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Abstract

Context: Domain-driven design (DDD) is commonly used to design microservices.
A crucial aspect of microservice design is API design, which includes the design of
API endpoints.
Objective: Our objective is to automate the assessment of conformance to Ar-
chitectural Design Decisions (ADDs) on the interrelation of DDD and APIs. In
particular, we studied link mapping, API operation design, and resource segrega-
tion as API endpoint design issues that are linked to domain model design. We
particularly aim to address conformance checking in the context of frequent release
practices, as frequent manual conformance checking is difficult or infeasible.
Method: We suggest a new approach for the automated assessment of conformance
to ADD options. The approach suggests automated detectors to detect ADD op-
tions selected in a given API endpoint design, as well as an assessment scoring
scheme based on empirical results. For the evaluation of our approach, we first
manually created a ground truth for 12 cases in a multi-case study, and then com-
pared the results of our automated detectors to the ground truth for each of those
cases.
Results: With our approach, all ADD options in our multi-case study possibly can
be automatically detected. Without further improvements, our approach identifies
83% of the decision points in the multi-case study correctly. A statistical analysis
of our data shows only a negligible effect size for differences to the ground truth.
Conclusions: Our new approach provides a pragmatic method for automated
detection of conformance to ADDs on the interrelation of DDD and APIs. The
approach can support the continuous analysis of API endpoint designs.

Keywords: Microservice Architecture, API design, Domain Driven Design,
Architecture Conformance Assessment.
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1. Introduction

Microservice architectures consist of independently deployable, scalable, and
changeable services [1, 2, 3]. In microservices and related architectures, message-
based APIs, such as RESTful HTTP, queue-based messaging, or event-based mes-
sage exchanges, dominate over remote procedure calls [4, 2]. A critical aspect in
designing a microservice architecture is API design which, in this article, is seen as
all activities of planning and making design decisions when building an API [5, 4].
It includes aspects such as which microservice operations should be offered in the
API, how to exchange data between client and API, how to offer links, and how to
represent API messages [2, 4].

Domain-Driven Design (DDD) [6, 7] is a set of concepts and patterns that help in
designing software systems based on the underlying model of the (business) domain,
the Domain Model [8]. It is often used as a foundation to identify and design
microservice architectures [9, 10, 11].

Architectural Design Decisions (ADDs) focus on the architecturally significant
design decisions of a system, in the sense that a single decision change could sig-
nificantly affect its entire architecture [12]. In the field of microservice APIs and
their relations to Domain Models, many central API design problems revolve around
API endpoint design. An API endpoint is the provider-side end of a communication
channel and a specification of where the API endpoints are located so that APIs can
be accessed by API clients [4, 2]. Changes in the API endpoints can significantly
affect the architecture of the API clients and of the microservices in the backend
serving the API [4].

In our study, we selected three empirically grounded ADDs from our prior
work [11]. In particular, we studied ADDs on detailed API endpoint design ex-
plaining (1) how to derive links offered in API endpoints from the links in the
domain model; (2) how to design the operations of an API endpoint; and (3) if
and how to segregate the resource represented by the API endpoint. Please note
that these are all architectural design issues relevant only for remote, message-based
APIs. While the overlap between a DDD model and an API can exist in a local
context, too, none of the issues addressed in the studied ADDs appears for local
APIs or API libraries (see Section 2 for detailed explanations).

Many existing practitioner works use DDD to identify and model the microser-
vices which are exposed via APIs [11, 4, 9, 10]. If DDD or domain modeling, in
general, is used in an API project, the APIs should have a traceable mapping to
the Domain Models of the microservices. In each evolution step of either the API
or the microservice models, the respective other parts might have to be changed
accordingly. To safeguard such evolution steps in practice, it is required to assess
whether a given microservice API endpoint design correctly realizes the mapping
to its microservice domain model and vice versa.

This is especially problematic if such an assessment is needed continuously, e.g.
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in the context of continuous integration/delivery (CI/CD). Just consider today’s
large-scale microservice deployments that are deployed with high frequency (e.g. at
least daily), such as those of Uber [13], Google [14], or Netflix [15]. To manually
assess for each and every service, whether the mapping to the Domain Models and
other such constraints imposed by backend or client architectures are still in place
and correct, would be an extremely laborious and error-prone manual task.

This kind of assessment can be classified as architecture conformance assessment.
Conformance is generally defined as the consistency relation between models [16]. In
our API endpoint design context, conformance concerns consistency in the mapping
of API models to DDD models according to the relations from our empirically
studied ADDs.

To address this problem, we aim to automate the assessment of conformance to
ADD options in API endpoint designs. Some might argue that APIs are intended
to change rarely, and thus such automation is not required. But actually, there are
many more reasons for API evolution [17], meaning that frequent system changes
usually lead to frequent API changes. Also, our approach is on the links of APIs
to DDD models. So, if the API stays stable but the DDD model changes, still
conformance must be checked. Such an automated assessment is mainly interesting
to Web API developers and architects, but also Web API client developers are
indirectly affected, as they benefit in their work from consistent and stable API
designs.

Here, we phrase our study design following the Goals/Questions/Metrics (GQM)
approach [18]: It is the research goal of this article to study how to provide support
for assessing how well a microservice API is conforming to a Domain Model it was
derived from. In particular, we aim to study this goal in the context of three
common API design decisions: (1) API endpoint operations in relation to Domain
Model operations, (2) API links in relation to Domain Model links, and (3) resource
segregation of API operations in relation to Domain Model operations. To address
our research goal, we need to answer the following research questions:

� RQ1 For which decision options in microservice API design decisions can
we provide automated support for assessing conformance to the microservice
API’s Domain Model?

� RQ2 To which extent can we assess conformance of microservice API design
decisions to the microservice API’s Domain Model?

The goal fulfillment will be measured using a couple of metrics: We use sim-
ple count-based metrics to measure for how many decision options our approach
provides automatic conformance assessment. We also use count-based metrics for
measuring the extent to which automated conformance assessment is supported; in
addition, we use statistical methods to measure the effect size.
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In particular, we performed a detailed study of the decision driver impacts in the
decision options to derive an empirically grounded scoring scheme for the assessment
of API endpoint designs, based on the empirical data from our prior study [11] (only
summarized in this article). We collected and modeled 12 cases in a multi-case study
and manually assessed each case. This way we created a ground truth for evaluating
our automated approach later on. Next, to support the automated assessment we
developed detectors to identify each of the decision points. Finally, we mapped the
detector results to our ground truth in order to automatically assess the cases in
our case study evaluation.

This paper is organized as follows: Next, in Section 2 we describe the three API
endpoint ADDs from our prior study as background and an illustrative example
for these ADDs. Then we describe in Section 3 our research methods. We give an
overview of the case in our multi-case study and the scoring scheme in Section 4.
Our automated detectors are described in Section 5, followed by a discussion of
our multi-case study results, a statistical analysis, and lessons learned in Section 6.
Finally, we compare our findings to related work in Section 7, discuss threats to
validity in Section 8, and draw conclusions in Section 9.

2. Background and Illustrative Example

In this section, we discuss three ADDs on API endpoint design from our prior
study [11] as the background of this work, summarized in Table 1 using their core
decision elements (cf. [19]). In our prior study, we have conducted a Grounded The-
ory study [20] based on the 32 grey literature sources (i.e., practitioner sources such
as blog posts or system documentations [21]). Then, we present the ADDs along
with their relations (to decision options, other decisions, and patterns/practices)
and their decision drivers. All decisions drivers used in this section are defined in
Table 2. We define the ADDs and decision drivers here in detail to highlight the
specific challenges that remote, message-based API architects are facing and which
are in the focus of our approach (as opposed to e.g. the challenges of local API
design).

This article assumes familiarity with basic DDD concepts, in particular: Evans [6]
classifies domain objects into types such as Entities, Value Objects, and Services,
which are then used to identify larger structures such as Aggregates. Such elements
contain domain links in the domain model, as well as Domain Operations and/or
Domain Events. At the next higher abstraction level, DDD introduces the notion of
Strategic Design [6, 7] which explains how to structure large domains into a number
of Bounded Contexts and their relations. The ADDs described here explain how to
derive API endpoint designs from the information in such DDD domain models.

2.1. Link Mapping Decision (LMD)
In APIs, the links between API endpoints play a central role. In DDD the links

between model elements have a similar role. Obviously not all links in the DDD
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Table 1: Overview of ADDs on API Endpoint Design

ADD Problem
Statement

Decision
Context

Decision Options Decision Drivers

Link Map-
ping Decision
(LMD)

How to
map links
between do-
main model
elements to
the API?

Links in
the domain
model

� Use Distributed or Hyperme-
dia Links in the Payload.

� Pass Object Identifiers in the
Payload.

� Embed Linked Data in the
Payload.

� Do not offer the Domain
Model Link in the API.

� Data Consistency
� API Evolvability
� API Modifiability
� Message Size
� Protocol Complexity
� Minimize API Calls
� Performance
� Scalability
� Avoid Exposing Domain

Model Details in API
� Coupling of Clients to

Server

Operation
Design Deci-
sion (ODD)

How to de-
sign the oper-
ations of a re-
source?

