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Abstract

Motivated by the remarkable performance of non-
linear approximation schemes in the solution of
complex problems (e.g., functional optimization
problems from control theory, text pronounciation,
etc.), we discuss some issues on the rates of ap-
proximation by linear and nonlinear approximators
in certain spaces of functions. We demonstrate
some qualitative arguments which support better
experimental performance of nonlinear approxima-
tors with respect to the linear ones. Finally, using
the concept of variation of a function with respect
to a set, we present bounds to the rate of the ap-
proximation error achievable by nonlinear approxi-
mators in certain spaces of functions and show that
they are better than the rates achieved by linear
approximation in the same spaces. This motivates
using the nonlinear approximators for solving com-
plex problems.

Keywords:
nonlinear and linear approximators, rate of approx-
imation, variation of a function with respect to a set
of functions.

1. Introduction

When approximating functions which belong to a
given function space by linear and nonlinear ap-
proximators, the curse of dimensionality is a prob-
lem shared by upper estimates of the number of
parameters, obtained through constructive proofs
of the density property (see, for example, 7], (8]).
On the other hand, from a general result by De
Vore et al. [9] on nonlinear parametrizations in
which the optimal parameters depend continuously
on the function to be approximated, we know that,
if we want to approximate an s-time continuously
differentiable function in d variables by a function
containing p parameters, we cannot get an accuracy
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s/d

better than (1/p) (known as Jackson rate).

From this we could conclude that nonexponential
upper estimates on the number of parameters can-
not be achieved, if the class of functions to be ap-
proximated is defined in terms of bounds on par-
tial derivatives. This happens unless we let the
smoothness to be an increasing function s(d), in
such a way to cope with the dimension d in the
Jackson rate. Moreover, since the Jackson lower
bound is achieved in Sobolev spaces by a large
variety of both linear [11] and nonlinear [10] ap-
proximators, it would seem that there is no reason
for nonlinear approximators to behave better than
linear ones, at least in spaces defined by smooth-
ness conditions. However, practical applications
have however shown the possibility of approximat-
ing functions of hundred of variables by nonlinear
approximators with very few parameters, e.g., [12]
for feed-forward neural networks). Moreover, we
have succesfully used such networks for the approx-
imate solution of complex functional optimization
problems coming from control theory: stabilization
of high-order strongly nonlinear dynamic systems
[16], nonlinear state estimation [17], fault diagnosis
for nonlinear systems with modeling uncertainties
(18], etc.

The comparison of the results on the rates of ap-
proximation from the literature is mnade even more
complex by the fact that each approximator has
been introduced to approximate functions from dif-
ferent spaces. Barron [1] gives a better convergence
rate for nonlinear approximators with respect to
linear ones in a certain space of functions; how-
ever, such a comparison is made only for functions
belonging to a particular space, and for a specific
class of nonlinear approximators, i.e., neural net-
works. Extending a concept introduced by Barron
[2], Kirkova [5] defined a norm, called variation of
a function with respect to a set of functions, which
is assigned to a given class of networks and allows
the comparison of the various rates of convergence
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within a common framework (first results achieved
by this approach are in [5], [6]). Moreover, the hy-
pothesis made by De Vore et al. [9] to obtain the
Jackson rate for nonlinear approximators, i.e., the
constraint of choosing the parameters continuously
with respect to the function to be approximated,
deserves a detailed analysis. In principle, it may be
a strong limitation: we wonder whether nonlinear
approximators (which, in contrast to linear ones,
have shown to be more suitable for solving complex
tasks [12]), take advantage of considering also non-
continous prameters. The results of [4] confirm this
intuition. :

In this paper, we first discuss some qualitative ar-
guments which support better experimental perfor-
mance of nonlinear approximators with respect to
the linear ones. Then, using the concept of varia-
tion of a function with respect to a set, we present
some optimal bounds to the approximation error
achievable by nonlinear approximators in certain
spaces of functions, and we compare them to the
rates obtained in the same spaces by linear approx-
imators.

The paper is organized as follows: Section 2 con-
tains some preliminaries on approximation and
variation of a function with respect to a set, Section
3 presents qualitative arguments on linear and non-
linear approximation, and Section 4 compares the
optimal bounds in the linear and nonlinear case.
Section 5 contains some final remarks.

2. Preliminaries

The following definitions are in line with the defi-
nitions in [4] and [6].

