Assessing Architecture Conformance to
Coupling-Related Infrastructure-as-Code Best
Practices: Metrics and Case Studies

Evangelos Ntentos!, Uwe Zdun?, Jacopo Soldani?, and Antonio Brogi?

! University of Vienna, Faculty of Computer Science, Research Group Software Architecture,
Austria
firstname.lastname@univie.ac.at
2 University of Pisa, Faculty of Computer Science, Italy
firstname.lastname@unipi.it

Abstract. Infrastructure as Code (IaC) is an IT practice that facilitates the man-
agement of the underlying infrastructure as software. It enables developers or op-
erations teams to automatically manage, monitor, and provision resources rather
than organize them manually. In many industries, this practice is widespread and
has already been fully adopted. However, few studies provide techniques for eval-
uating architectural conformance in IaC deployments and, in particular, aspects
such as loose coupling. This paper focuses on coupling-related patterns and prac-
tices such as deployment strategies and the structuring of IaC elements. Many
best practices are documented in gray literature sources, such as practitioner
books, blogs, and public repositories. Still, there are no approaches yet to auto-
matically check conformance with such best practices. We propose an approach
based on generic, technology-independent metrics tied to typical architectural
design decisions for IaC-based practices in microservice deployments to support
architecting in the context of continuous delivery practices. We present three case
studies based on open-source microservice architectures to validate our approach.

Keywords: Infrastructure as Code, metrics, software architecture, architecture confor-
mance, laC best practices

1 Introduction

Today, many microservice-based systems are being rapidly released, resulting in fre-
quent changes not only in the system implementation but also in its infrastructure and
deployment [7l13]. Furthermore, the number of infrastructure nodes that a system re-
quires is increasing significantly [13] and the managing and structuring of these el-
ements can have a significant impact on the development and deployment processes.
Infrastructure as Code enables automating the provisioning and management of the in-
frastructure nodes through reusable scripts, rather than through manual processes [11].
IaC can ensure that a provisioned environment remains the same every time it is de-
ployed in the same configuration, and configuration files contain infrastructure spec-
ifications making the process of editing and distributing configurations easier [L1}1].

2 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

TaC can also contribute to improving consistency and ensuring loose coupling by sep-
arating the deployment artifacts according to the services’ and teams’ responsibilities.
The deployment infrastructure can be structured using infrastructure stacks. An infras-
tructure stack is a collection of infrastructure elements/resources that are defined, pro-
visioned, and updated as a unit [11]. A wrong structure can result in severe issues if
coupling-related aspects are not considered. For instance, defining all the system de-
ployment artifacts as only one unit in one infrastructure stack can significantly impact
the dependencies of system parts and teams as well as the independent deployability of
system services. Most of the established practices in the industry are mainly reported
in the so-called “grey literature,” consisting of practitioner blogs, system documenta-
tion, etc. The architectural knowledge is scattered across many knowledge sources that
are usually based on personal experiences, inconsistent, and incomplete. This creates
considerable uncertainty and risk in architecting microservice deployments.

In this work, we investigate such IaC-based best practices in microservice deploy-
ments. In this context, we formulate a number of coupling-related Architectural Design
Decisions (ADDs) with corresponding decision options. In particular, the ADDs focus
on System Coupling through Deployment Strategy and System Coupling through Infras-
tructure Stack Grouping. For each of these, we define a number of generic, technology-
independent metrics to measure the conformance of a given deployment model to the
(chosen) ADD options. Based on this architectural knowledge, our goal is to provide an
automatic assessment of architecture conformance to these practices in IaC deployment
models. We also aim for a continuous assessment, i.e., we envision an impact on con-
tinuous delivery practices, in which the metrics are assessed with each delivery pipeline
run, indicating improvement, stability, or deterioration in microservice deployments.
In order to validate the applicability of our approach and the performance of the met-
rics, we conducted three case studies on open source microservice-based systems that
also include the IaC-related scripts. The results show that our set of metrics is able to
measure the support of patterns and practices.

This paper aims to answer the following research questions:

— RQ1 How can we measure conformance to coupling-related IaC best practices in
the context of IaC architecture decision options?

— RQ2 What is a set of minimal elements needed in an IaC-based deployment and
microservice architecture model to compute such measures?

This paper is structured as follows: Section [2] discusses related work. Next, we de-
scribe the research methods and the tools we have applied in our study in Section 3] In
Section 4 we explain the ADDs considered in this paper and the related patterns and
practices. Section E] introduces our metrics in a formal model. Then, three case stud-
ies are explained in Section [6] Section [7] discusses the RQs regarding the evaluation
results and analyses the threats to validity of our study. Finally, in Section [§] we draw
conclusions and discuss future work.

2 Related Work

Several existing works target collecting IaC bad and best practices. For instance,
Sharma et al. [17] present a catalog of design and implementation language-specific

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 3

smells for Puppet. A broad catalog of language-agnostic and language-specific best and
bad practices related to implementation issues, design issues, and violations of essential
IaC principles is presented by Kumara et al. [9]. Schwarz et al. [16] offer a catalog of
smells for Chef. Morris [11] presents a collection of guidance on managing IaC. In
his book, there is a detailed description of technologies related to IaC-based practices
and a broad catalog of patterns and practices. Our work also follows IaC-specific
recommendations given by Morris [[L1]], as well as those more microservice-oriented
given by Richardson [15]]. We indeed build on their guidelines and catalogs of bad/best
practices to support architecting the deployment of microservices, while also enabling
us to assess and improve the quality of obtained IaC deployment models.