Operations
in the
domain
model

� CRUD-Style Operations on
Resources

� Expose Domain Events as
State Transitions

� Expose Domain Events via
Feeds or Pub/Sub

� Domain Operations on Re-
sources

� Encode Operations as Com-
mands in the Payload

� Avoid Exposing Domain
Model Details in API

� Protocol Complexity
� Minimize API Calls
� Performance
� Scalability
� Avoid Interface Designs

that Limit Domain
Model Designs

� Maintainability
� Coupling of Clients to

Server
� Data Consistency
� (API) Understandability

Resource Seg-
regation De-
cision (RSD)

Segregate
Resources for
Reading and
Updating
Information
in an API?

Identified
interface
elements in
the domain
model

� Expose Segregated Command
and Query Resources in API

� Do not Segregate Queries and
Commands in an API

� Scalability
� Eventual Consistency

Support
� API Understandability
� Data Consistency
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Table 2: Glossary of Decision Drivers Used in the ADDs

Decision Driver Definition
Data Consistency “[Data] consistency [...] can be seen as the guarantee that transactions started in the future

see the effects of transactions committed in the past” [22].
API Evolvability “The ability of [an API (was: a system)] to accommodate changes in its requirements

throughout the system’s lifespan with the least possible cost while maintaining architectural
integrity” [23].

API Modifiability “Modifiability describes that the code [and design of the API realization] facilitates the
incorporation of changes, once the nature of the desired change has been determined” [24].

Message Sizes The smaller the message sizes in an API, the less bandwidth is used. Larger messages can
help avoid sending multiple distributed messages.

Protocol Complexity Many links in API messages lead to a complex interaction protocol.
Performance “Performance prescribes conditions on functional requirements such as speed, efficiency,

availability, accuracy, throughput, response time, recovery time, and resource usage” [24].
Minimize API Calls Each API call costs the performance of a distributed invocation, which is usually much

higher than for many local operations.
Scalability “Scalability is the ability to handle increased workload (without adding resources to a

system)” [25].
Exposing Domain
Model Details in
API

The API should be an abstraction of the Domain Model only revealing those aspects needed
for the API functions and nothing more.

Coupling of Clients
to Server

API clients and servers should be as loosely coupled as possible, so that independence
maintenance, testing, and motification is possible.

Interface Designs
that Limit Domain
Model Designs

An API design should not limit the design of the Domain Model, but provide an abstraction
of it.

Maintainability “The ability to undergo changes, including error correction and system adaptation” [24].
API Understand-
ability

“[API] understandability describes that the purpose of the [API design and] code is clear
to the inspector.” [24].

Eventual Consis-
tency Support

Eventual consistency describes a weak consistency relation which requires that all replicas
of an object (here: API/DDD elements) will only eventually reach the same correct value.

«decide for some instance of»

«Option»

Do Not Offer 


the Link Via the API

«Option»

Pass Distributed 


or Hypermedia Links 

in the Payload to Represent 


Domain Model Links

«Option»

Pass Object 


Identifiers the Messages 

to Represent Domain 


Model Links

«Option»

Pass Embedded Data in 

the Messages to Include 


Perhaps Needed Data

«Decision»

How to Map Links between Domain Model Elements to the API?

«Do Nothing»
Do Not Offer the 


Domain Model Link 

in the API


«Uses»

«Practice»

Use Distributed or 

Hypermedia Links 


in the Payload

«Pattern»

Linked Information 


Holder

«Pattern»

Object Identifier

«Pattern»

Embedded Entity

«Practice»

Pass Object Identifiers 


in the Payload

«Practice»

Embed Linked Data 


in the Payload

«Domain Class»

Link

«Uses» «Uses»

Figure 1: Link Mapping Decision
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model are candidates to be exposed in an API, but only those between the model
elements offered as API endpoints. The Link Mapping Decision with its decision
options and links is shown in Figure 1. One decision option is Use Distributed or
Hypermedia Links in the Payload. It means to use standard distributed/hypermedia
links, such as URIs in RESTful HTTP or URIs and HAL/JSON-LDs in JSON. An
alternative is Embed Linked Data in the Payload where the content is added to the
message payload instead of linking to it.

Finally, there is the option to Pass Object Identifiers in the Payload which sends
an Object Identifier that is meaningful (only) in the server context, but contains no
remote location information such as a distributed link. Compared to the embedding
option, use of distributed links is beneficial for Data Consistency as the link is
always up-to-date, and thus API Evolvability and API Modifiability are positively
influenced. It leads also to smaller Message Sizes. Links however lead to higher
Protocol Complexity, making it harder to Minimize API Calls, and can have a worse
Performance and Scalability because of many resulting distributed calls. The Object
Identifier based option is very similar in its effects to the distributed links based
option. In direct comparison, it has the disadvantages of possibly Exposing Domain
Model Details in API as well as higher Coupling of Clients to Server.

2.2. Operation Design Decision (ODD)

«decide for some instance of»

«Option»

Expose State 


Transition Domain 

Events to Clients

«Option»

Group Operations 

on Resource and 

Select Operations 


in the Payload

«Option»

Design Operations 


Like Primitive 

Datastore Operations

«Option»

Expose Event 


Feed Via a Feed 

or Publish/
Subscribe 

to Clients

«Decision»

How to Design the Operations of a Resource?

«Extension»

Events might be exposed 


to clients via feeds or 

publish/subscribe

«Practice»

Expose Domain Events


as State Transitions


«Variant»

«Practice»

Domain Operations 


on Resources

«Practice»

Encode Operations 


as Commands 

in the Payload

«Practice»

CRUD-Style Operations


 on Resources

«Domain Class»

Operation

«Practice»

Expose Domain Events 


via Feeds or Pub/Sub

«Can Use»

«Practice»

Expose Segregated 


Command and Query 

Resource in API

«Option»

Design Coarser 

Grained, Explicit 


Domain Operations

Figure 2: Operation Design Decision

The ODD decision, shown in Figure 2, is on how to design the operations of
an endpoint. A simplistic option, especially in a RESTful context, are CRUD-style

7



Operations on Endpoints, which designs operations like primitive data store oper-
ations. This practice, while commonly used, is seen negatively for many decision
drivers. In particular, in contrast to the options below it is negative for Avoiding
Exposing Domain Model Details in API and can lead to Chatty APIs, i.e. Proto-
col Complexity because of many small messages (Minimize API Calls not followed)
with bad Performance and Scalability. It is argued that it can lead to Interface
Designs that Limit Domain Model Designs, various Maintainability issues includ-
ing Coupling of Clients to Server issues, and Data Consistency problems. On the
positive side, CRUD-style Operations on Endpoints are simple and good for API
Understandability.

The option to expose Domain Operations on Endpoints leads to more coarse-
grained designs. This option is usually more positive on the mentioned decision
drivers, but needs more design work when mapped to a RESTful API. A variant of
it is Encode Operations as Commands in the Payload which can be harder to under-
stand than domain operations exposed via other means such as protocol features.
It must further be noted that the distinction into good domain operations and bad
CRUD-like operations is not valid either. In many cases, a CRUD-like operation is
the best suited option. The actual decision criterion is: Is a further abstraction of
the operation possible and does it make sense? For that reason, it is often beneficial
that operations are exposed from an aggregated domain model element, such as an
Aggregate, its Aggregate root, a Bounded Context, or a Service.

Many microservice systems are event-based systems. In such systems, another
option is to Expose Domain Events as State Transitions (or its variant Expose
Domain Events via Feeds or Pub/Sub). These options are also positive for most
of the mentioned forces. They can even lead to a better solution for Exposing the
Domain Model in the API, if events are used to model the domain, and/or improving
Scalability. Events can be harder to understand and thus these options can have
some issues with regard to API Understandability.

2.3. Resource Segregation Decision (RSD)

For API Endpoints, there sometimes is the option to decide whether or not to
Segregate Resources for Reading and Updating Information in an API. This is closely
related to the Command Query Responsibility Segregation (CQRS) Pattern [26].
The idea of CQRS is to use a different model to update data than the model that
is used to read data. The Resource Segregation Decision is shown in Figure 3.

The CQRS option has the benefit of possibly improving Scalability and enabling
Eventual Consistency Support where it is needed, e.g. in long running transactions.
Downsides are lower API Understandability due to API complexity and less Data
Consistency. Thus, typically, it shall not be used, if simple domain model elements
(e.g. just a few Entities or Value Objects) are offered on an API endpoint. Usually,
it makes sense to apply this option together with event-based API operations. For
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«decide for some instance of»

«Option»
No Resource
Segregation


«Option»
Use Resource
Segregation

«Decision»

Segregate Resources for Reading and Updating Information in an API?

«Do Nothing»

Do Not Segregate 


Queries and Commands 

in an API

«Uses»

«Practice»

Expose Segregated 


Command and Query 

Resources in API

«Pattern»

CQRS

«Pattern»

Eventual


Consistency

«Domain Class»

Identified Interface


Elements


«Enables»

«Can Use» «Practice»

Encode Operations 


as Commands in the Payload

Figure 3: Resource Segregation Decision

the configuration, we have chosen the case studies that be able to define the ADD
options.

2.4. Illustrative Example

Figure 4 shows an excerpt of a domain model, designed using DDD (adapted
from the Case Study PM [27]). Such models are frequently used as a starting point
to identify microservices and derive microservice APIs [9, 10, 11]. In the model,
an Aggregate Paper Archive Facade is designed for managing Paper Collections,
which is itself an Entity using Paper Item Entities and having Paper Item Keys
as Value Objects. For exposing the Paper Archive, further a Service is designed,
which contains three Domain Operations: Lookup Paper from Authors, Create
Paper Item, and Convert to Markdown.

