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Abstract
In recent years, significant advances have been made in the design and analysis of fully dynamic
algorithms. However, these theoretical results have received very little attention from the practical
perspective. Few of the algorithms are implemented and tested on real datasets, and their practical
potential is far from understood. Here, we present a quick reference guide to recent engineering and
theory results in the area of fully dynamic graph algorithms.
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1 Introduction

A (fully) dynamic graph algorithm is a data structure that supports edge insertions, edge
deletions, and answers certain queries that are specific to the problem under consideration.
There has been a lot of research on dynamic algorithms for graph problems that are solvable
in polynomial time by a static algorithm. The most studied dynamic problems are graph
problems such as connectivity, reachability, shortest paths, or matching (see [115]). Typically,
any dynamic algorithm that can handle edge insertions can be used as a static algorithm by
starting with an empty graph and inserting all m edges of the static input graph step-by-step.
A fundamental question that arises is which problems can be fully dynamized, which boils
down to the question whether they admit a dynamic algorithm that supports updates in
O(T (m)/m) time, where T (m) is the static running time. Thus, for static problems that
can be solved in near-linear time, the research community is interested in near-constant
time updates. By now, such results have been achieved for a wide range of problems [115],
which resulted in a rich algorithmic toolbox spanning a wide range of techniques. However,
while there is a large body of theoretical work on efficient dynamic graph algorithms, until
recently there has been very little on their empirical evaluation. For some classical dynamic
algorithms, experimental studies have been performed, such as for fully dynamic graph
clustering [76] and fully dynamic approximation of betweenness centrality [33]. However, for
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1:2 Recent Advances in Fully Dynamic Graph Algorithms

other fundamental dynamic graph problems, the theoretical algorithmic ideas have received
very little attention from the practical perspective. In particular, very little work has been
devoted to engineering such algorithms and providing efficient implementations in practice.
Previous surveys on the topic [249, 10] are more than twenty years old and do not capture
the state-of-the-field anymore. In this work, we aim to survey recent progress in theory
as well as in the empirical evaluation of fully dynamic graph algorithms and summarize
methodologies used to evaluate such algorithms. Moreover, we point to theoretical results
that we think have a good potential for practical implementations. Hence, this paper should
help an unfamiliar reader by providing most recent references for various problems in fully
dynamic graph algorithms. Lastly, there currently is a lack of fully dynamic real-world graphs
available online – most of the instances that can be found to date are insertions-only. Hence,
together with this survey we will also start a new open-access graph repository that provides
fully dynamic graph instances12.

We want to point out that there are also various dynamic graph models which we cannot
discuss in any depth for space limitations. These are insertions-only algorithms, deletions-
only algorithms, offline dynamic algorithms, algorithms with vertex insertions and deletions,
kinetic algorithms, temporal algorithms, algorithms with a limit on the number of allowed
queries, algorithms for the sliding-windows model, and algorithms for sensitivity problems
(also called emergency planning or fault-tolerant algorithms). . We also exclude dynamic
algorithms in other models of computation such as distributed algorithms and algorithms in
the massively parallel computation (MPC) model. If the full graph is known at preprocessing
time and vertices are “switched on and off”, this is called the subgraph model, whereas
algorithms under failures deal with the case that vertices or edges are only “switched off”.
We do not discuss these algorithms either.

Note that fully dynamic graph algorithms (according to our definition) are also sometimes
called algorithms for evolving graphs or for incremental graphs or sometimes even maintaining
a graph online.

2 Preliminaries

Let G = (V, E) be a (un)directed graph with vertex set V and edge set E. Throughout
this paper, let n = |V | and m = |E|. The density of G is d = m

n . In the directed case,
an edge (u, v) ∈ E has tail u and head v and u and v are said to be adjacent. (u, v) is
said to be an outgoing edge or out-edge of u and an incoming edge or in-edge of v. The
outdegree deg+(v)/indegree deg−(v)/degree deg(v) of a vertex v is its number of (out-/in-)
edges. The out-neighborhood (in-neighborhood) of a vertex u is the set of all vertices v such
that (u, v) ∈ E ((v, u) ∈ E). In the undirected case, N(v) := {u : {v, u} ∈ E} denotes the
neighbors of v. The degree of a vertex v is deg(v) := |N(v)| here. In the following, ∆ denotes
the maximum degree that can be found in any state of the dynamic graph. Our focus in
this paper are fully dynamic graphs, where the number of vertices is fixed, but edges can be
added and removed. We use Õ(·) to hide polylogarithmic factors.

1 If you have access to fully dynamic instances, we are happy to provide them in our repository.
2 https://DynGraphLab.github.io

https://DynGraphLab.github.io
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2.1 Conditional Lower Bounds
There are lower bounds for fully dynamic graph algorithms based on various popular
conjectures initiated by [183, 3, 117]. These lower bounds usually involve three parameters:
the preprocessing time p(m, n), the update time u(m, n), and the query time q(m, n). We
will use the notation (p(m, n), u(m, n), q(m, n)) below to indicate that no algorithm with
preprocessing time at most p(m, n) exists that requires at most update time u(m, n) and
query time q(m, n). Note that if the preprocessing time is larger than p(m, n) or if the
query time is larger than q(m, n), then it might be possible to achieve an update time better
than u(m, n). In the same vein, if the preprocessing time is larger than p(m, n) or if the
update time is larger than u(m, n), then it might be possible to achieve a query time better
than q(m, n). We will write poly to denote any running time that is polynomial in the
size of the input.

Any conditional lower bound that is based on the OMv (Online Boolean Matrix-Vector
Multiplication) conjecture [117] applies to both the (amortized or worst-case) running time
of any fully dynamic algorithm and also to the worst-case running time of insertions-only
and deletions-only algorithms. We will not mention this for each problem below and only
state the lower bound, except in cases where as a result of the lower bound only algorithms
for the insertions-only or deletions-only setting have been studied.

3 Fully Dynamic Graph Algorithms

In this section, we describe recent efforts in fully dynamic graph algorithms. We start by
describing fundamental problems that we think belong to a basic toolbox of fully dynamic
graph algorithms: strongly connected components, minimum spanning trees, cycle detec-
tion/topological ordering, matching, core decomposition, subgraph detection, diameter, as
well as independent sets. Later on, we discuss problems that are closer to the application
side. To this end we include fully dynamic algorithms for shortest paths, maximum flows,
graph clustering, centrality measures, and graph partitioning.

3.1 (Strongly) Connected Components and BFS/DFS Trees
One of the most fundamental questions on graphs is whether two given vertices are connected
by a path. In the undirected case, a path connecting two vertices u and w is a sequence
of edges P = ({u, v0}, {v0, v1}, . . . , {vk, w}). A connected component is a maximal set of
vertices that are pairwise connected by a path. A graph is connected if there is exactly
one connected component, which is V . In a directed graph, we say that a vertex u can
reach a vertex w if there is a directed path from u to w, i.e., a sequence of directed edges
P = ((u, v0), (v0, v1), . . . , (vk, w)). A strongly connected component (SCC) is a maximal set
of vertices that can reach each other pairwise. A directed graph is strongly connected if there
is just one strongly connected component, which is V . The transitive closure of a graph G is
a graph on the same vertex set with an edge (u, w) ∈ V × V if and only if u can reach w in
G. Given an undirected graph, we can construct a directed graph from it by replacing each
undirected edge {u, w} by a pair of directed edges (u, w) and (w, u) and translate queries of
connectedness into reachability queries on the directed graph. A breadth-first search (BFS)
or depth-first search (DFS) traversal of a directed or undirected graph defines a rooted,
spanning subtree that consists of the edges via which a new vertex was discovered. Apart
from connectivity or reachability, BFS and DFS trees can be used to answer a variety of
problems on graphs, such as testing bipartiteness, shortest paths in the unweighted setting,
2-edge connectivity, or biconnectivity.

SAND 2022



1:4 Recent Advances in Fully Dynamic Graph Algorithms

Undirected Graphs (Connectivity)

Patrascu and Demaine [184] gave an (unconditional) lower bound of Ω(log n) per operation
for this problem, improving a bound of Ω(log n/ log log n) [123]. The first non-trivial dynamic
algorithms for connectivity, and also for 2-edge connectivity, and 2-vertex connectivity [86,
121, 79, 80, 122] took time Õ(

√
n) per operation. Henzinger and King [125] were the first to

give a fully dynamic algorithm with polylogarithmic time per operation for this problem.
Their algorithm is, however, randomized. Holm et al. [127] gave the first deterministic
fully dynamic algorithm with polylogarithmic time per operation. The currently fastest
fully dynamic connectivity algorithm takes O(log n(log log n)2) amortized expected time per
operation [132]. There also is a batch-dynamic parallel algorithm that answers k queries in
O(k log(1 + n/k)) expected work and O(log n) depth with O(log n log(1 + n/B)) expected
amortized work per update and O(log3 n) depth for an average batch size of B [6].

The fully dynamic connectivity problem can be reduced to the maintenance of a spanning
forest, using, e.g., dynamic trees [222, 7] or Euler tour trees [124, 232] (see also Section 3.2),
for the components. If the graph is a forest, updates and queries can be processed in amortized
O(log n) time, whereas the theoretically fastest algorithms [141] to date for general graphs
have polylogarithmic worst-case update time and O(log n/ log log n) worst-case query time,
the latter matching the lower bound [123, 168]. The key challenge on general graphs is to
determine whether the deletion of an edge of the spanning forest disconnects the component
or whether a replacement edge can be found. There are also fully dynamic algorithms
for more refined notions of connectivity: Two-edge connectivity [125, 126] and two-vertex
connectivity [126] can also be maintained in polylogarithmic time per operation. See [134]
for a survey on that topic.

Building on an earlier study by Alberts et al. [10], Iyer et al. [137] experimentally compared
the Euler tour tree-based algorithms by Henzinger and King [124] and Holm et al. [126]
to each other as well as several heuristics to achieve speedups in both candidates. The
instances used in the evaluation were random graphs with random edge insertions and
deletions, random graphs where a fixed set of edges appear and disappear dynamically,
graphs consisting of cliques of equal size plus a set of inter-clique edges, where only the latter
are inserted and deleted, as well as specially crafted worst-case instances for the algorithms.
The authors showed that the running time of both algorithms can be improved distinctly via
heuristics; in particular a sampling approach to replace deleted tree edges has proven to be
successful. The experimental running time of both algorithms was comparable, but with the
heuristics, the algorithm by Holm et al. [126] performed better.

Baswana et al. [25] gave the first algorithm for maintaining an undirected DFS tree with
o(m) update time and showed a conditional lower bound of Ω(n) on the update time in case of
vertex updates and, if the tree is maintained explicitly, an unconditional lower bound of Ω(n)
under edge updates. Their algorithm has a preprocessing time of O(m log n), a worst-case
update time of O(

√
mn log2.5 n), and uses O(m log2 n) bits. Nakamura and Sadakane [172]

improved the update time by polylog n factors and the space required to O(m log n). Recently,
Baswana et al. [27] further reduced the update time down to O(

√
mn log n). A parallel

algorithm that uses m processors and O(polylog n) update time was given by Khan [145].
To the best of our knowledge, experimental evaluations have only been conducted to date
with algorithms designed for the incremental setting, but not for fully-dynamic algorithms.
No experimental studies on dynamically maintaining BFS trees are known to us.
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Directed Graphs (Reachability, Strong Connectivity, Transitive Closure)

For directed graphs that are and remain acyclic, the same algorithms can be employed
for reachability as for (undirected) connectivity in forests (see above). On general graphs,
there is a conditional lower bound of (poly, m1/2−δ, m1−δ) for any small constant δ > 0
based on the OMv conjecture. This bound even holds for the s-t reachability problem,
where both s and t are fixed for all queries. The currently fastest algorithms for transitive
closure are three Monte Carlo algorithms with one-sided error: Two by Sankowski [205]
with O(1) or O(n0.58) worst-case query time and O(n2) or O(n1.58) worst-case update time,
respectively, and one by van den Brand, Nanongkai, and Saranurak [234] with O(n1.407)
worst-case update and worst-case query time. There exists a conditional lower bound based
on a variant of the OMv conjecture that shows that these running times are optimal [234].
Moreover, there are two deterministic, combinatorial algorithms: Roditty’s algorithm with
constant query time and O(n2) amortized update time [198], as well as one by Roditty and
Zwick [201] with an improved O(m + n log n) amortized update time at the expense of O(n)
worst-case query time.