In this perspective, it is worth relating our proposal with existing tools and met-
rics for assessing and improving the quality of [aC deployment models. Dalla Palma et
al. [4l5] suggest a catalog of 46 quality metrics focusing on Ansible scripts to identify
IaC-related properties and show how to use them in analyzing IaC scripts. A tool-based
approach for detecting smells in TOSCA models is proposed by Kumara et al. [[10].
Sotiropoulos et al. [[18] provide a tool to identify dependency-related issues by analyz-
ing Puppet manifests and their system call trace. Van der Bent et al. [2] define metrics
reflecting TaC best practices to assess Puppet code quality. All such approaches focus on
the use of different metrics to assess and improve the quality of IaC deployment mod-
els, showing the potential and effectiveness of metrics in doing so. We hence follow a
similar, metrics-based approach but targeting a different aspect than those of the above
mentioned approaches, namely system coupling. To the best of our knowledge, ours is
the first solution considering and tackling such aspects.

Other approaches worth mentioning are those by Fischer et al. [6] and Krieger et al.
[8], who both allow automatically checking the conformance of declarative deployment
models during design time. They both model conformance rules in the form of a pair
of deployment model fragments. One of the fragments represents a detector subgraph
that determines whether the rule applies to a particular deployment model or not. The
comparison of the model fragments with a given deployment model is done by subgraph
isomorphism. Unlike our study, this approach is generic and does not introduce specific
conformance rules, such as checking coupling-related ADDs in IaC models.

Finally, it is worth mentioning that architecture conformance can also be checked
with other techniques such as dependency-structure matrices, source code query lan-
guages, and reflexion models as shown by Passos et al. [[14]. So far, methods based on
various interrelated IaC-based metrics to check pattern/best practice conformance like
ours do not yet exist. Also, none are able to produce assessments that combine different
assessment parameters (i.e., metrics). Such metrics, if automatically computed, can be
used as a part of larger assessment models during development and deployment time.

3 Research and Modeling Methods

Figure [I] shows the research steps followed in this study. We first studied knowledge
sources related to IaC-specific best practices from practitioner books and blogs, and the
scientific literature (such as [9U11J15I16l17]]) as well as open-source repositories (such
as the case studies discussed in Section [6). We then analyzed the data collected using

4 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

qualitative methods based on Grounded Theory [3] coding methods, such as open and
axial coding, and extracted the two core IaC decisions described in Section[dalong with
their corresponding decision drivers and impacts. We followed the widely used pattern
catalogs by Morris [11] and Richardson [15] closely to obtain the necessary informa-
tion since both are well documented, detailed, and address many relevant concerns in
the TaC domain. Among the many design decisions, covered in these catalogs, we se-
lected those that are directly connected to IaC practices, operate at a high abstraction
level (i.e., they are “architectural” design decisions), and are related to architectural
coupling issues. We then defined a set of metrics for automatically computing confor-
mance to each coupling-related pattern or practice per decision described in Section
] We studied and modeled three case studies following the Model Generation process.
Finally, we evaluated our set of metrics using the case studies. Furthermore, in our work
[[12]], we have introduced a set of detectors to automatically reconstruct an architecture
component model from the source code. Combining the automatic reconstruction with
the automatic computation of metrics, the evaluation process can be fully automated.

Search
Repositories
Search Web
l Resources .
Research Papers
Define and Analyse Case
Studies

Model Visualisation
Evaluate Metrics

Fig. 1. Overview of the research method followed in this study

+"Model Generation Process ™

Static Code Analysis

R —

Codeable Models
Generator

Analyze Data: Grounded
Theory
Formulate Core Decisions
Define Metrics

Component Model

The systems we use as case studies were developed by practitioners with relevant
experience and are supported by the companies Microsoft, Instana, and Weaveworks
as microservice reference applications, which justifies the assumption that they provide
a good representation of recent microservice and IaC practices. We performed a fully
manual static code analysis for the IaC models that are in the repositories together
with the application source code. To create the models, we used our existing modeling
tool Codeable Models. The result is a set of decomposition models of the software

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 5

systems along with their deployments (see Section [5.1). The code and models used in
and produced as part of this study have been made available online for reproducibility .

Figure 2] shows an excerpt of the resulting model of Case Study I in Section[f] The
model contains elements from both application (e.g., Service, Database) and infrastruc-
ture (e.g., Container, Infrastructure Stack, Storage Resources). Furthermore, we have
specified all the deployment-related relationships between these elements. In particular,
a Service and a Web Server are deployed on a Container. A Database is deployed on
Storage Resources and also on a separate Container. An Infrastructure Stack defines
deployment of a Container as well as a Web Server. All the containers run on a Cloud
Server (e.g., ELK, AWS, etc.).