Many designs are possible to map this simple DDDmodel excerpt to an API. The
one chosen in the PM Case Study [27] is provided in Figure 5. One API Endpoint
is designed for the Paper Archive Facade, its Service, and the Collection Entity.
Thus, it was chosen to not provide the domain model links from the Aggregate to the
Service and Entity as explicit elements of the API model (i.e., the Do Nothing option
of LMD is chosen here). The three domain operations of the Service are exposed via
same-named API Operations. As Create Paper Item is a simple creation function,
the CRUD-based API Operation option of the ODD decision was chosen here. The
two other API operations were mapped as Domain-Based API Operations, as these
operations provide coarser-grained operations, closer to the domain design. None
of them uses the Encode Operations as Commands in the Payload variant from the
ODD decision.

The Paper Collection Entity and the Paper Archiving Service have links to
Paper Item and Paper Item Key. Here, the Embedded Data option of LMD is
chosen for mapping all those links. Consequently, the Paper Item Entity and Paper
Item Key Value Object are mapped to API Data Types. Further, decisions about
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the precise variant of the Embedded Data option of LMD are made: whether the
data is required or provided, and if the data elements are usually needed by clients
or not (default value: False).

Finally, for technically realizing the API, another API Data Type for the pa-
rameters of the paper creation (not modeled in the domain model) and a String
type are needed. The String type is used once to provide an Object-Based Link
as another option of LMD, for the other ones again the Embedded Data option is
chosen.

Resource Segregation is not used in this API. Thus for RSD the option Do
Nothing was chosen for all interface elements.

While this illustrative example is rather simple, many other possible designs
could have been chosen even in this small-scale example that would have led to
very different API designs. For instance, designers could have decided to expose all
domain model links as hyperlinks, or resource segregation could have been offered
as well. Assessing such designs, especially if they grow substantially larger and/or
if the assessment is needed continuously, is tedious and error-prone. Our approach
aims to automate the model-based assessment of the conformance between API and
domain model designs.

«Aggregate»
Paper Archive

Facade


«Entity»
Paper Collection

Backend

«Entity»
Paper Item


«Value Object»
Paper Item Key


«Service»
Paper Archiving

Service


«Domain Operation»
Lookup Paper from

Author


«Domain Operation»
Create Paper Item


«Domain Operation»
Convert to Markdown


Figure 4: Example of a DDD Model (Excerpt from Case Study PM (adapted from [27])

3. Research Methods

Figure 6 illustrates the research methods applied in our study. Please note that
we have applied a very similar combination of research methods in earlier works [28,
29] before. To provide an audit trail of the research and enable repeatability of the
study, we provide open access to our the data set and the source code1.

1We provide derived coded models in Python, and generated models (in UML, Markdown, and
Latex) as a replication package for download in the Zenodo long-term open access archive [30].
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«provided»
{provided_as=Embedded_Data,

data_elements_usually_
needed_by_clients=True}


«API Data Type»
Paper Item DTO


«API Data Type»
Paper Item Key


«API Endpoint»
Paper Archive

Facade Endpoint


«Domain Operation
Based API Operation»
Lookup Paper from

Author


«CRUD-based API
Operation»

Create Paper Item


«provided»
{provided_as=Embedded_Data,

data_elements_usually_
needed_by_clients=True}


«exposes» «exposes»

«API Data Type»
String


«Domain Operation
Based API Operation»
Convert to Markdown


«exposes»

«required»
{required_as=

Embedded_Data}


«provided»
{provided_as=Embedded_Data,

data_elements_usually_
needed_by_clients=True}


«required»
{required_as=

Embedded_Data}


«required»
{required_as=

Object_Based_Link}


«API Data Type»
Paper Item Creation

Parameters

Figure 5: Example of an API Model (Excerpt from Case Study PM (adapted from [27])

Contributions from Prior Work Core Contributions of this Work

Model Generation

Study of Gray Literature
and Public Repositories to

Derive ADDs

Manual Inspection of
Case Study Systems

Modeling of Case Study
System Models

Derivation of Ordinal
Scoring Scheme Ground Truth Definition

Development of
Automated Detector

Algorithms

Automatic Detection
and Metrics Calculation

Statistical
Analysis

System Component
Model

Codeable Models
Generator Model Visualization

Figure 6: Research Methods Overview
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Gray Literature Study of ADDs on API Endpoint Designs Derived from Domain
Models. In our previous work [11], we have empirically identified ADDs on deriv-
ing APIs from DDD [6] models. In particular, we conducted a Grounded Theory
study [20] based on 32 gray literature [21] sources (i.e., practitioner sources such
as blog posts or system documentations) concentrating on the interrelation of mi-
croservice API design and DDD. We have identified ADDs frequently employed by
practitioners, along with decisions options, decision relations, and decision drivers.
For this study, we selected the three ADDs summarized in Section 2, which are all
focusing on API endpoint design related issues. We have selected those ADDs, as
many central API design problems revolve around API endpoint design [4, 2].

Multi-Case Study Preparation and System Modeling. In the next steps, we manu-
ally inspected 12 case studies of systems realized by practitioners, either from the
published source code of these systems in public repositories, their system documen-
tations, or both. In this, we followed the guidelines for conducting and reporting
case study research in software engineering by Runeson et al. [31].

We used major search engines (Google, Bing, DuckDuckGo, Baidu) and topic
portals (InfoQ, Dzone, TechBeacon) to find relevant cases. One major concern
about search engines in such research is their search algorithm because the results
are dependent on the user [32]. To avoid personal bias in the research, we used
as search words those keywords that provided decision categories (i.e. the most
general categorization) in our detailed prior study of the gray literature [11], in
particular: “Application Programming Interface” or “API”, “Domain Driven De-
sign” or “DDD”, and “Microservices” (all in singular and plural form). We had to
check that the found cases contained information on their domain modeling, which
substantially limited the possible cases we could consider. Further, we checked for
each found case whether authors who realized it have a substantial background
in industrial practice. Finally, we selected systems from many different domains
covering a broad range of our ADDs’ decision options and their combinations (for
details see Table 3 explained below).

We assume that our evaluation systems are, or reflect, real-world practical ex-
amples of microservice architectures. As many of them are open source systems
with the purpose of demonstrating practices or technologies, they are at most of
medium size and modest complexity, though.

We then defined models and meta-models to precisely model the case study
systems as UML models. We used our existing CodeableModels tool2, a Python
implementation for precisely specifying meta-models, models, and model instances
in code. Based on CodeableModels, we realized automated code generators to
generate graphical visualizations of all meta-models and models in PlantUML3.

2https://github.com/uzdun/CodeableModels
3https://plantuml.com/en/
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Please note that this modeling step was done manually in our work for most
of the case study systems. However, in our prior work, we have shown that it
can be automated, too. Our existing static code analysis approach for architecture
reconstruction of polyglot microservice systems [33] can be applied here. Due to
the polyglot nature of microservice systems, this requires modest initial specification
effort, though. So far, only two of the APIs of the systems in Table 3 have been
automatically reconstructed, namely, the ES and LS API models (see [33]).

To illustrate the manual effort, in [33] we compared the lines of code: For the
35.4 KLoC of code in LS, we required 804 LoC of specification code; for the 81.4
KLoC of code in ES, we required 716 LoC of specification code. As those are among
the largest models in our model set, it is highly likely that the other system models
can be reconstructed with significantly less effort. Please note that in [33] we only
reconstructed the API part, not the DDD model, but the DDD model is usually
modeled manually while the API is often changed in the source code or in API
specifications such as OpenAPI. Thus this does not limit the possible use of this
code extraction technique for automation.

Another way to automate our tool-chain is to specify them using a model-driven
approach such as MDSL [27]. From the MDSL models, OpenAPI specifications and
API code can be generated automatically. Here, the code is derived from the models,
not vice versa. This approach has been realized for our Case Study PM.

Ground Truth Definition. We then performed a systematic assessment on support
or violation of the collected ADDs’ decision options. For this, we derived an ordinal
scoring scheme that is directly based on the decision driver impacts empirically
identified in our gray literature study. That is, we manually checked for support or
violation of the recommendations empirically derived from the gray literature [11].
The ordinary scale helped us turn qualitative judgments in the practitioner texts
into numerical assessments. We used the scoring scheme to manually assess the
cases in our multi-case study to create a ground truth (or oracle or gold standard),
which we will use later on to validate our approach.

Automated Detector Algorithms and their Application. To automate the assessment
provided by the scoring scheme, we developed automated detector algorithms which
aim to detect each relevant criterion deciding on scores in the scheme. Furthermore,
we implemented each automated detector in Python (based on our coded UML
meta-models) and wrote code generators to enable running them on any system
model conforming to our meta-models, such as the case study models.

We applied the automated detectors on our case study data set and calculated
simple count-based metrics to measure for how many decision options our approach
provides automatic conformance assessment and the extent to which automated
conformance assessment is supported.
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Statistical Analysis. Finally, we performed an empirical assessment of our approach
using a multi-case study using the cases inspected. We used the manual assessments
in the cases of the multi-case study as a “ground truth” and compared them to our
automatically derived scores from the detectors. Besides analyzing and discussing
the results on a case-by-case basis for each decision option, we also perform a
statistical analysis of the results. In it, we use R’s shapiro.test() function to perform
Shapiro-Wilk normality tests [34]. As the data sets are non-normally distributed,
we used the Wilcoxon signed rank test with Pratt method [35], provided by the
wilcoxsign test() function from R’s coin package, to test for a significant difference
between the ground truth and the automated detector results. Finally, Cliff’s δ [36]
is used for effect size estimation via cliff.delta() function from R’s effsize package.