Frigioni et al. [89] and later Krommidas and Zaroliagis [153] empirically studied the
performance of an extensive number of algorithms for transitive closure, including those
mentioned above. They also developed various extensions and variations and compared
them not only to each other, but also to static, so-called “simple-minded” algorithms such as
breadth-first and depth-first search. Their evaluation included random Erdős-Renyí graphs,
specially constructed hard instances, as well as two instances based on real-world graphs. It
showed that the “simple-minded” algorithms could outperform the dynamic ones distinctly
and up to several factors, unless the query ratio was more than 65 % or the instances were
dense random graphs.

In recent experimental studies by Hanauer et al. [110, 109], two relatively straightforward
algorithms for single-source reachability could outperform the “simple-minded” algorithms of
the earlier studies in a single-source setting by several orders of magnitude in practice both on
random graphs as well as on real-world instances: SI maintains an arbitrary reachability tree
which is re-constructed via a combined forward and backward breadth-first search traversal
on edge deletions if necessary and is especially fast if insertions predominate, which can be
handled in O(n + m) time. By contrast, it may take up to O(nm) time for a single edge
removal. SES is an extension and simplification of Even-Shiloach trees [220], which originally
only handle edge deletions. Its strength are hence instances with many deletions. As a plus,
it is able to deliver not just any path as a witness for reachability, but even the shortest path
(with respect to the number of edges). Furthermore, it internally maintains a BFS tree, which
makes it viable also for numerous other applications, see above. Its worst-case update time is
O(n+m), and, like SI, it answers queries in constant time. One key ingredient for the superior
performance of both algorithms in practice are carefully chosen criteria for an abortion of the
re-construction of their data structures and their re-building from scratch [110]. To query the
transitive closure of a graph, a number of so-called “supportive vertices”, for which both in-
and out-reachability trees are maintained explicitly, can be picked either once or periodically
anew and then be used to answer both positive and negative reachability queries between a
number of pairs of vertices decisively in constant time [109]. The fallback routine can be a
simple static graph traversal and therefore be relatively expensive: With a random initial
choice of supportive vertices and no periodic renewals, this approach has been shown to
answer a great majority of reachability queries on both random and real-world instances in
constant time already if the number of supportive vertices is very small, i.e., two or three.

SAND 2022



1:6 Recent Advances in Fully Dynamic Graph Algorithms

These experimental studies clearly show the limitations of worst-case analysis: All
implemented algorithms are fully dynamic with at least linear worst-case running time per
operation and, thus, all perform “(very) poor” in the worst case. Still on all graphs used in
the study the relatively simple new algorithms clearly outperformed the algorithms used in
previous studies.

Yang et al. [246] were the first to give a fully dynamic algorithm for maintaining a DFS
tree in a directed graph along with several optimizations to achieve speedups in practice. In
an experimental evaluation on twelve real-world instances, they showed that the optimized
version of their algorithm can handle edge insertions and deletions within few seconds on
average for instances with millions of vertices. With regard to BFS trees, the already
mentioned SES algorithm [110] is the only fully dynamic algorithm we are aware of that
maintains a BFS tree on a directed graph.

3.2 Minimum Weight Spanning Trees
A minimum weight spanning tree (MST) of a connected graph is a subset of the edges
such that all nodes are connected via the edges in the subset, the induced subgraph has no
cycles and, lastly, has the minimum total weight among all possible subsets fulfilling the first
two properties.

The lower bound of Ω(log n) [184] on the time per operation for connectivity trivially
extends to maintaining the weight of a minimum spanning tree. Holm et al. [127] gave the
first fully dynamic algorithm with polylogarithmic time per operation for this problem. It
was later slightly improved to O(log4 n)/ log log n) time per operation [128].

Amato et al. [133] presented the first experimental study of dynamic minimum spanning
tree algorithms. In particular, the authors implemented different versions of Frederickson’s
algorithm [85] which uses partitions and topology trees. The algorithms have been adapted
with sparsification techniques to improve their performance. The update running times of
these algorithms range from O(m2/3) to O(m1/2). The authors further presented a variant
of Frederickson’s algorithm that is significantly faster than all other implementations of this
algorithm. However, the authors also proposed a simple adaption of a partially dynamic
data structure of Kruskal’s algorithm that was the fastest implementation on random inputs.
Later, Cattaneo et al. [56, 57] presented an experimental study on several algorithms for
the problem. The authors presented an efficient implementation of the algorithm of Holm
et al. [127], proposed new simple algorithms for dynamic MST that are not as asymptotically
efficient as the algorithm by Holm et al. but seem to be fast in practice, and lastly compared
their algorithms with the results of Amato et al. [133]. The algorithm by Holm et al. uses a
clever refinement of a technique by Henzinger and King [119] for developing fully dynamic
algorithms starting from the deletions-only case. One outcome of their experiments is that
simple algorithms outperform the theoretically more heavy algorithms on random and worst-
case networks. On the other hand, on k-clique inputs, i.e. graphs that contain k cliques of
size c plus 2k randomly chosen inter-clique edges, the implementation of the algorithm by
Holm et al. outperformed the simpler algorithms.

Tarjan and Werneck [227] performed experiments for several variants of dynamic trees
data structure. The evaluated data structures have been used by Ribero and Toso [196], who
focused on the case of changing weights, i.e. the edges of the graph are constant, but the edge
weights can change dynamically. The authors also proposed and used a new data structure
for dynamic tree representation called DRD-trees. In their algorithm the dynamic tree data
structure is used to speed up connectivity queries that check whether two vertices belong to
different subtrees. More generally, the authors compared different types of data structures
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to do this task. In particular, the authors used the dynamic tree data structures that have
been evaluated by Tarjan and Werneck [227]. The experimental evaluation demonstrated
that the new structure reduces the computation time observed for the algorithm of Cattaneo
et al. [56], and at the same time yielded the fastest algorithms in the experiments.

3.3 Cycle Detection and Topological Ordering
A cycle in a (directed) graph G = (V, E) is a non-empty path P = (v1, . . . , vk = v1) such that
(vi, vi+1) ∈ E. A topological ordering of a directed graph is a linear ordering of its vertices
from 1 to n such that for every directed edge (u, v) from vertex u to vertex v, u is ordered
before v. In the static case, one can use a depth-first search (DFS) to compute a topological
ordering of a directed acyclic graph or to check if a (un)directed graph contains a cycle.

Let δ > 0 be any small constant. Based on the OMv conjecture [117] it is straightforward
to construct a lower bound of (poly, m1/2−δ, m1−δ) for the (amortized or worst-case) running
time of any fully dynamic algorithm that detects whether the graph contains any cycle. As
any algorithm for topological ordering can be used to decide whether a graph contains a
cycle, this lower bound also applies to any fully dynamic topological ordering algorithm.
Via dynamic matrix inverse one can maintain fully dynamic directed cycle detection in
O(n1.407) [234], which is conditionally optimal based on a variant of the OMv conjecture.

Pearce and Kelly [187, 188] were the first to evaluate algorithms for topological ordering
in the presence of edge insertions and deletions. In their work, the authors compared three
algorithms that can deal with the online topological ordering problem. More precisely,
the authors implemented the algorithms by Marchetti-Spaccamela et al. [164] and Alpern
et al. [12] as well as a newly developed algorithm. Their new algorithm is the one that
performed best in their experiments. The algorithm maintains a node-to-index map, called
n2i, that maps each vertex to a unique integer in {1 . . . n} and ensures that for any edge (u, v)
in G, it holds n2i[u] < n2i[v]. When an insertion (u, v) invalidates the topological ordering,
affected nodes are updated. The set of affected nodes are identified using a forward DFS
from v and backward DFS from u. The two sets are then separately sorted into increasing
topological order and afterwards a remapping to the available indices is performed. The
algorithm by Marchetti-Spaccamela et al. [164] is quite similar to the algorithm by Pearce
and Kelly. However, it only maintains the forward set of affected nodes and obtains a correct
solution by shifting the affected nodes up in the ordering (putting them after u). Alpern
et al. [12] used a data structure to create new priorities between existing ones in constant
worst-case time. The result by Pearce and Kelly has later been applied to online cycle
detection and difference propagation in pointer analysis by Pearce et al. [189]. Furthermore,
Pearce and Kelly [186] later extended their algorithm to be able to provide more efficient
batch updates.

3.4 (Weighted) Matching
The matching problem is one of the most prominently studied combinatorial graph problems
having a variety of practical applications. A matching M of a graph G = (V, E) is a subset
of edges such that no two elements of M have a common end point. Many applications
require matchings with certain properties, like being maximal (no edge can be added to M
without violating the matching property) or having maximum cardinality.

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for any
small constant δ > 0) for the size of the maximum cardinality matching based on the OMv
conjecture [117]. Of course, maintaining an actual maximum matching is only harder than
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maintaining the size of a maximum matching. Thus upper bounds have mostly focused on
approximately maximum matching. However, also here we have to distinguish (a) algorithms
that maintain the size of an approximately maximum matching and (b) algorithms that
maintain an approximately maximum matching.

(a) Improving Sankowski’s O(n1.495) update time bound [207], van den Brand et al. [234]
maintain the exact size of a maximum matching in O(n1.407) update time. To maintain
the approximate size of the maximum matching, dynamic algorithms use the duality of
maximum matching and vertex cover and maintain instead a (2 + ϵ)-approximate vertex
cover. This line of work lead to a sequence of papers [135, 40, 42, 39], resulting finally
in a deterministic (2 + ϵ)-approximation algorithm that maintains a hierarchical graph
decomposition with O(1/ϵ2) amortized update time [47]. The algorithm can be turned
into an algorithm with worst-case O(log3 n) time per update [43].

(b) One can trivially maintain a maximal matching in O(n) update time by resolving all
trivial augmenting paths, i.e. cycle-free paths that start and end on a unmatched vertex
and where edges from M alternate with edges from E \ M, of length one. As any
maximal matching is a 2-approximation of a maximum matching, this leads to a 2-
approximation algorithm. Onak and Rubinfeld [181] presented a randomized algorithm
for maintaining an O(1)-approximate matching with O(log2 n) expected amortized
time per edge update. Baswana, Gupta, and Sen [26] gave an elegant algorithm that
maintains a maximal matching with amortized update time O(log n). It is based on
a hierarchical graph decomposition and was subsequently improved by Solomon to
amortized constant expected update time [223]. For worst-case bounds, the best results
are a (1 + ϵ)-approximation in O(

√
m/ϵ) update time by Gupta and Peng [104] (see [178]

for a 3/2-approximation in the same time), a (3/2 + ϵ)-approximation in O(m1/4/ϵ2.5)
time by Bernstein and Stein [37], and a (2 + ϵ)-approximation in O(polylog n) time
by Charikar and Solomon [59] and Arar et al. [17]. Recently, Grandoni et al. [100]
gave an incremental matching algorithm that achieves a (1 + ϵ)-approximate matching
in constant deterministic amortized time. Finally, Bernstein et al. [36] improved the
maximal matching algorithm of Baswana et al. [26] to O(log5 n) worst-case time with
high probability.