«database connector» «database connector»
«Database» «Service» «Database» «Service»
Marketing DB ™ Marketing Payment DB ‘e Payment
:Component :Component :Component :Component
«deployed on» «deployed on» «deployed on» «deployed on»
«Infastructure Stack» «Infastructure Stack» «Infastructure Stack» «Infastructure Stack»
Marketing Data Stack Marketing API Stack Payment Data Stack Payment API Stack
:Infastructure Resources :Infastructure Resources :Infastructure Resources :Infastructure Resources
“deﬁnes@ioymem of» «defineﬁdeplcymem of» «defines|deployment of» «defines|deployment of»
Y
«Container» «Container» < «Container» «Container»
(| Docker Container 0.0.0.3 Docker Container 0.0.0.4 Docker Container 0.0.0.5 Docker Container 0.0.0.6
A
«deployed fon» «deployed an»
™
«Storage Resources» «deployed on» «Storage Resources»

Mongo DB MySQL DB
:Infrastructure Resources :Infrastructure Resources

«defines|dgployment of»
Yy N ployed on»
«deployed on»
«Web Server»

«deployed on» Webserver 10.0.0.9 [€
:Device

«defines deployment of»

«runs on»

«Cloud Server» «runs on»

. «runs on»
ELK Server:Device |&€

Fig. 2. Excerpt of the reconstructed model CS1 from Table

4 Decisions on Coupling-related, IaC-Specific Practices

In this section, we briefly introduce the two coupling-related ADDs along with their
decision options which we study in this paper. In one decision, we investigate the de-
ployment strategy between services and execution environments, and in the second, we
focus on the structure of all deployment artifacts.

3 https://doi.org/10.5281/zen0do.6696130

6 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

System Coupling through Deployment Strategy Decision. An essential aspect of de-
ploying a microservice-based system is to keep the services independently deployable
and scalable and ensure loose coupling in the deployment strategy. Services should be
isolated from one another, and the corresponding development teams should be able
to build and deploy a service as quickly as possible. Furthermore, resource consump-
tion per service is another factor that should be considered, since some services might
have constraints on CPU or memory consumption [[15]. Availability and behavior mon-
itoring are additional factors for each independent service that should be ensured in a
deployment. One option, which hurts the loose coupling of the deployment, is Multiple
Services per Execution Environment * In this pattern, services are all deployed in the
same execution environment making it problematic to change, build, and deploy the
services independently. A second option for service deployment is Single Service per
Execution Environment [15]. This option ensures loose coupling in deployment since
each service is independently deployable and scalable, and resource consumption can
be constrained for each service and monitoring services separately. Development team
dependencies are also reduced. Although Single Service per Execution Environment re-
duces coupling significantly, an incorrect structure of the system artifacts can introduce
additional coupling in deployment even if all services are deployed on separate execu-
tion environments. The following decision describes in detail the structuring practices.

System Coupling through Infrastructure Stack Grouping Decision. Managing the
infrastructure resources can impact significant architectural qualities of a microservice-
based system, such as loose coupling between services and independent development
in different teams. Grouping of different resources into infrastructure stacks should re-
flect the development teams’ responsibilities to ensure independent deployability and
scalability. An infrastructure stack may include different resources such as Compute
Resources (e.g., VMs, physical servers, containers, etc.) and Storage Resources (e.g.,
block storage (virtual disk volumes), structured data storage, object storage, etc.) [L1].
An important decision in infrastructure design is to set the size and structure of a stack.
There are several patterns and practices on how to group the infrastructure resources
into one or multiple stacks. A pattern that is useful when a system is small and simple is
the Monolith Stack [11]]. This pattern facilitates the process of adding new elements to
a system as well as stack management. However, there are some risks to using this pat-
tern. The process of changing a larger monolith stack is riskier than changing a smaller
one, resulting in more frequent changes. Also, services cannot be deployed and changed
independently and different development teams may be dependent on each other [11].
A similar pattern is the Application Group Stack [11]]. This kind of stack includes all
the services of multiple related applications. This pattern is appropriate when there is
a single development team for the infrastructure and deployment of these services and
has similar consequences as the Monolith Stack pattern.

4 The term Execution Environment is used here to denote the environment in which a service
runs such as a VM, a Container, or a Host. Please note that execution environments can be
nested. For instance, a VM can be part of a Production Environment which in turn runs on a
Public Cloud Environment. Execution environments run on Devices (e.g., Cloud Server).

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 7

A structuring that can work better with microservice-based systems is the Service
Stack [11]. In this pattern, each service has its own stack which makes it easier to man-
age. Stacks boundaries are aligned to the system and team boundaries. Thus, teams and
services are more autonomous and can work independently. Furthermore, services and
their infrastructure are loosely coupled since independent deployability and scalability
for each service are supported. The pattern Micro Stack [11] goes one step further by
breaking the Service Stack into even smaller pieces and creates stacks for each infras-
tructure element in a service (e.g., router, server, database, etc.). This is beneficial when
different parts of a service’s infrastructure need to change at different rates. For in-
stance, servers have different life cycles than data and it might work better to have them
in separate stacks. However, having many small stacks to manage can add complexity
and make it difficult to handle the integration between multiple stacks [[11]].

5 Metrics Definition

In this section, we describe metrics for checking conformance to each of the decision
options described in Section [

5.1 Model Elements Definition

In this paper, we use and extend a formal model for metrics definition based on our
prior work [19]. We extend it here to model the integration of component and deploy-
ment nodes. A microservice decomposition and deployment architecture model M is a
tuple (Nar, Corry NTap, CTy, c_source, c_target, nm_connectors, n_type, c_type)
where:

— Njy is a finite set of component and infrastructure nodes in Model M.

— Cpr € Npy x Ny is an ordered finite set of connector edges.

— NT)y is a set of component types.

— CT)y is a set of connector types.

— c_source : Cpy — Ny is a function returning the component that is the source of
a link between two nodes.

— c_target : Cyy — Ny is a function returning the component that is the target of
a link between two nodes.