4. Multi-Case Study Preparation and Inspection

This section explains how we prepared and inspected the cases for our multi-case
study. Table 3 summarizes the 12 cases which we have manually modeled based on
available source code, documentation, descriptions in articles or blog posts, and so
on. The table summarizes for each model the size of the cases in terms of modeled
domain models and API model elements. We also modeled in each of those models
the relations of the elements among each other, and the relations between DDD
and API model elements in detail. The third column of the table contains a brief
description of the case, the options selected in the case for each of the ADDs from
Section 2, and the URL of the original case source.

As an illustrative example, we explain the case study preparation and ADD in-
spection of the ES model. Figure 7 shows the Basket RESTful Endpoint’s elements
and its associations, as well as the Bounded Context domain model element from
which it is derived. Please note that this is just a small excerpt of the ES model,
and we do not show other domain model elements for sake of brevity here. Most
of models contain complex domain models with domain links, domain operations,
and many other domain elements, which are related to API elements such as the
ones shown in Figure 7.

1 [ HttpGet ( ”{ id }” ) ]
2 [ ProducesResponseType ( typeo f ( CustomerBasket ) , ( i n t ) HttpStatusCode .OK) ]
3 pub l i c async Task<ActionResult<CustomerBasket>> GetBasketByIdAsync ( s t r i n g id )
4 {
5 var basket = await r e p o s i t o r y . GetBasketAsync ( id ) ;
6 re turn Ok( basket ?? new CustomerBasket ( id ) ) ;
7 }

Listing 1: GetBasketByIdAsync Operation from Basket API

The endpoint offers four API Operations, namely UpdateBasketAsync, GetBas-
ketByIdAsync, DeleteBasketByIdAsync, and CheckoutAsync. They use four API
Data Types : (Customer Basket Data Type, Customer Basket ID Data Type, Re-
quest ID Data Type, and Basket Checkout Data Type).

Firstly, for the LMD decision, we investigated the relationship between API
Operations and API Data Types. For instance, the GetBasketByIdAsync operation
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Table 3: Overview of Cases in the Multi-Case Study

ID Elements Description and Summary of ADD Inspection

AX
domain: 5
api: 14

Purchase Order System; applies DDD concepts and CQRS to decompose components; no
details on link and operation design provided. ADD Options used: LMD (N/A), ODD
(N/A), RSD (CQRS on aggregating endpoints, no details on operations). https://dzone.co
m/articles/bounded-contexts-with-axon

PM
domain: 10
api: 11

Publication Management System; applies DDD concepts to API design, detailed API spec-
ifications and code generation. ADD Options used: LMD (Pass Embedded Data in the
Payload, clients usually need the data), ODD (Explicit Domain Operations & Design Op-
erations Like Primitive Datastore Operations, exposed to API by an aggregate root), RSD
(N/A). https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

BA
domain: 8
api: 39

Bank Account System; focuses on event-based architecture using CQRS and event sourcing
patterns. ADD Options used: LMD (Pass Object Identifiers in the Messages to Represent Do-
main Model Links & Pass Embedded Data in the Payload, clients usually need the data), ODD
(Event State Transition Operations, based on Domain Operations & CRUD-based operations,
some exposed to API by aggregating services and aggregates), RSD (CQRS on aggregating
endpoints, event-based operations). https://github.com/cer/event-sourcing-examples

OS
domain: 19
api: 18

Online Shop System; uses DDD and pattern-based modeling of APIs. ADD Options used:
LMD (Pass Object Identifiers in the Messages to Represent Domain Model Links & Pass
Embedded Data in the Payload, clients usually need the data), ODD (Design Operations
Like Primitive Datastore Operations, all exposed to API by Entities), RSD (N/A). https:
//github.com/socadk/design-practice-repository/blob/master/tutorials

CM
domain: 12
api: 52

Cinema Microservice System; models multiple frontends and REST-based APIs. ADD Options
used: LMD (Pass Embedded Data in the Payload, clients usually need the data, except for
one operation), ODD (Explicit Domain Operations & Design Operations Like Primitive Data-
store Operations, all exposed to API by aggregating services), RSD (CQRS on aggregating
endpoints). https://github.com/Crizstian/cinema-microservice

ES
domain: 4
api: 142

E-Shop on Containers System; follows the CQRS pattern; uses event transitions and pub/sub
for event-based interaction. ADD Options used: LMD (Pass Distributed or Hypermedia Links
in the Payload to Represent Domain Model Links & Pass Embedded Data in the Payload,
clients usually need the data), ODD (Event State Transition Operations, based on Domain
Operations & CRUD-based operations, & Expose Publish/Subscribe to Clients, some exposed
to API by aggregating bounded contexts, some not), RSD (CQRS on aggregating endpoints,
event-based operations). https://github.com/dotnet-architecture/eShopOnContainers

ET
domain: 8
api: 15

Customers and Orders System; implements transaction with the SAGA pattern and imple-
ments queries using CQRS. ADD Options used: LMD (N/A), ODD (Event State Transi-
tion Operations, based on CRUD-based operations, all exposed to API by aggregates), RSD
(CQRS on aggregating endpoints, event-based operations). https://github.com/eventuate
-tram/eventuate-tram-examples-customers-and-orders

KB
domain: 11
api: 34

Kanban Board System; a multi-user collaborative application using event-sourcing and pub/-
sub. ADD Options used: LMD (Pass Embedded Data in the Payload, clients usually need
the data), ODD (Event State Transition Operations, based on CRUD-based operations, all
exposed to API by bounded context), RSD (CQRS on aggregating endpoints, no details on
operations). https://github.com/eventuate-examples/es-kanban-board

NC
domain: 8
api: 72

Disease Statistics App; a public API providing a wide range of virus information. ADD Options
used: LMD (Pass Embedded Data in the Payload, clients usually need the data, but not
needed on some operations), ODD (Design Operations Like Primitive Datastore Operations,
exposed to API by Entities), RSD (N/A). https://github.com/disease-sh/API

PC
domain: 63
api: 215

Pokemon App; a RESTful API for infos on Pokemon game series. ADD Options used: LMD
(Pass Distributed or Hypermedia Links to Represent Domain Model Links, but in many cases
it seems clients usually need the data immediately), ODD (Design Operations Like Primitive
Datastore Operations, exposed to API by Entities), RSD (N/A). https://github.com/PokeA
PI/pokeapi

RW
domain: 6
api: 67

Realworld Example App; provides API specs that support technology stack diversity. ADD
Options used: LMD (Pass Embedded Data in the Payload, clients usually need the data),
ODD (Design Operations Like Primitive Datastore Operations & Group Operations on Re-
source and Select Operations in the Payload, all exposed to API by aggregating bounded
contexts), RSD (N/A). https://github.com/gothinkster/realworld

LS
domain:170
api: 92

Lakeside Mutual System; demonstrates DDD in microservices of an insurance product. ADD
Options used: LMD (Use Pass Distributed or Hypermedia Links on frontend to connect to
backends which also Pass Embedded Data in the Payload, where clients usually need the data),
ODD (Explicit Domain Operations & Design Operations Like Primitive Datastore Operations,
all exposed to API by aggregating bounded contexts), RSD (N/A). https://github.com/Mic
roservice-API-Patterns/LakesideMutual
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shown in Listing 1, receives a Basket ID as a string which is modeled as an Ob-
jectIDBasedLink and provides CustomerBasket as EmbeddedData. As for LMD the
≪provided≫ data elements are mainly needed to determine which decision option
is chosen, we can conclude here that GetBasketByIdAsync represents passing em-
bedded data in the messages. When inspecting the code closer, we can further find
out that clients likely need the data provided immediately.

Secondly, for the ODD decision, we studied the API Operation and how its end-
point is exposed. For instance, for the CheckoutAsync operation shown in Listing 2,
it is a domain operation which is used to perform an event-based state transition.
Thus, the two respective stereotypes ≪Event State Transition Operation≫ and
≪Domain Operation Based API Operation≫ are used on that operation in the
model. Moreover, the operations are offered on an endpoint that is exposed by an
aggregating domain model element (a Bounded Context), which are recommended
practices for ODD (see Section 2). Lastly, for the RSD decision, the system doc-
umentation reveals that this endpoint is intended as a ≪CQRS≫ type endpoint.
Further, we can see that this endpoint exposes event-based operations and already
determined that it is exposed by a Bounded Context (i.e., is aggregating), which
are recommended practices for RSD (see Section 2).