Despite this variety of different algorithms, to the best of our knowledge, there have been
only limited efforts so far to engineer and evaluate these algorithms on real-world instances.
Henzinger et al. [116] initiated the empirical evaluation of algorithms for this problem in
practice. To this end, the authors evaluated several dynamic maximal matching algorithms as
well as an algorithm that is able to maintain the maximum matching. They implemented the
algorithm by Baswana, Gupta and Sen [26], which performs edge updates in O(

√
n) time and

maintains a 2-approximate maximum matching, the algorithm of Neiman and Solomon [178],
which takes O(

√
m) time to maintain a 3/2-approximate maximum matching, as well as

two novel dynamic algorithms, namely a random walk-based algorithm as well as a dynamic
algorithm that searches for augmenting paths using a (depth-bounded) blossom algorithm.
Their experiments indicate that an optimum matching can be maintained dynamically more
than an order of magnitude faster than the naive algorithm that recomputes maximum
matchings from scratch . Second, all non-optimum dynamic algorithms that have been
considered in this work were able to maintain near-optimum matchings in practice while
being multiple orders of magnitudes faster than the naive exact dynamic algorithm. The
study concludes that in practice an extended random walk-based algorithms is the method
of choice.
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For the weighted dynamic matching problem, Anand et al. [14] proposed an algorithm
that can maintain an 4.911-approximate dynamic maximum weight matching that runs
in amortized O(log n log C) time where C is the ratio of the weight of the highest weight
edge to the weight of the smallest weight edge. Furthermore, a sequence [41, 1, 39, 46, 44]
of work on fully dynamic set cover resulted in (1 + ϵ)-approximate weighted dynamic
matching algorithms, with O(1/ϵ3 + (1/ϵ2) log C) amortized and O((1/ϵ3) log2(Cn)) worst-
case time per operation based on various hierarchical hypergraph decompositions. Gupta
and Peng [105] maintain a (1 + ϵ)-approximation under edge insertions/deletions that runs in
time O(

√
mϵ−2−O(1/ϵ) log N) time per update, if edge weights are in between 1 and N . Their

result is based on rerunning a static algorithm from time to time, a trimming routine that
trims the graph to a smaller equivalent graph whenever possible and in the weighted case, a
partition of the weights of the edges into intervals of geometrically increasing size. Stubbs
and Williams [225] presented metatheorems for dynamic weighted matching. Here, the
authors reduced the dynamic maximum weight matching problem to the dynamic maximum
cardinality matching problem in which the graph is unweighted. The authors proved that
using this reduction, if there is an α-approximation for maximum cardinality matching with
update time T in an unweighted graph, then there is also a (2 + ϵ)α-approximation for
maximum weight matching with update time O( T

ϵ2 log2 N). Their basic idea is an extension
of the algorithm of Crouch and Stubbs [64] who tackled the problem in the streaming model.
Here, the reduction is to take matchings from weight-threshold based subgraphs of the
dynamic graph, i.e. the algorithm maintains maximal matchings in log C subgraphs, where
subgraph i contains all edges having weight at least (1 + ϵ)i. The resulting matchings are
then greedily merged together by considering the matched edges in descending order of i

(heaviest edges first). Recently, the approach by Stubbs and Williams has been evaluated
experimentally and has been compared against a new random walk-based approach [16]
which gives a (1 + ϵ) approximation w.h.p.. When inserting or deleting an edge, the random
walk-based approach finds random simple paths (using random walks) and solves those paths
using dynamic programming to improve the maintained matching. In practice, the random
walk-based approach outperforms the approach by Stubbs and Williams significantly.

3.5 k-Core Decomposition

A k-core of a graph is a maximal connected subgraph in which all vertices have degree at
least k. The k-core decomposition problem is to compute the core number of every node
in the graph. It is well-known that a k-core decomposition can be computed in linear time
for a static graph. The problem of maintaining the k-core decomposition in a fully dynamic
graph has not received much attention by the theoretical computer science community: Sun
et al. [226] showed that the insertion and deletion of a single edge can change the core
value of all vertices. They also gave a (4 + ϵ)-approximate fully dynamic algorithm with
polylogarithmic running time. The algorithm can be implemented in time O(log2 n) in
graphs using the algorithm of [45]. It dynamically maintains O(log(1+ϵ) n) many (α, β)-
decompositions of the graph, one for each β-value that is a power of (1 + ϵ) between 1 and
(1 + ϵ)n. An (α, β)-decomposition of a graph G = (V, E) is a decomposition Z1, . . . , ZL of V

into L := 1 + ⌈(1 + ϵ) log n⌉ levels such that Zi+1 ⊆ Zi for all 1 ≤ i < L, Z1 = V , and the
following invariants are maintained: (1) All vertices v on level Zi with degZi

(v) > αβ belong
to Zi+1 and (2) all vertices v on level Zi with degZi(v) < β do not belong to Zi+1. There
are no further lower bounds, neither conditional nor unconditional, and no faster algorithms
known for maintaining an approximate k-core decomposition.
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Miorandi and De Pellegrini [169] proposed two methods to rank nodes according to their
k-core number in fully dynamic networks. The focus of their work is to identify the most
influential spreaders in complex dynamic networks. Li et al. [157] used a filtering method to
only update nodes whose core number is affected by the network update. More precisely,
the authors showed that nodes that need to be updated must be connected via a path to
the endpoints of the inserted/removed edge and the core number must be equal to the
smaller core number of the endpoints. Moreover, the authors presented efficient algorithms
to identify such nodes as well as additional techniques to reduce the size of the nodes that
need updates. Similarly, Sariyüce et al. [208] proposed the k-core algorithm TRAVERSAL
and gave additional rules to prune the size of the subgraphs that are guaranteed to contain
the vertices whose k-core number can have changed. Note that these algorithm can have
a high variation in running time for the update operations depending on the size of the
affected subgraphs. Zhang et al. [250] noted that due to this reason it can be impractical to
process updates one by one and introduced the k-order concept which can reduce the cost
of the update operations. A k-order is defined as follows: a node u is ordered before v in
the k-order if u has a smaller core number than v or when the vertices have the same core
number, if the linear time algorithm to compute the core decomposition would remove u

before v. A recent result by Sun et al. [226] also contains experimental results. However,
their main focus is on hypergraphs and there are no comparisons against the algorithms
mentioned above.

Aridhi et al. [18] gave a distributed k-core decomposition algorithm in large dynamic
graphs. The authors used a graph partitioning approach to distribute the workload and
pruning techniques to find nodes that are affected by the changes. Wang et al. [242] gave
a parallel algorithm that appears to significantly outperform the TRAVERSAL algorithm.
Jin et al. [138] presented a parallel approach based on matching to update core numbers in
fully dynamic networks. Specifically, the authors showed that if a batch of inserted/deleted
edges forms a matching, then the core number update step can be performed in parallel.
However, the type of the edges has to be the same (i.e. only insertions, or only deletions)
in each update. Hua et al. [130] noted that previous algorithms become inefficient for high
superior degree vertices, i.e. , vertices that have many neighbors that have a core number
that is larger than its own core number. For example, the matching-based approach of Jin
et al. [138] can only process one edge associated to a vertex in each iteration. Their new
algorithm can handle multiple insertions/deletions per iteration.

It would be interesting to evaluate the algorithm of Sun et al. [226] which maintains a
(4 + ϵ)-approximate core number, on graphs to see how far from the exact core numbers
these estimates are and how its running time compares to the above approaches. Note that
an (α, β)-decomposition actually gives a (2α + ϵ) approximation and α has to be chosen
to be slightly larger than 2 only to guarantee polylogarithmic updates. Thus, it would be
interesting to also experiment with smaller values of α.

3.6 Motif Search and Motif Counting
Two graphs are isomorphic if there is a bijection between the vertex sets of the graphs that
preserves adjacency. Given a graph pattern H (or multiple Hi), motif counting counts the
subgraphs of G that are isomorphic to H (Hi respectively). In the work that is currently
available there is a subset of work that focuses on the special case of counting triangles or
wedges, i.e., paths of length two, in dynamic networks.

There is a conditional lower bound of (poly, m1/2−δ, m1−δ) even for the most fundamental
problem of detecting whether a graph contains a triangle [117]. The same lower bound
also extends to various four-vertex subgraphs [108], whereas there is a lower bound of
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(poly, m1−δ, m2−δ) for counting 4-cliques as well as induced connected four-vertex subgraphs.
A fully dynamic algorithm with O(

√
m) update time was recently given independently by

Kara et al. [142, 143] for counting triangles. Subsequently, Lu and Tao [161] studied the
trade-off between update time and approximation quality and presented a new data structure
for exact triangle counting whose complexity depends on the arboricity of the graph. The
result by Kara et al. was also extended to general k-clique counting by Dhulipala et al. [74].
Motivated by the fact that real-world graphs in certain applications often have small h-index
h (i.e., there are at most h vertices of degree at least h), Eppstein and Spiro [82] showed
that the undirected triangle count can be maintained in O(h) time. Eppstein et al. [81] later
extended this result to maintaining the counts of directed triangles in amortized O(h) time
and of undirected four-vertex subgraphs in amortized O(h2). Note that h can be as large
as O(

√
m), resulting in an amortized time complexity of O(m) per update for four-vertex

subgraphs in general. Only very recently, Hanauer et al. [108] showed how to reduce this to
amortized O(m2/3) time per update for all four-vertex subgraphs except the 4-clique. This
is currently an active area of research.

In our description of the empirical work for this problem we start with recent work that
mainly focuses on triangle counting. Pavan et al. [185] introduced neighborhood sampling to
count and sample triangles in a one-pass streaming algorithm. In neighborhood sampling,
first a random edge in the stream is sampled and in subsequent steps, edges that share an
endpoint with the already sampled edges are sampled. The algorithm outperformed their
implementations of the previous best algorithms for the problem, namely the algorithms
by Jowhari and Ghodsi [140] and by Buriol et al. [54]. Note that the method does not
appear to be able to handle edge deletions. Bulteau et al. [53] estimated the number of
triangles in fully dynamic streamed graphs. Their method adapts 2-path sampling to work
for dynamic graphs. The main idea of 2-path sampling is to sample a certain number of
2-paths and compute the ratio of 2-paths in the sample that are complete triangles. The
total number of 2-paths in the graph is then multiplied with the ratio to obtain the total
number of 2-paths in the graph. This approach fails, however, if one allows deletions. Thus,
the contribution of the paper is a novel technique for sampling 2-paths. More precisely,
the algorithm first streams the graph and sparsifies it. Afterwards, the sampling technique
is applied on the sparsified graph. The core contribution of the authors is to show that
the estimate obtained in the sparsified graph is similar to the number of triangles in the
original graph. For graphs with constant transitivity coefficient, the authors achieve constant
processing time per edge. Makkar et al. [163] presented an exact and parallel approach using
an inclusion-exclusion formulation for triangle counting in dynamic graphs. The algorithm
is implemented in cuSTINGER [84] and runs on GPUs. The algorithm computes updates
for batches of edge updates and also updates the number of triangles each vertex belongs
to. The TRIÈST algorithm [224] estimates local and global triangles. An input parameter
of the algorithm is the amount of available memory. The algorithm maintains a sample of
the edges using reservoir sampling and random pairing to exploit the available memory as
much as possible. The algorithm reduces the average estimation error by up to 90 % w.r.t.
to the previous state-of-the-art. Han and Sethu [107] proposed a new sampling approach,
called edge-sample-and-discard, which generates an unbiased estimate of the total number of
triangles in a fully dynamic graph. The algorithm significantly reduces the estimation error
compared to TRIÈST. The MASCOT algorithm [159, 158] focuses on local triangle counting,
i.e. counting the triangles adjacent to every node. In their work, the authors provide an
unbiased estimation of the number of local triangles.