- nm_connectors : P(Np) — P(Cyy) is a function returning the set of con-

nectors for a set of nodes: nm_connectors(nm) = {¢c € Cp : (In € nm :
(c_source(c) = n A c_target(c) € Cpr) V (c_target(c) = n A c_source(c) €
Cm))}-

— n_type : Ny — P(NT)yy) is a function that maps each node to its set of direct
and transitive node types. (for a formal definition of node types see [19]]).

- c_type : Cyy — P(CT)yy) is a function that maps each connector to its set of
direct and transitive connector types. (for a formal definition of connector types
see [19]).

All deployment nodes are of type Deployment_Node, which has the subtypes Execu-
tion_Environment and Device. These have further subtypes, such as VM and Container

8 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

for Execution_Environment, and Server, IoT Device, Cloud, etc. for Device. Environ-
ments can also be used to distinguish logical environments on the same kind of infras-
tructure, such as a Test_Environment and a Production_Environment. All types can be
combined, e.g. a combination of Production_Environment and VM is possible.

The microservice decomposition is modeled as nodes of type Component with com-
ponent types such as Service and connector types such as RESTful HTTP.

The connector type deployed_on is used to denote a deployment relation of a Com-
ponent (as a connector source) on an Execution_Environment (as a connector target).
It is also used to denote the transitive deployment relation of Execution_Environments
on other ones, such as a Container is deployed on a VM or a Test_Environment. The
connector type runs_on is used to model the relations between execution environments
and the devices they run on.

The type Stack is used to define deployments of Devices using the de-
fines_deployment_of relation. Stacks include environments with their deployed
components using the includes_deployment_node relation.

5.2 Metrics for System Coupling through Deployment Strategy Decision

The System Coupling through Deployment Strategy related metrics, introduced here,
each have a continuous value with range from 0 to 1, with O representing the optimal
case where the coupling is minimized by applying the recommended IaC best practices.

Shared Execution Environment Connectors Metric (SEEC). This metric
SEEC : P(Cp) — [0,1] returns the number of the shared direct connectors
from deployed service components to execution environments (e.g., contain-
ers or VMs) in relation to the total number of such service to environment
connectors. For instance, the connectors of two services that are deployed on
the same container are considered as shared. This gives us the proportion of
the shared execution environment connectors in the system. In this context,

let the function service_env_connectors : P(Cp) — P(Cpr) return the set
of all connectors between deployed services and their execution environments:
service_env_connectors(ecm) = {c € cm : Service € n_type(c_source(c)) A

Execution_Environment € n_type(c_target(c)) A deployed_on € c_type(c)}.
Further, let the function shared_service_env_connectors : P(Cys) — P(C)y) return
the set of connectors from multiple components to the same execution environment:
shared_service_env_connectors(cm) = {cl € service_env_connectors(ecm) :
de2 € Cgg : c_source(cl) # c_source(c2) A c_target(cl) = c_target(c2)}. Then
SEEC can be defined as:

SEEC(em) = |shared_service_env_connectors(cm)|

|service_env_connectors(cm)|

Shared Execution Environment Metric (SEE). The metric SEE : P(Nys) —
[0, 1] measures the shared execution environments that have service components de-
ployed on them (e.g., a container/VM that two or more services are deployed on) in
relation to all executions environments with deployed services:

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 9

[{n € nm : (3¢ € nm_connectors(nm) :
¢ € shared_service_env_connectors(cm) A c_target(c) = n)}|
{n € nm : (3¢ € nm_connectors(nm) :
¢ € service_env_connectors(cm) A c_target(c) = n)}|

SEE(nm) =

5.3 Metrics for System Coupling through Infrastructure Stack Grouping
Decision

The metrics for System Coupling through Infrastructure Stack Grouping decision are
return boolean values as they detect the presence of a decision option. Please note that
the boolean metrics are defined for arbitrary node sets, i.e. they can be applied to any
subset of a model to determine sub-models in which a particular practice is applied.

For the metrics below, let the function services : P(Ny;) — P(Nys) return the
set of services in a node set: services(nm) = {n € nm : Service € n_type(n)}.
Further, let the function stack_deployed_envs : Ny x P(Ny;) — P(Nyy) return
environments included in a Stack s with stack_included_envs(s,nm) = {e €
nm : (¢ € nm_connectors(cm) : Stack € n_type(s) N c_source(c) =
s N c_target(c) = e A includes_deployment_node € c_type(c))}. Let the function
stack_deployed_components : Ny x P(Ny) — P(N)yy) return the components de-
ployed via an environment by a Stack s with stack_deployed_components(s,nm) =
{n € nm : (3¢ € nm_connectors(cm) : Component € n_type(c_source(c)) A
c_target(c) € stack_included_envs(s) A deployed_on € c_type(c))}. With this,
stacks_deploying_services : P(Npr) — P(Njps) can be defined, which returns all
stacks that deploy at least one service: stacks_deploying_services(nm) = {s € nm :
Stack € n_type(s) A (n € services(nm) : n € stack_deployed_components(s))}
Finally, we can define stacks_deploying_non_service_components(nm)
P(Nyr) — P(Ny) as stacks_deploying_non_service_components(nm) = {s €
nm : Stack € n_type(s) A (n € nm : n € stack_deployed_components(s) A n &
services(nm))}.