1 [ Route ( ” checkout ” ) ]
2 [ HttpPost ]
3 [ ProducesResponseType ( ( i n t ) HttpStatusCode . Accepted ) ]
4 [ ProducesResponseType ( ( i n t ) HttpStatusCode . BadRequest ) ]
5 pub l i c async Task<ActionResult> CheckoutAsync (
6 [ FromBody ] BasketCheckout basketCheckout ,
7 [ FromHeader (Name = ”x=r eque s t i d ” ) ] s t r i n g r eque s t Id )
8 {
9 var use r Id = i d e n t i t y S e r v i c e . GetUserIdent i ty ( ) ;

10
11 basketCheckout . RequestId =
12 (Guid . TryParse ( request Id , out Guid guid ) && guid != Guid . Empty) ?
13 guid : basketCheckout . RequestId ;
14
15 var basket = await r e p o s i t o r y . GetBasketAsync ( use r Id ) ;
16
17 i f ( basket == nu l l )
18 {
19 return BadRequest ( ) ;}
20
21 var userName =
22 th i s . HttpContext . User . F indFi r s t ( x => x . Type == ClaimTypes .Name) . Value ;
23
24 var eventMessage = new UserCheckoutAcceptedIntegrat ionEvent (
25 userId , userName , basketCheckout . City , basketCheckout . Street ,
26 basketCheckout . State , basketCheckout . Country , basketCheckout . ZipCode ,
27 basketCheckout . CardNumber , basketCheckout . CardHolderName ,
28 basketCheckout . CardExpiration , basketCheckout . CardSecurityNumber ,
29 basketCheckout . CardTypeId , basketCheckout . Buyer ,
30 basketCheckout . RequestId , basket ) ;
31
32 // Once basket i s checkout , sends an i n t e g r a t i o n event to
33 // order ing . api to convert basket to order and proceeds with
34 // order c r e a t i on proce s s
35 try
36 {
37 eventBus . Publ ish ( eventMessage ) ;}
38 catch ( Exception ex )
39 {
40 l o g g e r . LogError ( ex ,
41 ”ERROR Publ i sh ing i n t e g r a t i o n event : { Integrat ionEvent Id } from {AppName}” ,
42 eventMessage . Id , Program .AppName) ;
43 throw ;}
44
45 return Accepted ( ) ;
46 }

Listing 2: CheckoutAsync Operation from Basket API
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Figure 7: ES Model Excerpt: Basket RESTful API and its Mapping to a Bounded Context

4.1. Derivation of Scoring Scheme

We have established the scoring scheme to assess the ADDs in 2. This scoring
scheme is based on our prior empirical study [11] by considering the various impacts
on decision drivers reported by practitioners. Grounded on this empirical evidence,
we decided to provide an assessment on an ordinal scale [++: very positive, + :
positive, o : neutral, -: negative, - -: very negative]. The ordinary scale could turn
qualitative judgments in the practitioner texts to numerical assessment.

For example, consider the LMD decision, as discussed in [11]. According to the
empirical evidence in the practitioner sources, if domain links are identified to be
needed by clients, the option Do not offer the Link via the API shall not be used. It
shall only be used for those links in the domain model, which clients do not require.
If this derivation from the domain model is performed correctly, the most positive
impacts on decision drivers are achieved, if Embed Linked Data in the Payload is
used for the required linked data elements, and Use Distributed or Hypermedia
Links in the Payload in all other cases. Embedding means to minimize the number
of messages that need to be exchanged, leading to positive impacts onMinimize API
Calls, Performance, Scalability, and Protocol Complexity decision drivers. However,
Message Sizes are lower with distributed links, and as they are always up-to-date,
also API Evolvability and API Modifiability are positively influenced.
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A still good, but less optimal variant is to use Pass Object Identifiers in the
Payload in those cases where distributed links are applicable. In direct comparison,
it has the disadvantages of possibly Exposing Domain Model Details in API as
well as higher Coupling of Clients to Server. If embedded data is not used, where
clients usually require most of the linked data elements immediately, consequently a
negative impact on some of the forces can be expected. Likewise, if embedded data
is used, but clients do not require most of the linked data elements immediately,
some of the forces are influenced negatively, too.

These considerations have led to a literal derivation of the scoring scheme of
the Decision LMD (see next section). For the other decisions we have derived the
scoring schemes in the same way based on the empirical results from [11].

4.1.1. Scoring Scheme for Link Mapping Decision (LMD)
� IF FOR SOME domain links which are needed by the clients: Do not offer
the Link via the API THEN assessment = (- -).

� IF (FOR ALL domain links dl which are needed by the clients: ( IF for dl
clients usually require most of the linked data elements immediately: THEN
Embed Linked Data in the Payload is used for the required linked data ele-
ments, ELSE Use Distributed or Hypermedia Links in the Payload is used))
THEN assessment = (++).

� IF (FOR ALL domain links dl which are needed by the clients: ( IF For dl
clients usually require most of the linked data elements immediately: THEN
Embed Linked Data in the Payload is used for the required linked data ele-
ments, ELSE Use Distributed or Hypermedia Links in the Payload OR Pass
Object Identifiers in the Payload is used)) THEN assessment = (+).

� IF (FOR SOME domain links dl which are needed by the clients: If for dl
clients usually require most of the linked data elements immediately: Embed
Linked Data in the Payload is NOT used for dl) THEN assessment = (-)

� IF any other combination is used (e.g. for some domain links dl which are
needed by the clients, and for dl clients usually do NOT require most of the
linked data elements immediately AND Embed Linked Data in the Payload is
used for dl) THEN assessment = (o).

4.1.2. Scoring Scheme for Operation Design Decision (ODD)
Please note that a model can contain more than one API. In some of the following

decision points different choices are possible for the operation of each of the APIs
in one model. We use “Has Aggregating Endpoint” to denote that an API endpoint
is exposed by a domain element of aggregating nature, such as an Aggregate (or its
Aggregate root), a Bounded Context, or a Domain Service. For example, Entities
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and Value Objects are domain model elements that are usually not of aggregating
nature.

� IF FOR EACH API: (FOR ALL API Operations: (Expose Domain Events
as State Transitions OR Expose Domain Events via Feeds or Pub/Sub) AND
Has Aggregating Endpoint is applied) OR ((FOR ALL API Operations: Do-
main Operations on Resources OR Encode Operations as Commands in the
Payload) AND Has Aggregating Endpoint is applied) THEN assessment =
(++).

� IF FOR EACH API: (FOR ALL API Operations: Expose Domain Events as
State Transitions OR Expose Domain Events via Feeds or Pub/Sub AND Has
Aggregating Endpoint is applied) OR ((FOR ALL API Operations: Domain
Operations on Resources OR Encode Operations as Commands in the Payload
OR CRUD-Style Operations on Resources) AND Has Aggregating Endpoint
is applied) THEN assessment = (+).

� IF FOR ALL API Operations OF ALL APIs: (Domain Operations on Re-
sources OR Encode Operations as Commands in the Payload OR Expose Do-
main Events as State Transitions OR Expose Domain Events via Feeds or
Pub/Sub OR CRUD-Style Operations on Resources) AND Has Aggregating
Endpoint is applied. THEN assessment = (o).

� IF FOR ALL API Operations OF ALL APIs: CRUD-Style Operations on
Resources is applied and not Has Aggregating Endpoint. THEN assessment =
(- -).

� IF any other combination is used, e.g. some API endpoints are not aggregating
endpoints THEN assessment = (-).

4.1.3. Scoring Scheme for Resource Segregation Decision (RSD)
Please note that the decision points use Is Aggregating Endpoint in the same

way as explained for the ODD scoring scheme, just not operating on operations,
but on endpoints.

� IF FOR ALL API Endpoints e that are of CQRS type: At least 1 API Oper-
ation is exposed by e AND all API Operations exposed by e are Event-based
Pub/Sub Operations or Event Transition Operations AND e Is Aggregating
Endpoint THEN assessment = (++).

� IF FOR ALL Endpoints e that are of CQRS type: At least 1 API Operation is
exposed by e AND all API Operations exposed by e are Event-based Pub/Sub
Operations or Event Transition Operations AND e Is or Is Not Aggregating
Endpoint THEN assessment = (+).
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� IF FOR ALL Endpoints e that are of CQRS type: All API Operations ex-
posed by e are or are not Event-based Pub/Sub Operations or Event Transition
Operations AND e Is Aggregating Endpoint THEN assessment = (o).

� IF FOR ALL Endpoints e that are a CQRS type: At least 1 API Operation is
exposed by e AND All API Operations exposed by e are not Event-based Pub-
/Sub Operations or Event Transition Operations AND e Is Not Aggregating
Endpoint THEN assessment = (- -).

� IF any other combination is used for API Endpoints e that are of CQRS type,
e.g. only some API operations are event-based THEN assessment = (-).

4.2. Ground Truth Assessment

To generate a ground truth for later evaluation, we have assessed each of the
cases in our multi-case study manually based on our scoring scheme from Section 4.1.
The results are presented in Table 5.

To illustrate the assessment using an example, Table 4 summarizes the assess-
ment for the ES case study shown in Figure 7. Firstly, we summarize the options
present in the case for each of the three ADDs, then we show the scoring scheme
condition that applies, and finally, the ordinal score derived.

Please note that this is not the result of the automated detectors presented
below but the manually derived ground truth which we used to compare later to
our detectors’ results. Some assessments are not applicable (“n/a”) as this aspect
is not implemented or explained in the case’s source, meaning that we cannot judge
the ADD based on this case’s model. Table 5 contains the assessment of the 12
cases using our ordinal scoring scale (summaries of the ADD inspections can be
found in Table 3). As can be seen, the case models cover for the decisions a wide
range of possible combinations of the decision options.

5. Detectors for ADD Conformance Assessment

In this section, we describe details of our detector approach for automatically
assessing conformance to the ADD options from Section 2. We propose a modular
detector approach where one or more detectors are responsible for detecting each
of the decision points in the scoring scheme from Section 4.1. Tables 6-8 gives an
overview of all the detectors we defined for the three ADDs.

It also explains in the Use in Assessment column how each scoring scheme result
of each of the three ADDs is derived during the assessment by the detectors. Please
note that in many cases combinations of detectors are needed, and that they are
applied in the given contexts of API elements that are passed in as lists (e.g. in ODD
all API elements of each API are usually used, whereas RSD applies the detectors
to the elements of CQRS type endpoints).
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Table 4: ES Case Study: Assessment Overview

LMD ODD RSD
Summary
of chosen
options
(see Sec-
tion 2)

Pass Distributed or Hypermedia
Links in the Payload to Repre-
sent Domain Model Links & Pass
Embedded Data in the Payload.
Clients usually need the data.

