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Abstract. Modelling the trajectorial motion of humans along the ground
is a foundational task in the quantitative analysis of sports like associ-
ation football. Most existing models of football player motion have not
been validated yet with respect to actual data. One of the reasons for this
lack is that performing such a validation is not straightforward, because
models of player motion are usually phrased in a way that emphasises
possibly reachable positions rather than expected positions. Since posi-
tional data of football players typically contains outliers, this data may
misrepresent the range of actually reachable positions.
This paper proposes a validation routine for trajectorial motion models
that measures and optimises the ability of a motion model to accurately
predict all possibly reachable positions by favoring the smallest predicted
area of reachable positions that encompasses all observed reached posi-
tions up to a manually defined threshold. We demonstrate validation and
optimisation on four different motion models, assuming (a) motion with
constant speed, (b) motion with constant acceleration, (c) motion with
constant acceleration with a speed limit, and (d) motion along two seg-
ments with constant speed. Our results show that assuming motion with
constant speed or constant acceleration without a limit on the achievable
speed is particularly inappropriate for an accurate distinction between
reachable and unreachable locations. Motion along two segments of con-
stant speed provides by far the highest accuracy among the tested models
and serves as an efficient and accurate approximation of real-world player
motion.

Keywords: Football · Positional data · Motion models · Performance
analysis · Model validation · Complex systems

1 Introduction

Recently, professional association football has seen a surge in the availability of
positional data of the players and the ball, typically collected by GPS, radar
or camera systems [10]. The growing availability of such data has opened up
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an exciting new avenue for performance analysis [8]. Positional data enables the
development of sophisticated performance indicators that accurately measure
the technical, tactical and athletic performance of teams and players beyond
the possibilities of qualitative observation and simple event-based statistics like
ball possession and passing accuracy. High-quality measures of performance are
invaluable for effective performance analysis, training, opposition scouting, and
player recruitment.

The modelling of human motion is a foundational component of many perfor-
mance metrics based on positional data. For example, algorithms that compute
space control [12] or simulate passes [13] implicitly or explicitly make assump-
tions about human kinematics. These kinematic assumptions have never been
verified so far, which calls the validity of these assumptions and the resulting
models into question.

In sports with many degrees of freedom like football, predicting player motion
is generally a very hard task because player positioning and motion are the result
of an intractable, individual decision-making process. Luckily, many applications
do not require predictions of the actual position and kinematic state of players
but merely of their possibly reachable positions. This requirement essentially
shifts the purpose of a motion model from predicting expected positions towards
estimating the most remote reachable positions. Estimating such extreme val-
ues from real-world data can be difficult, because extreme values are typically
rare and particularly likely to include a component of measurement error. Since
the distribution of measurement error within player trajectories can vary signif-
icantly between data sets due to the use of different measurement systems and
post-processing methods, a validation procedure of player motion models needs
to flexibly account for various, possibly unknown distributions of measurement
error.

The contributions of this paper are twofold: First, we formally propose a
validation routine for the quality of player motion models which measures their
ability to predict all reachable positions depending on the player’s current po-
sition and kinematic state. The procedure favors those models that predict the
smallest reachable areas which still contain a certain, manually defined propor-
tion of actually observed positions. Second, we use this routine to evaluate and
optimise the parameters of four models of motion, assuming (a) motion with
constant speed, (b) motion with constant acceleration, (c) motion with constant
acceleration with a speed limit, and (d) motion along two segments of constant
speed. This evaluation sheds light on the predictive quality of these models and
suggests sensible parameter values for them.

