for topological ordering can be used to decide whether a graph contains a
cycle, this lower bound also applies to any fully dynamic topological ordering algorithm.
Via dynamic matrix inverse one can maintain fully dynamic directed cycle detection in
O(n1.407) [234], which is conditionally optimal based on a variant of the OMv conjecture.

Pearce and Kelly [187, 188] were the first to evaluate algorithms for topological ordering
in the presence of edge insertions and deletions. In their work, the authors compared three
algorithms that can deal with the online topological ordering problem. More precisely,
the authors implemented the algorithms by Marchetti-Spaccamela et al. [164] and Alpern
et al. [12] as well as a newly developed algorithm. Their new algorithm is the one that
performed best in their experiments. The algorithm maintains a node-to-index map, called
n2i, that maps each vertex to a unique integer in {1 . . . n} and ensures that for any edge (u, v)
in G, it holds n2i[u] < n2i[v]. When an insertion (u, v) invalidates the topological ordering,
affected nodes are updated. The set of affected nodes are identified using a forward DFS
from v and backward DFS from u. The two sets are then separately sorted into increasing
topological order and afterwards a remapping to the available indices is performed. The
algorithm by Marchetti-Spaccamela et al. [164] is quite similar to the algorithm by Pearce
and Kelly. However, it only maintains the forward set of affected nodes and obtains a correct
solution by shifting the affected nodes up in the ordering (putting them after u). Alpern
et al. [12] used a data structure to create new priorities between existing ones in constant
worst-case time. The result by Pearce and Kelly has later been applied to online cycle
detection and difference propagation in pointer analysis by Pearce et al. [189]. Furthermore,
Pearce and Kelly [186] later extended their algorithm to be able to provide more efficient
batch updates.

3.4 (Weighted) Matching
The matching problem is one of the most prominently studied combinatorial graph problems
having a variety of practical applications. A matching M of a graph G = (V, E) is a subset
of edges such that no two elements of M have a common end point. Many applications
require matchings with certain properties, like being maximal (no edge can be added to M
without violating the matching property) or having maximum cardinality.

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for any
small constant δ > 0) for the size of the maximum cardinality matching based on the OMv
conjecture [117]. Of course, maintaining an actual maximum matching is only harder than

SAND 2022

1:8 Recent Advances in Fully Dynamic Graph Algorithms

maintaining the size of a maximum matching. Thus upper bounds have mostly focused on
approximately maximum matching. However, also here we have to distinguish (a) algorithms
that maintain the size of an approximately maximum matching and (b) algorithms that
maintain an approximately maximum matching.

(a) Improving Sankowski’s O(n1.495) update time bound [207], van den Brand et al. [234]
maintain the exact size of a maximum matching in O(n1.407) update time. To maintain
the approximate size of the maximum matching, dynamic algorithms use the duality of
maximum matching and vertex cover and maintain instead a (2 + ϵ)-approximate vertex
cover. This line of work lead to a sequence of papers [135, 40, 42, 39], resulting finally
in a deterministic (2 + ϵ)-approximation algorithm that maintains a hierarchical graph
decomposition with O(1/ϵ2) amortized update time [47]. The algorithm can be turned
into an algorithm with worst-case O(log3 n) time per update [43].

(b) One can trivially maintain a maximal matching in O(n) update time by resolving all
trivial augmenting paths, i.e. cycle-free paths that start and end on a unmatched vertex
and where edges from M alternate with edges from E \ M, of length one. As any
maximal matching is a 2-approximation of a maximum matching, this leads to a 2-
approximation algorithm. Onak and Rubinfeld [181] presented a randomized algorithm
for maintaining an O(1)-approximate matching with O(log2 n) expected amortized
time per edge update. Baswana, Gupta, and Sen [26] gave an elegant algorithm that
maintains a maximal matching with amortized update time O(log n). It is based on
a hierarchical graph decomposition and was subsequently improved by Solomon to
amortized constant expected update time [223]. For worst-case bounds, the best results
are a (1 + ϵ)-approximation in O(

√
m/ϵ) update time by Gupta and Peng [104] (see [178]

for a 3/2-approximation in the same time), a (3/2 + ϵ)-approximation in O(m1/4/ϵ2.5)
time by Bernstein and Stein [37], and a (2 + ϵ)-approximation in O(polylog n) time
by Charikar and Solomon [59] and Arar et al. [17]. Recently, Grandoni et al. [100]
gave an incremental matching algorithm that achieves a (1 + ϵ)-approximate matching
in constant deterministic amortized time. Finally, Bernstein et al. [36] improved the
maximal matching algorithm of Baswana et al. [26] to O(log5 n) worst-case time with
high probability.

Despite this variety of different algorithms, to the best of our knowledge, there have been
only limited efforts so far to engineer and evaluate these algorithms on real-world instances.
Henzinger et al. [116] initiated the empirical evaluation of algorithms for this problem in
practice. To this end, the authors evaluated several dynamic maximal matching algorithms as
well as an algorithm that is able to maintain the maximum matching. They implemented the
algorithm by Baswana, Gupta and Sen [26], which performs edge updates in O(

√
n) time and

maintains a 2-approximate maximum matching, the algorithm of Neiman and Solomon [178],
which takes O(

√
m) time to maintain a 3/2-approximate maximum matching, as well as

two novel dynamic algorithms, namely a random walk-based algorithm as well as a dynamic
algorithm that searches for augmenting paths using a (depth-bounded) blossom algorithm.
Their experiments indicate that an optimum matching can be maintained dynamically more
than an order of magnitude faster than the naive algorithm that recomputes maximum
matchings from scratch . Second, all non-optimum dynamic algorithms that have been
considered in this work were able to maintain near-optimum matchings in practice while
being multiple orders of magnitudes faster than the naive exact dynamic algorithm. The
study concludes that in practice an extended random walk-based algorithms is the method
of choice.

K. Hanauer, M. Henzinger, and C. Schulz 1:9

For the weighted dynamic matching problem, Anand et al. [14] proposed an algorithm
that can maintain an 4.911-approximate dynamic maximum weight matching that runs
in amortized O(log n log C) time where C is the ratio of the weight of the highest weight
edge to the weight of the smallest weight edge. Furthermore, a sequence [41, 1, 39, 46, 44]
of work on fully dynamic set cover resulted in (1 + ϵ)-approximate weighted dynamic
matching algorithms, with O(1/ϵ3 + (1/ϵ2) log C) amortized and O((1/ϵ3) log2(Cn)) worst-
case time per operation based on various hierarchical hypergraph decompositions. Gupta
and Peng [105] maintain a (1 + ϵ)-approximation under edge insertions/deletions that runs in
time O(

√
mϵ−2−O(1/ϵ) log N) time per update, if edge weights are in between 1 and N . Their

result is based on rerunning a static algorithm from time to time, a trimming routine that
trims the graph to a smaller equivalent graph whenever possible and in the weighted case, a
partition of the weights of the edges into intervals of geometrically increasing size. Stubbs
and Williams [225] presented metatheorems for dynamic weighted matching. Here, the
authors reduced the dynamic maximum weight matching problem to the dynamic maximum
cardinality matching problem in which the graph is unweighted. The authors proved that
using this reduction, if there is an α-approximation for maximum cardinality matching with
update time T in an unweighted graph, then there is also a (2 + ϵ)α-approximation for
maximum weight matching with update time O(T

ϵ2 log2 N). Their basic idea is an extension
of the algorithm of Crouch and Stubbs [64] who tackled the problem in the streaming model.
Here, the reduction is to take matchings from weight-threshold based subgraphs of the
dynamic graph, i.e. the algorithm maintains maximal matchings in log C subgraphs, where
subgraph i contains all edges having weight at least (1 + ϵ)i. The resulting matchings are
then greedily merged together by considering the matched edges in descending order of i

(heaviest edges first). Recently, the approach by Stubbs and Williams has been evaluated
experimentally and has been compared against a new random walk-based approach [16]
which gives a (1 + ϵ) approximation w.h.p.. When inserting or deleting an edge, the random
walk-based approach finds random simple paths (using random walks) and solves those paths
using dynamic programming to improve the maintained matching. In practice, the random
walk-based approach outperforms the approach by Stubbs and Williams significantly.

3.5 k-Core Decomposition

A k-core of a graph is a maximal connected subgraph in which all vertices have degree at
least k. The k-core decomposition problem is to compute the core number of every node
in the graph. It is well-known that a k-core decomposition can be computed in linear time
for a static graph. The problem of maintaining the k-core decomposition in a fully dynamic
graph has not received much attention by the theoretical computer science community: Sun
et al. [226] showed that the insertion and deletion of a single edge can change the core
value of all vertices. They also gave a (4 + ϵ)-approximate fully dynamic algorithm with
polylogarithmic running time. The algorithm can be implemented in time O(log2 n) in
graphs using the algorithm of [45]. It dynamically maintains O(log(1+ϵ) n) many (α, β)-
decompositions of the graph, one for each β-value that is a power of (1 + ϵ) between 1 and
(1 + ϵ)n. An (α, β)-decomposition of a graph G = (V, E) is a decomposition Z1, . . . , ZL of V

into L := 1 + ⌈(1 + ϵ) log n⌉ levels such that Zi+1 ⊆ Zi for all 1 ≤ i < L, Z1 = V , and the
following invariants are maintained: (1) All vertices v on level Zi with degZi

(v) > αβ belong
to Zi+1 and (2) all vertices v on level Zi with degZi(v) < β do not belong to Zi+1. There
are no further lower bounds, neither conditional nor unconditional, and no faster algorithms
known for maintaining an approximate k-core decomposition.

SAND 2022

1:10 Recent Advances in Fully Dynamic Graph Algorithms

Miorandi and De Pellegrini [169] proposed two methods to rank nodes according to their
k-core number in fully dynamic networks. The focus of their work is to identify the most
influential spreaders in complex dynamic networks. Li et al. [157] used a filtering method to
only update nodes whose core number is affected by the network update. More precisely,
the authors showed that nodes that need to be updated must be connected via a path to
the endpoints of the inserted/removed edge and the core number must be equal to the
smaller core number of the endpoints. Moreover, the authors presented efficient algorithms
to identify such nodes as well as additional techniques to reduce the size of the nodes that
need updates. Similarly, Sariyüce et al. [208] proposed the k-core algorithm TRAVERSAL
and gave additional rules to prune the size of the subgraphs that are guaranteed to contain
the vertices whose k-core number can have changed. Note that these algorithm can have
a high variation in running time for the update operations depending on the size of the
affected subgraphs. Zhang et al. [250] noted that due to this reason it can be impractical to
process updates one by one and introduced the k-order concept which can reduce the cost
of the update operations. A k-order is defined as follows: a node u is ordered before v in
the k-order if u has a smaller core number than v or when the vertices have the same core
number, if the linear time algorithm to compute the core decomposition would remove u

before v. A recent result by Sun et al. [226] also contains experimental results. However,
their main focus is on hypergraphs and there are no comparisons against the algorithms
mentioned above.

Aridhi et al. [18] gave a distributed k-core decomposition algorithm in large dynamic
graphs. The authors used a graph partitioning approach to distribute the workload and
pruning techniques to find nodes that are affected by the changes. Wang et al. [242] gave
a parallel algorithm that appears to significantly outperform the TRAVERSAL algorithm.
Jin et al. [138] presented a parallel approach based on matching to update core numbers in
fully dynamic networks. Specifically, the authors showed that if a batch of inserted/deleted
edges forms a matching, then the core number update step can be performed in parallel.
However, the type of the edges has to be the same (i.e. only insertions, or only deletions)
in each update. Hua et al. [130] noted that previous algorithms become inefficient for high
superior degree vertices, i.e. , vertices that have many neighbors that have a core number
that is larger than its own core number. For example, the matching-based approach of Jin
et al. [138] can only process one edge associated to a vertex in each iteration. Their new
algorithm can handle multiple insertions/deletions per iteration.

It would be interesting to evaluate the algorithm of Sun et al. [226] which maintains a
(4 + ϵ)-approximate core number, on graphs to see how far from the exact core numbers
these estimates are and how its running time compares to the above approaches. Note that
an (α, β)-decomposition actually gives a (2α + ϵ) approximation and α has to be chosen
to be slightly larger than 2 only to guarantee polylogarithmic updates. Thus, it would be
interesting to also experiment with smaller values of α.

3.6 Motif Search and Motif Counting
Two graphs are isomorphic if there is a bijection between the vertex sets of the graphs that
preserves adjacency. Given a graph pattern H (or multiple Hi), motif counting counts the
subgraphs of G that are isomorphic to H (Hi respectively). In the work that is currently
available there is a subset of work that focuses on the special case of counting triangles or
wedges, i.e., paths of length two, in dynamic networks.

There is a conditional lower bound of (poly, m1/2−δ, m1−δ) even for the most fundamental
problem of detecting whether a graph contains a triangle [117]. The same lower bound
also extends to various four-vertex subgraphs [108], whereas there is a lower bound of

K. Hanauer, M. Henzinger, and C. Schulz 1:11

(poly, m1−δ, m2−δ) for counting 4-cliques as well as induced connected four-vertex subgraphs.
A fully dynamic algorithm with O(

√
m) update time was recently given independently by

Kara et al. [142, 143] for counting triangles. Subsequently, Lu and Tao [161] studied the
trade-off between update time and approximation quality and presented a new data structure
for exact triangle counting whose complexity depends on the arboricity of the graph. The
result by Kara et al. was also extended to general k-clique counting by Dhulipala et al. [74].
Motivated by the fact that real-world graphs in certain applications often have small h-index
h (i.e., there are at most h vertices of degree at least h), Eppstein and Spiro [82] showed
that the undirected triangle count can be maintained in O(h) time. Eppstein et al. [81] later
extended this result to maintaining the counts of directed triangles in amortized O(h) time
and of undirected four-vertex subgraphs in amortized O(h2). Note that h can be as large
as O(

√
m), resulting in an amortized time complexity of O(m) per update for four-vertex

subgraphs in general. Only very recently, Hanauer et al. [108] showed how to reduce this to
amortized O(m2/3) time per update for all four-vertex subgraphs except the 4-clique. This
is currently an active area of research.

In our description of the empirical work for this problem we start with recent work that
mainly focuses on triangle counting. Pavan et al. [185] introduced neighborhood sampling to
count and sample triangles in a one-pass streaming algorithm. In neighborhood sampling,
first a random edge in the stream is sampled and in subsequent steps, edges that share an
endpoint with the already sampled edges are sampled. The algorithm outperformed their
implementations of the previous best algorithms for the problem, namely the algorithms
by Jowhari and Ghodsi [140] and by Buriol et al. [54]. Note that the method does not
appear to be able to handle edge deletions. Bulteau et al. [53] estimated the number of
triangles in fully dynamic streamed graphs. Their method adapts 2-path sampling to work
for dynamic graphs. The main idea of 2-path sampling is to sample a certain number of
2-paths and compute the ratio of 2-paths in the sample that are complete triangles. The
total number of 2-paths in the graph is then multiplied with the ratio to obtain the total
number of 2-paths in the graph. This approach fails, however, if one allows deletions. Thus,
the contribution of the paper is a novel technique for sampling 2-paths. More precisely,
the algorithm first streams the graph and sparsifies it. Afterwards, the sampling technique
is applied on the sparsified graph. The core contribution of the authors is to show that
the estimate obtained in the sparsified graph is similar to the number of triangles in the
original graph. For graphs with constant transitivity coefficient, the authors achieve constant
processing time per edge. Makkar et al. [163] presented an exact and parallel approach using
an inclusion-exclusion formulation for triangle counting in dynamic graphs. The algorithm
is implemented in cuSTINGER [84] and runs on GPUs. The algorithm computes updates
for batches of edge updates and also updates the number of triangles each vertex belongs
to. The TRIÈST algorithm [224] estimates local and global triangles. An input parameter
of the algorithm is the amount of available memory. The algorithm maintains a sample of
the edges using reservoir sampling and random pairing to exploit the available memory as
much as possible. The algorithm reduces the average estimation error by up to 90 % w.r.t.
to the previous state-of-the-art. Han and Sethu [107] proposed a new sampling approach,
called edge-sample-and-discard, which generates an unbiased estimate of the total number of
triangles in a fully dynamic graph. The algorithm significantly reduces the estimation error
compared to TRIÈST. The MASCOT algorithm [159, 158] focuses on local triangle counting,
i.e. counting the triangles adjacent to every node. In their work, the authors provide an
unbiased estimation of the number of local triangles.

We now report algorithms that can count more complex patterns. The neighborhood
sampling method of Pavan et al. [185] can also be used for more complex patters, for example
Pavan et al. also presented experiments for 4-cliques. Shiller et al. [212] presented the

SAND 2022

1:12 Recent Advances in Fully Dynamic Graph Algorithms

stream-based (insertions and deletions) algorithm StreaM for counting undirected 4-vertex
motifs in dynamic graphs. Ahmed et al. [8] presented a general purpose sampling framework
for graph streams. The authors proposed a martingale formulation for subgraph count
estimation and showed how to compute unbiased estimate of subgraph counts from a sample
at any point during the stream. The estimates for triangle and wedge counting obtained are
less than 1 % away from the true number of triangles/wedges. The algorithm outperformed
their own implementation of TRIÈST and MASCOT. Mukherjee et al. [171] gave an exact
counting algorithm for a given set of motifs in dynamic networks. Their focus is on biological
networks. The algorithm computes an initial embedding of each motif in the initial network.
Then for each motif its embeddings are stored in a list. This list is then dynamically updated
while the graph evolves. Liu et al. [160] estimated motifs in dynamic networks. The algorithm
uses exact counting algorithms as a subroutine, and hence can speed up any exact algorithm
at the expense of accuracy. The main idea of their algorithm is to partition the stream into
time intervals and find exact motif counts in subsets of these intervals. Recently, Wang
et al. [241] improved on the result of Liu et al.. The improvement stems from a generic
edge sampling algorithm to estimate the number of instances of any k-vertex ℓ-edge motif in
a dynamic network. The main idea of the algorithm is to first uniformly at random draw
random edges from the dynamic network, then exactly count the number of local motifs and
lastly estimate the global count from the local counts. The experimental evaluation showed
that their algorithm is up to 48.5 times faster than the previous state-of-the-art while having
lower estimation errors.

