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Abstract. Science collaborations such as ATLAS at the high-energy
particle accelerator at CERN use a computer grid to run expensive com-
putational tasks on massive, distributed data sets.
Dealing with big data on a grid demands workload management and data
allocation to maintain a continuous workflow. Data allocation in a com-
puter grid necessitates some data placement policy that is conditioned
on the resources of the system and the usage of data.
In part, automatic and manual data policies shall achieve a short time-to-
result. There are efforts to improve data policies. Data placement/allocation
is vital to coping with the increasing amount of data processing in dif-
ferent data centers. A data allocation/placement policy decides which
locations sub-sets of data are to be placed.
In this paper, a novel approach copes with the bottleneck related to wide-
area file transfers between data centers and large distributed data sets
with high dimensionality. The model estimates similar data with a neural
network on sparse and uncertain observations and then proceeds with the
allocation process. The allocation process comprises evolutionary data
allocation for finding near-optimal solutions and improves over 5% on
network transfers for the given data centers.

Keywords: data allocation, data placement, similarity estimation, par-
allel computing, wide-area file transfers

1 Introduction

Physics collaborations such as the ATLAS collaboration [10] at CERN store
their data as files in a worldwide computing grid. The LHC Computing Grid [3]
provides distributed storage and processing for physics data from extensive ex-
periments. Experts from all over the world submit tasks with the data stored as
files across many data centers. The data centers can be considered geographically
distant sites that spawn a fully connected network, as shown in Figure 1 as an
example. Many data-intensive, high-performance applications use large numbers
of files that are in some way labeled or categorized. In the case of ATLAS, data
sets label a various number of files that jobs can collectively handle. A compu-
tational job is a process that reads a data set and eventually outputs another
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data set. Data sets can be used none or several times. The population of data
sets is changing. Some may be removed after their lifespan, and data sets are
created from time to time to label files. Because of this changing population of
data sets, they cannot be the basic unit of data placement/allocation, but the
constituent files are.

Regardless of the particular content, data sets are managed by users. A user
defines a class on its own, using particular data sets. Their work interest and
funding correlate with data sets. Data sets in a more or less narrow range will be
processed to fulfill their research. Those have some commonalities, so some as-
pects are equal or similar. A metric based on machine learning will be introduced
later to find similarities within data sets.

Fig. 1. Example of five data centers inter-connected with wide area network (WAN),
over which each data center can read files on an external data center, which incurs
costs. Each HPC site facilitates different amount of resources.

In our case, there are two types of jobs to be executed in large quantities:

– Producing final data with parameters and calibration data from the experi-
ment. Calibration data is updated from time to time and therefore produc-
tion must be repeated, for example.

– Analysis to find events in the productive data. Examples around the well-
known Higgs boson H0 are t + t̄ into H0, or γ + γ into H0. An H0 boson
is formed in both processes, but they are different processes with different
probability amplitudes.

Jobs for production and analysis are submitted onto data sets. Computational
resources are facilitated in the form of job queues at data centers whose task is
to run jobs. A job requires the entire data set to be at the local data center.
Missing files of the data set must be transferred to the job, that is, the location
of the compute job.
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The network latency causes a significant delay in the workflow. The wide
area network (WAN), the network between data centers, is a scarce resource and
represents a bottleneck in a data-intensive workflow [14]. The way to improve
the situation related to the WAN is to leave wide-area transfers out, i.e., local
processing for each data set. However, jobs cannot be placed arbitrarily to the
appropriate data sets: Jobs are allocated to proper sites. First, they must be com-
patible; the site must support the requested computation. Say, a high-memory
worker is needed. Load balancing takes place according to provided computing
volumes in data centers. The one with the majority of files of proper sites is
preferred as the target. This process continues, and sites are filled with jobs.

On the other hand, data cannot be freely allocated as there are natural
storage limitations. Our focus is to tackle data allocation under the following
condition:

– Every time a job kicks in, missing input data must be transferred over the
bottleneck, the inter-data center network/WAN, from the source to the tar-
get site.

– The network consists of non-uniform sites that provide resources with con-
siderable differences. Some possess more storage capacity, and others provide
more processing capabilities due to local funding constraints and even sup-
port for various user communities.