The rest of this paper is structured as follows: Section 2 provides some back-
ground on motion models in football and their validation. Section 3 formally
presents our validation routine. Section 4 describes our exemplary model valida-
tion and optimisation based on a real data set and discusses its results. Section 5
summarises the contributions of this paper and points out possible directions of
further research.
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2 Motion models in football: state of the art

Assumptions about the trajectorial motion of players are inherent to many per-
formance indicators within the analysis of sports games. One example is the
commonly used concept of space control which assigns control or influence over
different areas on the pitch to players. It is used, for example, as a context vari-
able to rate football actions [4, 11] and for time series analyses [5]. Controlled
space is often defined as the area that a player is able to reach before any other
player, given a specific model of motion for each player. Commonly used for this
purpose are motion models assuming constant and equal speed, which results in
a Voronoi partition of the pitch [3], or accelerated movement, possibly including
a friction term [6] or velocity-dependent acceleration [14] to limit the achievable
speed. Spearman et al. [13] assume accelerated player motion with a limit on
both acceleration and velocity in the context of modeling ground passes.

Motion models have also been estimated directly from positional data by fit-
ting a probability distribution over appropriately normalized future positions [1,
2]. However, such empirical models can be computationally expensive, prone
to outliers and their current versions lend themselves less naturally to extreme
value estimation than theoretically derived models. Attempts to validate trajec-
torial player motion models are rare. Notably, Caetano et al. [2] performed a
validation of their space control model, and thus indirectly also the underlying
motion model, by checking how many future positions of players fall within their
associated controlled area for a number of time horizons.

3 Player motion model and validation procedure

3.1 Objectives & Requirements

The essential requirement for a player motion model with regards to our valida-
tion routine is that it defines a non-zero, finite area that corresponds to the set
of positions that the player is able to reach according to the model.

The validation procedure can be represented as a function rating a suitable
player motion model on how well it fits some real positional data. Usually, po-
sitional data in soccer consists of individual frames, with the position of each
player defined for each frame. The frames are normally separated by a constant
amount of time (seconds per frame). In order to abstract our validation proce-
dure from the underlying positional data, we introduce the concept of a trail. A
trail represents a slice of a player’s trajectory over some duration ∆t. Formally,
a trail is defined as the quadruple:

(~x0, ~v0, ~xt, ∆t) (1)

– ~x0: (2D) position of a given player at some arbitrary time t0
– ~v0: (2D) velocity of the player at time t0
– ~xt: (2D) position of the player at time t = t0 +∆t
– ∆t: time horizon (predefined)
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Fig. 1. A trail visualized. The black dots represent the positions of a player for a
number of consecutive frames. In this case, the time horizon ∆t is four times the
duration of a frame. The player’s current velocity ~v0 can be calculated using numerical
differentiation if it is not present in the data.

Figure 1 visualizes how a trail can be extracted from the positional data of a
player.

The validation function takes a motion model m and a set of trails T as
parameters and returns a numerical validation score. Formally, the function has
the signature: (m,T )→ R.

Since every reached position is trivially contained in a large enough area,
the validation function should take not only correctness but also precision of the
model into account. The correctness of a motion model measures its ability to
make true predictions, i.e. to predict reachable areas that contain the true target
position ~xt. Precision refers to how well narrowed-down the predicted areas of a
model are. There is a trade-off relationship between correctness and precision.

One non-functional requirement worth mentioning is performance. Since a
player motion model usually has to be invoked and evaluated separately for every
trail, the computational complexity is generally θ(n) with n being the number of
trails, unless some algorithmic optimisation or approximation is applied. Given
that a high number of trails is desirable in order to get a representative sample
of player displacements including a sufficient number of extrema, the validation
of a trail should be as efficient as possible.