Dhulipala et al. [74] recently gave parallel batch-dynamic algorithms for k-clique counting.
Their first algorithm is a batch-dynamic parallel algorithm for triangle counting that has
amortized work O(∆

√
∆ + m) and O(log∗(∆ + m)) depth with high probability. The

algorithm is based on degree thresholding which divides the vertices into vertices with low-
and high-degree. Given the classification of the vertex, different updates routines are used. A
multicore implementation of the triangle counting algorithm is given. Experiments indicate
that the algorithms achieve 36.54 to 74.73-times parallel speedups on a machine with 72 cores.
Lastly, the authors developed a simple batch-dynamic algorithm for k-clique counting that
has expected O(∆(m + ∆)αk−4) work and O(logk−2 n) depth with high probability, for
graphs with arboricity α.

To summarize for this problem the empirical work is far ahead of the theoretical work
and it would be interesting to better understand the theoretical complexity of motif search
and motif counting.

3.7 Diameter
The eccentricity of a vertex is the greatest distance between the vertex and any other vertex
in the graph. Based on this definition, the diameter of a graph is defined as the maximum
eccentricity over all vertices in the graph. The radius is the minimum eccentricity of all vertices.
Through recomputation from scratch it is straightforward to compute a 2-approximation for
diameter and radius and a (2 + ϵ)-approximation for radius in linear time.

Anacona et al. [15] recently showed that under the strong exponential time hypothesis
(SETH) there can be no (2 − ϵ)-approximate fully dynamic approximation algorithm for
any of these problems with O(m1−δ) update or query time for any δ > 0. There also exist
non-trivial (and sub-n2 time) fully dynamic algorithms for (1.5 + ϵ) approximate diameter
(and also for radius and eccentricities) [234]. In this paper, the authors also construct a
non-trivial algorithm for exact diameter. We are not aware of any experimental study for
fully dynamic diameter.

K. Hanauer, M. Henzinger, and C. Schulz 1:13

3.8 Independent Set and Vertex Cover
Given a graph G = (V, E), an independent set is a set S ⊆ V such that no vertices in
S are adjacent to one another. The maximum independent set problem is to compute an
independent set of maximum cardinality, called a maximum independent set (MIS). The
minimum vertex cover problem is equivalent to the maximum independent set problem: S

is a minimum vertex cover C in G iff V \ S is a maximum independent set V \ C in G.
Thus, an algorithm that solves one of these problems can be used to solve the other. Note,
however, that this does not hold for approximation algorithms: If C ′ is an α-approximation
of a minimum vertex cover, then V \ C ′ is not necessarily an α-approximation of a maximum
independent set. Another related problem is the maximal independent set problem. A set S

is a maximal independent set if it is an independent set such that for any vertex v ∈ V \ S,
S ∪ {v} is not independent.

As computing the size of an MIS is NP-hard, all dynamic algorithms of independent set
study the maximal independent set problem. Note, however, that unlike for matching a
maximal independent set does not give an approximate solution for the MIS problem, as
shown by a star graph. In a sequence of papers [19, 103, 20, 60, 31] the running time for the
maximal independent set problem was reduced to O(log4 n) expected worst-case update time.

While quite a large amount of engineering work has been devoted to the computation
of independent sets/vertex covers in static graphs, the amount of engineering work for the
dynamic independent set problem is very limited. Zheng et al. [252] presented a heuristic
fully dynamic algorithm and proposed a lazy search algorithm to improve the size of the
maintained independent set. A year later, Zheng et al. [251] improved the result such that the
algorithm is less sensitive to the quality of the initial solution used for the evolving MIS. In
their algorithm, the authors used two well known data reduction rules, degree one and degree
two vertex reduction, that are frequently used in the static case. Moreover, the authors can
handle batch updates. Bhore et al. [48] focused on the special case of MIS for independent
rectangles which is frequently used in map labelling applications. The authors presented a
deterministic algorithm for maintaining a MIS of a dynamic set of uniform rectangles with
amortized sub-logarithmic update time. Moreover, the authors evaluated their approach
using extensive experiments.

3.9 Shortest Paths
One of the most studied problems on weighted dynamic networks is the maintenance of
shortest path information between pairs of vertices. In the most general setting, given an
undirected, dynamic graph with dynamically changing edge weights representing distances,
we are interested in the shortest path between two arbitrary vertices s and t (all-pairs
shortest path problem). For the single-source shortest path problem, the source vertex s

is fixed beforehand and the dynamic graph algorithm is only required to answer distance
queries between s and an (arbitrary) vertex t which is specified by the query operation. In
the s-t shortest path problem both s and t are fixed beforehand and the data structure is
only required to return the distance between s and t as answer to a query. In all cases, the
analogous problem can also be cast on a directed graph, asking for a shortest path from s to
t instead.

Let δ > 0 be a small constant. There is a conditional lower bound of (poly, m1/2−δ, m1−δ)
for any small constant δ > 0 based on the OMv conjecture, even for s-t shortest paths [117].
This lower bound applies also to any algorithm that gives a better than 5/3-approximation.
For planar graphs the product of query and update time is Ω(n1−δ) based on the APSP

SAND 2022

1:14 Recent Advances in Fully Dynamic Graph Algorithms

conjecture [2]. As even the partially dynamic versions have shown to be at least as hard
as the static all-pairs shortest paths problem [199, 2], one cannot hope for a combinatorial
fully dynamic all-pairs shortest paths algorithm with O(n3−δ) preprocessing time, O(n2−δ)
amortized update time, and constant query time. The state-of-the-art algorithms come close
to this: For directed, weighted graphs, Demetrescu and Italiano [72] achieved an amortized
update time of Õ(n2), which was later improved by a polylogarithmic factor by Thorup [228].
Both of these algorithms actually allow vertex insertions and deletion, not just edge updates.
There is also a fully dynamic 2O(k2)-approximation algorithm that takes time Õ(

√
mn1/k)

per update and O(k2) per update for any positive integer k [5].

With respect to worst-case update times, the currently fastest algorithms are randomized
with Õ(n2+2/3) update time [4, 106]. Moreover, Probst Gutenberg and Wulff-Nilsen [106]
presented a deterministic algorithm with Õ(n2+5/7) update time, thereby improving a
15 years old result by Thorup [229]. Van den Brand and Nanongkai [233] showed that
Monte Carlo-randomized (1+ ϵ)-approximation algorithms exist with Õ(n1.823/ϵ2) worst-case
update time for the fully dynamic single-source shortest path problem and Õ(n2.045/ϵ2) for
all-pairs shortest paths, in each case with positive real edge weights and constant query time.
Slightly faster exact and approximative algorithms exist in part for the “special cases” of
unweighted graphs [206, 199, 4, 106, 234, 233] (all edges have unit weight) and/or undirected
graphs [200, 233] (every edge has a reverse edge of the same weight). More details on
shortest paths algorithms including fully dynamic algorithms are given in the survey of
Madkour et al. [162].

The first experimental study for fully dynamic single-source shortest paths on directed
graphs with positive real edge weights was conducted by Frigioni et al. [87], who evaluated
Dijkstra’s seminal static algorithm [75] against a fully dynamic algorithm by Ramalingam and
Reps [195] (RR) as well as one by Frigioni et al. [88] (FMN). RR is based on Dijkstra’s static
algorithm and maintains a spanning subgraph consisting of edges that belong to at least one
shortest s-t path for some vertex t. After an edge insertion, the spanning subgraph is updated
starting from the edge’s head until all affected vertices have been processed. In case of an
edge deletion, the affected vertices are identified as a first step, followed by an update of their
distances. The resulting worst-case update time is O(xδ + nδ log nδ) ⊆ O(m + n log n), where
nδ corresponds to the number of vertices affected by the update, i.e., whose distance from s

changes and xδ equals nδ plus the number of edges incident to an affected vertex. Similarly,
Frigioni et al. [88] analyzed the update complexity of their algorithm FMN with respect to
the change in the solution and showed a worst-case running time of O(|Uδ|

√
m log n), where

Uδ is the set of vertices where either the distance from s must be updated or their parent
in the shortest paths tree. The algorithm assigns each edge (u, v) a forward (backward)
level, which corresponds to the difference between the (sum of) v’s (u’s) distance from s

and the edge weight, as well as an owner, which is either u or v, and used to bound the
running time. Incident outgoing and incoming edges of a vertex that it does not own are
kept in a priority queue each, with the priority corresponding to the edge’s level. In case
of a distance update at a vertex, only those edges are scanned that are either owned by
the vertex or have a priority that indicates a shorter path. Edge insertion and deletion
routines are based on Dijkstra’s algorithm and handled similar as in RR, but using level
and ownership information. The experiments were run on three types of input instances:
randomly generated ones, instances crafted specifically for the tested algorithms, and random
updates on autonomous systems networks. The static Dijkstra algorithm is made dynamic
in that it is re-run from scratch each time its shortest paths tree is affected by an update.
The evaluation showed that the dynamic algorithms can speed up the update time by 95 %

K. Hanauer, M. Henzinger, and C. Schulz 1:15

over the static algorithm. Furthermore, RR turned out to be faster in practice than FMN
except on autonomous systems instances, where the spanning subgraph was large due to
many alternative shortest paths. In a follow-up work, Demetrescu et al. [71, 70] extended this
study to dynamic graphs with arbitrary edge weight, allowing in particular also for negative
weights. In addition to the above mentioned algorithm by Ramalingam and Reps [195] in
a slightly lighter version (RRL) and the one by Frigioni et al. [88] (FMN), their study also
includes a simplified variant of the latter which waives edge ownership (DFMN), as well as a
rather straightforward dynamic algorithm (DF) that in case of a weight increase on an edge
(u, v) first marks all vertices in the shortest paths subtree rooted at v and then finds for each
of these vertices an alternative path from s using only unmarked vertices. The new weight of
these vertices can be at most this distance or the old distance plus the amount of weight
increase on (u, v). Therefore, the minimum is taken as a distance estimate for the second
step, where the procedure is as in Dijkstra’s algorithm. In case of a weight decrease on an
edge (u, v) the first step is omitted. As Dijkstra’s algorithm is employed as a subroutine,
the worst-case running time of DF for a weight change is O(m + n log n). For updates, all
algorithms use a technique introduced by Edmonds and Karp [78] to transform the weight
w(u, v) of each edge (u, v) to a non-negative one by replacing it with the reduced weight
w(u, v) − (d(v) − d(u)), where d(·) denotes the distance from s. This preserves shortest
paths and allows Dijkstra’s algorithm to be used during the update process. The authors
compared these dynamic algorithms to re-running the static algorithm by Bellman and Ford
on each update from scratch on various randomly generated dynamic instances with mixed
incremental and decremental updates on the edge weights, always avoiding negative-length
cycles. Their study showed that DF is the fastest in practice on most instances, however, in
certain circumstances RR and DFMN are faster, whereas FMN turned out to be too slow in
practice due to its complicated data structures. The authors observed a runtime dependency
on the interval size of the edge weights; RR was the fastest if this interval was small, except
for very sparse graphs. DFMN on the other hand was shown to perform better than DF
in presence of zero-length cycles, whereas RR is incapable of handling such instances. It is
interesting to note here that the differences in running time are only due to the updates
that increase distances, as all three candidates used the same routine for operations that
decrease distances. The static algorithm was slower than the dynamic algorithms by several
orders of magnitude.

The first fully dynamic algorithm for all-pairs shortest paths in graphs with positive integer
weights less than a constant C was presented by King [147], with an amortized update time
of O(n2.5√

C log n). For each vertex v, it maintains two shortest paths trees up to a distance
d: one outbound with v as source and one inbound with v as target. A so-called stitching
algorithm is used to stitch together longer paths from shortest paths of distance at most d. To
achieve the above mentioned running time, d is set to

√
nC log n. The space requirement is

O(n3) originally, but can be reduced to Õ(n2
√

nC) [148]. For non-negative, real-valued edge
weights, Demetrescu and Italiano [72] proposed an algorithm with an amortized update time
of O(n2 log3 n), which was later improved to O(n2(log n+log2((n+m)/n))) by Thorup [228].
The algorithm uses the concept of locally shortest paths, which are paths such that each proper
subpath is a shortest path, but not necessarily the entire path, and historical shortest paths,
which are paths that have once been shortest paths and whose edges have not received any
weight updates since then. The combination of both yields so-called locally historical paths,
which are maintained by the algorithm. To keep their number small, the original sequence of
updates is transformed into an equivalent, but slightly longer smoothed sequence. In case
of a weight update, the algorithm discards all maintained paths containing the updated

SAND 2022

1:16 Recent Advances in Fully Dynamic Graph Algorithms

edge and then computes new locally historical paths using a routine similar to Dijkstra’s
algorithm. Both algorithms have constant query time and were evaluated experimentally
in a study by Demetrescu and Italiano [73] against RRL [71] on random instances, graphs
with a single bottleneck edge, which serves as a bridge between two equally-sized complete
bipartite graphs and only its weight is subject to updates, as well as real-world instances
obtained from the US road networks and autonomous systems networks. Apart from RRL,
the study also comprises the Dijkstra’s static algorithm. Both these algorithms are designed
for single-source shortest paths and were hence run once per vertex. All algorithms were
implemented with small deviations from their respective theoretical description to speed them
up in practice. The study showed that RRL and the algorithm based on locally historical
paths (LHP) can outperform the static algorithm by a factor of up to 10 000, whereas the
algorithm by King only achieves a speedup factor of around 10. RRL turned out to be
especially fast if the solution changes only slightly, but by contrast exhibited the worst
performance on the bottleneck instances unless the graphs were sparse. In comparison,
LHP was slightly slower on sparse instances, but could beat RRL as the density increased.
The authors also point out differences in performance that depend mainly on the memory
architecture of the machines used for benchmarking, where RRL could better cope with small
caches or memory bandwidth due to its reduced space requirements and better locality in
the memory access pattern, whereas LHP benefited from larger caches and more bandwidth.

Buriol et al. [55] presented a technique that reduces the number of elements that need to
be processed in a heap after an update for various dynamic shortest paths algorithms by
excluding vertices whose distance changes by exactly the same amount as the weight change
and handling them separately. They showed how this improvement can be incorporated
into RR [195], a variant similar to RRL [195], the algorithm by King and Thorup [148]
(KT), and DF [70] and achieves speedups of up to 1.79 for random weight changes and up
to 5.11 for unit weight changes. Narváez et al. [173] proposed a framework to dynamize
static shortest path algorithms such as Dijkstra’s or Bellman-Ford [32]. In a follow-up
work [174], they developed a new algorithm that fits in this framework and is based on the
linear programming formulation of shortest paths and its dual, which yields the problem in
a so-called ball-and-string model. The authors experimentally showed that their algorithm
needs fewer comparisons per vertex when processing an update than the algorithms from
their earlier work, as it can reuse intact substructures of the old shortest path tree.

To speed up shortest paths computations experimentally, Wagner et al. [239] introduced
a concept for pruning the search space by geometric containers. Here, each edge (u, v) is
associated with a set of vertices called container, which is a superset of all vertices w whose
shortest u-w path starts with (u, v). The authors assume that each vertex is mapped to
a point in two-dimensional Euclidean space and based on this, suggest different types of
geometric objects as containers, such as disks, ellipses, sectors or boxes. All types of container
only require constant additional space per edge. The experimental evaluation on static
instances obtained from road and railway networks showed that using the bounding box as
container reduces the query time the most in comparison to running the Dijkstra algorithm
without pruning, as the search space could be reduced to 5 % to 10 %. This could be preserved
for dynamic instances obtained from railway networks if containers were grown and shrunk in
response to an update, with a speedup factor of 2 to 3 over a recomputation of the containers
from scratch. For bidirectional search, reverse containers need to be maintained additionally,
which about doubled the absolute update time. Delling and Wagner [69] adapted the static
ALT algorithm [90] to the dynamic setting. ALT is a variant of bidirectional A∗ search that
uses a small subset of vertices called landmarks, for which distances from and to all other

K. Hanauer, M. Henzinger, and C. Schulz 1:17

vertices are precomputed, and the triangle inequality to direct the search for a shortest path
towards the target more efficiently. The authors distinguish between an eager and a lazy
dynamic version of ALT, where the eager one updates all shortest path trees of the landmarks
immediately after an update. The lazy variant instead keeps the preprocessed information as
long as it still guarantees correctness, which holds as long as the weight of an edge is at least
its initial weight, however at the expense of a potentially larger search space. The choice of
landmarks remains fixed. The experimental study on large road networks showed that queries
in the lazy version are almost as fast as in the eager version for short distances or if no edges
representing motorways are affected, but slower by several factors for longer distances, larger
changes to the weight of motorway edges, or after many updates. Schultes and Sanders [216]
combined and generalized different techniques that have been successfully used in the static
setting, such as separators, highway hierarchies, and transit node routing in a multi-level
approach termed highway-node routing: For the set of vertices Vi on each level i, Vi ⊆ Vi−1,
and the overlay graph Gi is defined on Vi with an edge (s, t) ∈ Vi × Vi iff there is a shortest
s-t path in Gi−1 that contains no vertices in Vi except for s and t. Queries are carried out
by a modified Dijkstra search on this graph hierarchy. The authors extended this approach
also to the dynamic setting and consider two scenarios: a server scenario, where in case of
edge weight changes the sets of highway nodes Vi are kept and the graphs Gi are updated,
and a mobile scenario, where only those vertices that are potentially affected are determined
and the query routine needs to be aware of possibly outdated information during a search.
In an experimental evaluation on a very large road network with dynamically changing
travel times as weights it is shown that the dynamic highway-node routing outperformed
recomputation from scratch as well as dynamic ALT search with 16 landmarks clearly with
respect to preprocessing, update, and query time as well as space overhead.