When the approximating functions form a linear
subspace, we call the approximation linear ap-
prozimation. On the contrary, the approximat-
ing functions can be members of unions of finite-
dimensional subspaces generated by a given com-
putational unit. In other words, G = {g(.,0) :
Y = R;0 € ® C RP}, Y C R4, is a parametrized
set of functions corresponding to the computa-
tional unit g, and we consider all linear combi-
nations of n elements of G. This set, denoted
by span,G, is the union of all linear subspaces
spanned by n-tuples of elements of G, i.e., span,G
= {f € X f = L wigiswi € R,gi € G}
= U{span{g1,---,9n};9: € G,i = 1,...,n}. In
this case we call the approximation nonlinear ap-
proximation.

Consider any f € span G := J, ¢ spannG. Denote
G(b) := {wg;w € R,|w| < b,g € G}. For a subset
G of a normed linear space (X, ||.||), G-variation of
feXis

V(f,G) :=nf{d>0; f € cl convG(D)}.
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Although the concept of G-variation in general de-
pends on the choice of the norm, to simplify the
notation we only write V(f,G) (note that when X
is finite-dimensional all norms on it are equivalent,
and so in that case G-variation does not depend on
[l-1D)- In [5] it is shown that V(-,G) is a norm on
{f € X;V(f,G) < oo}

3. Some Qualitative Arguments

3.1. Approximation of Real-Valued Boolean
Functions

Nonlinear approximators take advantage of their
adjustable parameters (for example the centers and
the weights matrices in radial basis functions, the
frequencies and phases in trigonometric basis func-
tions, the thresholds in sigmoidal functions). As an
example, let us consider the space Sp(4)({0,1}¢)
of real-valued functions with d Boolean variables
(ie. functions f : {0,1}¢ - R) such that f # 0
in at most P(d) points, where P is a polynomial
[15]. By using nonlinear approximators, n = P(d)
parametric basis functions suffice to represent f €
Spa)({0,1}¢), since through § € © we can adjust
gi(-) := g(-,8;) for f. On the contrary, fixed basis
functions are given in the linear case: for a selected
basis, there exists a function in Sp(g)({0,1}¢) such
that even n = 2% — P(d) basis functions do not suf-
fice (if 2¢ — P(d) functions were sufficient then the
complementary function, expressible by P(d) basis
functions, would have 0 as its best approximation).

3.2. Continuous and Non-Continuous Non-
linear Approximation

Firstly, let us recall the definition of Kolmogorov
linear n—width. Let (X,]|.||) be a normed linear
space and S be a subset of X. The n—width in the
sense of Kolmogorov (or the Kolmogorov n-width)
of Sin X is
dn(S, X) ‘a‘}fi‘égy‘e“é”z vl

where the left-most infimum is taken over all n-
dimensional subspaces X, of X. The constraint to
adjust the parameters of the basis functions con-
tinuously with respect to the function to be ap-
proximated [9] allows to extend the lower bounds
achieved by linear n—widths [11] to the nonlinear
case; this is achieved by defining a proper contin-
uous nonlinear n-width. Nonlinear n-width as the
alternative to the Kolmogorov linear n—width for
nonlinear approximation has been first suggested in
[4]. Nonlinear n-width of S in X’ is defined as

0n(S,X) =
inf{d(S, spannG)}

where G is a member of a family of parametrized
subsets of X, d(S,Y) = supgcsllz — V||, S is the



set of functions to be approximated, Y = span,G
the approximating set and both S and Y are sub-
sets of a normed linear space (X, |I-1l)- Arguments
based on continuity do not suffice to find good
lower bounds on this measure. More specifically,
although the continuity requirement is not an essen-
tial restriction in a number of cases [9], the results
in [4] show that, for many standard types of neural
networks (e.g., Gaussian radial-basis-functions and
Heaviside perceptrons) and under mild hypothe-
ses on the norm, best approximation cannot be
achieved in a continuous way. The following quali-
tative argument [14] may help to clarify the role of
non-continuous dependence of the optimal param-

eters.

Suppose that in R? with the Euclidean norm we
want to approximate the points belonging to one
of the four quadrants defined by the intersection of
two straight lines s and ¢ by means of the points
belonging to the union of such lines (i.e., the union
of two one-dimensional linear spans). If we consider
a point P on the bisecting line of the quadrant and
the two segments u and v from such point perpen-
dicular, respectively, to s and ¢, then the points
belonging to u \ {P} have their best approxima-
tion in a point of s, whereas those belonging to
v\ {P} are mapped into a point of ¢. Consequently,
the best approximation mapping is not continuous
(note that this is a general problem, when mapping
a connected set to a non-connected one). In other
words, because of the continuity requirement, by
approximating the points in the quadrant through
only s or only ¢ we obtain the same result we get by
approximating them through s U ¢: the continuity
constraint does not allow to take advantage of the
freedom in choosing the parameters.