We now report algorithms that can count more complex patterns. The neighborhood
sampling method of Pavan et al. [185] can also be used for more complex patters, for example
Pavan et al. also presented experiments for 4-cliques. Shiller et al. [212] presented the
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stream-based (insertions and deletions) algorithm StreaM for counting undirected 4-vertex
motifs in dynamic graphs. Ahmed et al. [8] presented a general purpose sampling framework
for graph streams. The authors proposed a martingale formulation for subgraph count
estimation and showed how to compute unbiased estimate of subgraph counts from a sample
at any point during the stream. The estimates for triangle and wedge counting obtained are
less than 1 % away from the true number of triangles/wedges. The algorithm outperformed
their own implementation of TRIÈST and MASCOT. Mukherjee et al. [171] gave an exact
counting algorithm for a given set of motifs in dynamic networks. Their focus is on biological
networks. The algorithm computes an initial embedding of each motif in the initial network.
Then for each motif its embeddings are stored in a list. This list is then dynamically updated
while the graph evolves. Liu et al. [160] estimated motifs in dynamic networks. The algorithm
uses exact counting algorithms as a subroutine, and hence can speed up any exact algorithm
at the expense of accuracy. The main idea of their algorithm is to partition the stream into
time intervals and find exact motif counts in subsets of these intervals. Recently, Wang
et al. [241] improved on the result of Liu et al.. The improvement stems from a generic
edge sampling algorithm to estimate the number of instances of any k-vertex ℓ-edge motif in
a dynamic network. The main idea of the algorithm is to first uniformly at random draw
random edges from the dynamic network, then exactly count the number of local motifs and
lastly estimate the global count from the local counts. The experimental evaluation showed
that their algorithm is up to 48.5 times faster than the previous state-of-the-art while having
lower estimation errors.

Dhulipala et al. [74] recently gave parallel batch-dynamic algorithms for k-clique counting.
Their first algorithm is a batch-dynamic parallel algorithm for triangle counting that has
amortized work O(∆

√
∆ + m) and O(log∗(∆ + m)) depth with high probability. The

algorithm is based on degree thresholding which divides the vertices into vertices with low-
and high-degree. Given the classification of the vertex, different updates routines are used. A
multicore implementation of the triangle counting algorithm is given. Experiments indicate
that the algorithms achieve 36.54 to 74.73-times parallel speedups on a machine with 72 cores.
Lastly, the authors developed a simple batch-dynamic algorithm for k-clique counting that
has expected O(∆(m + ∆)αk−4) work and O(logk−2 n) depth with high probability, for
graphs with arboricity α.

To summarize for this problem the empirical work is far ahead of the theoretical work
and it would be interesting to better understand the theoretical complexity of motif search
and motif counting.

3.7 Diameter
The eccentricity of a vertex is the greatest distance between the vertex and any other vertex
in the graph. Based on this definition, the diameter of a graph is defined as the maximum
eccentricity over all vertices in the graph. The radius is the minimum eccentricity of all vertices.
Through recomputation from scratch it is straightforward to compute a 2-approximation for
diameter and radius and a (2 + ϵ)-approximation for radius in linear time.

Anacona et al. [15] recently showed that under the strong exponential time hypothesis
(SETH) there can be no (2 − ϵ)-approximate fully dynamic approximation algorithm for
any of these problems with O(m1−δ) update or query time for any δ > 0. There also exist
non-trivial (and sub-n2 time) fully dynamic algorithms for (1.5 + ϵ) approximate diameter
(and also for radius and eccentricities) [234]. In this paper, the authors also construct a
non-trivial algorithm for exact diameter. We are not aware of any experimental study for
fully dynamic diameter.
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3.8 Independent Set and Vertex Cover
Given a graph G = (V, E), an independent set is a set S ⊆ V such that no vertices in
S are adjacent to one another. The maximum independent set problem is to compute an
independent set of maximum cardinality, called a maximum independent set (MIS). The
minimum vertex cover problem is equivalent to the maximum independent set problem: S

is a minimum vertex cover C in G iff V \ S is a maximum independent set V \ C in G.
Thus, an algorithm that solves one of these problems can be used to solve the other. Note,
however, that this does not hold for approximation algorithms: If C ′ is an α-approximation
of a minimum vertex cover, then V \ C ′ is not necessarily an α-approximation of a maximum
independent set. Another related problem is the maximal independent set problem. A set S

is a maximal independent set if it is an independent set such that for any vertex v ∈ V \ S,
S ∪ {v} is not independent.

As computing the size of an MIS is NP-hard, all dynamic algorithms of independent set
study the maximal independent set problem. Note, however, that unlike for matching a
maximal independent set does not give an approximate solution for the MIS problem, as
shown by a star graph. In a sequence of papers [19, 103, 20, 60, 31] the running time for the
maximal independent set problem was reduced to O(log4 n) expected worst-case update time.

While quite a large amount of engineering work has been devoted to the computation
of independent sets/vertex covers in static graphs, the amount of engineering work for the
dynamic independent set problem is very limited. Zheng et al. [252] presented a heuristic
fully dynamic algorithm and proposed a lazy search algorithm to improve the size of the
maintained independent set. A year later, Zheng et al. [251] improved the result such that the
algorithm is less sensitive to the quality of the initial solution used for the evolving MIS. In
their algorithm, the authors used two well known data reduction rules, degree one and degree
two vertex reduction, that are frequently used in the static case. Moreover, the authors can
handle batch updates. Bhore et al. [48] focused on the special case of MIS for independent
rectangles which is frequently used in map labelling applications. The authors presented a
deterministic algorithm for maintaining a MIS of a dynamic set of uniform rectangles with
amortized sub-logarithmic update time. Moreover, the authors evaluated their approach
using extensive experiments.

3.9 Shortest Paths
One of the most studied problems on weighted dynamic networks is the maintenance of
shortest path information between pairs of vertices. In the most general setting, given an
undirected, dynamic graph with dynamically changing edge weights representing distances,
we are interested in the shortest path between two arbitrary vertices s and t (all-pairs
shortest path problem). For the single-source shortest path problem, the source vertex s

is fixed beforehand and the dynamic graph algorithm is only required to answer distance
queries between s and an (arbitrary) vertex t which is specified by the query operation. In
the s-t shortest path problem both s and t are fixed beforehand and the data structure is
only required to return the distance between s and t as answer to a query. In all cases, the
analogous problem can also be cast on a directed graph, asking for a shortest path from s to
t instead.

Let δ > 0 be a small constant. There is a conditional lower bound of (poly, m1/2−δ, m1−δ)
for any small constant δ > 0 based on the OMv conjecture, even for s-t shortest paths [117].
This lower bound applies also to any algorithm that gives a better than 5/3-approximation.
For planar graphs the product of query and update time is Ω(n1−δ) based on the APSP
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conjecture [2]. As even the partially dynamic versions have shown to be at least as hard
as the static all-pairs shortest paths problem [199, 2], one cannot hope for a combinatorial
fully dynamic all-pairs shortest paths algorithm with O(n3−δ) preprocessing time, O(n2−δ)
amortized update time, and constant query time. The state-of-the-art algorithms come close
to this: For directed, weighted graphs, Demetrescu and Italiano [72] achieved an amortized
update time of Õ(n2), which was later improved by a polylogarithmic factor by Thorup [228].
Both of these algorithms actually allow vertex insertions and deletion, not just edge updates.
There is also a fully dynamic 2O(k2)-approximation algorithm that takes time Õ(

√
mn1/k)

per update and O(k2) per update for any positive integer k [5].

With respect to worst-case update times, the currently fastest algorithms are randomized
with Õ(n2+2/3) update time [4, 106]. Moreover, Probst Gutenberg and Wulff-Nilsen [106]
presented a deterministic algorithm with Õ(n2+5/7) update time, thereby improving a
15 years old result by Thorup [229]. Van den Brand and Nanongkai [233] showed that
Monte Carlo-randomized (1+ ϵ)-approximation algorithms exist with Õ(n1.823/ϵ2) worst-case
update time for the fully dynamic single-source shortest path problem and Õ(n2.045/ϵ2) for
all-pairs shortest paths, in each case with positive real edge weights and constant query time.
Slightly faster exact and approximative algorithms exist in part for the “special cases” of
unweighted graphs [206, 199, 4, 106, 234, 233] (all edges have unit weight) and/or undirected
graphs [200, 233] (every edge has a reverse edge of the same weight). More details on
shortest paths algorithms including fully dynamic algorithms are given in the survey of
Madkour et al. [162].

The first experimental study for fully dynamic single-source shortest paths on directed
graphs with positive real edge weights was conducted by Frigioni et al. [87], who evaluated
Dijkstra’s seminal static algorithm [75] against a fully dynamic algorithm by Ramalingam and
Reps [195] (RR) as well as one by Frigioni et al. [88] (FMN). RR is based on Dijkstra’s static
algorithm and maintains a spanning subgraph consisting of edges that belong to at least one
shortest s-t path for some vertex t. After an edge insertion, the spanning subgraph is updated
starting from the edge’s head until all affected vertices have been processed. In case of an
edge deletion, the affected vertices are identified as a first step, followed by an update of their
distances. The resulting worst-case update time is O(xδ + nδ log nδ) ⊆ O(m + n log n), where
nδ corresponds to the number of vertices affected by the update, i.e., whose distance from s

changes and xδ equals nδ plus the number of edges incident to an affected vertex. Similarly,
Frigioni et al. [88] analyzed the update complexity of their algorithm FMN with respect to
the change in the solution and showed a worst-case running time of O(|Uδ|