Monolithic Stack Detection Metric (MSD). The metric MSD : P(Ny) —
Boolean returns T'rue if only one stack is used in a node set that deploys more than
one service via stacks (e.g., a number of/all system services are deployed by the only
defined stack in the infrastructure) and F'alse otherwise.

MSD(nm) = {True . if |stacks_deploying_services(nm)| =1

False : otherwise

Application Group Stack Detection Metric (AGSD). The metric AGSD
P(Cp) — Boolean returns True if multiple stacks are used in a node set to deploy
services and more services are deployed via stacks than there are stacks (e.g., system
services are deployed by one stack and other elements such as routes are deployed by
different stack(s)). That is, multiple services are clustered in groups on at least one of
the stacks.

10 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

True: if |stacks_deploying_services(nm)| > 1A

AGSD(nm) = |stacks_deploying_services(nm)| < |services(nm)

False : otherwise

Service-Stack Detection Metric (SES). The metric SES : P(Ny;) — Boolean
returns T'rue is the number of services deployed by stacks equals the number of stacks
(e.g., each system service is deployed by its own stack).

True: if |stacks_deploying_services(nm)| = |services(nm)|

False : otherwise

SES(nm) = {

Micro-Stack Detection Metric (MST). The metric M ST : P(Cys) — Boolean
returns T'rue if SES is T'rue and also there is one or more stacks that deploy non-service
components (e.g., databases, monitoring components, etc.). For instance, a service is
deployed by one stack and its database is deployed by another stack as well as a router
is deployed by its own stack, etc.:

True: if SES(nm)=TrueA
MST(nm) = |stacks_deploying_non_service_components(nm)| > 0

False : otherwise

Services per Stack Metric (SPS). To measure how many services on average are
deployed by a service-deploying stack, we define the metrics SPS : P(Cys) — R as:

{n € services(nm) : (3s € nm : Stack € n_type(s)A
n € stack_deployed_components(s))}|

|stacks_deploying_services(nm)|

SPS(nm) =

Components per Stack Metric (CPS). To measure how many components on av-
erage are deployed by a component-deploying stack, we define the metrics CPS :
P(Cy) — Ras:

{n € nm : (3s € nm : Stack € n_type(s)A\
n € stack_deployed_components(s))}|
|stacks_deploying_services(nm) U
stacks_deploying_non_service_components(nm)|

CPS(nm) =

6 Case Studies

In this section, we describe the case studies used to evaluate our approach and test the
performance of the metrics. We studied three open-source microservice-based systems.
We also created variants that introduce typical violations of the ADDs described in the
literature or refactorings to improve ADD realization to test how well our metrics help
to spot these issues and improvements. The cases are summarized in Table[T|and metrics
results are presented in Table[2}

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 11

Case Study | Model Size Description / Source
ID
CS1 68 components E-shop application using pub/sub communication for event-based interaction as well as

167 connectors files for deployment on a Kubernetes cluster. All services are deployed in their own
infrastructure stack (from https://github.com/dotnet—-architecture/
eShopOnContainers).

CSL.V1 67 components Variant of Case Study 1 in which half of the services are deployed on the same execution
163 connectors environment and some infrastructure stacks deploy more than one service.

CS1.V2 60 components Variant of Case Study 1 in which some services are deployed on the same execution
150 connectors environment and half of the non-services components are deployed by a component-
deploying stack.

CS2 38 components | An online shop that demonstrate and test microservice and cloud-native technologies and
95 connectors uses a single infrastructure stack to deploy all the elements (from https://github.
com/microservices-demo/microservices-demo).

CS2.V1 40 components Variant of Case Study 2 where multiple infrastructure stacks are used to deploy the system
101 connectors elements as well as some services are deployed on the same execution environment.

CS2.v2 36 components Variant of Case Study 2 where two infrastructure stacks are used to deploy the system
88 connectors elements (one for the services and one for the rest elements) as well as some services are
deployed on the same execution environment.

CS3 32 components Robot shop application with various kinds of service interconnections, data stores, and
118 connectors | Instana tracing on most services as well as an infrastructure stack that deploys the ser-
vices and their related elements (from https://github.com/instana/robot-
shop).
CS3.V1 56 components Variant of Case Study 3 where some services are deployed in their own infrastructure

147 connectors stack as well as some services are deployed on the same execution environment.

CS3.v2 56 components Variant of Case Study 3 where all services are deployed in their own infrastructure stack
147 connectors as well as all services are deployed on their own execution environment.

Table 1. Overview of modeled case studies and the variants (size, details, and sources)

Case Study 1: eShopOnContainers Application. The eShopOnContainers case study
is a sample reference application realized by Microsoft, based on a microservices archi-
tecture and Docker containers, to be run on Azure and Azure cloud services. It contains
multiple autonomous microservices, supports different communication styles (e.g., syn-
chronous, asynchronous via a message broker). Furthermore, the application contains
the files required for deployment on a Kubernetes cluster and provides the necessary
TaC scripts to work with ELK for logging (Elasticsearch, Logstash, Kibana).

To investigate further, we performed a full manual reconstruction of an architecture
component model and an [aC-based deployment model of the application as ground
truth for the case study. Figure 2] shows the excerpt component model specifying the
component types (e.g., Services, Facades, and Databases), and connector types (e.g.,
database connectors, etc.) as well as all the IaC-based deployment component types
(e.g., Web Server, Cloud Server, Container, Infrastructure Stack, Storage Resources,
etc.) and IaC-based deployment connector types (e.g., defines deployment of, deployed
on, etc.) using types as introduced in Section [5]shown here as stereotypes.