In order to deal with a large amount of data, clustering is utilized. Clustering is
a broad field applied for different tasks such as classification and segmentation,
matching commonalities such as identifying normal samples versus outliers.

The novel contributions of this paper are:
A similarity metric, a distance, is introduced for data sets to be able to put

clustering into action and to decide on proper sub-sets.
Combined with this similarity metric, a loss function related to the data allo-

cation task is induced. Based on this loss, allocation can be performed regarding
spatial patterns of data set use, that is, locations at data centers. Following pat-
terns of data use is necessary for improving data allocation because data sets
will be differently used depending on jobs/tasks on distant sites. The jobs will
be distributed in some way across data centers. Some of these data centers are
capable of more than others. Say, some store more data sets or provision a pro-
cessing capability for some job class such as large memory. Large memory jobs
require larger memory on the CPU.

2 State of the Art

The data allocation problem is synonymously referred to hereto as file allocation.
It was investigated when distributed databases were studied, and parallelization
had to be utilized.

One of the first data placement/allocation papers was [5]. The work mod-
els the task on different abstraction levels. It is further proven that the data
placement problem is very difficult to solve and generally NP-Complete.
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The file placement problem is investigated under concurrency conditions to
build a model with storage cost and communication cost in [17]. Constraints are
the multiplicity of databases, variable routing of data, and available capacity of
the network nodes.

Some work attempts to cluster data sets according to their inter-dependency [11].
Subsequently to clustering, clusters are stored on separate machines. A different
clustering algorithm is described in [25] that uses k-means algorithm for finding
locations for the clustered data, resulting in task allocation to the data centers
with most of the input data set. This is comparable to the ATLAS workflow.
This paper utilizes data sets as small clusters and imposes several conditions
such as uncertainty and sparsity on the data sets.

Evolutionary algorithms have been applied to almost any kind of problem,
and it is no surprise that these were applied to this kind of problem as well.
In [12], data allocation strategies have been investigated to reduce transaction
costs. A genetic algorithm was used here to limit communication effort between
data centers by balancing the load.

Placement of files and replication across different nodes may improve on
metrics such as job execution, makespan, and bandwidth [8].

Further efforts have been undertaken in previous studies for database op-
timizations. The authors of [22] discuss database allocation optimization and
propose a mathematical model concerning average waiting time. Other database
approaches attempt to arrange data effectively over the network nodes, such as
in [1,2,6]. However, these studies investigate idealized database cases. For ex-
ample, they focus on a single query type or do not consider any constraints on
communication characteristics. Room for improvement would comprise user be-
havior and workflow characteristics. Analysis of access patterns can be beneficial
for network utilization.

A well-known approach is ranking data according to the number of accesses
per time unit. This characteristic is referred to, for example, as data popular-
ity [7]. In [7], a successful popularity model is established which uses historical
data. A popularity model is implemented as an autonomous service for finding
obsolete data and used in the cleaning process [15,20].

Due to complexity and variety, simplified models and local optimizations were
studied and applied. A thorough analysis of data usage and data optimization
for data grids is necessary. Storage resources and the use of data has to be
appropriately treated in the process of file placement [19,18].

Summing up, the actual research on data partitioning and allocation tech-
niques is specific, and often the models aim at a narrow case. Especially in
data-intensive high-performance computing (HPC), large volumes of data are
processed, and patterns for data usage have to be observed and taken into ac-
count to utilize the performance and improve the workflow fully. At this point,
we would like to present our research. In general, data management strongly
impacts usability, performance, and cost.
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3 Methods

3.1 Background

Data sets collect files in various numbers by giving them a common name (data
set name). To certain data sets, jobs will be submitted by a magnitude of 1000
users around the globe. The data set name is a high-dimensional pattern on
an abstract level. It consists of a text string in variable lengths, with different
sub-strings such as numbers and terms. A data set name (label) looks like

mc15.13TeV.362233.Sherpa.CT10.Zee.P t70
.140.BF ilter.ckkw30.evgen.EV NT.e4558.tid07027172.00

There are many identifiers composed into this name to describe the data set.
mc15 stands for Monte Carlo; 13 TeV stands for 13 ∗ 1012 electron volt, which
implies the energy of the run; and so on. With this notation, it is challenging to
find interrelations between data set names. At least, users manage jobs process-
ing and data sets. The decision is a user-dependent process that was introduced
in section 1. User’s co-variates are background and funding, and they do usually
not select randomly at their whim. Creating data sets and submitting jobs is
a confusing process from the outside. However, the common factor is the user
between task and data.