Event State Transition Opera-
tions based on Domain Oper-
ations & CRUD-based Opera-
tions & Expose Publish/Sub-
scribe to Clients. Some are
exposed to the API by aggre-
gating bounded contexts, some
not.

CQRS is used on aggregating
endpoints & event-based op-
erations are used.

Applying
condition
from the
scoring
scheme
(see Sec-
tion 4.1)

IF any other combination is used
(e.g. for some domain links dl
which are needed by the clients,
and for dl clients usually do NOT
require most of the linked data
elements immediately AND Em-
bed Linked Data in the Payload is
used for dl)

IF any other combination is
used, e.g. some API endpoints
are not aggregating endpoints

IF FOR ALL API Endpoints
e that are of CQRS type:
At least 1 API Operation is
exposed by e AND all API
Operations exposed by e are
Event-based Pub/Sub Oper-
ations or Event Transition
Operations AND e Is Aggre-
gating Endpoint

Ordinal
Score De-
rived

o - ++

Meaning of
the assess-
ment result

This result indicates that the de-
sign of the API reflects the links
present in the domain model in
an acceptable fashion but im-
provements can be achieved. In
particular, here some operations
use embedded data but they con-
vey possibly a lot of information
that might not always be needed
by clients. API developers can
use this information to redesign
the operations to provide only
the required information or use
distributed/hypermedia links in-
stead.
Note: This is one of the few cases
where model-based and human
assessment diverge (as explained
in Section 6). Thus, the model,
including the excerpt in Figure 7
seems to be optimal, but a deeper
source code analysis revealed dis-
crepancies. Here, changing the
data elements usually needed by-
clients flag manually to False
for the affected operations is
necessary to enable an automatic
assessment of “o” too (see Sec-
tion 6).

This result indicates that the
design of the API reflects the
domain operations in a sub-
optimal fashion. As can be
seen in Figure 7, some oper-
ations are offered as CRUD-
based API Operations, but un-
like Figure 7 not everywhere an
aggregating endpoint is used.
Also, event-state transition op-
erations and domain operation-
based API operations are used.
API developers can use this
information to redesign the
operations e.g. based on a
common event model, turn-
ing endpoints into aggregat-
ing endpoints, or exposing op-
erations as domain operation-
based API operations.

This result indicates that the
design of the API in relation
to the domain model is opti-
mal with regard to resource
segregation. Three end-
points are offered as CQRS
endpoints (one of them in
shown in Figure 7) and all
API operations offered by
those endpoints are offering
event transition operations.
API developers can learn
that no changes for confor-
mance to this ADD are re-
quired.

Table 5: Ground Truth: Manual Assessment Results

ID LMD ODD RSD ID LMD ODD RSD
AX n/a n/a ++ ET n/a ++ ++
PM ++ + n/a KB ++ ++ ++
BA + - ++ NC o - - n/a
OS + + n/a PC - - - n/a
CM o + o RW ++ + n/a
ES o - ++ LS ++ + n/a
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Table 6: Detectors Overview: LMD

ID Detectors Description Use in Assessment
d1 detect each API endpoint has

links to API operations
(input: List⟨APIElements⟩)

To detect whether each API
endpoint has links to API
operations. Helps to find
those exposed to clients.

The detector is required (with re-
sults SUCCESS, PARTIAL SUC-
CESS) in the assessment.

d2 detect api operations with
embedded data elements usually
needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide embedded
data as data elements
usually needed by clients.

For ’++’ assessment, this detec-
tor or d5 only one of them can
be successful (i.e. SUCCESS or
PARTIAL SUCCESS). If the d5 is
successful, this detector must fail
in ’++’ assessment. For ’-’ as-
sessment, this detector must be
FAILED when d3 or d4 is partialy
successful or successful.

d3 detect api operations with
distributed links to data elements
usually needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide distributed
links to data elements
usually needed by clients.

For ’++’ assessment, this detector
must be failed but it can be partial
successful in ’+’ assessment.

d4 detect api operations with object
id based links to data elements
usually needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide object-ID
based links to data ele-
ments usually needed by
clients.

For ’++’ assessment, this detector
must be failed but it can be partial
successful in ’+’ assessment.

d5 detect api operations with
distributed links to data elements
usually not needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide distributed
links to data elements usu-
ally not needed by clients.

For ’++’ assessment, this detec-
tor or d2 only one of them can be
successful (i.e. SUCCESS or PAR-
TIAL SUCCESS). If the d2 is suc-
cessful, this detector must fail in
’++’ assessment

d6 detect api operations with object
id based links to data elements
usually not needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide object-ID
based links to data ele-
ments usually not needed
by clients.

For ’++’ assessment, this detector
must be failed but it can be suc-
cessful or partial successful in ’+’
assessment.

d7 detect api operations with
embedded data elements usually
not needed by clients
(input: List⟨APIElements⟩)

To detect API operations
that provide embedded
data as data elements usu-
ally not needed by clients.

For ’++’ assessment, this detector
must be failed . For ’+’ assess-
ment, this detector should not be
successful nor partial sucessful, un-
less the assessment result will be
’o’ instead.

Note: The detectors-based assessment for each decision will result in “n/a” if at least one of decision’s detectors
has the result NOT APPLICABLE.
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Table 7: Detectors Overview: ODD

ID Detectors Description Use in Assessment
d8 detect each crud based api

operation
(input: List⟨APIElements⟩)

To detect each CRUD-
based API operation on
API endpoints.

It can be successful or partially
successful for APIs for the ‘++’
,‘+’, ‘o’, or ‘-’ assessments with at
least one other detectors of d9-d12
used (partially) successfully with
it. If this is the only detector that
is successful, the assessment will
turn to ‘--’.

d9 detect each domain operation based
api operation
(input: List⟨APIElements⟩)

To detect each domain
operation-based API opera-
tion on API endpoints.

It can be successful or partially
successful for APIs for the ‘++’,
‘+’, ‘o’, or ‘-’ assessments.

d10 detect each api operation encoded
as commands in the payload
(input: List⟨APIElements⟩)

To detect each API opera-
tion on API endpoints that
has the operation encoded
as commands in the pay-
load.

It can be successful or partially
successful for APIs for the ‘++’,
‘+’, ‘o’, or ‘-’ assessments.

d11 detect each api operation with
event based state transition
(input: List⟨APIElements⟩)

To detect each API opera-
tion on API endpoints that
represents an event-based
state transition.

It can be successful or partially
successful for APIs for the ‘++’,
‘+’, ‘o’, or ‘-’ assessments.

d12 detect each api operation with
event based pub sub
(input: List⟨APIElements⟩)

To detect each API opera-
tion on API endpoints that
offers events via feeds or
pub/subs.

It can be successful or partially
successful for APIs for the ‘++’,
‘+’, ‘o’, or ‘-’ assessments.

d13 detect aggregating endpoint and
crud based operation
(input: List⟨APIElements⟩)

To ensure that API end-
points with CRUD-based
API operations are aggre-
gating endpoints.

This detector is used alongside
d8, verifying the investigated
endpoints are aggregating ones
with CRUD-based API operations.
When d8 is used together with
other detectors (d9-d12), this de-
tector should be a SUCCESS to
reach ‘++’, and it should not be
FAILED to reach ‘+’. If it has
FAILED and only d8 succeeded,
the assessment will be ‘--’. If it and
d8 are a PARTIAL SUCCESS, the
assessment will be ‘-’.

d14 detect aggregating endpoint and
domain based operation
(input: List⟨APIElements⟩)

To ensure the investi-
gated API endpoints with
domain-based API op-
erations are aggregating
endpoints.

This detector is used alongside d9
and d10, verifying that the inves-
tigated endpoints are aggregating
ones with domain-based API op-
erations. When d9 or d10 are
used together with it, it should
be a SUCCESS to reach ‘++’. It
should not be FAILED to reach
‘+’. If it is PARTIAL SUCCESS,
the assessment will be ‘-’.

d15 detect aggregating endpoint and
event based operation
(input: List⟨APIElements⟩)

To ensure the investigated
API endpoints with event-
based API operations are
aggregating endpoints.

This detector is used alongside d11
and d12, verifying that the in-
vestigated endpoints are aggregat-
ing ones with event-based API op-
erations. When d11 or d12 are
used together with it, it should be
a SUCCESS to reach ‘++’. Itt
should not be FAILED to reach ‘+’
. If it is PARTIAL SUCCESS, the
assessment will be ’-’.

Note: The detectors-based assessment for each decision will result in “n/a” if at least one of decision’s detectors
has the result NOT APPLICABLE.
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Table 8: Detectors Overview: RSD

ID Detectors Description Use in Assessment

d16 detect api endpoints exposed
by aggregating domain model
element
(input: List⟨APIElements⟩)

To detect API endpoints
exposed by aggregating do-
main elements (such as Ag-
gregate, Aggregate root,
Service, Bounded Context).

For ‘++’ and ‘o’, it must
succeed (SUCCESS, PAR-
TIAL SUCCESS) for a given
endpoint, and for ‘--’ it must fail
for the endpoints under investiga-
tion.

d17 detect each cqrs endpoint with
event based operations
(input: List⟨APIElements⟩)

To detect API endpoints of-
fer CQRS Queries or Com-
mands, as well as event-
based API operations.