3.2 Conceptual approach

Measuring Correctness. For the conceptual understanding of the correctness
measure, it helps to consider only a single trail (1) of a player. Using ~x0, ~v0 and
∆t, a motion model makes a prediction for the reachable area. The reachable area
predicted by a motion model m is defined by the set of reachable positions Rm.
If ~xt is contained in Rm, the model m has made a correct prediction. Following
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this logic, a motion model achieves the highest possible correctness if and only if
for every trail, the model predicts a reachable area in which ~xt is contained. As in
practice, there may appear considerable outliers due to measurement errors, we
decided against weighting incorrect predictions according to their distance to the
predicted reachable area. The ratio between the number of correct predictions
ncorrect and the number of total predictions ntotal of a model m for a sample of
trails T will be called hit_ratio.

hit_ratio(m,T ) =
ncorrect

ntotal
=

ncorrect

length(T )
(2)

The total number of predictions is always equal to the length of the sample of
trails as the motion model makes exactly one prediction for each trail. We can
use the hit_ratio of a model as an indicator for its correctness. A high hit_ratio
corresponds to a high correctness and vice-versa.

Measuring Precision. In the context of this paper, the precision of a motion
model represents how much it narrows down the reachable area of a player.
Smaller reachable areas imply a higher precision of the model and are generally
preferable, given an equal hit_ratio.

To determine the precision of a model across multiple evaluated trails, we
use the inverse of the mean surface area of all correctly predicted reachable
areas. Incorrect predictions, where the target position ~xt is not contained in
the predicted reachable area are excluded from this average, since the precision
of a model would otherwise increase inappropriately for very narrow, incorrect
predictions. The precision of model m across a sample of trails T is given by:

precision(m,T ) =
1

1

ncorrect
·∑ areascorrect

=
ncorrect∑
areascorrect

(3)

where
∑
areascorrect is the sum of all correctly predicted reachable areas.

Defining an overall Validation Score. Since we aim for a single numerical
value as a score for player motion models, correctness and precision have to be
balanced in some way. Due to the fact that some measurement-related extreme
outliers can usually be expected in positional data from football games, a model
with a hit_ratio of 100% might not necessarily be desirable. Therefore, we intro-
duce a minimum level of correctness hit_ratiomin, which represents a minimal
required ratio between correct and total predictions of a model. We propose that
if a motion model m satisfies the condition

hit_ratio(m,T ) ≥ hit_ratiomin

for a trail sample T , the exact hit_ratio(m,T ) should be indifferent for the
overall validation score of m. This way, extreme outliers in the positional data
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caused by measurement-related errors have no influence on the validation score,
as long as hit_ratiomin is chosen adequately.

Consequently, for a motion model m that exceeds hit_ratiomin, the valida-
tion score is only determined by the precision of the model (3). We define the
score of a motion model m with the sample of trails T as:

score(m,T ) =

{
0 if hit_ratio(m,T ) < hit_ratiomin

precision(m,T ) else
(4)

The scoremeasures how well a motion models fits a sample of positional data.
hit_ratiomin can be considered a free parameter of this validation procedure.
Although the primary rationale behind introducing this parameter is to prevent
outliers from influencing the validation score, it can also be tuned to some extent
for adjusting the behaviour of the validation procedure. Using a relatively high
hit_ratiomin favors models with a high correctness, whereas a lower one favors
models with a high precision. It is important to note that due to this trade-off
relationship, the "right" balance between correctness and precision depends on
the specific use-cases of the model. Thus, the exact value for hit_ratiomin has
to be chosen based on both the expected quality of the positional data in terms
of outliers and the desired properties of the model with regard to correctness vs.
precision.

In any case, hit_ratiomin has to be be chosen such that

hit_ratiomin ≤ 1− noutlier

length(T )
(5)

where noutlier is the (expected) number of outliers in the sample T. If (5) were
violated, the validation score would be influenced by the outliers in the sample,
which invalidates the primary purpose of using hit_ratiomin as a threshold for
the validation score. The identification of outliers or estimation of their preva-
lence within a sample is naturally non-trivial, since the appropriate statistical
method for achieving an acceptable estimate depends on the specific properties
of the sample. However, this paper will not go into further detail here.

3.3 Implementation

For the actual computation of the validation score of a given motion model
with reasonable efficiency, we need to overcome a few challenges. This section
outlines how these challenges can be managed when implementing the validation
procedure.