Misra and Oommen [170] presented algorithms for single-source shortest paths that are
based on learning automata and designed to find “statistical” shortest paths in a stochastic
graph with stochastically changing edge weights. The algorithms are extensions of RR [195]
and FMN [88] and shown to be superior to the original versions of RR and FMN by several
orders of magnitude once they have converged. Chan and Yang [58] studied the problem of
dynamically updating a single-source shortest path tree under multiple concurrent edge weight
updates. They amended the algorithm by Narváez et al. [174] (MBS), for which they showed
that it may misbehave in certain circumstances and suggested two further algorithms: MFP
is an optimized version of an algorithm by Ramalingam and Reps [194] (DynamicSWSF-FP),
which can handle multiple updates at once. The second algorithm is a generalization of the
dynamic Dijkstra algorithm proposed by Narváez et al. [173]. In a detailed evaluation, they
showed that an algorithm obtained by combining the incremental phase of MBS and the
decremental phase of their dynamization of Dijkstra’s algorithm performed best on road
networks, whereas the dynamized Dijkstra’s algorithm was best on random networks. An
extensive experimental study on single-source shortest path algorithms was conducted by
Bauer and Wagner [29]. They suggested several tuned variants of DynamicSWSF-FP [194]
and evaluated them against FMN [88], different algorithms from the framework by Narváez
et al. [173], as well as RR [195] on a diverse set of instances. The algorithms from the
Narváez framework showed similar performance in case of single-edge updates and were the
fastest on road networks and generated grid-like graphs. By contrast, the tuned variants of
DynamicSWSF-FP behaved less consistent. RR was superior on Internet networks, whereas
FMN was the slowest, especially on sparse instances. Interestingly, the authors showed that
for batch updates with a set of randomly chosen edges, the algorithms behave similar as for
single-edge updates, as there was almost no interference. The picture changed slightly for

SAND 2022

1:18 Recent Advances in Fully Dynamic Graph Algorithms

simulated node failures and strongly for simulated traffic jams. RR and a tuned variant of
DynamicSWSF-FP showed the best performance for simulated node failures, and two tuned
variants of DynamicSWSF-FP dominated in case of simulated traffic jams. Notably, the
algorithms from the Narváez framework were faster here if instead of in batches, the updates
were processed one-by-one. In follow-up works, D’Andrea et al. [65] evaluated several batch-
dynamic algorithms for single-source shortest paths, where the batches are homogeneous, i.e.,
all updates are either incremental or decremental. Their study contains RR [195], a tuned
variant of DynamicSWSF-FP [194] described by Bauer and Wagner [29] (TSWSF), as well as
a new algorithm DDFLP, which is designed specifically to handle homogeneous batches and
uses similar techniques as FMN [88]. The instance set comprised road and Internet networks
as well as randomly generated graphs according to the Erdős-Rényi model (uniform degree
distribution) and the Barabási-Albert model (power-law degree distribution). Batch updates
were obtained from simulated node failure and recovery, simulated traffic jam and recovery,
as well as randomly selected edges for which the weights were either increased or decreased
randomly. The evaluation confirmed the results by Bauer and Wagner [29] and showed
that DDFLP and TSWSF are best in case of update scenarios like node failures or traffic
jams and otherwise TSWSF and RR, where RR is preferable to TSWSF if the interference
among the updates is low and vice versa. DDFLP generally benefited from dense instances.
Singh and Khare [221] presented the first batch-dynamic parallel algorithm for single-source
shortest paths for GPUs and showed in experiments that it outperforms the (sequential)
tuned DynamicSWSF-FP algorithm [29] by a factor of up to 20 if the distances of up to 10 %
of the nodes are affected.

For real-time shortest path computations on networks with fixed topology, but varying
metric, Delling et al. [68] suggested a three-stage approach: In the first, preprocessing step,
a metric-independent, moderate amount of auxiliary data is obtained from the network’s
topology. It is followed by a customization step, which is run for each metric and produces
few additional data. Whereas the first phase is run only once and can therefore use more
computation time, the second phase must complete within seconds in real-life scenarios.
Shortest path queries form the third phase and must be fast enough for actual applications.
For the first, metric-independent stage, the authors describe an approach based on graph
partitioning, where the number of boundary edges, i.e., edges between different partitions,
is to be minimized. For the second stage, they compute an overlay network consisting of
shortest paths between all pairs of boundary nodes, i.e. nodes that are incident to at least one
boundary edge. An s-t query is then answered by running a bidirectional Dijkstra algorithm
on the graph obtained by combining the overlay graph with the subgraphs induced by the
partitions containing s and t, respectively. The authors also considered various options for
speedups, such as a sparsification of the overlay network, incorporating goal-directed search
techniques, and multiple levels of overlays. An experimental evaluation on road networks
with travel distances and travel times as metrics showed that their approach allows for
real-time queries and needs only few seconds for the metric-dependent customization phase.

Arc flags belong in the category of goal-directed techniques to speed up shortest path
computations and have been successfully used in the static setting [28]. To this end, the set
of vertices is partitioned into a number of regions. Each edge receives a label consisting of
a flag for each region, which tells whether there is a shortest path starting with this edge
and ending in the region. The technique is related to geometric containers and uses the arc
flags to prune a (bidirectional) Dijkstra search. Berettini et al. [38] were the first to consider
arc flags in a dynamic setting, however only for the case of weight increases. Their main
idea is to maintain a threshold for each edge and region that gives the increase in weight

K. Hanauer, M. Henzinger, and C. Schulz 1:19

required for the edge to lie on a shortest path. On a weight increase, the thresholds are
updated and used to determine when to change an arc flag. Although this potentially reduces
the quality of the arc flags with each update, the experimental evaluation showed that the
increase in query time is very small as long as the update sequence is short. With respect to
the update time, a significant speedup could be achieved over recomputing arc flags from
scratch. To refresh arc flags more exactly and in a fully dynamical setting, D’Angelo et
al. [66] introduced a data structure called road signs. Road signs complement arc flags and
store for each edge e and region R the set of boundary nodes contained in any shortest path
starting with e and ending in R. In case of a weight increase, the algorithm first identifies all
affected nodes whose shortest path to a boundary node changed and then updates all road
signs for all outgoing edges of an affected node. In case of a weight decrease on edge (u, v),
the authors observed that all shortest paths containing (u, v) remain unchanged. However,
shortest paths starting with other outgoing or incoming edges of u might require updates,
as well as other paths containing an incoming edge of u. In an experimental study on road
networks, the authors compared their algorithm against one that recomputes arc flags from
scratch as well as the algorithm by Berettini et al. [38] (BDD). To mimic traffic jams and
similar occurrences, the weight of a randomly chosen edge increases and then decreases by
the same amount, however not necessarily in subsequent updates. The evaluation showed
that updating both road signs and arc flags is by several factors faster than recomputing arc
flags from scratch. On instances with weight increases only, the authors showed that their
new algorithm outperforms BDD distinctly both for updates and queries.

A further speedup technique for shortest path queries are 2-hop cover labelings, where
the label L(v) of each node v is a carefully chosen set of nodes Uv along with the distance
between v and u for each u ∈ U . For each pair of vertices s and t, the shortest s-t path can
be obtained by intersecting Us and Ut and taking the minimum over all combinations of s-x
and x-t paths for all nodes x ∈ Us ∩ Ut. In the static setting, a 2-hop cover labeling can be
computed based on a breadth-first search that is run once for every vertex (“naive landmark
labeling”). Akiba et al. [9] introduced pruned landmark labeling (PLL), which constitutes a
more refined approach and uses pruned breadth-first searches instead. The authors developed
an incremental algorithm for PLL, which was complemented by D’Angelo et al. [67] to a
fully dynamic algorithm. The experimental evaluation showed that the algorithm achieves
speedups of several orders of magnitude over a recomputation from scratch, while at the
same time preserving the quality of the labeling, which makes this speedup technique suitable
for practical use in dynamic scenarios.

Hayashi et al. [111] proposed a method to support shortest paths queries on unweighted
networks with billions of edges by combining a bidirectional breadth-first search, which is
optimized for the structure of small-world networks, with landmarks. To this end, the authors
choose high-degree vertices and store shortest path trees as well as those of a subset of their
neighbors in a so-called “bit-parallel” form. This increases the number of landmarks, which
in turn generally speeds up the search and in particular for high-degree vertices, and at the
same time keeps the memory requirements comparatively small. After an edge insertion or
deletion, the bit-parallel shortest paths trees are updated accordingly. The experimental
evaluation on twelve real-world instances having between 1.5 million and 3.7 billion edges
showed that the new algorithm was able to process queries on average in less than 8 ms and
even considerably less on many instances. The average edge insertion and deletion times
were less than 1.3 ms and 8.1 s, respectively, after an initialization time of less than 1 h. The
incremental algorithm by Akiba et al. [9], which was included in the study, was distinctly
faster on queries, but on some instances several factors slower on insertions. However, it failed
to complete the preprocessing step within 10 h or required more than 128 GB of memory on
half of all instances.

SAND 2022

1:20 Recent Advances in Fully Dynamic Graph Algorithms

3.10 Maximum Flows and Minimum Cuts
An instance of the maximum flow/minimum cut problem consists of an edge-weighted directed
graph G = (V, E, c) along with two distinguished vertices s and t. The edge weights c are
positive and commonly referred to as capacities. An (s-t) flow f is a non-negative weight
function on the edges such f(e) ≤ c(e) for all e ∈ E (capacity constraints) and except for s

and t, the total flow on the incoming edges of each vertex must equal the total flow on the
outgoing edges (conservation constraints). The excess of a vertex v is the total flow on its
incoming edges minus that on its outgoing edges, which must be zero for all vertices except
s and t. The value of a flow f then is the excess of t. The task is to find a flow of maximum
value. An (s-t) cut is a subset of edges C ⊆ E whose removal makes t unreachable from s,
and its value is the sum of the capacities of all edges in the cut. The well-known max-flow
min-cut theorem states that the maximum value of a flow equals the minimum value of a cut.
The fastest static algorithm whose running time does not depend on the size of the largest
edge weight computes an optimal solution in O(nm) time [182].

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for
any small constant δ > 0) for the size of the maximum s-t flow even in unweighted, undirected
graphs based on the OMv conjecture [117]. Recently Chen et al. [62] gave an O(log n log log n)-
approximate fully dynamic maximum flow algorithm in time Õ(n2/3+o(1)) per update and
Goranci et al. [95] gave a no(1)-approximate fully dynamic algorithm in time no(1) worst-case
update time and O(log1/6 n) query time. In the unweighted setting Jin and Sun [139] gave a
datastructure that can be constructed for any fixed positive integer c = (log n)o(1) and that
answers for any pair (s, t) of vertices that are parameters of the query in time no(1) where s

and t are c-edge connected.
For global minimum cuts in the unweighted setting Thorup and Karger [231] presented a√

2 + o(1)-approximation algorithm that takes polylogarithmic time per update and query
and Thorup [230] designed a (1 + ϵ)-approximate algorithm in Õ(

√
n) time per update

and query.
Kumar and Gupta [154] extended the preflow-push approach [93] to solve maximum flow

in static graphs to the dynamic setting. A preflow is a flow under a relaxed conservation
constraint in that the excess of all vertices except s must be non-negative. Vertices with
positive excess are called active. Preflow-push algorithms, also called push-relabel algorithms,
use this relaxed variant of a flow during the construction of a maximum flow along with
distance labels on the vertices. Generally speaking, they push flow out of active vertices
towards vertices with smaller distance (to t) and terminate with a valid flow (i.e., observing
conservation constraints). In case of an edge insertion or deletion, Kumar and Gupta first
identify affected vertices via forward and backward breadth-first search while observing
and updating distance labels and then follow the scheme of a basic preflow-push algorithm,
however restricted to the set of affected vertices. The authors evaluated their algorithm
only for the incremental setting on a set of randomly generated instances against the static
preflow-push algorithm in [93] and found that their algorithm is able to reduce the number of
push and relabel operations significantly as long as the instances are sparse and the number
of affected vertices remains small.

Many important fields of application for the maximum flow/minimum cut problem stem
from computer vision. In this area, the static algorithm of Boykov and Kolmogorov [50]
(BK) is widely used due to its good performance in practice on computer vision instances
and despite its pseudo-polynomial worst-case running time of O(nm · Opt), with Opt being
the value of a maximum flow/minimum cut. Interestingly, however, a study by Verma and
Batra [238] shows that its practical superiority only holds for sparse instances. BK follows

K. Hanauer, M. Henzinger, and C. Schulz 1:21

the Ford-Fulkerson method of augmenting flow along s-t paths, but uses two search trees
grown from s and t, respectively, to find such paths. Kohli and Torr [149, 150] extended
BK to the fully dynamic setting by updating capacities and flow upon changes and discuss
an optimization that tries to recycle the search trees. They experimentally compared their
algorithm to repeated executions of the static algorithm on dynamic instances obtained
from video sequences and achieve a substantial speedup. They also observed that reusing
the search trees leads to longer s-t paths, which affects the update time negatively as the
instances undergo many changes.

Goldberg et al. [91] developed EIBFS, a generalization of their earlier algorithm IBFS, that
by contrast also extends to the dynamic setting in a straightforward manner. IBFS in turn is a
modification of BK that ensures that the two trees grown from s and t are height-minimal (i.e.,
BFS trees) and is closely related to the concept of blocking flows. The running time of EIBFS
in the static setting and thus the initialization in the dynamic setting, is O(mn log(n2/m))
with dynamic trees or O(mn2) without. The algorithm works with a so-called pseudoflow,
which observes capacity constraints, but may violate conservation constraints. It maintains
two vertex-disjoint forests S and T , where the roots are exactly those vertices with a surplus
of incoming flow and those with a surplus of outgoing flow, respectively, and originally only
contain s and t. The steps of the algorithm consist in growth steps, where S or T are grown
level-wise, augmentation steps, which occur if a link between the forests has been established
and flow is pushed to a vertex in the other forest and further on to the root, and adoption
steps, where vertices in T with surplus incoming flow or vertices in S with surplus outgoing
flow are either adopted by a new parent in the same forest or become a root in the other
forest. In case of an update in the dynamic setting, the invariants of the forests are restored
and flow is pushed where possible, followed by alternating augmentation and adoption steps
if necessary. The authors also mention that resetting the forests every O(m) work such that
they contain only vertices with a surplus outgoing or incoming flow seemed to be beneficial
in practice. In their experimental evaluation of EIBFS against the algorithm by Kohli and
Torr as well as an altered version thereof and a more naive dynamization of IBFS, they
showed for different dynamic real-world instances from the field of computer vision that
EIBFS is the fastest on eight out of fourteen instances and relatively robust: In contrast to
its competitors, it always takes at most roughly twice the time of the fastest algorithm on an
instance. Notably, no algorithm is dominated by another one across all instances.

Zhu et al. [253] described a dynamic update strategy based on augmenting and de-
augmenting paths as well as cancelling cyclic flows. The latter serves as a preparatory step
and only reroutes flow in the network without increasing or decreasing the total s-t flow
and is only necessary in a decremental update operation. They experimentally evaluated
the effectiveness of their algorithm for online semi-supervised learning, where real-world big
data is classified via minimum cuts, and showed that their algorithm outperforms state-of-
the-art stream classification algorithms. A very similar algorithm was proposed by Greco
et al. [101]. The authors compared it experimentally against EIBFS and the dynamic BK
algorithm by Kohli and Torr as well as a number of the currently fastest static algorithms.
Their experiments were conducted on a set of instances from computer vision where equally
many edges are randomly chosen to be inserted and deleted, respectively. They showed
that their algorithm is with one exception always the fastest on average in performing edge
insertions if compared to the average update time of the competitors, and on half of all
instances also in case of edge deletions. On the remaining instances, the average update time
of EIBFS dominated.

SAND 2022

1:22 Recent Advances in Fully Dynamic Graph Algorithms

For the global minimum cut problem, Henzinger et al. [118] implemented an algorithm
for large dynamic graphs under both edge insertions and deletions. For edge insertions, the
algorithm uses the approach of Henzinger [120] and Goranci et al. [94], which maintain a
compact data structure of all minimum cuts in a graph and invalidate only the minimum cuts
that are affected by an edge insertion. For edge deletions, the algorithms use the push-relabel
algorithm of Goldberg and Tarjan [92] to certify whether the previous minimum cut is still
a minimum cut. The algorithm outperformed static approaches by up to five orders of
magnitude on large graphs.