It must be SUCCESS, PAR-
TIAL SUCCESS, or FAILED for
the decision to be applicable.

Note: The detectors-based assessment for each decision will result in “n/a” if at least one of decision’s detectors
has the result NOT APPLICABLE.

All detectors are implemented in Python and work mainly by traversing mod-
els. All models are implemented with CodeableModels4, a Python tool for precise
specification of meta-models, models, and model instances in code. Based on the
meta-models and decision models, we manually created model instances for each
case system and implemented automated PlantUML code generators to produce
graphical visualizations of all model instances.

To illustrate the approach further let us explain one exemplary detector in detail
as pseudo code. Algorithm 3 shows the detector to detect each API operation in
a list of API elements AE that is of event state transition type. In this algorithm
we first get the API operations from the AE list. If no operations are defined, the
detector is NOT APPLICABLE. If this is not the case, we next detect the possible
violations by traversing all API operations and checking whether they conform to
the respective stereotype ≪Event State Transition Operation≫. If there are only
members of this stereotype, we report a SUCCESS ; if there are violations and
members of this stereotype, we report a PARTIAL SUCCESS ; else a FAILURE is
reported.

Please note that we also return the list of violations, which helps humans to
later inspect the violation, and maybe correct either the model or the detection.
The other detectors in Tables 6-8 are constructed in a similar fashion, inspecting
and detecting other aspects in the model, as explained in the Description column
of Tables 6-8.

input : L i s t ⟨Api Element⟩ AE
output : Tuple⟨Detector Results Enum , Set , S t r ing ⟩
begin

API OPS ← ap i op e r a t i on s (AE )
i f (API OPS = ∅) :

return (NOT APPLICABLE, ∅ ,
‘No API ope ra t i on s de f ined ’ )

violations← ∅
members← ∅

4https://github.com/uzdun/CodeableModels
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for OP in API OPS :
i f (OP . i s o f s t e r e o t y p e (

≪Event State Trans i t i on Operation≫) :
members← members ∪OP

e l se :
violations← violations ∪OP

i f (violations ̸= ∅) :
i f (members ̸= ∅) :

return (PARTIAL SUCCESS, violations ,
‘Some ope ra t i on s are Domain Events ’ +
‘ as State Trans i t i ons ’ )

e l se :
return (FAILURE, violations ,

‘No opera t ion i s Domain Events ’ +
‘ as State Trans i t i ons ’ )

return (SUCCESS, ∅ , ‘ A l l ope ra t i on s are Domain ’ +
‘ Events as State Trans i t i ons ’ )

end

Algorithm 1: Detector d12 — detect each api operation with event based state transition

6. Multi-Case Study Results

In this section, we discuss the results of our multi-case study. We first analyze the
results case by case for each decision option. Here, we simply count the correctly
identified results and discuss interesting insights. Next, we analyze our data set
statistically and show (1) that there is no significant difference between ground
truth and detector result data and (2) that the effect size between the two variables
is negligible.

6.1. Detailed Discussion of the Results

Table 9 summarizes the results of the automated assessments based on our
detectors approach for the 12 models in our multi-case study. Comparing the overall
results in Table 9 to our ground truth in Table 5, we can calculate matching score
ratios for each of the decisions: LMD – 8/12 (67%), ODD – 12/12 (100%), RSD –
10/12 (83%). In total, 83% of the decision points in our multi-case study have been
correctly identified by the automated detectors.

The places where ground truth and detector results are different are all cases
where additional human judgment is needed. When we apply the detectors, we do
not only get the results, but in case of violations, we also get the violation set as
part of the detector result. These violations can help to spot the aspects humans
need to inspect more closely.

Let us discuss a few notable cases where detector results diverge or could have
diverged in detail. The RSD detector delivers “o” for the AX and KB models. This
deviates from our manual assessment, where we judged those models as “++”. The
reason for this is that the model is detailed enough to see that all CQRS endpoints
are aggregating endpoints, but is missing detailed modeling of operations. Thus it
cannot automatically be judged whether event-based operations are used. However,
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Table 9: Automated Assessment Results for Each Model from the Detectors

ID LMD Reasons: Detector
Results

ODD Reasons: Detector Re-
sults

RSD Reasons: Detec-
tor Results

AX n/a Not Applicable: d1, d2,
d3, d4, d5, d6, d7

n/a Failed Detectors: d13, d14,
d15
Not Applicable: d8, d9, d10,
d11, d12

o Successful Detec-
tors: d16
Failed Detectors:
d17

PM ++ Successful Detectors:
d1, d2
Failed Detectors: d3,
d4, d5, d6, d7

+ Successful Detectors: d13,
d14
Partially Successful Detec-
tors: d8, d9
Failed Detectors: d10, d11,
d12, d15

n/a Successful Detec-
tors: d16
Not Applicable: d17

BA + Successful Detectors:
d1
Partially Successful
Detectors: d2
Failed Detectors: d3,
d4, d5, d6, d7

- Successful Detectors: d11
Partially Successful Detec-
tors: d8, d9, d10, d13, d14,
d15
Failed Detectors: d12

++ Successful Detec-
tors: d17
Partially Successful
Detectors: d16

OS + Successful Detectors:
d1
Partially Successful
Detectors: d2, d6
Failed Detectors: d3,
d4, d5, d7

+ Successful Detectors: d8
Partially Successful Detec-
tors: d13
Failed Detectors: d9, d10,
d11, d12, d14, d15

n/a Partially Successful
Detectors: d16
Not Applicable: d17

CM ++ Partially Successful
Detectors: d1, d2
Failed Detectors: d3,
d4, d5, d6, d7

+ Partially Successful Detec-
tors: d8, d9, d13, d14
Failed Detectors: d10, d11,
d12, d15

o Successful Detec-
tors: d16
Failed Detectors:
d17

ES ++ Partially Successful
Detectors: d1, d2, d5
Failed Detectors: d3,
d4, d6, d7

- Partially Successful Detec-
tors: d8, d9, d11, d12, d13,
d14, d15
Failed Detectors: d10

++ Successful Detec-
tors: d17
Partially Successful
Detectors: d16

ET n/a Successful Detectors:
d1
Not Applicable: d2,
d3, d4, d5, d6, d7

++ Successful Detectors: d8,
d11, d13, d15
Failed Detectors: d9, d10,
d12, d14

++ Successful Detec-
tors: d16, d17

KB ++ Successful Detectors:
d2
Partially Successful
Detectors: d1
Failed Detectors: d3,
d4, d5, d6, d7

++ Successful Detectors: d8,
d11, d13, d15
Failed Detectors: d9, d10,
d12, d14

o Partially Successful
Detectors: d16
Failed Detectors:
d17

NC ++ Successful Detectors:
d1, d2
Failed Detectors: d3,
d4, d5, d6, d7

- - Successful Detectors: d8
Failed Detectors: d9, d10,
d11, d12, d13, d14, d15

n/a Failed Detectors:
d16
Not Applicable: d17

PC ++ Successful Detectors:
d1, d5
Failed Detectors: d2,
d3, d4, d6, d7

- - Successful Detectors: d8
Failed Detectors: d9, d10,
d11, d12, d13, d14, d15

n/a Failed Detectors:
d16
Not Applicable: d17

RW ++ Successful Detectors:
d1, d2
Failed Detectors: d3,
d4, d5, d6, d7

+ Successful Detectors: d8,
d13
Failed Detectors: d9, d10,
d11, d12, d14, d15

n/a Successful Detec-
tors: d16
Not Applicable: d17

LS ++ Partially Successful
Detectors: d1, d2
Failed Detectors: d3,
d4, d5, d6, d7

+ Partially Successful Detec-
tors: d8, d9, d13, d14
Failed Detectors: d10, d11,
d12, d15

n/a Partially Successful
Detectors: d16
Not Applicable: d17
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as in both cases of AX and KB models, model and system documentation contain
information on the event-based endpoints (the naming of endpoints), and there is a
description that event-based communication is used in the documentation, too, we
can make a manual conclusion here. As the detailed operation modeling is missing,
the detectors cannot decide for any of the other options and thus uses the fallback
“o”. This could be mitigated by more detailed modeling of operations or introducing
a flag that signals the event-driven nature of the system to the detectors.

The LMD detector for the CM model delivers “++” which deviates from the
“o” in our manual assessment. We inspected the operations carefully and found
one that uses embedded data, but seems to convey possibly a lot of informa-
tion that might not always be needed by clients. If this interpretation is cor-
rect, “o” is the correct assessment, but this can only be found out by source
code analysis, not on the model. This issue could be mitigated by changing the
data elements usually needed by clients flag manually to False. The same case hap-
pens for the ES model, also with just one operation. It also occurs for the NC
model, where this violation is even worse, as a couple of operations are candidate
for using embedded data, but it seems the operations convey a lot of information
that is not always needed by clients.

The LMD detector for the PC model reports “++” which deviates from the “-”
in our manual assessment. We inspected the operations carefully and that many of
the operations providing URL-based links actually contain data immediately needed
by clients. If this interpretation is correct, “-” is the correct assessment, but this
can only be found out by source code analysis, not on the model. This issue could
be mitigated by changing the data elements usually needed by clients flag manually
to True.