Implementing a motion model interface. First of all, a player motion model
m predicts a set of reachable positions Rm based on the input parameters. This
set Rm, however, is hardly useful for implementing our validation procedure
because it is an infinite set. In practice, Rm typically corresponds to a bounded,
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simply-connected shape, so Rm is also defined through its boundary Bm. We
can use a simple polygon to approximate Bm and thus Rm. With an increasing
number of polygon vertices, this approximation can become arbitrarily accurate.

Using a polygon to represent the reachable area predicted by a model does
not only allow a straightforward computation of its validation score but is also
practical for defining a common interface for motion models. Therefore, we imple-
ment the abstract concept of a motion model as an interface with the parameters
(~x0, ~v0, ∆t) and an array of vertices representing a polygon as return type.

Implementing the validation function. Translating the conceptual approach
for calculating the validation score is fairly straightforward. Both the hit_ratio
(2) and the precision (3) have to be calculated.

It has to be determined for each trail in T whether ~xt is inside the polygon
returned by the motion model for the parameters (~x0, ~v0, ∆t) of the current trail.
For all trails where this is the case, it is also necessary to calculate the surface
area of that polygon in order to later compute the precision (3).

However, looping over the entire sample of trails is not always necessary.
Following the definition of the validation score (4), the score is always equal to
0 if the condition hit_ratio(m,T ) < hit_ratiomin is true. We can reformulate
the hit ratio (2) as:

hit_ratio(m,T ) =
ncorrect

length(T )
=
length(T )− nincorrect

length(T )

with nincorrect being the number of incorrect predictions made by m for T . We
can put this reformulated definition of hit_ratio(m,T ) into our condition from
the definition of the validation score (4):

length(T )− nincorrect
length(T )

< hit_ratiomin

Solved for nincorrect:

nincorrect > (1− hit_ratiomin) · length(T ) (6)

Therefore, score(m,T ) is equal to 0 if and only if this condition (6) is satisfied.
As length(T ) and hit_ratiomin are known beforehand, the execution of the
validation procedure can be stopped prematurely if the number of incorrect
predictions exceeds the threshold (1 − hit_ratiomin) · length(T ). This small
optimisation to the original procedure drastically accelerates the validation of
motion models with a low correctness, i.e. a low hit_ratio.

Algorithm 1 describes the implementation for the computation of the valida-
tion score including the mentioned optimisation.

4 Experiment & Evaluation of results

To illustrate validation and parameter optimisation using the procedure defined
in section 3, we evaluate four different models of motion, assuming (a) motion
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inputs : motion model m, sample of trails T , free parameter hit_ratiomin

output: The validation score as defined in (4)

nincorrect ← 0;
Let A be an empty array;
Let length(T ) be the number of trails in T ;
foreach trail ∈ T do

if nincorrect > (1− hit_ratiomin)length(T ) then
return 0

end
Let (~x0, ~v0, ~xt,∆t) represent the current trail;
Let P be the reachable area polygon predicted by m based on (~x0, ~v0,∆t);
if ~xt is contained in P then

Let a be the surface area of P ;
Append a to A;

else
nincorrect ← nincorrect + 1;

end
end
ncorrect ← length(T )− nincorrect;
return ncorrect/sum(A);

Algorithm 1: Validation routine, optimized

with constant speed, (b) motion with constant acceleration, (c) motion with
constant acceleration until a speed limit is reached, and (d) motion along two
segments with constant speed.

4.1 Data set

For the evaluation, we use the public sample data set provided by Metrica Sports
which consists of three anonymised games of football [9]. The positional data has
been collected using a video-based system and is provided at a frequency of 25
Hz. Since the data contains no velocity, we compute a player’s velocity ~vi for
each frame i as ~vi =

~xi+1−~xi−1

2·0.04s .
For performing our validation routine we convert the positional data into a

list of trails. As outlined in (1), each trail is defined as a quadruple (~x0, ~v0, ~xt, ∆t).
For this experiment, we use a constant time horizon of ∆t = 1s for all trails.
After visual inspection of the data, the minimal required hit ratio is set to
hit_ratiomin = 99.975%. We evaluate the models on a random sample of 5 · 105
trails across all three games and all participating players.