3.11 Graph Clustering
Graph clustering is the problem of detecting tightly connected regions of a graph. More
precisely, a clustering C is a partition of the set of vertices, i.e. a set of disjoint clusters of
vertices V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V . However, k is usually not given in advance
and some objective function that models intra-cluster density versus inter-cluster sparsity, is
optimized. It is common knowledge that there is neither a single best strategy nor objective
function for graph clustering, which justifies a plethora of existing approaches. Moreover,
most quality indices for graph clusterings have turned out to be NP-hard to optimize and
are rather resilient to effective approximations, see, e.g. [21, 51], allowing only heuristic
approaches for optimization. There has been a wide-range of algorithms for static graph
clustering, the majority are based on the paradigm of intra-cluster density versus inter-cluster
sparsity. For dynamic graphs, there has been a recent survey on the topic of community
detection [202]. The survey covers features and challenges of dynamic community detection
and classifies published approaches. Here we focus on engineering results and extend their
survey in that regard with additional references as well as results that appeared in the
meantime. Most algorithms in the area optimize for modularity. Modularity has recently
been proposed [179]. The core idea for modularity is to take coverage, i.e. the fraction of
edges covered by clusters, minus the expected value of the same quantity in a network with
the same community divisions, but random connections between the vertices. The commonly
used formula is as follows: mod(C) := m(C)

m − 1
4m2

∑
C∈C

(∑
v∈C deg(v)

)2.
Miller and Eliassi-Rad [167] adapted a dynamic extension of Latent Dirichlet Allocation

for dynamic graph clustering. Latent Dirichlet Allocation has been originally proposed
for modeling text documents, i.e. the algorithm assumes that a given set of documents
can be classified into k topics. This approach has been transferred to graphs [113] and
was adapted by the authors for dynamic networks. Aynaud and Guillaume [23] tracked
communities between successive snapshots of the input network. They first noted that using
standard community detection algorithms results in stability issues, i.e. little modifications
of the network can result in wildly different clusterings. Hence, the authors propose a
modification of the Louvain method to obtain stable clusterings. This is done by modi-
fying the initialization routine of the Louvain method. By default, the Louvain method
starts with each node being in its own clustering. In the modified version of Aynaud and
Guillaume, the algorithm keeps the clustering of the previous time step and uses this as a
starting point for the Louvain method which results in much more stable clusterings. Bansal
et al. [24] also reused the communities from previous time steps. However, their approach is
based on greedy agglomeration where two communities are merged at each step to optimize
the modularity objective function. The authors improved the efficiency of dynamic graph
clustering algorithms by limiting recomputation to regions of the network and merging
processes that have been affected by insertion and deletion operations. Görke et al. [96]
showed that the structure of minimum s-t-cuts in a graph allows for efficient updates of

K. Hanauer, M. Henzinger, and C. Schulz 1:23

clusterings. The algorithm builds on partially updating a specific part of a minimum-cut tree
and is able to maintain a clustering fulfilling a provable quality guarantee, i.e. the clusterings
computed by the algorithm are guaranteed to yield a certain expansion. To the best of
our knowledge, this is the only dynamic graph clustering algorithm that provides such a
guarantee. Later, Görke et al. [99, 98] formally introduced the concept of smoothness to
compare consecutive clusterings and provided a portfolio of different update strategies for
different types of local and global algorithms. Moreover, their fastest algorithm is guaranteed
to run in time Θ(log n) per update. Their experimental evaluation indicates that dynamically
maintaining a clustering of a dynamic random network saves time and at the same time
also yields higher modularity than recomputation from scratch. Alvari et al. [13] proposed
a dynamic game theory method to tackle the community detection problem in dynamic
social networks. Roughly speaking, the authors model the process of community detection
as an iterative game performed in a dynamic multiagent environment where each node is
an agent who wants to maximize its total utility. In each iteration, an agent can decide to
join, switch, leave, or stay in a community. The new utility is then computed by the best
outcome of these operations. The authors use neighborhood similarity to measure structural
similarity and optimize for modularity. The experimental evaluation is limited to two graphs.
Zakrzweska and Bader [248] presented two algorithms that update communities. Their first
algorithm is similar to the dynamic greedy agglomeration algorithm by Görke et al. [98].
The second algorithm is a modification of the first one that runs faster. This first is achieved
by more stringent backtracking of merges than Görke et al. [98], i.e. merges are only undone
if the merge has significantly changed the modularity score of the clustering. Moreover, the
authors used a faster agglomeration scheme during update operations that uses information
about previous merges to speed up contractions. Recently, Zhuang et al. [254] proposed the
DynaMo algorithm which also is a dynamic algorithm for modularity maximization, however
the algorithm processes network changes in batches.

3.12 Centralities
We will describe three popular measures to find central nodes in networks in the fully
dynamic setting: Katz centrality, betweenness centrality and closeness centrality. The
only two theoretical fully dynamic results that we are aware of are due to Pontecorvi and
Ramachandran [191], who achieve amortized O(ν∗2 · log2 n) update time for betweenness
centrality where ν∗ bounds the number of distinct edges that lie on shortest paths through
any single vertex, and a result due to van den Brand and Nanongkai [233], who present a
(1 + ϵ)-approximate fully-dynamic algorithm for closeness centrality with O(n1.823) update
time. This is an obvious area for future work.

Katz Centrality

Katz centrality is a centrality metric that measure the relation between vertices by counting
weighted walks between them. Nathan and Bader [177] were the first to look at the problem
in a dynamic setting. At that time, static algorithms mostly used linear algebra-based
techniques to compute Katz scores. The dynamic version of their algorithm incrementally
updates the scores by exploiting properties of iterative solvers, i.e. Jacobi iterations. Their
algorithm achieved speedups of over two orders of magnitude over the simple algorithms
that perform static recomputation every time the graph changes. Later, they improved
their algorithm [176] to handle updates by using an alternative, agglomerative method of
calculating Katz scores. While their static algorithm is already several orders of magnitude

SAND 2022

1:24 Recent Advances in Fully Dynamic Graph Algorithms

faster than typical linear algebra approaches, their dynamic algorithm is also faster than pure
static recomputation every time the graph changes. A drawback of the algorithms by Nathan
and Bader is that they are unable to reproduce the exact Katz ranking after dynamic updates.
Van der Grinten et al. [235] fixed this problem by presenting a dynamic algorithm that
iteratively improves upper and lower bounds on the centrality scores. The computed scores
are approximate, but the bounds guarantee the correct ranking. The dynamic algorithm
improves over the static recomputation of the Katz rankings as long as the size of the batches
in the update sequence is smaller than 10 000.

Betweenness Centrality

Given a graph and a vertex v in the graph, the betweenness centrality measure is defined to
be c(v) =

∑
u,w,u̸=w

σu,w(v)
σu,w

, where σu,w is the number of shortest paths between u and w and
σu,w(v) is the number of shortest paths between u and w that include v. Statically computing
betweenness centrality involves solving the all-pairs shortest path problem. Dynamically
maintaining betweenness centrality is challenging as the insertion or deletion of a single edge
can lead to changes of many shortest paths in the graph. The QUBE algorithm [156] was the
first to provide a non-trivial update routine. The key idea is to perform the betweenness
computation on a reduced set of vertices, i.e. the algorithm first finds vertices whose centrality
index might have changed. Betweenness centrality is then only computed on the first set of
vertices. However, QUBE is limited to the insertion and deletion of non-bridge edges. Lee
et al. [155] extended the QUBE algorithm [156] to be able to insert and delete non-bridge edges.
Moreover, the authors reduced the number of shortest paths that need to be recomputed
and thus gained additional speedups over QUBE. Kourtellis et al. [152, 151] contributed
an algorithm that maintains both vertex and edge betweenness centrality. Their algorithm
needs less space than the algorithm by Green et al. [102] as it avoids storing predecessor
lists. Their method can be parallelized and runs on top of parallel data processing engines
such as Hadoop. Bergamini et al. [35] presented an incremental approximation algorithm
for the problem which is based on the first theory result that is asymptotically faster than
recomputing everything from scratch due to Nasre et al. [175]. As a building block of their
algorithm, the authors used an asymptotically faster algorithm for the dynamic single-source
shortest path problem and additionally sample shortest paths. Experiments indicate that
the algorithm can be up to four orders of magnitude faster compared to restarting the
static approximation algorithm by Riondato and Kornaropoulos [197]. In the same year, the
authors extended their algorithm to become a fully dynamic approximation algorithm for
the problem [33, 34]. In addition to dynamic single-source shortest paths, the authors also
employed an approximation of the vertex diameter that is needed to compute the number of
shortest paths that need to be sampled as a function of a given error guarantee that should
be achieved. Hayashi et al. [112] provided a fully dynamic approximation algorithm that is
also based on sampling. In contrast to Bergamini et al. [35, 33, 34], which selects between
each pair of sampled vertices, the authors save all the paths between each sampled pair of
vertices. Moreover, the shortest paths are represented in a data structure called hypergraph
sketch. To further reduce the running time when handling unreachable pairs, the authors
maintain a reachability index. Gil-Pons [190] focused on exact betweenness in incremental
graphs. The author presented a space-efficient algorithm with linear space complexity. Lastly,
Chehreghani et al. [61] focused on the special case in which the betweenness of a single node
has to be maintained under updates.

K. Hanauer, M. Henzinger, and C. Schulz 1:25

Closeness Centrality

Given a graph and a vertex v, the harmonic closeness centrality measure is defined as
clo(v) =

∑
u∈V,u ̸=v

1
d(u,v) where d(u, v) is the distance between u and v. Roughly speaking,

it is the sum of the reciprocal length of the shortest path between the node and all other
nodes in the graph. Baevla’s definition of closeness centrality is similarly |V |−1∑

v∈V
d(u,v)

. Kas

et al. [144] were the first to give an fully dynamic algorithm for the problem. As computing
closeness centrality depends on the all-pairs shortest path problem, the authors extended an
existing dynamic all-pairs shortest path algorithm [193] for their problem. As the algorithm
stores pairwise distances between nodes it has quadratic memory requirement. Sariyuce
et al. [209] provided an algorithm that can handle insertions and deletions. In contrast
to Kas et al. [144], the authors used static single-source shortest paths from each vertex.
The algorithm does not need to store pairwise distances and hence requires only a linear
amount of memory. Moreover, the authors observed that in scale-free networks the diameter
grows proportional to the logarithm of the number of nodes, i.e. the diameter is typically
small. When the graph is modified with minor updates, the diameter also tends to stay
small. This can be used to limit the number of vertices that need to updated. In particular,
the authors showed that recomputation of closeness can be skipped for vertices s such that
|d(s, u) − d(s, v)| = 1 where u, v are the endpoints of the newly inserted edge. Lastly,
the authors used data reduction rules to filter vertices, i.e. real-life networks can contain
nodes that have the same or similar neighborhood structure that can be merged. Later,
Sariyuce et al. [210, 211] proposed a distributed memory-parallel algorithm for the problem.
Yen et al. [247] proposed the fully dynamic algorithm CENDY which can reduce the number
of internal updates to a few single-source shortest path computations necessary by using
breadth-first searches. The main idea is that given an augmented rooted BFS tree of an
unweighted network, edges that are inserted or deleted within the same level of the tree do
not change the distances from the root to all other vertices. Putman et al. [192] provided
a faster algorithm for fully dynamic harmonic closeness. The authors also used a filtering
method to heavily reduce the number of computations for each incremental update. The
filtering method is an extension of level-based filtering to directed and weighted networks.
The dynamic algorithm by Shao et al. [219] maintains closeness centrality by efficiently
detecting all affected shortest paths based on articulation points. The main observation is
that a graph can be divided into a series of biconnected components which are connected
by articulation points – the distances between two arbitrary vertices in the graph can be
expressed as multiple distances between different biconnected components.

Bisenius et al. [49] contributed an algorithm to maintain top-k harmonic closeness in
fully dynamic graphs. The algorithm is not required to compute closeness centrality for the
initial graph and the memory footprint of their algorithm is linear. Their algorithm also
tries to skip recomputations of vertices that are unaffected by the modifications of the graph
by running breadth-first searches. Crescenzi et al. [63] gave a fully dynamic approximation
algorithm for top-k harmonic closeness. The algorithm is based on sampling paths and a
backward dynamic breadth-first search algorithm.

3.13 Graph Partitioning
Typically the graph partitioning problem asks for a partition of a graph into k blocks of
about equal size such that there are few edges between them. More formally, given a
graph G = (V, E), we are looking for disjoint blocks of vertices V1,. . . ,Vk that partition
V , i.e., V1 ∪ · · · ∪ Vk = V . A balancing constraint demands that all blocks have weight

SAND 2022

1:26 Recent Advances in Fully Dynamic Graph Algorithms

c(Vi) ≤ (1 + ϵ)⌈ c(V)
k ⌉ for some imbalance parameter ϵ. The most used objective is to

minimize the total cut ω(E ∩
⋃

i<j Vi × Vj). The problem is known to be NP-hard and no
constant-factor approximation algorithms exist. Thus heuristic algorithms are mostly used
in practice. Dynamic graph partitioning algorithms are also known in the community as
repartitioning algorithms. As the problem is typically not solved to optimality in practice,
repartitioning involves a tradeoff between the quality, i.e. the number of edges in different sets
of the partitioning, and the amount of vertices that need to change their block as they cause
communication when physically moved between the processors as the partition is adopted.
The latter is especially important when graph partitioning is used in adaptive numerical
simulations. In these simulations, the main goal is to partition a model of computation and
communication in which nodes model computation and edges model communication. The
blocks of the partition are then fixed to a specific processing element. When the dynamic
graph partitioning algorithm decides to change the blocks due to changes in the graph
topology, nodes that are moved to a different block create communication in the simulation
system as the underlying data needs to be moved between the corresponding processors.

Hendrikson et al. [114] tackled the repartitioning problem by introducing k virtual vertices.
Each of the virtual vertices is connected to all nodes of its corresponding block. The edges
get a weight α which is proportional to the migration cost of a vertex and the vertex weights
of the virtual vertices are set to zero. Then an updated partition can be computed using a
static partitioning algorithm since the model accounts for migration costs and edge cut size
at the same time.

Schloegel et al. [213] presented heuristics to control the tradeoff between edge-cut size and
vertex migration costs. The most simple algorithm is to compute a completely new partition
and then determine a mapping between the blocks of the old and the new partition that
minimizes migration. The more sophisticated algorithm of [213] is a multilevel algorithm
based on a simple process, i.e. nodes are moved from blocks that contain too many vertices
to blocks that contain not enough vertices. However, this approach often yields partitions
that cut a large number of edges. The result has been improved later by combining the two
approaches in the parallel partitioning tool ParMetis [214]. Schloegel et al. [215] later extended
their algorithm to be able to handle multiple balance constraints. Hu and Blake [129] noted
that diffusion processes can suffer from slow convergence and improved the performance of
diffusion through the use of Chebyshev polynomials. More precisely, the diffusion process in
their paper is a directed diffusion that computes a diffusion solution by solving a so-called head
conduction equation while minimizing the data movement. Walshaw et al. [240] integrated
a repartitioning algorithm into their parallel (meanwhile uncontinued) tool Jostle. The
algorithm is a directed diffusion process based on the solver proposed by Hu and Blake [129].
Rotaru and Nägeli [203] extended previous diffusion-based algorithms to be able to handle
heterogeneous systems. These approaches, however, have certain weaknesses: For example,
in numerical applications the maximum number of boundary nodes of a block is often a
better estimate of the occurring communication in the simulation than the number of edges
cut. Meyerhenke and Gehweiler [165, 166] explored a disturbed diffusion process that is able
to overcome some of the issues of the previous approaches. To do so, Meyerhenke adapted
DIBAP, a previously developed algorithm that aims at computing well-shaped partitions. A
diffusion process is called disturbed if its convergence state does not result in a balanced
distribution. These processes can be helpful to find densely connected regions in the graph.

There has been also work that tackles slightly different problem formulations. Kiefer
et al. [146] noted that performance in applications usually does not scale linearly with
the amount of work per block due to contention on different compute components. Their

K. Hanauer, M. Henzinger, and C. Schulz 1:27

algorithm uses a simplified penalized resource consumption model. Roughly speaking, the
authors introduced a penalized block weight and modified the graph partitioning problem
accordingly. More precisely, a positive, monotonically increasing penalty function p is used
to penalize the weight of a block based on the partition cardinality. Vaquero et al. [237]
looked at the problem for distributed graph processing systems. Their approach is based
on iterative vertex migration based on label propagation. More precisely, a vertex has a
list of candidate blocks where the highest number of its neighbors are located. However,
initial partitions are computed using hashing which does not yield high quality partitions
since it completely ignores the structure of the graph. The authors did not compare their
work against other state-of-the art repartitioning algorithms, so it is unclear how well the
algorithm performs compared to other algorithms. Xu et al. [245] and Nicoara et al. [180]
also presented dynamic algorithms specifically designed for graph processing systems. Other
approaches have focused on the edge partitioning problem [204, 131, 83] or the special case
of road networks [52].

4 Dynamic Graph Systems

The methodology of the previous two sections is to engineer algorithms for specific dynamic
graph problems. In contrast to this, there are also approaches that try to engineer dynamic
graph systems that can be applied to a wide range of dynamic graph problems. Alberts
et al. [11] started this effort and presented a software library of dynamic graph algorithms.
The library is written in C++ and is an extension of the well known LEDA library of efficient
data types and algorithms. The library contains algorithms for connectivity, spanning trees,
single-source shortest paths and transitive closure.
A decade later Weigert et al. [243] presented a system that is able to deal with dynamic

distributed graphs, i.e. in settings in which a graph is too large for the memory of a single
machine and, thus, needs to be distributed over multiple machines. A user can implement a
query function to implement graph queries. Based on their experiments, the system appears
to scale well to large distributed graphs. Ediger et al. [77] engineered STINGER which is short
for Spatio-Temporal Interaction Networks and Graphs Extensible Representation. STINGER
provides fast insertions, deletions, and updates on semantic graphs that have a skewed
degree distribution. The authors showed in their experiments that the system can handle
3 million updates per second on a scale-free graph with 537 million edges on a Cray XMT
machine. The authors already implemented a variety of algorithms on STINGER including
community detection, k-core extraction, and many more. Later, Feng et al. [84] presented
DISTINGER which has the same goals as STINGER, but focuses on the distributed memory
case, i.e. the authors presented a distributed graph representation. Vaquero et al. [236]
presented a dynamic graph processing system that uses adaptive partitioning to update the
graph distribution over the processors over time. This speeds up queries as a better graph
distribution significantly reduces communication overhead. Experiments showed that the
repartitioning heuristic (also explained in Section 3.13) improves computation performance
in their system up to 50 % for an algorithm that computes the estimated diameter in
a graph. Sengupta et al. [217] introduced a dynamic graph analytics framework called
GraphIn. Part of GraphIn is a new programming model based on the gather-apply-scatter
programming paradigm that allows users to implement a wide range of graph algorithms that
run in parallel. Compared to STINGER, the authors reported a 6.6-fold speedup. Iwabuchi
et al. [136] presented an even larger speedup over STINGER. Their dynamic graph data store
is, like STINGER, designed for scale-free networks. The system uses compact hash tables
with high data locality. In their experiments, their system called DegAwareRHH, is a factor
206.5 faster than STINGER.