√
m log n), where

Uδ is the set of vertices where either the distance from s must be updated or their parent
in the shortest paths tree. The algorithm assigns each edge (u, v) a forward (backward)
level, which corresponds to the difference between the (sum of) v’s (u’s) distance from s

and the edge weight, as well as an owner, which is either u or v, and used to bound the
running time. Incident outgoing and incoming edges of a vertex that it does not own are
kept in a priority queue each, with the priority corresponding to the edge’s level. In case
of a distance update at a vertex, only those edges are scanned that are either owned by
the vertex or have a priority that indicates a shorter path. Edge insertion and deletion
routines are based on Dijkstra’s algorithm and handled similar as in RR, but using level
and ownership information. The experiments were run on three types of input instances:
randomly generated ones, instances crafted specifically for the tested algorithms, and random
updates on autonomous systems networks. The static Dijkstra algorithm is made dynamic
in that it is re-run from scratch each time its shortest paths tree is affected by an update.
The evaluation showed that the dynamic algorithms can speed up the update time by 95 %
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over the static algorithm. Furthermore, RR turned out to be faster in practice than FMN
except on autonomous systems instances, where the spanning subgraph was large due to
many alternative shortest paths. In a follow-up work, Demetrescu et al. [71, 70] extended this
study to dynamic graphs with arbitrary edge weight, allowing in particular also for negative
weights. In addition to the above mentioned algorithm by Ramalingam and Reps [195] in
a slightly lighter version (RRL) and the one by Frigioni et al. [88] (FMN), their study also
includes a simplified variant of the latter which waives edge ownership (DFMN), as well as a
rather straightforward dynamic algorithm (DF) that in case of a weight increase on an edge
(u, v) first marks all vertices in the shortest paths subtree rooted at v and then finds for each
of these vertices an alternative path from s using only unmarked vertices. The new weight of
these vertices can be at most this distance or the old distance plus the amount of weight
increase on (u, v). Therefore, the minimum is taken as a distance estimate for the second
step, where the procedure is as in Dijkstra’s algorithm. In case of a weight decrease on an
edge (u, v) the first step is omitted. As Dijkstra’s algorithm is employed as a subroutine,
the worst-case running time of DF for a weight change is O(m + n log n). For updates, all
algorithms use a technique introduced by Edmonds and Karp [78] to transform the weight
w(u, v) of each edge (u, v) to a non-negative one by replacing it with the reduced weight
w(u, v) − (d(v) − d(u)), where d(·) denotes the distance from s. This preserves shortest
paths and allows Dijkstra’s algorithm to be used during the update process. The authors
compared these dynamic algorithms to re-running the static algorithm by Bellman and Ford
on each update from scratch on various randomly generated dynamic instances with mixed
incremental and decremental updates on the edge weights, always avoiding negative-length
cycles. Their study showed that DF is the fastest in practice on most instances, however, in
certain circumstances RR and DFMN are faster, whereas FMN turned out to be too slow in
practice due to its complicated data structures. The authors observed a runtime dependency
on the interval size of the edge weights; RR was the fastest if this interval was small, except
for very sparse graphs. DFMN on the other hand was shown to perform better than DF
in presence of zero-length cycles, whereas RR is incapable of handling such instances. It is
interesting to note here that the differences in running time are only due to the updates
that increase distances, as all three candidates used the same routine for operations that
decrease distances. The static algorithm was slower than the dynamic algorithms by several
orders of magnitude.

The first fully dynamic algorithm for all-pairs shortest paths in graphs with positive integer
weights less than a constant C was presented by King [147], with an amortized update time
of O(n2.5√

C log n). For each vertex v, it maintains two shortest paths trees up to a distance
d: one outbound with v as source and one inbound with v as target. A so-called stitching
algorithm is used to stitch together longer paths from shortest paths of distance at most d. To
achieve the above mentioned running time, d is set to

√
nC log n. The space requirement is

O(n3) originally, but can be reduced to Õ(n2
√

nC) [148]. For non-negative, real-valued edge
weights, Demetrescu and Italiano [72] proposed an algorithm with an amortized update time
of O(n2 log3 n), which was later improved to O(n2(log n+log2((n+m)/n))) by Thorup [228].
The algorithm uses the concept of locally shortest paths, which are paths such that each proper
subpath is a shortest path, but not necessarily the entire path, and historical shortest paths,
which are paths that have once been shortest paths and whose edges have not received any
weight updates since then. The combination of both yields so-called locally historical paths,
which are maintained by the algorithm. To keep their number small, the original sequence of
updates is transformed into an equivalent, but slightly longer smoothed sequence. In case
of a weight update, the algorithm discards all maintained paths containing the updated
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edge and then computes new locally historical paths using a routine similar to Dijkstra’s
algorithm. Both algorithms have constant query time and were evaluated experimentally
in a study by Demetrescu and Italiano [73] against RRL [71] on random instances, graphs
with a single bottleneck edge, which serves as a bridge between two equally-sized complete
bipartite graphs and only its weight is subject to updates, as well as real-world instances
obtained from the US road networks and autonomous systems networks. Apart from RRL,
the study also comprises the Dijkstra’s static algorithm. Both these algorithms are designed
for single-source shortest paths and were hence run once per vertex. All algorithms were
implemented with small deviations from their respective theoretical description to speed them
up in practice. The study showed that RRL and the algorithm based on locally historical
paths (LHP) can outperform the static algorithm by a factor of up to 10 000, whereas the
algorithm by King only achieves a speedup factor of around 10. RRL turned out to be
especially fast if the solution changes only slightly, but by contrast exhibited the worst
performance on the bottleneck instances unless the graphs were sparse. In comparison,
LHP was slightly slower on sparse instances, but could beat RRL as the density increased.
The authors also point out differences in performance that depend mainly on the memory
architecture of the machines used for benchmarking, where RRL could better cope with small
caches or memory bandwidth due to its reduced space requirements and better locality in
the memory access pattern, whereas LHP benefited from larger caches and more bandwidth.

Buriol et al. [55] presented a technique that reduces the number of elements that need to
be processed in a heap after an update for various dynamic shortest paths algorithms by
excluding vertices whose distance changes by exactly the same amount as the weight change
and handling them separately. They showed how this improvement can be incorporated
into RR [195], a variant similar to RRL [195], the algorithm by King and Thorup [148]
(KT), and DF [70] and achieves speedups of up to 1.79 for random weight changes and up
to 5.11 for unit weight changes. Narváez et al. [173] proposed a framework to dynamize
static shortest path algorithms such as Dijkstra’s or Bellman-Ford [32]. In a follow-up
work [174], they developed a new algorithm that fits in this framework and is based on the
linear programming formulation of shortest paths and its dual, which yields the problem in
a so-called ball-and-string model. The authors experimentally showed that their algorithm
needs fewer comparisons per vertex when processing an update than the algorithms from
their earlier work, as it can reuse intact substructures of the old shortest path tree.

To speed up shortest paths computations experimentally, Wagner et al. [239] introduced
a concept for pruning the search space by geometric containers. Here, each edge (u, v) is
associated with a set of vertices called container, which is a superset of all vertices w whose
shortest u-w path starts with (u, v). The authors assume that each vertex is mapped to
a point in two-dimensional Euclidean space and based on this, suggest different types of
geometric objects as containers, such as disks, ellipses, sectors or boxes. All types of container
only require constant additional space per edge. The experimental evaluation on static
instances obtained from road and railway networks showed that using the bounding box as
container reduces the query time the most in comparison to running the Dijkstra algorithm
without pruning, as the search space could be reduced to 5 % to 10 %. This could be preserved
for dynamic instances obtained from railway networks if containers were grown and shrunk in
response to an update, with a speedup factor of 2 to 3 over a recomputation of the containers
from scratch. For bidirectional search, reverse containers need to be maintained additionally,
which about doubled the absolute update time. Delling and Wagner [69] adapted the static
ALT algorithm [90] to the dynamic setting. ALT is a variant of bidirectional A∗ search that
uses a small subset of vertices called landmarks, for which distances from and to all other
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vertices are precomputed, and the triangle inequality to direct the search for a shortest path
towards the target more efficiently. The authors distinguish between an eager and a lazy
dynamic version of ALT, where the eager one updates all shortest path trees of the landmarks
immediately after an update. The lazy variant instead keeps the preprocessed information as
long as it still guarantees correctness, which holds as long as the weight of an edge is at least
its initial weight, however at the expense of a potentially larger search space. The choice of
landmarks remains fixed. The experimental study on large road networks showed that queries
in the lazy version are almost as fast as in the eager version for short distances or if no edges
representing motorways are affected, but slower by several factors for longer distances, larger
changes to the weight of motorway edges, or after many updates. Schultes and Sanders [216]
combined and generalized different techniques that have been successfully used in the static
setting, such as separators, highway hierarchies, and transit node routing in a multi-level
approach termed highway-node routing: For the set of vertices Vi on each level i, Vi ⊆ Vi−1,
and the overlay graph Gi is defined on Vi with an edge (s, t) ∈ Vi × Vi iff there is a shortest
s-t path in Gi−1 that contains no vertices in Vi except for s and t. Queries are carried out
by a modified Dijkstra search on this graph hierarchy. The authors extended this approach
also to the dynamic setting and consider two scenarios: a server scenario, where in case of
edge weight changes the sets of highway nodes Vi are kept and the graphs Gi are updated,
and a mobile scenario, where only those vertices that are potentially affected are determined
and the query routine needs to be aware of possibly outdated information during a search.
In an experimental evaluation on a very large road network with dynamically changing
travel times as weights it is shown that the dynamic highway-node routing outperformed
recomputation from scratch as well as dynamic ALT search with 16 landmarks clearly with
respect to preprocessing, update, and query time as well as space overhead.

Misra and Oommen [170] presented algorithms for single-source shortest paths that are
based on learning automata and designed to find “statistical” shortest paths in a stochastic
graph with stochastically changing edge weights. The algorithms are extensions of RR [195]
and FMN [88] and shown to be superior to the original versions of RR and FMN by several
orders of magnitude once they have converged. Chan and Yang [58] studied the problem of
dynamically updating a single-source shortest path tree under multiple concurrent edge weight
updates. They amended the algorithm by Narváez et al. [174] (MBS), for which they showed
that it may misbehave in certain circumstances and suggested two further algorithms: MFP
is an optimized version of an algorithm by Ramalingam and Reps [194] (DynamicSWSF-FP),
which can handle multiple updates at once. The second algorithm is a generalization of the
dynamic Dijkstra algorithm proposed by Narváez et al. [173]. In a detailed evaluation, they
showed that an algorithm obtained by combining the incremental phase of MBS and the
decremental phase of their dynamization of Dijkstra’s algorithm performed best on road
networks, whereas the dynamized Dijkstra’s algorithm was best on random networks. An
extensive experimental study on single-source shortest path algorithms was conducted by
Bauer and Wagner [29]. They suggested several tuned variants of DynamicSWSF-FP [194]
and evaluated them against FMN [88], different algorithms from the framework by Narváez
et al. [173], as well as RR [195] on a diverse set of instances. The algorithms from the
Narváez framework showed similar performance in case of single-edge updates and were the
fastest on road networks and generated grid-like graphs. By contrast, the tuned variants of
DynamicSWSF-FP behaved less consistent. RR was superior on Internet networks, whereas
FMN was the slowest, especially on sparse instances. Interestingly, the authors showed that
for batch updates with a set of randomly chosen edges, the algorithms behave similar as for
single-edge updates, as there was almost no interference. The picture changed slightly for
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simulated node failures and strongly for simulated traffic jams. RR and a tuned variant of
DynamicSWSF-FP showed the best performance for simulated node failures, and two tuned
variants of DynamicSWSF-FP dominated in case of simulated traffic jams. Notably, the
algorithms from the Narváez framework were faster here if instead of in batches, the updates
were processed one-by-one. In follow-up works, D’Andrea et al. [65] evaluated several batch-
dynamic algorithms for single-source shortest paths, where the batches are homogeneous, i.e.,
all updates are either incremental or decremental. Their study contains RR [195], a tuned
variant of DynamicSWSF-FP [194] described by Bauer and Wagner [29] (TSWSF), as well as
a new algorithm DDFLP, which is designed specifically to handle homogeneous batches and
uses similar techniques as FMN [88]. The instance set comprised road and Internet networks
as well as randomly generated graphs according to the Erdős-Rényi model (uniform degree
distribution) and the Barabási-Albert model (power-law degree distribution). Batch updates
were obtained from simulated node failure and recovery, simulated traffic jam and recovery,
as well as randomly selected edges for which the weights were either increased or decreased
randomly. The evaluation confirmed the results by Bauer and Wagner [29] and showed
that DDFLP and TSWSF are best in case of update scenarios like node failures or traffic
jams and otherwise TSWSF and RR, where RR is preferable to TSWSF if the interference
among the updates is low and vice versa. DDFLP generally benefited from dense instances.
Singh and Khare [221] presented the first batch-dynamic parallel algorithm for single-source
shortest paths for GPUs and showed in experiments that it outperforms the (sequential)
tuned DynamicSWSF-FP algorithm [29] by a factor of up to 20 if the distances of up to 10 %
of the nodes are affected.