The component model, consists of in total 235 elements such as component types,
connector types, [aC-based deployment component types and IaC-based deployment
connector types. More specifically, 19 Infrastructure Stacks, 19 Execution Environ-
ments, 6 Storage Resources, 7 Services, 6 Databases, 19 Stack-to-Execution Environ-
ment connectors, 7 Stack-to-Service connectors and 6 Storage Resources-to-Database
connectors. There are also other 146 elements in the application (e.g., Web Server,
Cloud Server, Stack-to-Web Server connectors, etc.).

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop

12 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

The values of metrics SEEC and SEE show that Single Service per Execution Envi-
ronment pattern is fully supported. We treat both components and connectors as equally
essential elements; thus, we use two metrics to assess coupling in our models. Given that
SEE returns the shared execution environments, it is crucial to measure how strongly
these environments are shared. The SEEC value indicates this specific aspect by return-
ing the proportion of the shared connectors that these environments have.

The application uses multiple stacks to deploy the services and the other elements,
and this is shown by the outcomes of the metrics for the System Coupling through In-
frastructure Stack Grouping decision. Since multiple stacks have been detected the met-
rics MSD and AGSD return False. The SES metric returns True meaning that the Service
Stack pattern is used. The MST returns True which means the Micro-Stack pattern for the
node sub-set Storage Resources is also used. The SPS value shows that every service is
deployed by a service-deploying stack. Furthermore, CPS also shows that components
that belong to node sub-set Storage Resources are deployed by a component-deploying
stack. Overall the metrics results in this case study show no coupling issue in deploy-
ment, and all best practices in our ADDs have been followed.

For further evaluation, we created two variants to test our metrics’ performance in
more problematic cases. Our analysis in CS1.VI shows that half of the execution en-
vironments are shared, and around two-thirds of the connectors between services and
execution environments are also considered as shared, meaning these execution envi-
ronments are strongly coupled with the system services. Using both values, we have
a more complete picture of the coupling for all essential elements in this model. Fur-
thermore, the SPS value indicates that the Service Stack pattern is partially supported,
meaning some services are grouped in the same stacks. The analysis in CS1.V2 shows
that our metrics can measure all the additional violations that have been introduced.

Case Study 2: Sock Shop Application. The Sock Shop is a reference application
for microservices by the company Weaveworks to illustrate microservices architectures
and the company’s technologies. The application demonstrates microservice and cloud-
native technologies. The system uses Kubernetes for container-orchestration and ser-
vices are deployed on Docker containers. Terraform infrastructure scripts are provided
to deploy the system on Amazon Web Services (AWS). We believe it to be a good repre-
sentative example of the current industry practices in microservice-based architectures
and IaC-based deployments.

The reconstructed model of this application contains in total 133 elements. In par-
ticular, / Infrastructure Stack, 13 Execution Environments, 3 Storage Resources, 7 Ser-
vices, 4 Databases, 13 Stack-to-Execution Environment connectors, 7 Stack-to-Service
connectors and 4 Storage Resources-to-Database connectors. There are also another
74 elements in the application such as Web Server, Cloud Server, Stack-to-Web Server
connectors and Execution Environment-to-Cloud Server connectors.

We have tested our metrics to assess the conformance to best patterns and prac-
tices in IaC-based deployment. The outcome of the metrics related to System Coupling
through Deployment Strategy decision shows that also this application fully supports
the Single Service per Execution Environment pattern. That is, all services are deployed
in separate execution environments. Regarding the System Coupling through Infrastruc-
ture Stack Grouping decision, we detected the Monolith Stack pattern, which means one

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 13

stack defines the deployment of all system elements, resulting in a highly coupled de-
ployment. The metrics AGSD, SES, and MST are all False, and SPS and CPS return O,
since a monolith stack has been detected. These values can guide architects to improve
the application by restructuring the infrastructure to achieve the desired design.

In our variants, we introduced gradual but not perfect improvements. The metrics
results for CS2.V1 show an improvement compared to the initial version. That is, Mono-
lith Stack pattern is not used since three infrastructure stacks have been detected, and
some services are deployed by service-deploying stacks. In CS2.V2 there is a slight
improvement since Application Group Stacks has been detected. However, SEEC and
SEE metrics indicate that there is a strong coupling between services and execution
environments. In both variants, the metrics have well detected the improvements made.

Case Study 3: Robot-Shop Application. Robot-Shop is a reference application
by the company Instana provides to demonstrate polyglot microservice architec-
tures and Instana monitoring. It includes the necessary IaC scripts for deployment.
All system services are deployed on Docker containers and use Kubernetes for
container-orchestration. Moreover, Helm is also supported for automating the cre-
ation, packaging, configuration, and deployment to Kubernetes clusters. End-to-end
monitoring is provided, and some services support Prometheus metrics.

The reconstructed model of this application contains in total 150 elements. In par-
ticular, 2 Infrastructure Stacks, 18 Execution Environments, 2 Storage Resources, 10
Services, 3 Databases, 13 Stack-to-Execution Environment connectors, 10 Stack-to-
Service connectors and 3 Storage Resources-to-Database connectors. There are also
89 additional elements in the application.