SAND 2022

1:28 Recent Advances in Fully Dynamic Graph Algorithms

Another line of research focuses on graph analytic frameworks and data structures for
GPUs. Green and Bader [84] presented cuSTINGER, which is a GPU extension of STINGER
and targets NVIDIA’s CUDA supported GPUs. One drawback of cuSTINGER is that the
system has to perform restarts after a large number of edge updates. Busato et al. fixed this
issue in their system, called Hornet, and, thus, outperform cuSTINGER. Moreover, Hornet
uses a factor of 5 to 10 less memory than cuSTINGER. In contrast to previous approaches,
faimGraph due to Winter et al. [244] is able to deal with a changing number of vertices. Awad
et al. [22] noted that the experiments performed by Busato et al. are missing true dynamism
that is expected in real world scenarios and proposed a dynamic graph structure that uses
one hash table per vertex to store adjacency lists. The system achieves speedups between 5.8
to 14.8 compared to Hornet and 3.4 to 5.4 compared to faimGraph for batched edge insertions
(and slightly smaller speedups for batched edge deletions). The algorithm also supports
vertex deletions, as does faimGraph.

5 Methodology

Currently there is a limited amount of real-world fully dynamic networks publicly available.
There are repositories that feature a lot of real-world insertions only instances such as SNAP3

and KONECT4. However, since the fully dynamic instances are rarely available at the moment,
we start a new graph repository that provides fully dynamic graph instances5. Currently,
there is also very limited work on dynamic graph generators. A generator for clustered
dynamic random networks has been proposed by Görke et al. [97]. Another approach is due
to Sengupta [218] to generate networks for dynamic overlapping communities in networks.
A generative model for dynamic networks with community structure can be found in [30].
This is a widely open topic for future work, both in terms of oblivious adversaries as well
as adaptive adversaries. To still be able to evaluate fully dynamic algorithms in practice,
research uses a wide range of models at the moment to turn static networks into dynamic
ones. We give a brief overview over the most important ones. In undo-based approaches,
edges of a static network are inserted in some order until all edges are inserted. In the end,
x % of the last insertions are undone. The intuition here is that one wants undo changes
that happened to a network and to recreate a previous state of the data structure. In
window-based approaches, edges are inserted and have a predefined lifetime. That means
an edge is deleted after a given number d of new edges have been inserted. In remove and
add based approaches, a small fraction of random edges from a static network is removed
and later on reinserted. In practice, researchers use a single edge as well as whole batches of
edges. In morphing-based approaches, one takes two related networks and creates a sequence
of edge updates such that the second network obtained after the update sequence has been
applied to the first network.

3 https://snap.stanford.edu/
4 http://konect.cc/
5 https://DynGraphLab.github.io

https://snap.stanford.edu/
http://konect.cc/
https://DynGraphLab.github.io

K. Hanauer, M. Henzinger, and C. Schulz 1:29

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In Moses Charikar and
Edith Cohen, editors, Proc. of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 114–125. ACM, 2019.
doi:10.1145/3313276.3316376.

2 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar
graph algorithms. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 477–486. IEEE, 2016.

3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 434–443. IEEE, 2014. doi:10.1109/FOCS.2014.53.

4 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest paths
with worst-case update-time revisited. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 440–452. SIAM, 2017. doi:10.1137/1.9781611974782.
28.

5 Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-pairs shortest paths:
Breaking the o(n) barrier. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and
Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, volume 28 of LIPIcs, pages 1–16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.1.

6 Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. Parallel batch-
dynamic graph connectivity. In Christian Scheideler and Petra Berenbrink, editors, The 31st
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix,
AZ, USA, June 22-24, 2019, pages 381–392. ACM, 2019. doi:10.1145/3323165.3323196.

7 Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick.
Parallel batch-dynamic trees via change propagation. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 2:1–2:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.2.

8 Nesreen K. Ahmed, Nick G. Duffield, Theodore L. Willke, and Ryan A. Rossi. On sampling
from massive graph streams. Proc. VLDB Endow., 10(11):1430–1441, 2017. doi:10.14778/
3137628.3137651.

9 Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Dynamic and historical shortest-path
distance queries on large evolving networks by pruned landmark labeling. In Chin-Wan Chung,
Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World Wide
Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 237–248. ACM,
2014. doi:10.1145/2566486.2568007.

10 David Alberts, Giuseppe Cattaneo, and Giuseppe F. Italiano. An empirical study of dynamic
graph algorithms. ACM J. Exp. Algorithmics, 2:5, 1997. doi:10.1145/264216.264223.

11 David Alberts, Giuseppe Cattaneo, Giuseppe F Italiano, Umberto Nanni, and Christos
Zaroliagis. A software library of dynamic graph algorithms. In Proc. Workshop on Algorithms
and Experiments, pages 129–136. Citeseer, 1998.

12 Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, and F. Kenneth Zadeck.
Incremental evaluation of computational circuits. In David S. Johnson, editor, Proc. of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San
Francisco, California, USA, pages 32–42. SIAM, 1990. URL: http://dl.acm.org/citation.
cfm?id=320176.320180.

SAND 2022

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
https://doi.org/10.1145/3323165.3323196
https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://doi.org/10.14778/3137628.3137651
https://doi.org/10.14778/3137628.3137651
https://doi.org/10.1145/2566486.2568007
https://doi.org/10.1145/264216.264223
http://dl.acm.org/citation.cfm?id=320176.320180
http://dl.acm.org/citation.cfm?id=320176.320180

1:30 Recent Advances in Fully Dynamic Graph Algorithms

13 Hamidreza Alvari, Alireza Hajibagheri, and Gita Reese Sukthankar. Community detection
in dynamic social networks: A game-theoretic approach. In Xindong Wu, Martin Ester, and
Guandong Xu, editors, 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM 2014, Beijing, China, August 17-20, 2014, pages
101–107. IEEE Computer Society, 2014. doi:10.1109/ASONAM.2014.6921567.

14 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approximate
maximum weighted matching in fully dynamic graphs. In Deepak D’Souza, Telikepalli
Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India, volume 18 of LIPIcs, pages 257–266. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.257.

15 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and hardness for diameter in dynamic graphs. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
volume 132 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.13.

16 Eugenio Angriman, Henning Meyerhenke, Christian Schulz, and Bora Uçar. Fully-dynamic
weighted matching approximation in practice. CoRR, abs/2104.13098, 2021. arXiv:2104.
13098.

17 Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching:
Reducing integral algorithms to approximately-maximal fractional algorithms. In 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 7:1–7:16,
2018. doi:10.4230/LIPIcs.ICALP.2018.7.

18 Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. Distributed
k-core decomposition and maintenance in large dynamic graphs. In Proc. of the 10th ACM
International Conference on Distributed and Event-based Systems, pages 161–168, 2016. doi:
10.1145/2933267.2933299.

19 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proc. of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 815–826. ACM,
2018. doi:10.1145/3188745.3188922.

20 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In Timothy M. Chan, editor, Proc. of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1919–1936. SIAM, 2019. doi:10.1137/1.
9781611975482.116.

21 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and their Approximab-
ility Properties. Springer Science & Business Media, 2012.

22 Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D. Owens. Dynamic
graphs on the GPU. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), New Orleans, LA, USA, May 18-22, 2020, pages 739–748. IEEE, 2020. doi:
10.1109/IPDPS47924.2020.00081.

23 Thomas Aynaud and Jean-Loup Guillaume. Static community detection algorithms for evolving
networks. In Lavy Libman Ariel Orda, Nidhi Hegde, editor, 8th International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), May 31
- June 4, 2010, University of Avignon, Avignon, France, pages 513–519. IEEE, 2010. URL:
http://ieeexplore.ieee.org/document/5520221/.

https://doi.org/10.1109/ASONAM.2014.6921567
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.257
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
http://arxiv.org/abs/2104.13098
http://arxiv.org/abs/2104.13098
https://doi.org/10.4230/LIPIcs.ICALP.2018.7
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/3188745.3188922
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1109/IPDPS47924.2020.00081
https://doi.org/10.1109/IPDPS47924.2020.00081
http://ieeexplore.ieee.org/document/5520221/

K. Hanauer, M. Henzinger, and C. Schulz 1:31

24 Shweta Bansal, Sanjukta Bhowmick, and Prashant Paymal. Fast community detection for
dynamic complex networks. In Luciano da F. Costa, Alexandre G. Evsukoff, Giuseppe
Mangioni, and Ronaldo Menezes, editors, Complex Networks - Second International Workshop,
CompleNet 2010, Rio de Janeiro, Brazil, October 13-15, 2010, Revised Selected Papers, volume
116 of Communications in Computer and Information Science, pages 196–207. Springer, 2010.
doi:10.1007/978-3-642-25501-4_20.

25 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in undirected graphs: Breaking the o(m) barrier. SIAM J. Comput., 48(4):1335–1363,
2019. doi:10.1137/17M114306X.

26 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(log n) update time. SIAM J. Comput., 44(1):88–113, 2015. doi:10.1137/16M1106158.

27 Surender Baswana, Shiv Kumar Gupta, and Ayush Tulsyan. Fault tolerant and fully dynamic
DFS in undirected graphs: Simple yet efficient. In Peter Rossmanith, Pinar Heggernes, and
Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of
LIPIcs, pages 65:1–65:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.MFCS.2019.65.

28 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and
Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for dijkstra’s
algorithm. ACM J. Exp. Algorithmics, 15, 2010. doi:10.1145/1671970.1671976.

29 Reinhard Bauer and Dorothea Wagner. Batch dynamic single-source shortest-path algorithms:
An experimental study. In Jan Vahrenhold, editor, Experimental Algorithms, 8th International
Symposium, SEA 2009, Dortmund, Germany, June 4-6, 2009. Proc., volume 5526 of Lecture
Notes in Computer Science, pages 51–62. Springer, 2009. doi:10.1007/978-3-642-02011-7_7.

30 F. Becker. Generative Model for Dynamic Networks with Community Structures. Master’s
Thesis, Heidelberg University, 2020.

31 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 382–405. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00032.

32 Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
33 Elisabetta Bergamini and Henning Meyerhenke. Fully-dynamic approximation of betweenness

centrality. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume 9294 of Lecture
Notes in Computer Science, pages 155–166. Springer, 2015. doi:10.1007/978-3-662-48350-3_
14.

34 Elisabetta Bergamini and Henning Meyerhenke. Approximating betweenness centrality in
fully dynamic networks. Internet Math., 12(5):281–314, 2016. doi:10.1080/15427951.2016.
1177802.

35 Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. Approximating betweenness
centrality in large evolving networks. In Ulrik Brandes and David Eppstein, editors, Proc. of the
Seventeenth Workshop on Algorithm Engineering and Experiments, ALENEX 2015, San Diego,
CA, USA, January 5, 2015, pages 133–146. SIAM, 2015. doi:10.1137/1.9781611973754.12.

36 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach
for dynamic spanner and dynamic maximal matching. In Timothy M. Chan, editor, Proc.
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1899–1918. SIAM, 2019. doi:10.1137/1.
9781611975482.115.

37 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proc. of the 27th Symposium on Discrete Algorithms SODA, pages 692–711. SIAM,
2016. doi:10.1137/1.9781611974331.ch50.

SAND 2022

https://doi.org/10.1007/978-3-642-25501-4_20
https://doi.org/10.1137/17M114306X
https://doi.org/10.1137/16M1106158
https://doi.org/10.4230/LIPIcs.MFCS.2019.65
https://doi.org/10.4230/LIPIcs.MFCS.2019.65
https://doi.org/10.1145/1671970.1671976
https://doi.org/10.1007/978-3-642-02011-7_7
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1007/978-3-662-48350-3_14
https://doi.org/10.1007/978-3-662-48350-3_14
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1137/1.9781611973754.12
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611974331.ch50

1:32 Recent Advances in Fully Dynamic Graph Algorithms

38 Emanuele Berrettini, Gianlorenzo D’Angelo, and Daniel Delling. Arc-flags in dynamic graphs.
In Jens Clausen and Gabriele Di Stefano, editors, ATMOS 2009 - 9th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems, IT University
of Copenhagen, Denmark, September 10, 2009, volume 12 of OASICS. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009. URL: http://drops.dagstuhl.de/opus/
volltexte/2009/2149.

39 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic dy-
namic matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020. doi:10.1007/
s00453-019-00630-4.

40 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018.
doi:10.1137/140998925.

41 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via
the primal-dual method. Inf. Comput., 261:219–239, 2018. doi:10.1016/j.ic.2018.02.005.

42 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In Proc. of the 48th Annual Symposium on
Theory of Computing, pages 398–411. ACM, 2016. doi:10.1145/2897518.2897568.

43 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
Philip N. Klein, editor, Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms SODA, pages 470–489. SIAM, 2017. doi:10.1137/1.9781611973730.54.

44 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A new deterministic
algorithm for dynamic set cover. In David Zuckerman, editor, 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019, pages 406–423. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00033.

45 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proc. of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182. ACM, 2015. doi:10.1145/2746539.2746592.

46 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Xiaowei Wu. An improved
algorithm for dynamic set cover. CoRR, abs/2002.11171, 2020. arXiv:2002.11171.

47 Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ε)-
approximate minimum vertex cover in o(1/ε2) amortized update time. In Timothy M. Chan,
editor, Proc. of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1872–1885. SIAM, 2019. doi:
10.1137/1.9781611975482.113.

48 Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An algorithmic study of fully dynamic
independent sets for map labeling. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 19:1–19:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.19.

49 Patrick Bisenius, Elisabetta Bergamini, Eugenio Angriman, and Henning Meyerhenke. Com-
puting top-k closeness centrality in fully-dynamic graphs. In Rasmus Pagh and Suresh
Venkatasubramanian, editors, Proc. of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018, pages 21–35. SIAM,
2018. doi:10.1137/1.9781611975055.3.

50 Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,
26(9):1124–1137, 2004. doi:10.1109/TPAMI.2004.60.

http://drops.dagstuhl.de/opus/volltexte/2009/2149
http://drops.dagstuhl.de/opus/volltexte/2009/2149
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1137/140998925
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611973730.54
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.1145/2746539.2746592
http://arxiv.org/abs/2002.11171
https://doi.org/10.1137/1.9781611975482.113
https://doi.org/10.1137/1.9781611975482.113
https://doi.org/10.4230/LIPIcs.ESA.2020.19
https://doi.org/10.1137/1.9781611975055.3
https://doi.org/10.1109/TPAMI.2004.60

K. Hanauer, M. Henzinger, and C. Schulz 1:33

51 U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188,
2008. doi:10.1109/TKDE.2007.190689.

52 Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner. Fast and stable
repartitioning of road networks. In 18th International Symposium on Experimental Algorithms
(SEA 2020), volume 160 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.SEA.2020.26.

53 Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle
counting in dynamic graph streams. Algorithmica, 76(1):259–278, 2016. doi:10.1007/
s00453-015-0036-4.

54 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Stijn Vansummeren, editor, Proc. of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 253–262. ACM, 2006. doi:10.1145/
1142351.1142388.

55 Luciana S. Buriol, Mauricio G. C. Resende, and Mikkel Thorup. Speeding up dynamic shortest-
path algorithms. INFORMS J. Comput., 20(2):191–204, 2008. doi:10.1287/ijoc.1070.0231.

56 Giuseppe Cattaneo, Pompeo Faruolo, Umberto Ferraro Petrillo, and Giuseppe F. Itali-
ano. Maintaining dynamic minimum spanning trees: An experimental study. In David M.
Mount and Clifford Stein, editors, Algorithm Engineering and Experiments, 4th Interna-
tional Workshop, ALENEX 2002, San Francisco, CA, USA, January 4-5, 2002, Revised
Papers, volume 2409 of Lecture Notes in Computer Science, pages 111–125. Springer, 2002.
doi:10.1007/3-540-45643-0_9.

57 Giuseppe Cattaneo, Pompeo Faruolo, Umberto Ferraro Petrillo, and Giuseppe F. Italiano.
Maintaining dynamic minimum spanning trees: An experimental study. Discret. Appl. Math.,
158(5):404–425, 2010. doi:10.1016/j.dam.2009.10.005.

58 Edward P. F. Chan and Yaya Yang. Shortest path tree computation in dynamic graphs. IEEE
Trans. Computers, 58(4):541–557, 2009. doi:10.1109/TC.2008.198.

59 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the
polynomial worst-case time barrier. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, volume 107 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.33.

60 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log
update time. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
370–381. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00031.

61 Mostafa Haghir Chehreghani, Albert Bifet, and Talel Abdessalem. Dybed: An efficient
algorithm for updating betweenness centrality in directed dynamic graphs. In Naoki Abe,
Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald
Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz, editors, IEEE
International Conference on Big Data, Big Data 2018, Seattle, WA, USA, December 10-13,
2018, pages 2114–2123. IEEE, 2018. doi:10.1109/BigData.2018.8622452.

62 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1135–1146. IEEE, 2020. doi:10.1109/FOCS46700.2020.00109.

63 Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Finding top-k nodes for temporal
closeness in large temporal graphs. Algorithms, 13(9):211, 2020. doi:10.3390/a13090211.

64 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and
Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization.