4.2 Preparation of motion models

We phrase the motion models such that they define a set of reachable positions R.
This set has to form a non-zero, finite area. To approximate the reachable area
as a polygon, R also has to be simply connected and have a computationally
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approximable boundary B. The sets R and B depend on the player’s initial
position ~x0 and velocity ~v0, the selected time horizon ∆t, and the parameters of
the respective model. For brevity of notation, we set t0 = 0 such that ∆t = t.
The reachable areas defined by the models (a) - (d) are exemplarily visualized
in Figure 2.

(a) Constant speed. Given motion with some constant speed v ∈ [0, vmax] in
direction φ from a starting location ~x0, the set of reachable target locations R
after time t forms a disk with the center ~x0 and radius vmaxt.

R = {~x | ∃φ ∈ [0, 2π],∃v ∈ [0, vmax], ~x = ~x0 + v

[
cosφ
sinφ

]
t}

B = {~x | ∃φ ∈ [0, 2π], ~x = ~x0 + vmax

[
cosφ
sinφ

]
t} (7)

(b) Constant acceleration. Given motion with some constant acceleration
a ∈ [0, amax] in direction φ from a starting location ~x0 with starting velocity ~v0,
the set of reachable positions R after time t forms a disk with the center ~x0+~v0t
and radius 1

2amaxt
2.

R = {~x | ∃φ ∈ [0, 2π],∃a ∈ [0, amax], ~x = ~x0 +
1

2
a

[
cosφ
sinφ

]
t2 + ~v0t}

B = {~x | ∃φ ∈ [0, 2π], ~x = ~x0 +
1

2
amax

[
cosφ
sinφ

]
t2 + ~v0t} (8)

(c) Constant acceleration with speed limit. We want to restrict model
(b) such that the player’s speed never exceeds a fixed maximum vmax. For that
purpose, the simulated trajectory is divided into two segments: A first segment of
motion with constant acceleration a until vmax is reached, and a second segment
of motion with constant speed vmax. A non-negative solution for the time tacc
until vmax is reached is guaranteed to exist if the player’s initial speed |~v0| does
not exceed vmax. For that reason, ~v0 is clipped to ~v∗0 = ~v0

min(|~v0|,vmax)
|~v0| . With

t∗acc = min(tacc, t), the reachable area R corresponds to the following simply
connected shape, which can be non-circular as t∗acc depends on φ.

R = {~x | ∃φ ∈ [0, 2π],∃a ∈ [0, amax], ~x = ~x0 + ~v∗0t+ at∗acc(t−
1

2
t∗acc)

[
cosφ
sinφ

]
}

B = {~x | ∃φ ∈ [0, 2π], ~x = ~x0 + ~v∗0t+ amaxt
∗
acc(t−

1

2
t∗acc)

[
cosφ
sinφ

]
} (9)
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y
[m

]

(a) Constant speed
(vmax = 7ms )

(b) Constant acceleration
(amax = 9ms2 )

(c) Constant acceleration with speed limit
(amax = 9ms2 , vmax = 7ms )

(d) Two-segment constant speed
(tinert = 0.5s, keep_initial = True,
vconst = 7ms )

(~x0, ~v0)

Fig. 2. Exemplary boundaries B of the reachable area defined by different motion

models when the player starts at ~x0 = ~0 with velocity ~v0 =

[
5m

s

0

]
. The time horizon is

∆t = 1s.

(d) Two-segment constant speed. We propose the following approximate
model to respect the current kinematic state of a player: The player’s motion is
divided into two segments of constant-speed motion. First, with some speed vinert
for a predetermined amount of time tinert in the direction of ~v0 and, subsequently,
with speed vfinal in some arbitrary direction φ. Using t∗inert = min(tinert, t), the
set of reachable positions R forms a disk with the radius vfinal(t − t∗inert) if
tinert > t and is otherwise reduced to the point ~x0 + vinert

~v0
|~v0| t.