3.3. Curse of Dimensionality for Linear Ap-
proximators: an Example

Let us consider the class T of functions f : R —
R defined by the following bound on the average
of the norm of the frequency vector weighted by its
Fourier transform:

FC:{f:RdaR;/ W] [F(w)| dw < c}
Rd

where K - R4 is a
compact set, |w|, = max |w-z|, F is the Fourier
z€

transform of f, and ¢ > 0,c € R.

The following is based on a discussion from [16],
where nonlinear approximators have been used to
stabilize nonlinear systems. It is shown in [1] that
feedforward neural networks with one hidden layer
composed of n neural units representing I'c have
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the £, approximation error of order 1/n. On the
contrary, there exist functions in T';, for which for
any n > 0 integer there exist a basis of n functions
such that linear combinations of them can have the
error of smaller order than (1/n)** [1]. The expo-
nent 2/d can then cause the “curse of dimension-
ality”. However, such a worst—case performance by
linear approximators does not occur for functions
characterized by a higher degree of smoothness,
like functions with square-integrable partial deriva-
tives of order up to s (hence belonging to Sobolev
spaces), provided that s is the least integer greater

than 1 +£2i [11); denote such a space by Wés) It

is shown in [1] that the integral / |w||F(w)|dw is
d

finite for these functions. Then ?f for ¢ > 0 such
that T. > Wi (ie, W{* is a proper subset
of T'.), neural approximators should behave bet-
ter than linear ones in the difference set T'c \ Wi*).
This motivates our choice of feedforward neural net-
works for finding the approximate solutions of com-
plex problems from control theory ([16], [17], [18]).

4. Comparison of Upper and Lower Bounds
for Linear and Nonlinear Approximation

In the following we consider a finite-dimensional
Hilbert space (X, ]| - ||2)-

For an orthonormal basis A of X, we denote by
II.l1,4, the l;-norm with respect to A, i.e. ||f|l1,.4 =
ST lwi|, where f = Y70, wigi. It easy to verify
that for every f € X V(f,A) = ||fll1,a4, ie. A-
variation is the l;-norm with respect to A [6]. The
following three theorems have been proved in [6].

Theorem 4.1

Let (X,]|.||2) be a finite-dimensional Hilbert space
and let A be its orthonormal basis. Then for every
f € X and for every positive integer n there exists
fn € span, A such that

1£1l,.4
2y/n

”f - fn“? <

This implies that VS <C X, 6,(S,X)
l%%“—‘— , Vf € S holds for nonlinear n-width.

<

If the only information available about f is the
value of its A-variation, then this upper bound can-
not be improved:

Theorem 4.2 Let (X, )-l2)
be a finite-dimensional Hilbert space, n be a posi-
tive integer such that 2n < dim X. Then for every




orthonormal basis A of X there exists f € X with
[1fll,4 = V(f,A) so that for every f, € span, A

[1£1]1,4

If = fallz > BV

However, if in addition to |[f|; 4 also ||f]|2 is
known, then the upper bound given by Theorem
4.1 can be improved:

Theorem 4.3 Let (X, 11-l2)
be a finite-dimensional Hilbert space and A be its
orthonormal basis. Then for every f € X and for
every positive integer n there ezists f, € span,.A
such that

_ Willa [ _ _lIFI3
I = Fall2 < 5 - (1 llfllf,A> :

n —

This implies that VS € X,6,(S,X) <
2
%’-‘& (1 - I—[-l%”:) , Vf € S holds for nonlinear

2vVn-1
n-width.

Theorem 4.3 yields a non-trivial upper bound on
[|f — span, Al only if

Wflla (o lIF1B
2vn -1 (1 IIfIIf,A) <l

which is equivalent to

——”ﬂﬁ:‘ <Vn+vn-1

Otherwise, the trivial upper bound equal to || fll2
(which corresponds to the approximation of f by
the constant zero function) is better. Thus The-
orem 4.3 gives non-trivial estimates only for func-
tions with sufficiently large ratio between [|f||; 4
and ||f||2. It is shown in (6] that the minimum of
lIfll2 and the bound from Theorem 4.3, yield to-
gether a bound on ||f — span,.A||z which is, up to
a constant factor, the best possible upper bound
expressed in terms of only || f||;,.4 and ||f|[2-

Using linear approximation for orthonormal sets,
we now consider the following lemma and corollary
by Kirkova, which are an improvement of Theo-
rem 1.5 by Pinkus [11], in the case of orthonormal
subsets of a Hilbert space.