Two important points must be addressed in a data allocation policy:

– How likely is it, that data sets will be read by a job of a certain type. It is
certain that data sets that are not processed, do not incur any costs from a
network’s point of view. The opposite case is when a data set is processed
at least once or several times.

– What is the impact from the cost perspective, data sets residing on specific
nodes.

In the model context, the term node is used for data centers. A node repre-
sents a black box, which is not decomposed in its parts, such as network storage,
different computing nodes, etc., but rather is described on a top-level with the
provision of resources from a job’s perspective.

With data sets also comes a lack of information. The use of data sets is
uncertain two-folds:

– Data sets change over time. Some of them will overlap.
– Furthermore, there is no information on how likely they will be used for

most data sets. Only a tiny minority of data sets have a popularity value
that indicates how likely they will be read. There are some investigations on
popularity, which are not covered in this work [4].

Our model consists of two sub-models joined together to perform the two steps
depicted in Figure 2:

1. Transform the variable space of data sets into a metric space. This model
is introduced to generate variables of data sets that allow better handling.
The first model in section 3.2 covers this part.
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2. Generate disjoint file sets from data sets and allocate them to nodes. This
can be pictured in two dimensions as on the right side in Figure 2. The
allocation is the process that divides files, comprised in data sets, into the
number of nodes and maps them to the nodes, which are data centers in
grid. The necessary steps are done in the second model in section 3.3.

Fig. 2. Two models for two transformations of the data sets. First, the data sets are
mapped into a similarity space. Second, the allocation model disjoints the data sets
into proper sub-sets to allocate to nodes.

3.2 Neural Similarity Estimator

The relationship between users and data sets, and thereby data sets to others,
has been discussed. The similarity model proposed in this work relates data sets
with others. The neural similarity model is placed first to extend the variables-
space for the allocation.

With the similarity model, given a data set as input, another similar data
set may be found in the population of data sets. Even new data sets that have
not yet been seen can be assigned to other data sets. This is important because
new data sets are constantly being created during operation. On the one hand,
similarity plays a role in the allocation in order to select a specific kind of data
sets. On the other hand, data sets also depend on each other because data sets
can overlap several others. They will be more or less mixed, which makes them
not separable.

The virtue of such a similarity model is that it can handle complex and
inter-related (text) strings. Triplet learning sometimes referred to as triplet loss
or triplet comparison, comes in helpful for this task. This technique makes infer-
ences about observations based on commonalities and non-commonalities within
the variables [24]. A specific loss function is applied to learn a similarity or dis-
tance metric by recognizing similarities (and dissimilarities). It was successfully



7

applied for large learning applications in image similarities [9], [23] as well as a
variety of digital image processing tasks such as face recognition [16].

In the case of face recognition and person re-identification, similar samples
are images of the same person. Figure 3 illustrates the core idea. The so-called
anchor a and the positive sample + are from the same user, and the other
example - is from another user. The triplet comparison operates on three different
example inputs. On average, the a and + are more similar to each other. During
network training, the cost function applied to a triplet of samples is gradually
decreased. The distance between the anchor and the positive sample becomes
smaller, while the distance between the anchor and the negative sample increases.

Fig. 3. Training of the model is shown on the left, in which triplets of data sets (a,+,-)
are fed from the training set while the model tries to lower the loss(). The inference is
shown on the right. Data sets are mapped into the latent similarity space, where next
data sets have higher similarity.

In our case, data sets with their names are the input from users. As data set
names are depicted in section 3.1, the first step is text pre-processing to obtain
a tuple of word vectors that are the representations for the data set names.
Terms and numbers occurring only once in the training set of data set names
are replaced by a default value since they are not informative. For example, 933
and aabb are replaced as default value.