R = {~x | ∃φ ∈ [0, 2π],∃v ∈ [0, vfinal], ~x = ~x0+vinert
~v0
|~v0|

t∗inert+vfinal

[
cosφ
sinφ

]
(t−t∗inert)}

B = {~x | ∃φ ∈ [0, 2π], ~x = ~x0 + vinert
~v0
|~v0|

t∗inert + vfinal

[
cosφ
sinφ

]
(t− t∗inert) (10)

The values of vinert and vfinal can in principle be set in various ways. In our
parameterisation, we determine the value of vinert according to a boolean pa-
rameter keep_initial, such that the speed of the player is either preserved or
set to a fixed value vconst.

vinert =

{
|~v0| if keep_initial
vconst else

The value of vfinal is either computed based on two parameters amax and vmax

which corresponds to pretending that the player has accelerated during the first
segment, or set to the fixed value vconst.

vfinal =

{
min(vinert + amaxtinert, vmax) if amax and vmax are set
vconst else
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Computation of reachable area It follows from equations (7) - (10) that for
each presented model, the reachable area can be approximated as a polygon by
computing the vertices of that polygon as points from the boundary B along a
discrete set of angles φ. For our evaluation, we choose to evaluate 200 evenly
spaced angles.

4.3 Optimisation of model parameters

Based on the validation procedure outlined in section 3, we aim to find the
motion model m out of the set of considered models M which maximises the
score (4) for a given sample of trails T . We define the optimal model as:

arg max
m∈M

(score(m,T )) (11)

However, for each of the four player motion models defined in section 4.2, there
are free parameters which specify its behaviours. For this reason, in order to
determine the best model, the optimal combination of parameters has to be
found for each model. We thus extend (11) by introducing the tuple Pm that
represents the values for the free parameters of a model m(Pm):

arg max
m∈M

(max
Pm

(score(m(Pm), T ))) (12)

The parameters of the models (a) - (d) are, as outlined in section 4.2:

– (a) Constant speed: P(a) = (vmax)
– (b) Constant acceleration: P(b) = (amax)
– (c) Constant acceleration with speed limit: P(c) = (amax, vmax)
– (d) Two-segment constant speed: P(d) = (tinert, keep_initial, vconst, amax, vmax)

The main challenge here is to determine the optimal Pm for a model with
regard to its score (4). For this experiment, the best parameter configuration Pm

is determined using Bayesian optimisation. However, Bayesian optimization gen-
erally does not work for discrete parameter values such as the boolean variable
keep_initial in model (d). There are proposals for enabling discrete variables,
most notably by Luong et al. [7], but this works only if all values in Pm are
discrete, which does not apply to our models. Luckily, our models have very few
discrete parameters, so we perform one Bayesian optimisation for each combi-
nation of discrete parameter values and use the best score across those results.

4.4 Evaluation of results

The performance of the optimised models (a) - (d) and their parameter values
are shown in Figure 3.

The constant-speed model (a) unsurprisingly shows a weaker performance
(score−1 = 218m2) than the more sophisticated models (c) and (d), since it
does not factor in the initial kinematic state of the player. If the player moves at
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0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

Validation score [ 1
m2 ]

(d) Two-segment constant speed
tinert = 0.22s

keep_initial = True
amax = 19.14ms2
vmax = 12.92ms

(c) Constant acceleration with speed limit
amax = 19.42ms2
vmax = 8.91ms

(b) Constant acceleration
amax = 20.92ms2

(a) Constant speed
vmax = 8.34ms

0.01395

0.00693

0.00291

0.00458

Fig. 3. Comparison of the performance of the four models (a) - (d) with their optimised
parameter values.

a high speed, the model unrealistically assumes that the player can instantly run
at maximal speed in the other direction. Thus, for high speeds, the model over-
estimates the amount of reachable space in directions which sufficiently deviate
from the direction which the player is initially moving towards.