Lemma 4.4 [14] Let (X,]|.|l2) be a Hilbert space
and A be its orthonormal subset of cardinality m.
Then for every integer n > 1, d2(A, X) > 1 — &
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Corollary 4.5 [14] Let (X, ||.||2) be o Hilbert space
and A an orthonormal subset. Then for every in-
tegern > 1, d,(A,X) > 1.

Comparing Lemma 4.4 with Theorem 4.1, we ob-
tain the following proposition. '

Proposition 4.6 Let (X,||.|l2) be a finite-
dimensional Hilbert space and A its orthonormal
basis of cardinality m. Let only ||f||1,.4 be known

2
about fe X. Ifn(1-Z) > M"ﬁd then the lower
bound on dn(A, X) from Lemma 4.4 is bigger than
the upper bound on §,(A, X) from Theorem 4.1.

In other words, under the hypotheses of Proposi-
tion 4.6, nonlinear n-width is smaller than Kol-
mogorov’s n-with, i.e. nonlinear approximation
by orthonormal sets in finite-dimensional Hilbert
spaces gives better results than linear approxima-

. - 1113, 4
tion for n (1-2) > .

Comparing Lemma 4.4 with Theorem 4.3 and tak-
ing into account the condition to get a nontrivial
bound from that theorem, we obtain the following
result.

Proposition 4.7

Let (X,]|.ll2) be a finite-dimensional Hilbert space
and A its orthonormal basis of cardinality m.
Let ||flli,a and [[fll2 be known about f €

2 2
X. If n o> 1 “/“1,A (1 _ s 22 ) + 1 and
iz~ 4 A1, 4

& 2
n(l-2) > "ﬂL‘ (I—W%J‘E:) + 1 then the
1,
bound on d.(A, X) from Lemma 4.4 is bigger than
the upper bound on 6,(A, X) from Theorem 4.3.

In other words, under the hypotheses of Proposition
4.7, nonlinear n-width is smaller than Kolmogorov’s
n-with, i.e. nonlinear approximation by orthonor-
mal sets in finite-dimensional Hilbert spaces gives
better results than linear approximation for n,m

2 2 \2
satisfying n > phz 80 (1- M) 4 1 ang

2
n(l-2) > ﬂ-ﬂ%ﬁ (1 - WL}%%)Z + 1. Note that
for n = m Lemma 4.4 gives the trivial result
dZ(A,X) > 0; obviously, in this case the up-
per bound on nonlinear approximation can not be
smaller than the lower bound (i.e. zero) on linear
approximation.

2
Theorem 4.3 gives a nontrivial bound if ——‘T'Lf““;”: (1-

Ay vy cpno1,
1717 o :

L5,y = WEa g )R )2
where V = 7z W= 41 (1 "f"l..l) )

P—



: On the other hand, the upper bound on nonlinear
p-width from Theorem 4.3 is smaller than the lower

' estimate on dn, from Lemma 4.4if -
£ 2 .
MiEa(q - )2 <1- 2, he W= 25401~

a(n-1)

)2 < (n—1)=2% -

V_vll/;A< n-1 anc} W < (n—1)2=2 gives together
g . m—n

V<L e pE S T

Then, if [IflZ > 1 — Z, only the condition

2 2 \2 .
S m%ﬁ (1 - I_I%!{lt + 1 must be satisfied.
Note that ||f]|Z > 1 — £ is easily fulfilled for values
of m close to n.

5. Concluding remarks

The definition of a proper nonlinear n-width, analo-
gous to the Kolmogorov n-width for the linear case,
enables the comparison of the performance of lin-
ear and nonlinear approximators. This compari-
son supports the superiority of nonlinear approx-
imation (as suggested by qualitative arguments),
at least for orthonormal sets of approximators in
finite-dimensional Hilbert spaces. The analysis in
more general cases (i.e. in infinite dimensional
spaces and generally non orthonormal sets of ap-
proximators) is of high interest and is the object
of current research. The comparison does not seem
easy as the known upper estimates in these cases
are based on knowledge of variation of the func-
tion to be approximated with respect to the set of
approximators ([6]).
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