SAND 2022

https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.4230/LIPIcs.SEA.2020.26
https://doi.org/10.1007/s00453-015-0036-4
https://doi.org/10.1007/s00453-015-0036-4
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1287/ijoc.1070.0231
https://doi.org/10.1007/3-540-45643-0_9
https://doi.org/10.1016/j.dam.2009.10.005
https://doi.org/10.1109/TC.2008.198
https://doi.org/10.4230/LIPIcs.ICALP.2018.33
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1109/BigData.2018.8622452
https://doi.org/10.1109/FOCS46700.2020.00109
https://doi.org/10.3390/a13090211

1:34 Recent Advances in Fully Dynamic Graph Algorithms

Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, volume 28 of LIPIcs, pages 96–104. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

65 Annalisa D’Andrea, Mattia D’Emidio, Daniele Frigioni, Stefano Leucci, and Guido Proietti.
Dynamic maintenance of a shortest-path tree on homogeneous batches of updates: New
algorithms and experiments. ACM J. Exp. Algorithmics, 20:1.5:1.1–1.5:1.33, 2015. doi:
10.1145/2786022.

66 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic update of
arc-flags. Networks, 63(3):243–259, 2014. doi:10.1002/net.21542.

67 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic 2-hop cover
labeling. ACM J. Exp. Algorithmics, 24(1):1.6:1–1.6:36, 2019. doi:10.1145/3299901.

68 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato Fonseca F. Werneck. Cus-
tomizable route planning. In Panos M. Pardalos and Steffen Rebennack, editors, Experimental
Algorithms - 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece,
May 5-7, 2011. Proc., volume 6630 of Lecture Notes in Computer Science, pages 376–387.
Springer, 2011. doi:10.1007/978-3-642-20662-7_32.

69 Daniel Delling and Dorothea Wagner. Landmark-based routing in dynamic graphs. In Camil
Demetrescu, editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome,
Italy, June 6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 52–65.
Springer, 2007. doi:10.1007/978-3-540-72845-0_5.

70 Camil Demetrescu. Fully Dynamic Algorithms for Path Problems on Directed Graphs. PhD
thesis, Universtita Degli Studi Di Roma, 2001. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.21.8921.

71 Camil Demetrescu, Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Maintaining shortest paths in digraphs with arbitrary arc weights: An experimental study. In
Stefan Näher and Dorothea Wagner, editors, Algorithm Engineering, 4th International Work-
shop, WAE 2000, Saarbrücken, Germany, September 5-8, 2000, Proc., volume 1982 of Lecture
Notes in Computer Science, pages 218–229. Springer, 2000. doi:10.1007/3-540-44691-5_19.

72 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

73 Camil Demetrescu and Giuseppe F. Italiano. Experimental analysis of dynamic all pairs shortest
path algorithms. ACM Trans. Algorithms, 2(4):578–601, 2006. doi:10.1145/1198513.1198519.

74 Laxman Dhulipala, Quanquan C. Liu, and Julian Shun. Parallel batch-dynamic k-clique
counting. CoRR, abs/2003.13585, 2020. arXiv:2003.13585.

75 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

76 Christof Doll, Tanja Hartmann, and Dorothea Wagner. Fully-dynamic hierarchical graph
clustering using cut trees. In 12th Intl. Symp. on Algorithms and Data Structures, WADS’11,
volume 6844 of LNCS, pages 338–349, 2011. doi:10.1007/978-3-642-22300-6_29.

77 David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. STINGER: high
performance data structure for streaming graphs. In IEEE Conference on High Performance
Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12, 2012, pages 1–5.
IEEE, 2012. doi:10.1109/HPEC.2012.6408680.

78 Jack R. Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.

79 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. i. planary testing and minimum spanning trees. J. Comput. Syst. Sci., 52(1):3–27,
1996. doi:10.1006/jcss.1996.0002.

80 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification II: edge and vertex connectivity. SIAM J. Comput., 28(1):341–381, 1998.
doi:10.1137/S0097539794269072.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1145/2786022
https://doi.org/10.1145/2786022
https://doi.org/10.1002/net.21542
https://doi.org/10.1145/3299901
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-540-72845-0_5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8921
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8921
https://doi.org/10.1007/3-540-44691-5_19
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1198513.1198519
http://arxiv.org/abs/2003.13585
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-642-22300-6_29
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1145/321694.321699
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1137/S0097539794269072

K. Hanauer, M. Henzinger, and C. Schulz 1:35

81 David Eppstein, Michael T. Goodrich, Darren Strash, and Lowell Trott. Extended dynamic
subgraph statistics using h-index parameterized data structures. Theor. Comput. Sci., 447:44–
52, 2012. doi:10.1016/j.tcs.2011.11.034.

82 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl., 16(2):543–567, 2012. doi:10.7155/jgaa.
00273.

83 Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. Incrementalization of
graph partitioning algorithms. Proc. VLDB Endow., 13(8):1261–1274, 2020. doi:10.14778/
3389133.3389142.

84 Guoyao Feng, Xiao Meng, and Khaled Ammar. Distinger: A distributed graph data structure
for massive dynamic graph processing. In 2015 IEEE International Conference on Big Data
(Big Data), pages 1814–1822. IEEE, 2015. doi:10.1109/BigData.2015.7363954.

85 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.

86 Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smal-
lest spanning trees. SIAM J. Comput., 26(2):484–538, 1997. doi:10.1137/S0097539792226825.

87 Daniele Frigioni, Mario Ioffreda, Umberto Nanni, and Giulio Pasqualone. Experimental
analysis of dynamic algorithms for the single-source shortest-path problem. ACM J. Exp.
Algorithmics, 3:5, 1998. doi:10.1145/297096.297147.

88 Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic output
bounded single source shortest path problem (extended abstract). In Éva Tardos, editor,
Proc. of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January
1996, Atlanta, Georgia, USA, pages 212–221. ACM/SIAM, 1996. URL: http://dl.acm.org/
citation.cfm?id=313852.313926.

89 Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. An experimental
study of dynamic algorithms for transitive closure. ACM J. Exp. Algorithmics, 6:9, 2001.
doi:10.1145/945394.945403.

90 Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets
graph theory. In Proc. of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 156–165.
SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070455.

91 Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Pushmeet Kohli, Robert Endre Tarjan, and
Renato F. Werneck. Faster and more dynamic maximum flow by incremental breadth-first
search. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume 9294 of Lecture
Notes in Computer Science, pages 619–630. Springer, 2015. doi:10.1007/978-3-662-48350-3_
52.

92 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, 1988.

93 Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

94 Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in
polylogarithmic amortized update time. ACM Transactions on Algorithms (TALG), 14(2):1–
21, 2018.

95 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. CoRR, abs/2005.02369, 2020.
arXiv:2005.02369.

96 Robert Görke, Tanja Hartmann, and Dorothea Wagner. Dynamic graph clustering using
minimum-cut trees. J. Graph Algorithms Appl., 16(2):411–446, 2012. doi:10.7155/jgaa.
00269.

SAND 2022

https://doi.org/10.1016/j.tcs.2011.11.034
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.14778/3389133.3389142
https://doi.org/10.14778/3389133.3389142
https://doi.org/10.1109/BigData.2015.7363954
https://doi.org/10.1137/0214055
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1145/297096.297147
http://dl.acm.org/citation.cfm?id=313852.313926
http://dl.acm.org/citation.cfm?id=313852.313926
https://doi.org/10.1145/945394.945403
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://doi.org/10.1007/978-3-662-48350-3_52
https://doi.org/10.1007/978-3-662-48350-3_52
https://doi.org/10.1145/48014.61051
http://arxiv.org/abs/2005.02369
https://doi.org/10.7155/jgaa.00269
https://doi.org/10.7155/jgaa.00269

1:36 Recent Advances in Fully Dynamic Graph Algorithms

97 Robert Görke, Roland Kluge, Andrea Schumm, Christian Staudt, and Dorothea Wagner. An
efficient generator for clustered dynamic random networks. In Guy Even and Dror Rawitz,
editors, Design and Analysis of Algorithms - First Mediterranean Conference on Algorithms,
MedAlg 2012, Kibbutz Ein Gedi, Israel, December 3-5, 2012. Proc., volume 7659 of Lecture Notes
in Computer Science, pages 219–233. Springer, 2012. doi:10.1007/978-3-642-34862-4_16.

98 Robert Görke, Pascal Maillard, Andrea Schumm, Christian Staudt, and Dorothea Wagner.
Dynamic graph clustering combining modularity and smoothness. ACM J. Exp. Algorithmics,
18, 2013. doi:10.1145/2444016.2444021.

99 Robert Görke, Pascal Maillard, Christian Staudt, and Dorothea Wagner. Modularity-
driven clustering of dynamic graphs. In Paola Festa, editor, Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proc., volume 6049 of Lecture Notes in Computer Science, pages 436–448. Springer, 2010.
doi:10.1007/978-3-642-13193-6_37.

100 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ϵ)-approximate incremental matching in constant deterministic amortized time.
In Timothy M. Chan, editor, Proc. of the 20th Symposium on Discrete Algorithms, pages
1886–1898. SIAM, 2019. doi:10.1137/1.9781611975482.114.

101 Sergio Greco, Cristian Molinaro, Chiara Pulice, and Ximena Quintana. Incremental maximum
flow computation on evolving networks. In Ahmed Seffah, Birgit Penzenstadler, Carina Alves,
and Xin Peng, editors, Proc. of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017, pages 1061–1067. ACM, 2017. doi:10.1145/3019612.3019816.

102 Oded Green, Robert McColl, and David A. Bader. A fast algorithm for streaming betweenness
centrality. In 2012 International Conference on Privacy, Security, Risk and Trust, PASSAT
2012, and 2012 International Confernece on Social Computing, SocialCom 2012, Amsterdam,
Netherlands, September 3-5, 2012, pages 11–20. IEEE Computer Society, 2012. doi:10.1109/
SocialCom-PASSAT.2012.37.

103 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems. In 4th Symposium on Simplicity in Algorithms, SOSA@SODA 2021, to
appear, 2021. arXiv:1804.01823.

104 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Symposium on Foundations of Computer Science, FOCS, pages 548–557. IEEE Computer
Society, 2013. URL: https://ieeexplore.ieee.org/xpl/conhome/6685222/proceeding.

105 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013.

106 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest
paths: Improved worst-case time and space bounds. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2562–2574. SIAM, 2020. doi:10.1137/1.9781611975994.156.

107 Guyue Han and Harish Sethu. Edge sample and discard: A new algorithm for counting triangles
in large dynamic graphs. In Jana Diesner, Elena Ferrari, and Guandong Xu, editors, Proc.
of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2017, Sydney, Australia, July 31 - August 03, 2017, pages 44–49. ACM, 2017.
doi:10.1145/3110025.3110061.

108 Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. Fully dynamic four-vertex subgraph
counting. CoRR, abs/2106.15524, 2021. arXiv:2106.15524.

109 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy, volume
160 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.14.

https://doi.org/10.1007/978-3-642-34862-4_16
https://doi.org/10.1145/2444016.2444021
https://doi.org/10.1007/978-3-642-13193-6_37
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1145/3019612.3019816
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
http://arxiv.org/abs/1804.01823
https://ieeexplore.ieee.org/xpl/conhome/6685222/proceeding
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1145/3110025.3110061
http://arxiv.org/abs/2106.15524
https://doi.org/10.4230/LIPIcs.SEA.2020.14

K. Hanauer, M. Henzinger, and C. Schulz 1:37

110 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Fully dynamic single-source
reachability in practice: An experimental study. In Guy E. Blelloch and Irene Finocchi,
editors, Proc. of the Symposium on Algorithm Engineering and Experiments, ALENEX
2020, Salt Lake City, UT, USA, January 5-6, 2020, pages 106–119. SIAM, 2020. doi:
10.1137/1.9781611976007.9.

111 Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. Fully dynamic shortest-path
distance query acceleration on massive networks. In Snehasis Mukhopadhyay, ChengXiang
Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang,
Yunyao Li, and Parikshit Sondhi, editors, Proc. of the 25th ACM International Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28,
2016, pages 1533–1542. ACM, 2016. doi:10.1145/2983323.2983731.

112 Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. Fully dynamic betweenness centrality
maintenance on massive networks. Proc. VLDB Endow., 9(2):48–59, 2015. doi:10.14778/
2850578.2850580.

113 Keith Henderson and Tina Eliassi-Rad. Applying latent dirichlet allocation to group discovery
in large graphs. In Sung Y. Shin and Sascha Ossowski, editors, Proc. of the 2009 ACM
Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009, pages
1456–1461. ACM, 2009. doi:10.1145/1529282.1529607.

114 Bruce Hendrickson, Robert W. Leland, and Rafael Van Driessche. Enhancing data locality
by using terminal propagation. In 29th Annual Hawaii International Conference on System
Sciences (HICSS-29), January 3-6, 1996, Maui, Hawaii, USA, pages 565–574. IEEE Computer
Society, 1996. doi:10.1109/HICSS.1996.495507.

115 Monika Henzinger. The state of the art in dynamic graph algorithms. In 44th Intl. Conf. on
Current Trends in Theory and Practice of Computer Science, SOFSEM’18, volume 10706 of
LNCS, pages 40–44. Springer, 2018. doi:10.1007/978-3-319-73117-9_3.

116 Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz. Dynamic matching
algorithms in practice. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors,
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), volume 173 of LIPIcs, pages 58:1–58:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.58.

117 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proc. of the forty-seventh annual ACM symposium on Theory of
computing, pages 21–30, 2015. doi:10.1145/2746539.2746609.

118 Monika Henzinger, Alexander Noe, and Christian Schulz. Practical fully dynamic minimum
cut algorithms. CoRR, abs/2101.05033, 2021. arXiv:2101.05033.

119 Monika R Henzinger and Valerie King. Maintaining minimum spanning trees in dynamic
graphs. In International Colloquium on Automata, Languages, and Programming, pages
594–604. Springer, 1997.

120 Monika Rauch Henzinger. Approximating minimum cuts under insertions. In International
Colloquium on Automata, Languages, and Programming, pages 280–291. Springer, 1995.

121 Monika Rauch Henzinger. Fully dynamic biconnectivity in graphs. Algorithmica, 13(6):503–538,
1995. doi:10.1007/BF01189067.

122 Monika Rauch Henzinger. Improved data structures for fully dynamic biconnectivity. SIAM J.
Comput., 29(6):1761–1815, 2000. doi:10.1137/S0097539794263907.

123 Monika Rauch Henzinger and Michael L. Fredman. Lower bounds for fully dynamic connectivity
problems in graphs. Algorithmica, 22(3):351–362, 1998. doi:10.1007/PL00009228.

124 Monika Rauch Henzinger and Valerie King. Randomized dynamic graph algorithms with
polylogarithmic time per operation. In Frank Thomson Leighton and Allan Borodin, editors,
Proc. of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June
1995, Las Vegas, Nevada, USA, pages 519–527. ACM, 1995. doi:10.1145/225058.225269.

SAND 2022

https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1145/2983323.2983731
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.1145/1529282.1529607
https://doi.org/10.1109/HICSS.1996.495507
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.4230/LIPIcs.ESA.2020.58
https://doi.org/10.1145/2746539.2746609
http://arxiv.org/abs/2101.05033
https://doi.org/10.1007/BF01189067
https://doi.org/10.1137/S0097539794263907
https://doi.org/10.1007/PL00009228
https://doi.org/10.1145/225058.225269

1:38 Recent Advances in Fully Dynamic Graph Algorithms

125 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

126 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
In Jeffrey Scott Vitter, editor, Proc. of the Thirtieth Annual ACM Symposium on the Theory
of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 79–89. ACM, 1998. doi:10.1145/
276698.276715.

127 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

128 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum
spanning forest. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume
9294 of Lecture Notes in Computer Science, pages 742–753. Springer, 2015. doi:10.1007/
978-3-662-48350-3_62.

129 Y.F. Hu and R.J. Blake. An improved diffusion algorithm for dynamic load balancing. Parallel
Computing, 25(4):417–444, 1999. doi:10.1016/S0167-8191(99)00002-2.

130 Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng Cai, Xiuzhen Cheng,
and Hanhua Chen. Faster parallel core maintenance algorithms in dynamic graphs. IEEE
Trans. Parallel Distributed Syst., 31(6):1287–1300, 2020. doi:10.1109/TPDS.2019.2960226.

131 Jiewen Huang and Daniel Abadi. LEOPARD: lightweight edge-oriented partitioning and
replication for dynamic graphs. Proc. VLDB Endow., 9(7):540–551, 2016. doi:10.14778/
2904483.2904486.

132 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Philip N. Klein, editor, Proc. of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 510–520. SIAM, 2017. doi:10.1137/1.9781611974782.
32.

133 Giuseppe Amato II, Giuseppe Cattaneo, and Giuseppe F. Italiano. Experimental analysis
of dynamic minimum spanning tree algorithms (extended abstract). In Michael E. Saks,
editor, Proc. of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7
January 1997, New Orleans, Louisiana, USA, pages 314–323. ACM/SIAM, 1997. URL:
http://dl.acm.org/citation.cfm?id=314161.314314.

134 Giuseppe F. Italiano. Fully dynamic higher connectivity. In Encyclopedia of Algorithms, pages
797–800. Springer, 2016. doi:10.1007/978-1-4939-2864-4_154.

135 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In 19th
International Workshop Graph-Theoretic Concepts in Computer Science, volume 790 of LNCS,
pages 99–111, 1993.

136 Keita Iwabuchi, Scott Sallinen, Roger Pearce, Brian Van Essen, Maya Gokhale, and Satoshi
Matsuoka. Towards a distributed large-scale dynamic graph data store. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
892–901. IEEE, 2016. doi:10.1109/IPDPSW.2016.189.

137 Raj Iyer, David R. Karger, Hariharan Rahul, and Mikkel Thorup. An experimental study of
polylogarithmic, fully dynamic, connectivity algorithms. ACM J. Exp. Algorithmics, 6:4, 2001.
doi:10.1145/945394.945398.