The model consists of several steps:

1. The data set names are tokenized. This process makes a discrete set with
unique numbers from each alpha-numeric subtext. In a standard text case,
this would be the word level, and each word would convert into a number in
the discrete co-domain.

2. Each token is converted into a word vector.
3. In training, a latent metric space is spawned under the loss function from

Equation 1. Data sets are just passed through the trained model in the infer-
ence phase. Data sets become labeled with the vector of the low-dimensional
neural co-domain of the similarity model 3.
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The model’s network architecture is strongly inspired by image recognition
projects with a triplet loss, like [13], we do not need a particular network type
such as CNN for the short input vectors at hand. Even though a CNN would
be possible, we go with a fully connected multi-layer feed-forward network: a
multi-layer perceptron. As for other recognition tasks, as mentioned, a triplet
loss is used in the network:

loss = max[d( a, +)− d( a, −) +margin, 0] (1)

where a triplet is (a,+,−) with some data set, a, a positive example data set
from the same user +, and a negative example data set from some other user, −.

The training phase takes a magnitude of one day on a single GPU. In the
prediction phase, the model maps each piece of input data set into its output
space, a metric space in which similar inputs are placed closer to each other. This
is depicted on the right in Figure 3. Inference on one data set is just a mapping
with the fixed weights in the model and takes a magnitude of 1 millisecond.

3.3 Data Allocation Model

For the allocation process, an evolutionary clustering method has been devel-
oped. The goal is to find improved data allocations over the course of the run
time in terms of a loss according to the following loss function decreases:

costtx(S) =
∑

j∈{jobs}

costtx(S, j) (2)

where costtx(S, j) denotes an affine function of the number of non-local files
for job j given S , that is, the number of triggered file transfers over the network
(WAN) by j.

The data allocation model generates an allocation matrix for all files, S . As
explained, network transfers between nodes are expensive, which is why the total
number of these transfers is regarded in the total loss denoted as costtx(S). Data
center-internal transfers are much faster and do not need to be considered (zero
cost). Given the amount of work, i.e., a set of computational jobs, the problem
can be formalized as minimization problem with parameter S specifying the
allocation, and a loss function costtx(S) depending on system variables and the
set of jobs:

argmin
S

costtx(S)

so that

ST × wfile ≤ wstore

(3)

where costtx(S) is the loss function introduced before, wfile is a column vector
which represents the file sizes for file1,...,fileM and wstore is a column vector
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which represents the storage capacities of data centers 1, 2, ..., N. costtx(S)
penalizes external heavy transfers. wstore is needed by the model to control the
cluster sizes. Each cluster becomes parameterized for the sake of collecting files
for sub-sets in the allocation process. No other variables are needed except rela-
tive costs, i.e., cost(Snew)−cost(S) while the model probes the nodes iteratively
with variations of data allocations and descent on the plane of the loss function.

The allocation process can be outlined in the following steps:

– Parameterize and prioritize clusters. Set a seed according to popularity and
type variable for each cluster.

– Disjoint the data sets into the number of clusters into subsets to be allocated.
This produces the allocation matrix S (Equation 3). Boundary conditions
wstore are needed to control the cluster sizes.

– Calculate costs by Equation 2 and repeat the process.

The presented model here relies on work management and solves the data
allocation problem. The model does not see the actual workload, but the cost
that comes with the workload related to the data allocation. The consideration
by only costs allows for a more flexible way of not having to expose the underlying
grid and jobs.

The evolution of the model comes into the described allocation process. After
finding a S which betters the situation, it is placed into an internal pool with
the label of the cost that indicates the quality or fitness:

– Populate the pool and delete the bottom solutions
– Vary single solutions
– Combine parameters of two solutions into one novel solution

The model runs on a single PC with parallelization. In-memory data on files
and data sets are fixed and can be shared. Each data allocation iteration is done
on a worker process, which just communicates the parameters of a solution.
Other workers take the work on combining solutions.

4 Justification and Evaluation

Data centers / HPC sites (in some jargon, just sites) are referred to here as
nodes. The number of nodes in the optimization has been reduced from over
100 to a low 2-digit number, see Figure 4. Details are listed below. This is a
feasible number, and the set can cover the most important ones, say, nodes with
the highest capacities. There is an exponential drop-off from the largest to the
smallest data centers. At the peak, there are large ones working on the majority
of data sets, and at the tail, there are many small ones. Large ones covered in
the optimization process imply a high potential for improvement.