The naive constant acceleration model (b) (score−1 = 344m2) performs even
worse than model (a), likely because it makes the unrealistic assumption that the
possible magnitude of acceleration is independent of the magnitude and direction
of a player’s current velocity. This implies in particular that for high speeds, the
amount of reachable space in the direction that a player is moving towards will
be heavily overestimated since the model assumes that the player’s speed can
increase unboundedly.

The model assuming constant acceleration with a speed limit (c) (score−1 =
144m2) outperforms models (a) and (b). However, the optimised value of the
maximally possible acceleration of a player amax is physically unrealistic. A
value of amax = 19.42m

s2 assumes that a player can accelerate from zero to
the top speed vmax = 8.91m

s (= 32.08km
h ) within about half a second, which

is implausibly fast. Therefore, the model still overestimates the reachable area.
One approach to improve the constant acceleration model could be to view
the maximally possible acceleration as being dependent on the direction and
magnitude of the current velocity.

The two-segment constant speed model (d) (score−1 = 71.7m2) is able to
account for all reachable positions by predicting only about half the area of
model (c). It successfully narrows down the area that a player can reach within
one second to a circle with an average radius of 4.8 meters which is highly ac-
curate. Model (d) not only achieves the best score in our evaluation, but is also
mathematically simpler than model (c). For that reason, it is also computation-
ally more efficient across the various tasks that motion models are used for, like
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the computation of reachable areas or the shortest time to arrive at a specific
location. A drawback of model (d) is that in its presented form, it only makes
meaningful predictions for time horizons ∆t > tinert (where the optimised value
is tinert = 0.22s). Below this duration, the model is not applicable unless it is
appropriately extended.

In summary, our newly presented model (d) is both highly accurate and
computationally efficient. The models (a) - (c) have obvious weaknesses and are
not adequate to accurately identify reachable locations.

5 Conclusion

We presented a novel approach to the validation and optimisation of models of
trajectorial player motion in football and similar sports. We also presented an
empirical comparison of the accuracy of various such models. In line with our
expectations, more sophisticated and accurate assumptions made by a motion
model generally tend to be reflected in a better predictive performance. Yet,
by far the best-performing model is our proposed approximate model which as-
sumes motion along two segments with constant speed. Using this model allows
researchers to compute complex performance indicators more efficiently and ac-
curately over large data sets. In contrast, player motion should not be assumed
to take place with constant speed or constant acceleration with unlimited speed.
These assumptions are inappropriate to accurately distinguish reachable from
unreachable locations.

The validation and optimisation approach described in this paper can be
applied to data with arbitrary distributions of measurement error. However, this
is also a disadvantage, since the threshold for the amount of outliers that are
attributed to measurement error has to be determined manually. This threshold
also has to be set for each distinguished population, depending on the frequency
of extrema and the distribution of measurement error in the population. If for
example one wants to evaluate motion models for each player individually, it
would be misleading to assign the same threshold to each player because players
who sprint regularly during the game produce more positional extrema (and
thus outliers) than goalkeeperes, for example, who are rarely forced to run with
maximal effort. A solution to the problem of having to specify a threshold is to
perform validation and optimisation with different thresholds and analyse how
this choice affects the result. Also, the approach presented here can be extended
to automatically determine an optimal threshold for known error distributions.

In the future, we plan to search for motion models that further exceed the
presented ones in accuracy and computational efficiency. A key towards this
goal is to estimate motion models from positional data. Many problems ad-
dressed in this paper are mirrored in empirical model fitting, for example the
need to exclude outliers and the lack of generalisability across populations [1].
In the context of validation, empirical models can serve as a highly informative
benchmark to reveal how well theoretical models are able to approximate actual
human motion.
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