The metrics results for the System Coupling through Deployment Strategy decision
are both optimal, showing that in this application all services are deployed in separate
execution environments. For the System Coupling through Infrastructure Stack Struc-
turing decision, the AGSD metric return True which means that the Application Group
Stack pattern is used, resulting in highly coupled services’ deployment. Thus, the met-
rics SES and MST are False and SPS and CPS return 0. According to these values,
architects can be supported to address the detected violations (e.g., as done in CS3.V2).

In the variants, we introduced one gradual improvement first and then a variant
that addresses all issues. Our analysis in CS3.VI shows significant improvement in in-
frastructure stack grouping. Most of the services are deployed on their own stack, and
components that belong to node sub-set Storage Resources are completely deployed by
a separate stack. However, coupling between services and execution environments has
also been detected. Variant CS3.V2 is even more improved since, in this case, all ser-
vices are deployed by service-deploying stacks, and no coupling has been detected. In
both variants, the metrics have faithfully identified the changes made.

7 Discussion

Discussion of Research Questions. To answer RQ1, we proposed a set of generic,
technology-independent metrics for each IaC decision, and each decision option cor-
responds to at least one metric. We defined a set of generic, technology-independent

14 Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

Table 2. Metrics Calculation Results

Metrics [CS1 [CSLV1 [CSLV2 [Cs2 [Cs2.vi [cs2.v2 [CS3 [CS3.v1 [Cs3.v2

System Coupling through Deployment Strategy

SEEC 0.00 0.71 0.42 0.00 0.25 0.62 0.00 0.37 0.00
SEE 0.00 0.50 0.20 0.00 0.14 0.40 0.00 0.16 0.00

System Coupling through Infrastructure Stack Grouping

MSD False False False True False False False False False
AGSD False False False False False True True False False
SES True False False False False False False False True
MST True True False False False False False False True
SPS 1.00 0.20 0.57 0.00 0.12 0.00 0.00 0.62 1.00
CPS 1.00 1.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00

metrics to assess each pattern’s implementation in each model automatically and con-
ducted three case studies to test the performance of these metrics. For assessing pattern
conformance, we use both numerical and boolean values. In particular, SEEC and SEE
measures return a range from O to 1, with O representing the optimal case where a set of
patterns is fully supported. Having this proportion, we can assess not only the existence
of coupling but also how severe the problem is. However, this is not the case for the
MSD, AGSD, SES, and MST metrics that return True or False. Using these metrics, we
intend to detect the presence of the corresponding patterns. For Service Stack and Micro
Stack decision options, we introduce two additional metrics with numerical values that
can be applied on node subsets to assess the level of the pattern support when patterns
are not fully supported. However, applying them on node subsets has the limitation that
many runs need to be made, leading to ambiguous results. Our case studies’ analysis
shows that every set of decision-related metrics can detect and assess the presence and
the proportion of pattern utilization.

Regarding RQ2, we can assess that our deployment meta-model has no need for sig-
nificant extensions and is easy to map to existing modeling practices. More specifically,
to fully model the case studies and the additional variants, we needed to introduce 13
device type nodes and 11 execution environment nodes types such as Cloud Server and
Virtual Machine respectively, and 9 deployment relation types and 7 deployment node
relations. Furthermore, we also introduced a deployment node meta-model to cover
all the additional nodes of our decisions, such as Storage Resources. The decisions in
System Coupling through Deployment Strategy require modeling several elements such
as the Web Server, Container, and Cloud Server nodes types and technology-related
connector types (e.g. deployed on) as well as deployment-related connector types (e.g.
Runs on, Deployed in Container). For the Coupling through Infrastructure Stack Group-
ing decision, we have introduced attributes in the system nodes (e.g., in Infrastructure
Stack, Storage Resources) and connector types (e.g., defines deployment of, includes).

Threats to Validity. We mainly relied on third-party systems as the basis for our study
to increase internal validity and thus avoid bias in system composition and structure. It
is possible that our search procedures resulted in some unconscious exclusion of spe-
cific sources; we mitigated this by assembling a team of authors with many years of

Assessing Architecture Conformance in Infrastructure-as-Code Best Practices 15

experience in the field and conducting a very general and broad search. Because our
search was not exhaustive and the systems we found were created for demonstration
purposes, i.e., were relatively modest in size, some potential architectural elements were
not included in our metamodel. Furthermore, this poses a potential threat to the exter-
nal validity of generalization to other, more complex systems. However, we considered
widely accepted benchmarks of microservice-based application as reference applica-
tions, in a way to reduce this possibility. Another potential risk is that the system vari-
ants were developed by the author team itself. However, this was done following best
practices documented in the literature. We were careful to change only certain aspects
in a variant and keep all other aspects stable. Another possible source of internal valid-
ity impairment is the modeling process. The author team has considerable experience
with similar methods, and the systems’ models have been repeatedly and independently
cross-checked, but the possibility of some interpretive bias remains. Other researchers
may have coded or modeled differently, resulting in different models. Because our goal
was only to find a model that could describe all observed phenomena, and this was
achieved, we do not consider this risk to be particularly problematic for our study. The
metrics used to assess the presence of each pattern were deliberately kept as simple as
possible to avoid false positives and allow for a technology-independent assessment.