For real-time shortest path computations on networks with fixed topology, but varying
metric, Delling et al. [68] suggested a three-stage approach: In the first, preprocessing step,
a metric-independent, moderate amount of auxiliary data is obtained from the network’s
topology. It is followed by a customization step, which is run for each metric and produces
few additional data. Whereas the first phase is run only once and can therefore use more
computation time, the second phase must complete within seconds in real-life scenarios.
Shortest path queries form the third phase and must be fast enough for actual applications.
For the first, metric-independent stage, the authors describe an approach based on graph
partitioning, where the number of boundary edges, i.e., edges between different partitions,
is to be minimized. For the second stage, they compute an overlay network consisting of
shortest paths between all pairs of boundary nodes, i.e. nodes that are incident to at least one
boundary edge. An s-t query is then answered by running a bidirectional Dijkstra algorithm
on the graph obtained by combining the overlay graph with the subgraphs induced by the
partitions containing s and t, respectively. The authors also considered various options for
speedups, such as a sparsification of the overlay network, incorporating goal-directed search
techniques, and multiple levels of overlays. An experimental evaluation on road networks
with travel distances and travel times as metrics showed that their approach allows for
real-time queries and needs only few seconds for the metric-dependent customization phase.

Arc flags belong in the category of goal-directed techniques to speed up shortest path
computations and have been successfully used in the static setting [28]. To this end, the set
of vertices is partitioned into a number of regions. Each edge receives a label consisting of
a flag for each region, which tells whether there is a shortest path starting with this edge
and ending in the region. The technique is related to geometric containers and uses the arc
flags to prune a (bidirectional) Dijkstra search. Berettini et al. [38] were the first to consider
arc flags in a dynamic setting, however only for the case of weight increases. Their main
idea is to maintain a threshold for each edge and region that gives the increase in weight
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required for the edge to lie on a shortest path. On a weight increase, the thresholds are
updated and used to determine when to change an arc flag. Although this potentially reduces
the quality of the arc flags with each update, the experimental evaluation showed that the
increase in query time is very small as long as the update sequence is short. With respect to
the update time, a significant speedup could be achieved over recomputing arc flags from
scratch. To refresh arc flags more exactly and in a fully dynamical setting, D’Angelo et
al. [66] introduced a data structure called road signs. Road signs complement arc flags and
store for each edge e and region R the set of boundary nodes contained in any shortest path
starting with e and ending in R. In case of a weight increase, the algorithm first identifies all
affected nodes whose shortest path to a boundary node changed and then updates all road
signs for all outgoing edges of an affected node. In case of a weight decrease on edge (u, v),
the authors observed that all shortest paths containing (u, v) remain unchanged. However,
shortest paths starting with other outgoing or incoming edges of u might require updates,
as well as other paths containing an incoming edge of u. In an experimental study on road
networks, the authors compared their algorithm against one that recomputes arc flags from
scratch as well as the algorithm by Berettini et al. [38] (BDD). To mimic traffic jams and
similar occurrences, the weight of a randomly chosen edge increases and then decreases by
the same amount, however not necessarily in subsequent updates. The evaluation showed
that updating both road signs and arc flags is by several factors faster than recomputing arc
flags from scratch. On instances with weight increases only, the authors showed that their
new algorithm outperforms BDD distinctly both for updates and queries.

A further speedup technique for shortest path queries are 2-hop cover labelings, where
the label L(v) of each node v is a carefully chosen set of nodes Uv along with the distance
between v and u for each u ∈ U . For each pair of vertices s and t, the shortest s-t path can
be obtained by intersecting Us and Ut and taking the minimum over all combinations of s-x
and x-t paths for all nodes x ∈ Us ∩ Ut. In the static setting, a 2-hop cover labeling can be
computed based on a breadth-first search that is run once for every vertex (“naive landmark
labeling”). Akiba et al. [9] introduced pruned landmark labeling (PLL), which constitutes a
more refined approach and uses pruned breadth-first searches instead. The authors developed
an incremental algorithm for PLL, which was complemented by D’Angelo et al. [67] to a
fully dynamic algorithm. The experimental evaluation showed that the algorithm achieves
speedups of several orders of magnitude over a recomputation from scratch, while at the
same time preserving the quality of the labeling, which makes this speedup technique suitable
for practical use in dynamic scenarios.

Hayashi et al. [111] proposed a method to support shortest paths queries on unweighted
networks with billions of edges by combining a bidirectional breadth-first search, which is
optimized for the structure of small-world networks, with landmarks. To this end, the authors
choose high-degree vertices and store shortest path trees as well as those of a subset of their
neighbors in a so-called “bit-parallel” form. This increases the number of landmarks, which
in turn generally speeds up the search and in particular for high-degree vertices, and at the
same time keeps the memory requirements comparatively small. After an edge insertion or
deletion, the bit-parallel shortest paths trees are updated accordingly. The experimental
evaluation on twelve real-world instances having between 1.5 million and 3.7 billion edges
showed that the new algorithm was able to process queries on average in less than 8 ms and
even considerably less on many instances. The average edge insertion and deletion times
were less than 1.3 ms and 8.1 s, respectively, after an initialization time of less than 1 h. The
incremental algorithm by Akiba et al. [9], which was included in the study, was distinctly
faster on queries, but on some instances several factors slower on insertions. However, it failed
to complete the preprocessing step within 10 h or required more than 128 GB of memory on
half of all instances.

SAND 2022



1:20 Recent Advances in Fully Dynamic Graph Algorithms

3.10 Maximum Flows and Minimum Cuts
An instance of the maximum flow/minimum cut problem consists of an edge-weighted directed
graph G = (V, E, c) along with two distinguished vertices s and t. The edge weights c are
positive and commonly referred to as capacities. An (s-t) flow f is a non-negative weight
function on the edges such f(e) ≤ c(e) for all e ∈ E (capacity constraints) and except for s

and t, the total flow on the incoming edges of each vertex must equal the total flow on the
outgoing edges (conservation constraints). The excess of a vertex v is the total flow on its
incoming edges minus that on its outgoing edges, which must be zero for all vertices except
s and t. The value of a flow f then is the excess of t. The task is to find a flow of maximum
value. An (s-t) cut is a subset of edges C ⊆ E whose removal makes t unreachable from s,
and its value is the sum of the capacities of all edges in the cut. The well-known max-flow
min-cut theorem states that the maximum value of a flow equals the minimum value of a cut.
The fastest static algorithm whose running time does not depend on the size of the largest
edge weight computes an optimal solution in O(nm) time [182].

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for
any small constant δ > 0) for the size of the maximum s-t flow even in unweighted, undirected
graphs based on the OMv conjecture [117]. Recently Chen et al. [62] gave an O(log n log log n)-
approximate fully dynamic maximum flow algorithm in time Õ(n2/3+o(1)) per update and
Goranci et al. [95] gave a no(1)-approximate fully dynamic algorithm in time no(1) worst-case
update time and O(log1/6 n) query time. In the unweighted setting Jin and Sun [139] gave a
datastructure that can be constructed for any fixed positive integer c = (log n)o(1) and that
answers for any pair (s, t) of vertices that are parameters of the query in time no(1) where s

and t are c-edge connected.
For global minimum cuts in the unweighted setting Thorup and Karger [231] presented a√

2 + o(1)-approximation algorithm that takes polylogarithmic time per update and query
and Thorup [230] designed a (1 + ϵ)-approximate algorithm in Õ(

√
n) time per update

and query.
Kumar and Gupta [154] extended the preflow-push approach [93] to solve maximum flow

in static graphs to the dynamic setting. A preflow is a flow under a relaxed conservation
constraint in that the excess of all vertices except s must be non-negative. Vertices with
positive excess are called active. Preflow-push algorithms, also called push-relabel algorithms,
use this relaxed variant of a flow during the construction of a maximum flow along with
distance labels on the vertices. Generally speaking, they push flow out of active vertices
towards vertices with smaller distance (to t) and terminate with a valid flow (i.e., observing
conservation constraints). In case of an edge insertion or deletion, Kumar and Gupta first
identify affected vertices via forward and backward breadth-first search while observing
and updating distance labels and then follow the scheme of a basic preflow-push algorithm,
however restricted to the set of affected vertices. The authors evaluated their algorithm
only for the incremental setting on a set of randomly generated instances against the static
preflow-push algorithm in [93] and found that their algorithm is able to reduce the number of
push and relabel operations significantly as long as the instances are sparse and the number
of affected vertices remains small.

Many important fields of application for the maximum flow/minimum cut problem stem
from computer vision. In this area, the static algorithm of Boykov and Kolmogorov [50]
(BK) is widely used due to its good performance in practice on computer vision instances
and despite its pseudo-polynomial worst-case running time of O(nm · Opt), with Opt being
the value of a maximum flow/minimum cut. Interestingly, however, a study by Verma and
Batra [238] shows that its practical superiority only holds for sparse instances. BK follows
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the Ford-Fulkerson method of augmenting flow along s-t paths, but uses two search trees
grown from s and t, respectively, to find such paths. Kohli and Torr [149, 150] extended
BK to the fully dynamic setting by updating capacities and flow upon changes and discuss
an optimization that tries to recycle the search trees. They experimentally compared their
algorithm to repeated executions of the static algorithm on dynamic instances obtained
from video sequences and achieve a substantial speedup. They also observed that reusing
the search trees leads to longer s-t paths, which affects the update time negatively as the
instances undergo many changes.

Goldberg et al. [91] developed EIBFS, a generalization of their earlier algorithm IBFS, that
by contrast also extends to the dynamic setting in a straightforward manner. IBFS in turn is a
modification of BK that ensures that the two trees grown from s and t are height-minimal (i.e.,
BFS trees) and is closely related to the concept of blocking flows. The running time of EIBFS
in the static setting and thus the initialization in the dynamic setting, is O(mn log(n2/m))
with dynamic trees or O(mn2) without. The algorithm works with a so-called pseudoflow,
which observes capacity constraints, but may violate conservation constraints. It maintains
two vertex-disjoint forests S and T , where the roots are exactly those vertices with a surplus
of incoming flow and those with a surplus of outgoing flow, respectively, and originally only
contain s and t. The steps of the algorithm consist in growth steps, where S or T are grown
level-wise, augmentation steps, which occur if a link between the forests has been established
and flow is pushed to a vertex in the other forest and further on to the root, and adoption
steps, where vertices in T with surplus incoming flow or vertices in S with surplus outgoing
flow are either adopted by a new parent in the same forest or become a root in the other
forest. In case of an update in the dynamic setting, the invariants of the forests are restored
and flow is pushed where possible, followed by alternating augmentation and adoption steps
if necessary. The authors also mention that resetting the forests every O(m) work such that
they contain only vertices with a surplus outgoing or incoming flow seemed to be beneficial
in practice. In their experimental evaluation of EIBFS against the algorithm by Kohli and
Torr as well as an altered version thereof and a more naive dynamization of IBFS, they
showed for different dynamic real-world instances from the field of computer vision that
EIBFS is the fastest on eight out of fourteen instances and relatively robust: In contrast to
its competitors, it always takes at most roughly twice the time of the fastest algorithm on an
instance. Notably, no algorithm is dominated by another one across all instances.