138 Hai Jin, Na Wang, Dongxiao Yu, Qiang-Sheng Hua, Xuanhua Shi, and Xia Xie. Core
maintenance in dynamic graphs: A parallel approach based on matching. IEEE Trans. Parallel
Distributed Syst., 29(11):2416–2428, 2018. doi:10.1109/TPDS.2018.2835441.

139 Wenyu Jin and Xiaorui Sun. Fully dynamic c-edge connectivity in subpolynomial time. CoRR,
abs/2004.07650, 2020. arXiv:2004.07650.

https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/978-3-662-48350-3_62
https://doi.org/10.1007/978-3-662-48350-3_62
https://doi.org/10.1016/S0167-8191(99)00002-2
https://doi.org/10.1109/TPDS.2019.2960226
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1137/1.9781611974782.32
http://dl.acm.org/citation.cfm?id=314161.314314
https://doi.org/10.1007/978-1-4939-2864-4_154
https://doi.org/10.1109/IPDPSW.2016.189
https://doi.org/10.1145/945394.945398
https://doi.org/10.1109/TPDS.2018.2835441
http://arxiv.org/abs/2004.07650

K. Hanauer, M. Henzinger, and C. Schulz 1:39

140 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Lusheng Wang, editor, Computing and Combinatorics, 11th Annual International
Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proc., volume 3595 of
Lecture Notes in Computer Science, pages 710–716. Springer, 2005. doi:10.1007/11533719_72.

141 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Sanjeev Khanna, editor, Proc. of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1131–1142. SIAM, 2013. doi:10.1137/1.9781611973105.81.

142 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting
triangles under updates in worst-case optimal time. In Pablo Barceló and Marco Calautti,
editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal, volume 127 of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICDT.2019.4.

143 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020. doi:
10.1145/3396375.

144 Miray Kas, Kathleen M. Carley, and L. Richard Carley. Incremental closeness centrality
for dynamically changing social networks. In Jon G. Rokne and Christos Faloutsos, editors,
Advances in Social Networks Analysis and Mining 2013, ASONAM ’13, Niagara, ON, Canada
- August 25 - 29, 2013, pages 1250–1258. ACM, 2013. doi:10.1145/2492517.2500270.

145 Shahbaz Khan. Near optimal parallel algorithms for dynamic DFS in undirected graphs. ACM
Trans. Parallel Comput., 6(3):18:1–18:33, 2019. doi:10.1145/3364212.

146 Tim Kiefer, Dirk Habich, and Wolfgang Lehner. Penalized graph partitioning for static and
dynamic load balancing. In Pierre-François Dutot and Denis Trystram, editors, Euro-Par 2016:
Parallel Processing - 22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proc., volume 9833 of Lecture Notes in Computer
Science, pages 146–158. Springer, 2016. doi:10.1007/978-3-319-43659-3_11.

147 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 81–91. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814580.

148 Valerie King and Mikkel Thorup. A space saving trick for directed dynamic transitive
closure and shortest path algorithms. In Jie Wang, editor, Computing and Combinatorics,
7th Annual International Conference, COCOON 2001, Guilin, China, August 20-23, 2001,
Proc., volume 2108 of Lecture Notes in Computer Science, pages 268–277. Springer, 2001.
doi:10.1007/3-540-44679-6_30.

149 Pushmeet Kohli and Philip H. S. Torr. Dynamic graph cuts for efficient inference in markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007. doi:
10.1109/TPAMI.2007.1128.

150 Pushmeet Kohli and Philip H. S. Torr. Dynamic graph cuts and their applications in
computer vision. In Roberto Cipolla, Sebastiano Battiato, and Giovanni Maria Farinella,
editors, Computer Vision: Detection, Recognition and Reconstruction, volume 285 of Studies in
Computational Intelligence, pages 51–108. Springer, 2010. doi:10.1007/978-3-642-12848-6_
3.

151 Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. Scalable online
betweenness centrality in evolving graphs. IEEE Trans. Knowl. Data Eng., 27(9):2494–2506,
2015. doi:10.1109/TKDE.2015.2419666.

152 Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. Scalable online
betweenness centrality in evolving graphs. In 32nd IEEE International Conference on Data En-
gineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1580–1581. IEEE Computer
Society, 2016. doi:10.1109/ICDE.2016.7498421.

SAND 2022

https://doi.org/10.1007/11533719_72
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://doi.org/10.1145/3396375
https://doi.org/10.1145/3396375
https://doi.org/10.1145/2492517.2500270
https://doi.org/10.1145/3364212
https://doi.org/10.1007/978-3-319-43659-3_11
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1007/3-540-44679-6_30
https://doi.org/10.1109/TPAMI.2007.1128
https://doi.org/10.1109/TPAMI.2007.1128
https://doi.org/10.1007/978-3-642-12848-6_3
https://doi.org/10.1007/978-3-642-12848-6_3
https://doi.org/10.1109/TKDE.2015.2419666
https://doi.org/10.1109/ICDE.2016.7498421

1:40 Recent Advances in Fully Dynamic Graph Algorithms

153 Ioannis Krommidas and Christos D. Zaroliagis. An experimental study of algorithms for
fully dynamic transitive closure. ACM J. Exp. Algorithmics, 12:1.6:1–1.6:22, 2008. doi:
10.1145/1227161.1370597.

154 S. Kumar and P. Gupta. An incremental algorithm for the maximum flow problem. J. Math.
Model. Algorithms, 2(1):1–16, 2003. doi:10.1023/A:1023607406540.

155 Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. Efficient algorithms for updating
betweenness centrality in fully dynamic graphs. Inf. Sci., 326:278–296, 2016. doi:10.1016/j.
ins.2015.07.053.

156 Min-Joong Lee, Jungmin Lee, Jaimie Yejean Park, Ryan Hyun Choi, and Chin-Wan Chung.
QUBE: a quick algorithm for updating betweenness centrality. In Alain Mille, Fabien L.
Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab, editors, Proc. of the 21st
World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages
351–360. ACM, 2012. doi:10.1145/2187836.2187884.

157 Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. Efficient core maintenance in large dynamic graphs.
IEEE Trans. Knowl. Data Eng., 26(10):2453–2465, 2014. doi:10.1109/TKDE.2013.158.

158 Yongsub Lim, Minsoo Jung, and U Kang. Memory-efficient and accurate sampling for counting
local triangles in graph streams: From simple to multigraphs. ACM Trans. Knowl. Discov.
Data, 12(1):4:1–4:28, 2018. doi:10.1145/3022186.

159 Yongsub Lim and U Kang. MASCOT: memory-efficient and accurate sampling for counting
local triangles in graph streams. In Longbing Cao, Chengqi Zhang, Thorsten Joachims,
Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Proc. of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, August 10-13, 2015, pages 685–694. ACM, 2015. doi:10.1145/2783258.
2783285.

160 Paul Liu, Austin R. Benson, and Moses Charikar. Sampling methods for counting temporal
motifs. In J. Shane Culpepper, Alistair Moffat, Paul N. Bennett, and Kristina Lerman,
editors, Proc. of the Twelfth ACM International Conference on Web Search and Data Mining,
WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pages 294–302. ACM, 2019.
doi:10.1145/3289600.3290988.

161 Shangqi Lu and Yufei Tao. Towards optimal dynamic indexes for approximate (and exact)
triangle counting. In Ke Yi and Zhewei Wei, editors, 24th International Conference on Database
Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus, volume 186 of LIPIcs, pages 6:1–6:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.6.

162 Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh
Basalamah. A survey of shortest-path algorithms. arXiv preprint, 2017. arXiv:1705.02044.

163 Devavret Makkar, David A. Bader, and Oded Green. Exact and parallel triangle counting in
dynamic graphs. In 24th IEEE International Conference on High Performance Computing,
HiPC 2017, Jaipur, India, December 18-21, 2017, pages 2–12. IEEE Computer Society, 2017.
doi:10.1109/HiPC.2017.00011.

164 Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Maintaining a topo-
logical order under edge insertions. Inf. Process. Lett., 59(1):53–58, 1996. doi:10.1016/
0020-0190(96)00075-0.

165 Henning Meyerhenke. Dynamic load balancing for parallel numerical simulations based on
repartitioning with disturbed diffusion. In 15th International Conference on Parallel and
Distributed Systems, pages 150–157. IEEE, 2009. doi:10.1109/ICPADS.2009.114.

166 Henning Meyerhenke and Joachim Gehweiler. On dynamic graph partitioning and graph
clustering using diffusion. In Giuseppe F. Italiano, David S. Johnson, Petra Mutzel, and
Peter Sanders, editors, Algorithm Engineering, 27.06. - 02.07.2010, volume 10261 of Dagstuhl
Seminar Proc. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010. URL:
http://drops.dagstuhl.de/opus/volltexte/2010/2798/.

https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1023/A:1023607406540
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1145/2187836.2187884
https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.1145/3022186
https://doi.org/10.1145/2783258.2783285
https://doi.org/10.1145/2783258.2783285
https://doi.org/10.1145/3289600.3290988
https://doi.org/10.4230/LIPIcs.ICDT.2021.6
http://arxiv.org/abs/1705.02044
https://doi.org/10.1109/HiPC.2017.00011
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1109/ICPADS.2009.114
http://drops.dagstuhl.de/opus/volltexte/2010/2798/

K. Hanauer, M. Henzinger, and C. Schulz 1:41

167 Kurt T Miller and Tina Eliassi-Rad. Continuous time group discovery in dynamic graphs. In
Notes of the 2009 NIPS Workshop on Analyzing Networks and Learning with Graphs, Whistler,
BC, Canada, 2009.

168 Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
Complexity models for incremental computation. Theor. Comput. Sci., 130(1):203–236, 1994.
doi:10.1016/0304-3975(94)90159-7.

169 Daniele Miorandi and Francesco De Pellegrini. K-shell decomposition for dynamic complex
networks. In Lavy Libman Ariel Orda, Nidhi Hegde, editor, 8th International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), May 31
- June 4, 2010, University of Avignon, Avignon, France, pages 488–496. IEEE, 2010. URL:
http://ieeexplore.ieee.org/document/5520231/.

170 Sudip Misra and B. John Oommen. Dynamic algorithms for the shortest path routing problem:
Learning automata-based solutions. IEEE Trans. Syst. Man Cybern. Part B, 35(6):1179–1192,
2005. doi:10.1109/TSMCB.2005.850180.

171 Kingshuk Mukherjee, Md Mahmudul Hasan, Christina Boucher, and Tamer Kahveci. Count-
ing motifs in dynamic networks. BMC Syst. Biol., 12(1):1–12, 2018. doi:10.1186/
s12918-018-0533-6.

172 Kengo Nakamura and Kunihiko Sadakane. Space-efficient fully dynamic DFS in undirected
graphs. Algorithms, 12(3):52, 2019. doi:10.3390/a12030052.

173 Paolo Narváez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic algorithms for shortest path
tree computation. IEEE/ACM Trans. Netw., 8(6):734–746, 2000. doi:10.1109/90.893870.

174 Paolo Narváez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic SPT algorithm based on a
ball-and-string model. IEEE/ACM Trans. Netw., 9(6):706–718, 2001. doi:10.1109/90.974525.

175 Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. Betweenness centrality
- incremental and faster. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán
Ésik, editors, Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II,
volume 8635 of Lecture Notes in Computer Science, pages 577–588. Springer, 2014. doi:
10.1007/978-3-662-44465-8_49.

176 Eisha Nathan and David A. Bader. Approximating personalized katz centrality in dy-
namic graphs. In Roman Wyrzykowski, Jack J. Dongarra, Ewa Deelman, and Konrad
Karczewski, editors, Parallel Processing and Applied Mathematics - 12th International Con-
ference, PPAM 2017, Lublin, Poland, September 10-13, 2017, Revised Selected Papers, Part
I, volume 10777 of Lecture Notes in Computer Science, pages 290–302. Springer, 2017.
doi:10.1007/978-3-319-78024-5_26.

177 Eisha Nathan and David A. Bader. A dynamic algorithm for updating katz centrality in graphs.
In Jana Diesner, Elena Ferrari, and Guandong Xu, editors, Proc. of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney,
Australia, July 31 - August 03, 2017, pages 149–154. ACM, 2017. doi:10.1145/3110025.
3110034.

178 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016. doi:10.1145/2700206.

179 M. EJ Newman and M. Girvan. Finding and Evaluating Community Structure in Networks.
Physical review E, 69(2):026113, 2004. doi:10.1103/PhysRevE.69.026113.

180 Daniel Nicoara, Shahin Kamali, Khuzaima Daudjee, and Lei Chen. Hermes: Dynamic
partitioning for distributed social network graph databases. In EDBT, pages 25–36, 2015.
doi:10.5441/002/edbt.2015.04.

181 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover.
In STOC, pages 457–464, 2010. doi:10.1145/1806689.1806753.

182 James B. Orlin. Max flows in o(nm) time, or better. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM, 2013. doi:10.1145/2488608.2488705.

SAND 2022

https://doi.org/10.1016/0304-3975(94)90159-7
http://ieeexplore.ieee.org/document/5520231/
https://doi.org/10.1109/TSMCB.2005.850180
https://doi.org/10.1186/s12918-018-0533-6
https://doi.org/10.1186/s12918-018-0533-6
https://doi.org/10.3390/a12030052
https://doi.org/10.1109/90.893870
https://doi.org/10.1109/90.974525
https://doi.org/10.1007/978-3-662-44465-8_49
https://doi.org/10.1007/978-3-662-44465-8_49
https://doi.org/10.1007/978-3-319-78024-5_26
https://doi.org/10.1145/3110025.3110034
https://doi.org/10.1145/3110025.3110034
https://doi.org/10.1145/2700206
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.5441/002/edbt.2015.04
https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1145/2488608.2488705

1:42 Recent Advances in Fully Dynamic Graph Algorithms

183 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. of
the 42nd ACM Symposium on Theory of Computing, STOC, pages 603–610. ACM, 2010.
doi:10.1145/1806689.1806772.

184 Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006. doi:10.1137/S0097539705447256.

185 A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
sampling triangles from a graph stream. Proc. VLDB Endow., 6(14):1870–1881, 2013. doi:
10.14778/2556549.2556569.

186 D. Pearce and P. Kelly. A batch algorithm for maintaining a topological order. In ACSC,
2010. doi:10.5555/1862199.1862208.

187 David J. Pearce and Paul H. J. Kelly. A dynamic algorithm for topologically sorting directed
acyclic graphs. In Celso C. Ribeiro and Simone L. Martins, editors, Experimental and Efficient
Algorithms, Third International Workshop, WEA 2004, Angra dos Reis, Brazil, May 25-28,
2004, Proc., volume 3059 of Lecture Notes in Computer Science, pages 383–398. Springer,
2004. doi:10.1007/978-3-540-24838-5_29.

188 David J. Pearce and Paul H. J. Kelly. A dynamic topological sort algorithm for directed
acyclic graphs. ACM J. Exp. Algorithmics, 11, 2006. doi:10.1145/1187436.1210590.

189 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle detection and difference
propagation: Applications to pointer analysis. Softw. Qual. J., 12(4):311–337, 2004. doi:
10.1023/B:SQJO.0000039791.93071.a2.

190 Reynaldo Gil Pons. Space efficient incremental betweenness algorithm for directed graphs.
In Rubén Vera-Rodríguez, Julian Fiérrez, and Aythami Morales, editors, Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress,
CIARP 2018, Madrid, Spain, November 19-22, 2018, Proc., volume 11401 of Lecture Notes in
Computer Science, pages 262–270. Springer, 2018. doi:10.1007/978-3-030-13469-3_31.

191 Matteo Pontecorvi and Vijaya Ramachandran. Fully dynamic betweenness centrality. In
Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms and Computation - 26th
International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings,
volume 9472 of Lecture Notes in Computer Science, pages 331–342. Springer, 2015. doi:
10.1007/978-3-662-48971-0_29.

192 K. (Lynn) Putman, Hanjo D. Boekhout, and Frank W. Takes. Fast incremental computation
of harmonic closeness centrality in directed weighted networks. In Francesca Spezzano, Wei
Chen, and Xiaokui Xiao, editors, ASONAM ’19: International Conference on Advances in
Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August,
2019, pages 1018–1025. ACM, 2019. doi:10.1145/3341161.3344829.

193 G Ramalingam and Thomas Reps. On the computational complexity of incremental algorithms.
Technical report, University of Wisconsin-Madison Department of Computer Sciences, 1991.

194 G. Ramalingam and Thomas W. Reps. An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms, 21(2):267–305, 1996. doi:10.1006/jagm.1996.0046.

195 G. Ramalingam and Thomas W. Reps. On the computational complexity of dynamic
graph problems. Theor. Comput. Sci., 158(1&2):233–277, 1996. doi:10.1016/0304-3975(95)
00079-8.

196 Celso C. Ribeiro and Rodrigo F. Toso. Experimental analysis of algorithms for updating
minimum spanning trees on graphs subject to changes on edge weights. In Camil Demetrescu,
editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June
6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 393–405. Springer,
2007. doi:10.1007/978-3-540-72845-0_30.