8 Conclusions and Future Work

We have investigated the extent to which it is possible to develop a method to automat-
ically evaluate coupling-related practices of ADDs in an IaC deployment model. Our
approach models the critical aspects of the decision options with a minimal set of model
elements, which means it is possible to extract them automatically from the IaC scripts.
We then defined a set of metrics to cover all decision options described in Sectiondand
used the case studies to test the performance of the generated metrics. Before, for the
coupling aspects of IaC deployment models, no general, technology-independent met-
rics have been studied in depth. Our approach treats deployment architectures as a set of
nodes and links, considering the technologies used, which were not supported in prior
studies. The goal of our approach is a continuous evaluation, taking into account the
impact of continuous delivery practices, in which metrics are evaluated continuously,
indicating improvements and loose coupling of deployment architecture compliance.

In future work, we plan to study more decisions and related metrics, test further in
larger systems, and integrate our approach in a systematic guidance tool.
Acknowledgments. This work was supported by: FWF (Austrian Science Fund) project
IAC?: 14731-N.

References

1. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Devops: Introduc-
ing infrastructure-as-code. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). pp. 497-498 (2017)

16

10.

11.

. Ntentos, E., Zdun, U., Plakidas, K., Genfer, P., Geiger, S., Meixner, S., Hasselbring, W.:

13.
14.
15.

16.

17.

18.

Evangelos Ntentos, Uwe Zdun, Jacopo Soldani, and Antonio Brogi

. van der Bent, E., Hage, J., Visser, J., Gousios, G.: How good is your puppet? an empirically

defined and validated quality model for puppet. In: 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). pp. 164-174 (2018).
https://doi.org/10.1109/SANER.2018.8330206

. Corbin, J., Strauss, A.L.: Grounded theory research: Procedures, canons, and evaluative cri-

teria. Qualitative Sociology 13, 3-20 (1990)

. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Toward a catalog of software

quality metrics for infrastructure code. Journal of Systems and Software 170, 110726 (2020)

. Dalla Palma, S., Di Nucci, D., Tamburri, D.A.: Ansiblemetrics: A python library for measur-

ing infrastructure-as-code blueprints in ansible. SoftwareX 12, 100633 (2020)

. Fischer, M.P,, Breitenbiicher, U., Képes, K., Leymann, F.: Towards an approach for automat-

ically checking compliance rules in deployment models. In: Proceedings of The Eleventh
International Conference on Emerging Security Information, Systems and Technologies (SE-
CURWARE). pp. 150-153. Xpert Publishing Services (XPS) (2017)

. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test,

and Deployment Automation. Addison-Wesley Professional (2010)

. Krieger, C., Breitenbiicher, U., Képes, K., Leymann, F.: An Approach to Automatically

Check the Compliance of Declarative Deployment Models. In: Papers from the 12th Ad-
vanced Summer School on Service-Oriented Computing (SummerSoC 2018). pp. 76-89.
IBM Research Division (Oktober 2018)

. Kumara, 1., Garriga, M., Romeu, A.U., Di Nucci, D., Palomba, F., Tamburri, D.A., van den

Heuvel, W.J.: The do’s and don’ts of infrastructure code: A systematic gray literature review.
Information and Software Technology 137, 106593 (2021)

Kumara, 1., Vasileiou, Z., Meditskos, G., Tamburri, D.A., Van Den Heuvel, W.J., Karakostas,
A., Vrochidis, S., Kompatsiaris, I.: Towards semantic detection of smells in cloud infrastruc-
ture code. In: Proceedings of the 10th International Conference on Web Intelligence, Mining
and Semantics. p. 63—67. WIMS 2020, Association for Computing Machinery, New York,
NY, USA (2020)

Morris, K.: Infrastructure as Code: Dynamic Systems for the Cloud, vol. 2. O’Reilly (2020)

Detector-based component model abstraction for microservice-based systems. Computing
103, 2521-2551 (August 2021)

Nygard, M.: Release It! Design and Deploy Production-Ready Software. Pragmatic Book-
shelf (2007)

Passos, L., Terra, R., Valente, M.T., Diniz, R., das Chagas Mendonca, N.: Static architecture-
conformance checking: An illustrative overview. IEEE software 27(5), 82-89 (2010)
Richardson, C.: A pattern language for microservices. http://microservices.io/
patterns/index.html (2017)

Schwarz, J., Steffens, A., Lichter, H.: Code smells in infrastructure as code. In: 2018 11th
International Conference on the Quality of Information and Communications Technology
(QUATIC). pp. 220-228 (2018). https://doi.org/10.1109/QUATIC.2018.00040

Sharma, T., Fragkoulis, M., Spinellis, D.: Does your configuration code smell? In: Proceed-
ings of the 13th International Conference on Mining Software Repositories. p. 189-200.
MSR 16, Association for Computing Machinery, New York, NY, USA (2016)
Sotiropoulos, T., Mitropoulos, D., Spinellis, D.: Practical fault detection in puppet programs.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
p- 26-37. ICSE 20, Association for Computing Machinery, New York, NY, USA (2020)

. Zdun, U., Navarro, E., Leymann, F.: Ensuring and assessing architecture conformance to

microservice decomposition patterns. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M.
(eds.) Service-Oriented Computing. pp. 411-429. Springer International Publishing, Cham
(2017)

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

	Assessing Architecture Conformance to Coupling-Related Infrastructure-as-Code Best Practices: Metrics and Case Studies
	Introduction
	Related Work
	Research and Modeling Methods
	Decisions on Coupling-related, IaC-Specific Practices
	Metrics Definition
	Model Elements Definition
	Metrics for System Coupling through Deployment Strategy Decision
	Metrics for System Coupling through Infrastructure Stack Grouping Decision

	Case Studies
	Discussion
	Conclusions and Future Work