Zhu et al. [253] described a dynamic update strategy based on augmenting and de-
augmenting paths as well as cancelling cyclic flows. The latter serves as a preparatory step
and only reroutes flow in the network without increasing or decreasing the total s-t flow
and is only necessary in a decremental update operation. They experimentally evaluated
the effectiveness of their algorithm for online semi-supervised learning, where real-world big
data is classified via minimum cuts, and showed that their algorithm outperforms state-of-
the-art stream classification algorithms. A very similar algorithm was proposed by Greco
et al. [101]. The authors compared it experimentally against EIBFS and the dynamic BK
algorithm by Kohli and Torr as well as a number of the currently fastest static algorithms.
Their experiments were conducted on a set of instances from computer vision where equally
many edges are randomly chosen to be inserted and deleted, respectively. They showed
that their algorithm is with one exception always the fastest on average in performing edge
insertions if compared to the average update time of the competitors, and on half of all
instances also in case of edge deletions. On the remaining instances, the average update time
of EIBFS dominated.
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For the global minimum cut problem, Henzinger et al. [118] implemented an algorithm
for large dynamic graphs under both edge insertions and deletions. For edge insertions, the
algorithm uses the approach of Henzinger [120] and Goranci et al. [94], which maintain a
compact data structure of all minimum cuts in a graph and invalidate only the minimum cuts
that are affected by an edge insertion. For edge deletions, the algorithms use the push-relabel
algorithm of Goldberg and Tarjan [92] to certify whether the previous minimum cut is still
a minimum cut. The algorithm outperformed static approaches by up to five orders of
magnitude on large graphs.

3.11 Graph Clustering
Graph clustering is the problem of detecting tightly connected regions of a graph. More
precisely, a clustering C is a partition of the set of vertices, i.e. a set of disjoint clusters of
vertices V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V . However, k is usually not given in advance
and some objective function that models intra-cluster density versus inter-cluster sparsity, is
optimized. It is common knowledge that there is neither a single best strategy nor objective
function for graph clustering, which justifies a plethora of existing approaches. Moreover,
most quality indices for graph clusterings have turned out to be NP-hard to optimize and
are rather resilient to effective approximations, see, e.g. [21, 51], allowing only heuristic
approaches for optimization. There has been a wide-range of algorithms for static graph
clustering, the majority are based on the paradigm of intra-cluster density versus inter-cluster
sparsity. For dynamic graphs, there has been a recent survey on the topic of community
detection [202]. The survey covers features and challenges of dynamic community detection
and classifies published approaches. Here we focus on engineering results and extend their
survey in that regard with additional references as well as results that appeared in the
meantime. Most algorithms in the area optimize for modularity. Modularity has recently
been proposed [179]. The core idea for modularity is to take coverage, i.e. the fraction of
edges covered by clusters, minus the expected value of the same quantity in a network with
the same community divisions, but random connections between the vertices. The commonly
used formula is as follows: mod(C) := m(C)

m − 1
4m2

∑
C∈C

(∑
v∈C deg(v)

)2.
Miller and Eliassi-Rad [167] adapted a dynamic extension of Latent Dirichlet Allocation

for dynamic graph clustering. Latent Dirichlet Allocation has been originally proposed
for modeling text documents, i.e. the algorithm assumes that a given set of documents
can be classified into k topics. This approach has been transferred to graphs [113] and
was adapted by the authors for dynamic networks. Aynaud and Guillaume [23] tracked
communities between successive snapshots of the input network. They first noted that using
standard community detection algorithms results in stability issues, i.e. little modifications
of the network can result in wildly different clusterings. Hence, the authors propose a
modification of the Louvain method to obtain stable clusterings. This is done by modi-
fying the initialization routine of the Louvain method. By default, the Louvain method
starts with each node being in its own clustering. In the modified version of Aynaud and
Guillaume, the algorithm keeps the clustering of the previous time step and uses this as a
starting point for the Louvain method which results in much more stable clusterings. Bansal
et al. [24] also reused the communities from previous time steps. However, their approach is
based on greedy agglomeration where two communities are merged at each step to optimize
the modularity objective function. The authors improved the efficiency of dynamic graph
clustering algorithms by limiting recomputation to regions of the network and merging
processes that have been affected by insertion and deletion operations. Görke et al. [96]
showed that the structure of minimum s-t-cuts in a graph allows for efficient updates of
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clusterings. The algorithm builds on partially updating a specific part of a minimum-cut tree
and is able to maintain a clustering fulfilling a provable quality guarantee, i.e. the clusterings
computed by the algorithm are guaranteed to yield a certain expansion. To the best of
our knowledge, this is the only dynamic graph clustering algorithm that provides such a
guarantee. Later, Görke et al. [99, 98] formally introduced the concept of smoothness to
compare consecutive clusterings and provided a portfolio of different update strategies for
different types of local and global algorithms. Moreover, their fastest algorithm is guaranteed
to run in time Θ(log n) per update. Their experimental evaluation indicates that dynamically
maintaining a clustering of a dynamic random network saves time and at the same time
also yields higher modularity than recomputation from scratch. Alvari et al. [13] proposed
a dynamic game theory method to tackle the community detection problem in dynamic
social networks. Roughly speaking, the authors model the process of community detection
as an iterative game performed in a dynamic multiagent environment where each node is
an agent who wants to maximize its total utility. In each iteration, an agent can decide to
join, switch, leave, or stay in a community. The new utility is then computed by the best
outcome of these operations. The authors use neighborhood similarity to measure structural
similarity and optimize for modularity. The experimental evaluation is limited to two graphs.
Zakrzweska and Bader [248] presented two algorithms that update communities. Their first
algorithm is similar to the dynamic greedy agglomeration algorithm by Görke et al. [98].
The second algorithm is a modification of the first one that runs faster. This first is achieved
by more stringent backtracking of merges than Görke et al. [98], i.e. merges are only undone
if the merge has significantly changed the modularity score of the clustering. Moreover, the
authors used a faster agglomeration scheme during update operations that uses information
about previous merges to speed up contractions. Recently, Zhuang et al. [254] proposed the
DynaMo algorithm which also is a dynamic algorithm for modularity maximization, however
the algorithm processes network changes in batches.

3.12 Centralities
We will describe three popular measures to find central nodes in networks in the fully
dynamic setting: Katz centrality, betweenness centrality and closeness centrality. The
only two theoretical fully dynamic results that we are aware of are due to Pontecorvi and
Ramachandran [191], who achieve amortized O(ν∗2 · log2 n) update time for betweenness
centrality where ν∗ bounds the number of distinct edges that lie on shortest paths through
any single vertex, and a result due to van den Brand and Nanongkai [233], who present a
(1 + ϵ)-approximate fully-dynamic algorithm for closeness centrality with O(n1.823) update
time. This is an obvious area for future work.

Katz Centrality

Katz centrality is a centrality metric that measure the relation between vertices by counting
weighted walks between them. Nathan and Bader [177] were the first to look at the problem
in a dynamic setting. At that time, static algorithms mostly used linear algebra-based
techniques to compute Katz scores. The dynamic version of their algorithm incrementally
updates the scores by exploiting properties of iterative solvers, i.e. Jacobi iterations. Their
algorithm achieved speedups of over two orders of magnitude over the simple algorithms
that perform static recomputation every time the graph changes. Later, they improved
their algorithm [176] to handle updates by using an alternative, agglomerative method of
calculating Katz scores. While their static algorithm is already several orders of magnitude
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faster than typical linear algebra approaches, their dynamic algorithm is also faster than pure
static recomputation every time the graph changes. A drawback of the algorithms by Nathan
and Bader is that they are unable to reproduce the exact Katz ranking after dynamic updates.
Van der Grinten et al. [235] fixed this problem by presenting a dynamic algorithm that
iteratively improves upper and lower bounds on the centrality scores. The computed scores
are approximate, but the bounds guarantee the correct ranking. The dynamic algorithm
improves over the static recomputation of the Katz rankings as long as the size of the batches
in the update sequence is smaller than 10 000.

Betweenness Centrality

Given a graph and a vertex v in the graph, the betweenness centrality measure is defined to
be c(v) =

∑
u,w,u̸=w

σu,w(v)
σu,w

, where σu,w is the number of shortest paths between u and w and
σu,w(v) is the number of shortest paths between u and w that include v. Statically computing
betweenness centrality involves solving the all-pairs shortest path problem. Dynamically
maintaining betweenness centrality is challenging as the insertion or deletion of a single edge
can lead to changes of many shortest paths in the graph. The QUBE algorithm [156] was the
first to provide a non-trivial update routine. The key idea is to perform the betweenness
computation on a reduced set of vertices, i.e. the algorithm first finds vertices whose centrality
index might have changed. Betweenness centrality is then only computed on the first set of
vertices. However, QUBE is limited to the insertion and deletion of non-bridge edges. Lee
et al. [155] extended the QUBE algorithm [156] to be able to insert and delete non-bridge edges.
Moreover, the authors reduced the number of shortest paths that need to be recomputed
and thus gained additional speedups over QUBE. Kourtellis et al. [152, 151] contributed
an algorithm that maintains both vertex and edge betweenness centrality. Their algorithm
needs less space than the algorithm by Green et al. [102] as it avoids storing predecessor
lists. Their method can be parallelized and runs on top of parallel data processing engines
such as Hadoop. Bergamini et al. [35] presented an incremental approximation algorithm
for the problem which is based on the first theory result that is asymptotically faster than
recomputing everything from scratch due to Nasre et al. [175]. As a building block of their
algorithm, the authors used an asymptotically faster algorithm for the dynamic single-source
shortest path problem and additionally sample shortest paths. Experiments indicate that
the algorithm can be up to four orders of magnitude faster compared to restarting the
static approximation algorithm by Riondato and Kornaropoulos [197]. In the same year, the
authors extended their algorithm to become a fully dynamic approximation algorithm for
the problem [33, 34]. In addition to dynamic single-source shortest paths, the authors also
employed an approximation of the vertex diameter that is needed to compute the number of
shortest paths that need to be sampled as a function of a given error guarantee that should
be achieved. Hayashi et al. [112] provided a fully dynamic approximation algorithm that is
also based on sampling. In contrast to Bergamini et al. [35, 33, 34], which selects between
each pair of sampled vertices, the authors save all the paths between each sampled pair of
vertices. Moreover, the shortest paths are represented in a data structure called hypergraph
sketch. To further reduce the running time when handling unreachable pairs, the authors
maintain a reachability index. Gil-Pons [190] focused on exact betweenness in incremental
graphs. The author presented a space-efficient algorithm with linear space complexity. Lastly,
Chehreghani et al. [61] focused on the special case in which the betweenness of a single node
has to be maintained under updates.
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Closeness Centrality

Given a graph and a vertex v, the harmonic closeness centrality measure is defined as
clo(v) =

∑
u∈V,u ̸=v

1
d(u,v) where d(u, v) is the distance between u and v. Roughly speaking,

it is the sum of the reciprocal length of the shortest path between the node and all other
nodes in the graph. Baevla’s definition of closeness centrality is similarly |V |−1∑

v∈V
d(u,v)

. Kas

et al. [144] were the first to give an fully dynamic algorithm for the problem. As computing
closeness centrality depends on the all-pairs shortest path problem, the authors extended an
existing dynamic all-pairs shortest path algorithm [193] for their problem. As the algorithm
stores pairwise distances between nodes it has quadratic memory requirement. Sariyuce
et al. [209] provided an algorithm that can handle insertions and deletions. In contrast
to Kas et al. [144], the authors used static single-source shortest paths from each vertex.
The algorithm does not need to store pairwise distances and hence requires only a linear
amount of memory. Moreover, the authors observed that in scale-free networks the diameter
grows proportional to the logarithm of the number of nodes, i.e. the diameter is typically
small. When the graph is modified with minor updates, the diameter also tends to stay
small. This can be used to limit the number of vertices that need to updated. In particular,
the authors showed that recomputation of closeness can be skipped for vertices s such that
|d(s, u) − d(s, v)| = 1 where u, v are the endpoints of the newly inserted edge. Lastly,
the authors used data reduction rules to filter vertices, i.e. real-life networks can contain
nodes that have the same or similar neighborhood structure that can be merged. Later,
Sariyuce et al. [210, 211] proposed a distributed memory-parallel algorithm for the problem.
Yen et al. [247] proposed the fully dynamic algorithm CENDY which can reduce the number
of internal updates to a few single-source shortest path computations necessary by using
breadth-first searches. The main idea is that given an augmented rooted BFS tree of an
unweighted network, edges that are inserted or deleted within the same level of the tree do
not change the distances from the root to all other vertices. Putman et al. [192] provided
a faster algorithm for fully dynamic harmonic closeness. The authors also used a filtering
method to heavily reduce the number of computations for each incremental update. The
filtering method is an extension of level-based filtering to directed and weighted networks.
The dynamic algorithm by Shao et al. [219] maintains closeness centrality by efficiently
detecting all affected shortest paths based on articulation points. The main observation is
that a graph can be divided into a series of biconnected components which are connected
by articulation points – the distances between two arbitrary vertices in the graph can be
expressed as multiple distances between different biconnected components.