For each iteration of the experiment, the following parameters are defined for
nodes in such a way that the values are sampled in a uniformly random way:

– the provisioned work performance in terms of average jobs
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– the provisioned queues for jobs for two types (A and B)
– the provisioned storage capacity for files

Data is defined in the following way:

– 10 thousand data sets from 100 users are taken. This is used for the validation
of the model.

– Each data set possesses 1 to 100 files.
– For training of the similarity model, a subset of the data set user records

are taken, a sample size of 2 GB plain text. This record indicates the data
set, their files, and the associated user to each data set. This sub-set covers
100 users from the full user records comprising about 25 GB per month. The
selected time window of one month is short for picking up short correlations
for the demonstration.

– For these data sets, a popularity value is chosen between 0 and 1. Highly
active users possess data sets with higher popularity on average, and more
frequent data sets are represented with higher popularity. The model can
only see 10 percent of the popularity values.

With the data and the provision on the computer side, the work of the model
can be outlined:

– Similarity estimation is done once, and the final similarity values are kept in
memory beside the original variables.

– The data allocation part produces a data distribution while observing the
total costs according to Equation. 2. Over the course of evolution, the allo-
cation model permutates the output to find a fitter solution. In other words,
a solution with a smaller cost.

The improvement by the data allocation can be depicted in the Figure 4. The
model runs three configurations, and in the smallest one, it performs better.
This is probably due to the fact that the solution space is smaller. A smaller
cardinality makes the model performs iteration quicker, and more vectors in
the solution space can be probed. The improvement is shown to be at least 5.5
percent despite uncertainties in the system that the allocation model cannot
control, on the input side, where sparse information comes from the data sets,
and second, the work on each node that depends on the jobs and the nodes.

5 Conclusion and Outlook

Six percent improvement in the most important data centers is a perceivable
saving on time and cost in terms of money. This amount corresponds to the
provisioned traffic of one to two large data centers to get an idea. Provisioned
bandwidth of data centers is often 10 Gb/s. Our experiment shows that savings
are possible without making a structural change or manual investigation. In or-
der to contribute to a better solution, more detailed exploitation of data centers,
e.g., including different types of storage, compute nodes, etc., for example, is
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Fig. 4. On the left, data sets are allocated by clustering by type and user. The full
optimization, on the right, is done with similarity model and the exploitation of pop-
ularity. It saves 6 percents, ranging from almost 6.3 percent for with 20 sites, and 5.5
percent points for 40 sites.

possible in the following way: A second optimization level can be added, and
both algorithms will go hand in hand. Our model works on the top level regard-
ing inter-data center traffic. Another model, with the proper cost metric also a
variation of this model, will act on the second level, an entity for the internal
costs per data center.

The first part of the composed model, the similarity model from section
3.2, can be updated from time to time. This update process would run in the
background to update to the next version of this sub-model.

The core model is the allocation model from section 3.3. It can also be set
up in such a way that it operates on a subset of the data sets. Say, new data
sets shall be placed according to its policy. Free resources must be observed by
the model. A flag would be added to distinguish between data sets to be moved
and fixed data sets, i.e., data sets allocated/placed recently [21].

The volume of data sets is small compared to the population in the real grid.
Anyhow, the outcome of the data allocation can be used in a top-down approach,
in which missing data sets of the entire population would be clustered to the
initial data sets. So, for example, 1 data set becomes 10, and 10 becomes 100,
until all data sets are included. The solution contains clusters with contiguous
elements, as with the solution of the ’1’ data sets with the heuristic variables’
similarity and popularity. In other words, the sparse ’1’ data sets have a high
dependency on the nearby data sets of the entire population.

The presented model shows the potential to perform data placement/allocation
with high-dimensional data in the background. Further, the loss function allows
the model to be more abstract. The model operates solely regarding the loss
and only sees the data and the relevant resources; these are the capacities. The
complexity of the data processing with all relevant resources hides in the loss.
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