197 Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. In Ben Carterette, Fernando Diaz, Carlos Castillo, and Donald
Metzler, editors, Seventh ACM International Conference on Web Search and Data Mining,
WSDM 2014, New York, NY, USA, February 24-28, 2014, pages 413–422. ACM, 2014.
doi:10.1145/2556195.2556224.

https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.5555/1862199.1862208
https://doi.org/10.1007/978-3-540-24838-5_29
https://doi.org/10.1145/1187436.1210590
https://doi.org/10.1023/B:SQJO.0000039791.93071.a2
https://doi.org/10.1023/B:SQJO.0000039791.93071.a2
https://doi.org/10.1007/978-3-030-13469-3_31
https://doi.org/10.1007/978-3-662-48971-0_29
https://doi.org/10.1007/978-3-662-48971-0_29
https://doi.org/10.1145/3341161.3344829
https://doi.org/10.1006/jagm.1996.0046
https://doi.org/10.1016/0304-3975(95)00079-8
https://doi.org/10.1016/0304-3975(95)00079-8
https://doi.org/10.1007/978-3-540-72845-0_30
https://doi.org/10.1145/2556195.2556224

K. Hanauer, M. Henzinger, and C. Schulz 1:43

198 Liam Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms,
4(1):6:1–6:16, 2008. doi:10.1145/1328911.1328917.

199 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

200 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

201 Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. SIAM Journal on Computing, 45(3):712–733, 2016.
doi:10.1137/13093618X.

202 Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: A survey.
ACM Comput. Surv., 51(2):35:1–35:37, 2018. doi:10.1145/3172867.

203 Tiberiu Rotaru and Hans-Heinrich Nägeli. Dynamic load balancing by diffusion in het-
erogeneous systems. Journal of Parallel and Distributed Computing, 64(4):481–497, 2004.
doi:10.1016/j.jpdc.2004.02.001.

204 Chayma Sakouhi, Sabeur Aridhi, Alessio Guerrieri, Salma Sassi, and Alberto Montresor.
Dynamicdfep: A distributed edge partitioning approach for large dynamic graphs. In Evan
Desai, Bipin C. Desai, Motomichi Toyama, and Jorge Bernardino, editors, Proc. of the 20th
International Database Engineering & Applications Symposium, IDEAS 2016, Montreal, QC,
Canada, July 11-13, 2016, pages 142–147. ACM, 2016. doi:10.1145/2938503.2938506.

205 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proc., pages 509–517. IEEE Computer Society, 2004. doi:10.1109/FOCS.2004.25.

206 Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Lusheng Wang,
editor, Computing and Combinatorics, 11th Annual International Conference, COCOON 2005,
Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of Lecture Notes in Computer
Science, pages 461–470. Springer, 2005. doi:10.1007/11533719_47.

207 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118–126,
2007. doi:10.1145/1283383.1283397.

208 Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V.
Çatalyürek. Incremental k-core decomposition: algorithms and evaluation. VLDB J., 25(3):425–
447, 2016. doi:10.1007/s00778-016-0423-8.

209 Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. Incremental
algorithms for closeness centrality. In Xiaohua Hu, Tsau Young Lin, Vijay V. Raghavan,
Benjamin W. Wah, Ricardo Baeza-Yates, Geoffrey C. Fox, Cyrus Shahabi, Matthew Smith,
Qiang Yang, Rayid Ghani, Wei Fan, Ronny Lempel, and Raghunath Nambiar, editors, Proc.
of the 2013 IEEE International Conference on Big Data, 6-9 October 2013, Santa Clara, CA,
USA, pages 487–492. IEEE Computer Society, 2013. doi:10.1109/BigData.2013.6691611.

210 Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. STREAMER:
A distributed framework for incremental closeness centrality computation. In 2013 IEEE
International Conference on Cluster Computing, CLUSTER 2013, Indianapolis, IN, USA,
September 23-27, 2013, pages 1–8. IEEE Computer Society, 2013. doi:10.1109/CLUSTER.
2013.6702680.

211 Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Incremental
closeness centrality in distributed memory. Parallel Comput., 47:3–18, 2015. doi:10.1016/j.
parco.2015.01.003.

212 Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. Stream - A stream-based
algorithm for counting motifs in dynamic graphs. In Adrian-Horia Dediu, Francisco Hernández
Quiroz, Carlos Martín-Vide, and David A. Rosenblueth, editors, Algorithms for Computational
Biology - Second International Conference, AlCoB 2015, Mexico City, Mexico, August 4-5,
2015, Proc., volume 9199 of Lecture Notes in Computer Science, pages 53–67. Springer, 2015.
doi:10.1007/978-3-319-21233-3_5.

SAND 2022

https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1137/090776573
https://doi.org/10.1137/13093618X
https://doi.org/10.1145/3172867
https://doi.org/10.1016/j.jpdc.2004.02.001
https://doi.org/10.1145/2938503.2938506
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1007/11533719_47
https://doi.org/10.1145/1283383.1283397
https://doi.org/10.1007/s00778-016-0423-8
https://doi.org/10.1109/BigData.2013.6691611
https://doi.org/10.1109/CLUSTER.2013.6702680
https://doi.org/10.1109/CLUSTER.2013.6702680
https://doi.org/10.1016/j.parco.2015.01.003
https://doi.org/10.1016/j.parco.2015.01.003
https://doi.org/10.1007/978-3-319-21233-3_5

1:44 Recent Advances in Fully Dynamic Graph Algorithms

213 Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for re-
partitioning of adaptive meshes. J. Parallel Distributed Comput., 47(2):109–124, 1997.
doi:10.1006/jpdc.1997.1410.

214 Kirk Schloegel, George Karypis, and Vipin Kumar. A unified algorithm for load-balancing
adaptive scientific simulations. In Jed Donnelley, editor, Proc. Supercomputing 2000, November
4-10, 2000, Dallas, Texas, USA. IEEE Computer Society, CD-ROM, page 59. IEEE Computer
Society, 2000. doi:10.1109/SC.2000.10035.

215 Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and dynamic multi-
constraint graph partitioning. Concurr. Comput. Pract. Exp., 14(3):219–240, 2002. doi:
10.1002/cpe.605.

216 Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In Camil Demetrescu,
editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June
6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 66–79. Springer,
2007. doi:10.1007/978-3-540-72845-0_6.

217 Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L Willke, Jeffrey Young,
Matthew Wolf, and Karsten Schwan. Graphin: An online high performance incremental
graph processing framework. In European Conference on Parallel Processing, pages 319–333.
Springer, 2016. doi:10.1007/978-3-319-43659-3_24.

218 Neha Sengupta, Michael Hamann, and Dorothea Wagner. Benchmark generator for dynamic
overlapping communities in networks. In Vijay Raghavan, Srinivas Aluru, George Karypis,
Lucio Miele, and Xindong Wu, editors, 2017 IEEE International Conference on Data Mining,
ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, pages 415–424. IEEE Computer
Society, 2017. doi:10.1109/ICDM.2017.51.

219 Zhenzhen Shao, Na Guo, Yu Gu, Zhigang Wang, Fangfang Li, and Ge Yu. Efficient closeness
centrality computation for dynamic graphs. In Yunmook Nah, Bin Cui, Sang-Won Lee,
Jeffrey Xu Yu, Yang-Sae Moon, and Steven Euijong Whang, editors, Database Systems for
Advanced Applications - 25th International Conference, DASFAA 2020, Jeju, South Korea,
September 24-27, 2020, Proc., Part II, volume 12113 of Lecture Notes in Computer Science,
pages 534–550. Springer, 2020. doi:10.1007/978-3-030-59416-9_32.

220 Y. Shiloach and S. Even. An on-line edge-deletion problem. Journal of the ACM, 28(1):1–4,
1981. doi:10.1145/322234.322235.

221 Dhirendra Singh and Nilay Khare. Parallel batch dynamic single source shortest path al-
gorithm and its implementation on GPU based machine. Int. Arab J. Inf. Technol., 16(2):217–
225, 2019. URL: http://iajit.org/index.php?option=com_content&task=blogcategory&
id=137&Itemid=469.

222 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proc.
of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 114–122. ACM, 1981. doi:10.1145/800076.802464.

223 Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th Symposium
on Foundations of Computer Science FOCS, pages 325–334, 2016. doi:10.1109/FOCS.2016.43.

224 Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Trièst: Counting
local and global triangles in fully dynamic streams with fixed memory size. ACM Trans.
Knowl. Discov. Data, 11(4):43:1–43:50, 2017. doi:10.1145/3059194.

225 Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted
matching. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of
LIPIcs, pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ITCS.2017.58.

226 Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. Fully dynamic approximate k-core
decomposition in hypergraphs. ACM Trans. Knowl. Discov. Data, 14(4), May 2020. doi:
10.1145/3385416.

https://doi.org/10.1006/jpdc.1997.1410
https://doi.org/10.1109/SC.2000.10035
https://doi.org/10.1002/cpe.605
https://doi.org/10.1002/cpe.605
https://doi.org/10.1007/978-3-540-72845-0_6
https://doi.org/10.1007/978-3-319-43659-3_24
https://doi.org/10.1109/ICDM.2017.51
https://doi.org/10.1007/978-3-030-59416-9_32
https://doi.org/10.1145/322234.322235
http://iajit.org/index.php?option=com_content&task=blogcategory&id=137&Itemid=469
http://iajit.org/index.php?option=com_content&task=blogcategory&id=137&Itemid=469
https://doi.org/10.1145/800076.802464
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1145/3059194
https://doi.org/10.4230/LIPIcs.ITCS.2017.58
https://doi.org/10.4230/LIPIcs.ITCS.2017.58
https://doi.org/10.1145/3385416
https://doi.org/10.1145/3385416

K. Hanauer, M. Henzinger, and C. Schulz 1:45

227 Robert Endre Tarjan and Renato Fonseca F. Werneck. Dynamic trees in practice. ACM J.
Exp. Algorithmics, 14, 2009. doi:10.1145/1498698.1594231.

228 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles.
In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, 9th
Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004, Pro-
ceedings, volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer, 2004.
doi:10.1007/978-3-540-27810-8_33.

229 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 112–119. ACM, 2005.
doi:10.1145/1060590.1060607.

230 Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

231 Mikkel Thorup and David R. Karger. Dynamic graph algorithms with applications. In
Magnús M. Halldórsson, editor, Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop
on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, volume 1851 of Lecture
Notes in Computer Science, pages 1–9. Springer, 2000. doi:10.1007/3-540-44985-X_1.

232 Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. Batch-parallel euler tour trees. In
Stephen G. Kobourov and Henning Meyerhenke, editors, Proceedings of the Twenty-First
Workshop on Algorithm Engineering and Experiments, ALENEX 2019, San Diego, CA, USA,
January 7-8, 2019, pages 92–106. SIAM, 2019. doi:10.1137/1.9781611975499.8.

233 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In David Zuckerman, editor, 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 436–455. IEEE Computer Society, 2019. doi:10.1109/FOCS.
2019.00035.

234 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In David Zuckerman,
editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 456–480. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00036.

235 Alexander van der Grinten, Elisabetta Bergamini, Oded Green, David A. Bader, and Henning
Meyerhenke. Scalable katz ranking computation in large static and dynamic graphs. In Yossi
Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages
42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ESA.2018.42.

236 Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. xdgp: A
dynamic graph processing system with adaptive partitioning. CoRR, abs/1309.1049, 2013.
arXiv:1309.1049.

237 Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. Adaptive
partitioning for large-scale dynamic graphs. In IEEE 34th International Conference on
Distributed Computing Systems, ICDCS 2014, Madrid, Spain, June 30 - July 3, 2014, pages
144–153. IEEE Computer Society, 2014. doi:10.1109/ICDCS.2014.23.

238 Tanmay Verma and Dhruv Batra. Maxflow revisited: An empirical comparison of maxflow
algorithms for dense vision problems. In Richard Bowden, John P. Collomosse, and Krystian
Mikolajczyk, editors, British Machine Vision Conference, BMVC 2012, Surrey, UK, September
3-7, 2012, pages 1–12. BMVA Press, 2012. doi:10.5244/C.26.61.

239 Dorothea Wagner, Thomas Willhalm, and Christos D. Zaroliagis. Geometric containers for
efficient shortest-path computation. ACM J. Exp. Algorithmics, 10, 2005. doi:10.1145/
1064546.1103378.

SAND 2022

https://doi.org/10.1145/1498698.1594231
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1145/1060590.1060607
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/3-540-44985-X_1
https://doi.org/10.1137/1.9781611975499.8
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.4230/LIPIcs.ESA.2018.42
https://doi.org/10.4230/LIPIcs.ESA.2018.42
http://arxiv.org/abs/1309.1049
https://doi.org/10.1109/ICDCS.2014.23
https://doi.org/10.5244/C.26.61
https://doi.org/10.1145/1064546.1103378
https://doi.org/10.1145/1064546.1103378

1:46 Recent Advances in Fully Dynamic Graph Algorithms

240 Chris Walshaw, Mark Cross, and Martin G. Everett. Parallel dynamic graph partitioning
for adaptive unstructured meshes. J. Parallel Distributed Comput., 47(2):102–108, 1997.
doi:10.1006/jpdc.1997.1407.

241 Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. Efficient sampling
algorithms for approximate temporal motif counting. In Mathieu d’Aquin, Stefan Dietze,
Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux, editors, CIKM ’20: The 29th
ACM International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, pages 1505–1514. ACM, 2020. doi:10.1145/3340531.3411862.

242 Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua. Parallel algorithm
for core maintenance in dynamic graphs. In Kisung Lee and Ling Liu, editors, 37th IEEE
International Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA,
June 5-8, 2017, pages 2366–2371. IEEE Computer Society, 2017. doi:10.1109/ICDCS.2017.
288.

243 Stefan Weigert, Matti Hiltunen, and Christof Fetzer. Mining large distributed log data in
near real time. In Managing Large-scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques, pages 1–8. Association for Computing Machinery,
2011. doi:10.1145/2038633.2038638.

244 Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger.
faimgraph: high performance management of fully-dynamic graphs under tight memory
constraints on the GPU. In Proc. of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16,
2018, pages 60:1–60:13. IEEE / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=
3291736.

245 Ning Xu, Lei Chen, and Bin Cui. Loggp: a log-based dynamic graph partitioning method.
Proc. of the VLDB Endowment, 7(14):1917–1928, 2014. doi:10.14778/2733085.2733097.

246 Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Xubo Wang, and Xuemin Lin. Fully dynamic
depth-first search in directed graphs. Proc. VLDB Endow., 13(2):142–154, 2019. doi:10.
14778/3364324.3364329.

247 Chia-Chen Yen, Mi-Yen Yeh, and Ming-Syan Chen. An efficient approach to updating
closeness centrality and average path length in dynamic networks. In Hui Xiong, George
Karypis, Bhavani M. Thuraisingham, Diane J. Cook, and Xindong Wu, editors, 2013 IEEE
13th International Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013, pages
867–876. IEEE Computer Society, 2013. doi:10.1109/ICDM.2013.135.

248 Anita Zakrzewska and David A. Bader. Fast incremental community detection on dynamic
graphs. In Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad Karczewski, Jacek
Kitowski, and Kazimierz Wiatr, editors, Parallel Processing and Applied Mathematics, pages
207–217, Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-32149-3_
20.

249 Christos D Zaroliagis. Implementations and experimental studies of dynamic graph algorithms.
In Experimental algorithmics, pages 229–278. Springer, 2002. doi:10.1007/3-540-36383-1_
11.

250 Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. A fast order-based approach for
core maintenance. In 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017, pages 337–348. IEEE Computer Society, 2017.
doi:10.1109/ICDE.2017.93.

251 Weiguo Zheng, Chengzhi Piao, Hong Cheng, and Jeffrey Xu Yu. Computing a near-
maximum independent set in dynamic graphs. In 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 76–87. IEEE, 2019.
doi:10.1109/ICDE.2019.00016.

252 Weiguo Zheng, Qichen Wang, Jeffrey Xu Yu, Hong Cheng, and Lei Zou. Efficient computation of
a near-maximum independent set over evolving graphs. In 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages 869–880. IEEE
Computer Society, 2018. doi:10.1109/ICDE.2018.00083.

https://doi.org/10.1006/jpdc.1997.1407
https://doi.org/10.1145/3340531.3411862
https://doi.org/10.1109/ICDCS.2017.288
https://doi.org/10.1109/ICDCS.2017.288
https://doi.org/10.1145/2038633.2038638
http://dl.acm.org/citation.cfm?id=3291736
http://dl.acm.org/citation.cfm?id=3291736
https://doi.org/10.14778/2733085.2733097
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.1109/ICDM.2013.135
https://doi.org/10.1007/978-3-319-32149-3_20
https://doi.org/10.1007/978-3-319-32149-3_20
https://doi.org/10.1007/3-540-36383-1_11
https://doi.org/10.1007/3-540-36383-1_11
https://doi.org/10.1109/ICDE.2017.93
https://doi.org/10.1109/ICDE.2019.00016
https://doi.org/10.1109/ICDE.2018.00083

K. Hanauer, M. Henzinger, and C. Schulz 1:47

253 Lei Zhu, Shaoning Pang, Abdolhossein Sarrafzadeh, Tao Ban, and Daisuke Inoue. Incremental
and decremental max-flow for online semi-supervised learning. IEEE Trans. Knowl. Data
Eng., 28(8):2115–2127, 2016. doi:10.1109/TKDE.2016.2550042.

254 Di Zhuang, Morris J Chang, and Mingchen Li. Dynamo: Dynamic community detection by
incrementally maximizing modularity. IEEE Transactions on Knowledge and Data Engineering,
2019. doi:10.1109/TKDE.2019.2951419.

SAND 2022

https://doi.org/10.1109/TKDE.2016.2550042
https://doi.org/10.1109/TKDE.2019.2951419

	1 Introduction
	2 Preliminaries
	2.1 Conditional Lower Bounds

	3 Fully Dynamic Graph Algorithms
	3.1 (Strongly) Connected Components and BFS/DFS Trees
	3.2 Minimum Weight Spanning Trees
	3.3 Cycle Detection and Topological Ordering
	3.4 (Weighted) Matching
	3.5 k-Core Decomposition
	3.6 Motif Search and Motif Counting
	3.7 Diameter
	3.8 Independent Set and Vertex Cover
	3.9 Shortest Paths
	3.10 Maximum Flows and Minimum Cuts
	3.11 Graph Clustering
	3.12 Centralities
	3.13 Graph Partitioning

	4 Dynamic Graph Systems
	5 Methodology