Bisenius et al. [49] contributed an algorithm to maintain top-k harmonic closeness in
fully dynamic graphs. The algorithm is not required to compute closeness centrality for the
initial graph and the memory footprint of their algorithm is linear. Their algorithm also
tries to skip recomputations of vertices that are unaffected by the modifications of the graph
by running breadth-first searches. Crescenzi et al. [63] gave a fully dynamic approximation
algorithm for top-k harmonic closeness. The algorithm is based on sampling paths and a
backward dynamic breadth-first search algorithm.

3.13 Graph Partitioning
Typically the graph partitioning problem asks for a partition of a graph into k blocks of
about equal size such that there are few edges between them. More formally, given a
graph G = (V, E), we are looking for disjoint blocks of vertices V1,. . . ,Vk that partition
V , i.e., V1 ∪ · · · ∪ Vk = V . A balancing constraint demands that all blocks have weight
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c(Vi) ≤ (1 + ϵ)⌈ c(V )
k ⌉ for some imbalance parameter ϵ. The most used objective is to

minimize the total cut ω(E ∩
⋃

i<j Vi × Vj). The problem is known to be NP-hard and no
constant-factor approximation algorithms exist. Thus heuristic algorithms are mostly used
in practice. Dynamic graph partitioning algorithms are also known in the community as
repartitioning algorithms. As the problem is typically not solved to optimality in practice,
repartitioning involves a tradeoff between the quality, i.e. the number of edges in different sets
of the partitioning, and the amount of vertices that need to change their block as they cause
communication when physically moved between the processors as the partition is adopted.
The latter is especially important when graph partitioning is used in adaptive numerical
simulations. In these simulations, the main goal is to partition a model of computation and
communication in which nodes model computation and edges model communication. The
blocks of the partition are then fixed to a specific processing element. When the dynamic
graph partitioning algorithm decides to change the blocks due to changes in the graph
topology, nodes that are moved to a different block create communication in the simulation
system as the underlying data needs to be moved between the corresponding processors.

Hendrikson et al. [114] tackled the repartitioning problem by introducing k virtual vertices.
Each of the virtual vertices is connected to all nodes of its corresponding block. The edges
get a weight α which is proportional to the migration cost of a vertex and the vertex weights
of the virtual vertices are set to zero. Then an updated partition can be computed using a
static partitioning algorithm since the model accounts for migration costs and edge cut size
at the same time.

Schloegel et al. [213] presented heuristics to control the tradeoff between edge-cut size and
vertex migration costs. The most simple algorithm is to compute a completely new partition
and then determine a mapping between the blocks of the old and the new partition that
minimizes migration. The more sophisticated algorithm of [213] is a multilevel algorithm
based on a simple process, i.e. nodes are moved from blocks that contain too many vertices
to blocks that contain not enough vertices. However, this approach often yields partitions
that cut a large number of edges. The result has been improved later by combining the two
approaches in the parallel partitioning tool ParMetis [214]. Schloegel et al. [215] later extended
their algorithm to be able to handle multiple balance constraints. Hu and Blake [129] noted
that diffusion processes can suffer from slow convergence and improved the performance of
diffusion through the use of Chebyshev polynomials. More precisely, the diffusion process in
their paper is a directed diffusion that computes a diffusion solution by solving a so-called head
conduction equation while minimizing the data movement. Walshaw et al. [240] integrated
a repartitioning algorithm into their parallel (meanwhile uncontinued) tool Jostle. The
algorithm is a directed diffusion process based on the solver proposed by Hu and Blake [129].
Rotaru and Nägeli [203] extended previous diffusion-based algorithms to be able to handle
heterogeneous systems. These approaches, however, have certain weaknesses: For example,
in numerical applications the maximum number of boundary nodes of a block is often a
better estimate of the occurring communication in the simulation than the number of edges
cut. Meyerhenke and Gehweiler [165, 166] explored a disturbed diffusion process that is able
to overcome some of the issues of the previous approaches. To do so, Meyerhenke adapted
DIBAP, a previously developed algorithm that aims at computing well-shaped partitions. A
diffusion process is called disturbed if its convergence state does not result in a balanced
distribution. These processes can be helpful to find densely connected regions in the graph.

There has been also work that tackles slightly different problem formulations. Kiefer
et al. [146] noted that performance in applications usually does not scale linearly with
the amount of work per block due to contention on different compute components. Their
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algorithm uses a simplified penalized resource consumption model. Roughly speaking, the
authors introduced a penalized block weight and modified the graph partitioning problem
accordingly. More precisely, a positive, monotonically increasing penalty function p is used
to penalize the weight of a block based on the partition cardinality. Vaquero et al. [237]
looked at the problem for distributed graph processing systems. Their approach is based
on iterative vertex migration based on label propagation. More precisely, a vertex has a
list of candidate blocks where the highest number of its neighbors are located. However,
initial partitions are computed using hashing which does not yield high quality partitions
since it completely ignores the structure of the graph. The authors did not compare their
work against other state-of-the art repartitioning algorithms, so it is unclear how well the
algorithm performs compared to other algorithms. Xu et al. [245] and Nicoara et al. [180]
also presented dynamic algorithms specifically designed for graph processing systems. Other
approaches have focused on the edge partitioning problem [204, 131, 83] or the special case
of road networks [52].

4 Dynamic Graph Systems

The methodology of the previous two sections is to engineer algorithms for specific dynamic
graph problems. In contrast to this, there are also approaches that try to engineer dynamic
graph systems that can be applied to a wide range of dynamic graph problems. Alberts
et al. [11] started this effort and presented a software library of dynamic graph algorithms.
The library is written in C++ and is an extension of the well known LEDA library of efficient
data types and algorithms. The library contains algorithms for connectivity, spanning trees,
single-source shortest paths and transitive closure.
A decade later Weigert et al. [243] presented a system that is able to deal with dynamic

distributed graphs, i.e. in settings in which a graph is too large for the memory of a single
machine and, thus, needs to be distributed over multiple machines. A user can implement a
query function to implement graph queries. Based on their experiments, the system appears
to scale well to large distributed graphs. Ediger et al. [77] engineered STINGER which is short
for Spatio-Temporal Interaction Networks and Graphs Extensible Representation. STINGER
provides fast insertions, deletions, and updates on semantic graphs that have a skewed
degree distribution. The authors showed in their experiments that the system can handle
3 million updates per second on a scale-free graph with 537 million edges on a Cray XMT
machine. The authors already implemented a variety of algorithms on STINGER including
community detection, k-core extraction, and many more. Later, Feng et al. [84] presented
DISTINGER which has the same goals as STINGER, but focuses on the distributed memory
case, i.e. the authors presented a distributed graph representation. Vaquero et al. [236]
presented a dynamic graph processing system that uses adaptive partitioning to update the
graph distribution over the processors over time. This speeds up queries as a better graph
distribution significantly reduces communication overhead. Experiments showed that the
repartitioning heuristic (also explained in Section 3.13) improves computation performance
in their system up to 50 % for an algorithm that computes the estimated diameter in
a graph. Sengupta et al. [217] introduced a dynamic graph analytics framework called
GraphIn. Part of GraphIn is a new programming model based on the gather-apply-scatter
programming paradigm that allows users to implement a wide range of graph algorithms that
run in parallel. Compared to STINGER, the authors reported a 6.6-fold speedup. Iwabuchi
et al. [136] presented an even larger speedup over STINGER. Their dynamic graph data store
is, like STINGER, designed for scale-free networks. The system uses compact hash tables
with high data locality. In their experiments, their system called DegAwareRHH, is a factor
206.5 faster than STINGER.

SAND 2022



1:28 Recent Advances in Fully Dynamic Graph Algorithms

Another line of research focuses on graph analytic frameworks and data structures for
GPUs. Green and Bader [84] presented cuSTINGER, which is a GPU extension of STINGER
and targets NVIDIA’s CUDA supported GPUs. One drawback of cuSTINGER is that the
system has to perform restarts after a large number of edge updates. Busato et al. fixed this
issue in their system, called Hornet, and, thus, outperform cuSTINGER. Moreover, Hornet
uses a factor of 5 to 10 less memory than cuSTINGER. In contrast to previous approaches,
faimGraph due to Winter et al. [244] is able to deal with a changing number of vertices. Awad
et al. [22] noted that the experiments performed by Busato et al. are missing true dynamism
that is expected in real world scenarios and proposed a dynamic graph structure that uses
one hash table per vertex to store adjacency lists. The system achieves speedups between 5.8
to 14.8 compared to Hornet and 3.4 to 5.4 compared to faimGraph for batched edge insertions
(and slightly smaller speedups for batched edge deletions). The algorithm also supports
vertex deletions, as does faimGraph.

5 Methodology

Currently there is a limited amount of real-world fully dynamic networks publicly available.
There are repositories that feature a lot of real-world insertions only instances such as SNAP3

and KONECT4. However, since the fully dynamic instances are rarely available at the moment,
we start a new graph repository that provides fully dynamic graph instances5. Currently,
there is also very limited work on dynamic graph generators. A generator for clustered
dynamic random networks has been proposed by Görke et al. [97]. Another approach is due
to Sengupta [218] to generate networks for dynamic overlapping communities in networks.
A generative model for dynamic networks with community structure can be found in [30].
This is a widely open topic for future work, both in terms of oblivious adversaries as well
as adaptive adversaries. To still be able to evaluate fully dynamic algorithms in practice,
research uses a wide range of models at the moment to turn static networks into dynamic
ones. We give a brief overview over the most important ones. In undo-based approaches,
edges of a static network are inserted in some order until all edges are inserted. In the end,
x % of the last insertions are undone. The intuition here is that one wants undo changes
that happened to a network and to recreate a previous state of the data structure. In
window-based approaches, edges are inserted and have a predefined lifetime. That means
an edge is deleted after a given number d of new edges have been inserted. In remove and
add based approaches, a small fraction of random edges from a static network is removed
and later on reinserted. In practice, researchers use a single edge as well as whole batches of
edges. In morphing-based approaches, one takes two related networks and creates a sequence
of edge updates such that the second network obtained after the update sequence has been
applied to the first network.

3 https://snap.stanford.edu/
4 http://konect.cc/
5 https://DynGraphLab.github.io

https://snap.stanford.edu/
http://konect.cc/
https://DynGraphLab.github.io
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