The LS model is another interesting case. The system uses frontend endpoints
that deliver URLs to access the backend services, which then deliver the actual data
in embedded form. If we would model just based on the frontends, LMD would
be falsely detected as in the PC model, explained in the previous paragraph. This
technical feature could also have led to the misinterpretation in ODD (and RSD)
that the frontends do not belong to the aggregating bounded contexts; which both
would have led to yet another deviation in manual and automatic assessment. As
we, however, modeled the LS model considering the relation to backend services,
manual and automatic assessment match.

The ODD cases of the BA and ES models are assessed as “-”, consistently
in ground truth and automatic assessment. But with a few changes those could
turn into “++”, as just a few endpoints are not covered in domain model. If
corresponding aggregating domain model elements were modeled, the asssessments
could easily be improved to the best score. Here, the failed detectors clearly pinpoint
the few endpoints that require attention.

The “--” assessment of LMD did not appear in our cases. We did not implement
a detector for it yet, as this detector would be pretty trivial. Here, human judgment
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if a domain link is needed by clients but not in the API is needed. This cannot be
found out automatically. Thus a simple flag to indicate this fact on domain links in
our models, which can be set by a human designer, together with a simple detector
whether there is an API link corresponding to the domain link would be enough to
support this assessment, too.

The ODD cases of the BA and ES models are assessed as “-”, consistently
in ground truth and automatic assessment. But with a few changes those could
turn into “++”, as just a few endpoints are not covered in domain model. If
corresponding aggregating domain model elements were modeled, the asssessments
could easily be improved to the best score. Here, the failed detectors clearly pinpoint
the few endpoints that require attention.

In summary, our multi-case study have shown that all ADD options could pos-
sibly automatically be detected based on our scoring scheme (RQ1). Regarding
RQ2, 83% of the decision points have been correctly identified, and the remaining
cases are those where more detailed modeling of aspects beyond architecture-level
models, e.g. with a simple additional flag, could have solved the issue. That is, a
single manual inspection and correction could lead to correct detection in future
runs, e.g. in a continuous delivery pipeline context.

6.2. Statistical Analysis of the Results

To confirm the results for RQ2 and get a more precise estimate for the effect
size, we statistically analyzed the results in R. In our data set, we had to deal
with ordinal variables, a rather small sample size, and data that is not normally
distributed. We first confirmed the non-normal distribution with a Shapiro-Wilk
test [34] using R’s shapiro.test() function. The data in Table 10 shows that, as the
p-values for both ground truth and detector results data are significant, we must
reject the null hypothesis that the data is normally distributed for both variables.
Thus, the t-test, which assumes the normal distribution, is not applicable.

In general, for our problem the Wilcoxon signed-rank test would be applica-
ble, but as many data points are identical, we get many zero values, which are in
Wilcoxon’s method removed from the test, making the results non-exact for our
data set. The Wilcoxon signed rank test with Pratt method can handle those zero
values [35], which means that it is more appropriate for our data set. For Wilcoxon-
Pratt Signed-Rank Test calculation, we used the wilcoxsign test() function from R’s
coin package. The results of the test in Table 10 are not significant, meaning that
the null hypothesis cannot be rejected. Thus, we must assume the true µ is close
to 0.

To confirm this result and assess the relevance of the result further, we computed
the effect size. Here, Kitchenham et al. [37] suggest Cliff’s δ [36] as a robust method
for empirical software engineering. For this, we used the cliff.delta() function from
R’s effsize package. As shown in Table 10, the delta estimate is -0.1042524, which
is interpreted as: the effect size is negligible [38].
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Table 10: Statistical Analysis Results

Shapiro-Wilk Test for Ground Truth Data
p-value 0.000448
Shapiro-Wilk Test for Detector Results Data
p-value 2.728e-05
Wilcoxon-Pratt Signed-Rank Test
p-value 0.369
Cliff’s Delta
delta estimate -0.1042524 (negligible)

6.3. Lessons Learned

In this section, we summarize the major lessons learned of our study, especially
from the multi-case study that illustrate the relevance of our results.

Lesson 1. A rough estimation of manual architectural conformance checking
strongly indicates that automation is required, if a rapid release schedule is used.

As discussed below in Section 8, each of the two authors has performed a com-
plete manual conformance assessment for our case study model set at least three
times during the writing of this article, and before that numerous times for all sin-
gle models during the development of our approach. Thus, we can provide a rough
estimate of a manual conformance checking effort.

An initial manual checking takes in our experience substantially more time than
subsequent re-assessments. While some links require initially a few minutes to
check, with experience and practice one can reach about 10-30 seconds per link
between domain model and API element on average. That is, our smaller models
initially took about 10-20 minutes to check, going down to a few minutes to check
in later iterations. The larger models required about 40-60 minutes initially, and
went down to 8-15 minutes in later iterations.

Assuming that a very small-size industrial system is about the size of our largest
models, a small medium-sized industrial system is about the size of our complete
model set, and large-scale systems (such as those in [13, 14, 15]) are way beyond
our models’ scale, it is immediately clear that even for small to medium real-life
systems it is almost impossible to check them manually in each run of a Contin-
uous Integration/Delivery (CI/CD) pipeline (e.g. for daily or hourly release). For
large-scale systems, even a single manual check might be infeasible. Thus, a sig-
nificant lesson learned is that manual conformance checking might be possible for
release schedules measured in years, but for contemporary rapid release schedules
automation is often the only feasible option.

Please note that this kind of automation for frequent releases might require
automatic reconstruction of the model. In our approach, all aspects except the
case study modeling were automated. We discuss in Section 3 how this step can be
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automated, too, using our existing static code analysis approach [33]. In fact, the
evaluation [33] of our prior work demonstrates the automatic API reconstruction of
our case study systems ES and LS used in this article, too (see Table 3).

Lesson 2. Accurate automatic conformance checking is possible, especially if
domain-specific system knowledge is utilized.

In our approach we have shown that for a given modeling of 12 systems ac-
cording to existing industry best practices (empirically studied in [11]) and using
a given interpretation of these industry best practices (i.e., our scoring scheme),
following our approach, it is straightforward to provide detectors that accurately
detect conformance to the ADDs describing the industry best practices. Further our
detailed assessment in Section 6 shows that with domain-specific knowledge about
the systems (which an e.g. industry team working on a system has), the detection
can be improved up to a 100% accuracy.

Lesson 3. The approach can be adapted or calibrated if the detector results
provide detailed traceability.

The results in our evaluation use concrete modeling or interpretation of the
industry best practices (i.e. our scoring scheme), but do not depend on them. During
our many iterations and refactorings, we have many times improved the models,
scoring scheme, and detectors, and still about the same level of accuracy of the
detectors was possible to achieve. A consequence of this observation is that once
one is acquainted with the modeling approach, it is possible to adapt models, change
the detectors, or calibrate the scoring scheme.

All steps in our approach are fully automated and can be re-run after such
a change. The major reason why this works in our experience is the provided
traceability in detector results—i.e. status (Success, Failed, or Partial Success), the
affected modeling elements (violations), and a reason for the outcome. That is, if our
detectors fail to produce the expected results, the traceability information provided
by the detectors helps to pinpoint the model elements or detector implementations
that failed. This is for instance important for API developers to benefit from
an assessment, as e.g. explained in Table 4, for instance, while realizing fixes or
refactorings of the API. In a large-scale model, only obtaining a score like “o” or
“-” might not be helpful because it is not clear which parts of the model caused the
non-optimal results. But with the detailed traceability links, each root cause of a
failure can be easily pinpointed and then fixed or refactored.

Lesson 4. Once the detector infrastructure is realized, writing or changing
detectors is straightforward and comparatively low effort.

The effort for providing the automation of a single detector, once the general de-
tector framework, modeling framework, model visualization, model traversal meth-
ods, traceability support, reporting framework, and other generic components are
in place, is relatively low. Most single detectors have been written in 20-40 minutes
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time, with a couple of refactorings, requiring on average again as much time. That
is, it is feasible to adapt detectors to new circumstances, if needed. Furthermore,
as we provide our results as open access artifacts, even our implementation can be
reused, thus reducing the initial required effort substantially.

Lesson 5. For full automation of our approach, the API model must either be
automatically extracted or API code must be generated from it.

Even though a detector is often not difficult to implement and maintain, the
initial creation and maintenance of the API models need to be considered, too
(This does usually not apply to the DDD models as they are usually intended
to be provided as manually modeled artifacts.) This often requires some level of
architecture reconstruction, as not only the API calls need to be understood, but
also calls to the backend microservices they interact with.

We have outlined two feasible approaches in Section 3 to deal with this challenge:
Firstly, our extraction from the code approach described in [33] can be applied,
which enables automatic reconstruction of APIs but requires an initial specification
effort. This is applied to the API models of our case studies ES and LS (see [33]).
Secondly, a model-driven approach to generate API code from a model can be
chosen, as e.g. offered in MDSL [27] and used in our Case Study PM.

7. Related Work

In this section, we compare to the related work. We first discuss related works
on API and microservice design, and show that we close the gap in the literature.
Most of the existing works mainly provide informal guidance that is not yet sup-
ported in an automated fashion. Works that provide automation for conformance
assessment are already being discussed, but they either only cover very general
conformance assessment not suitable for API/DDD problems or address specific
microservice patterns. We also include related works on checking local APIs. None
exist for the problem of supporting the mapping of APIs and DDD yet. On the
other hand, in the existing works on the relation of APIs and DDD, mostly broader
microservice architecture aspects are covered, and API topics are rather a side-note.
An automated mapping or conformance assessment approach does not exist in this
area of research either.

7.1. Related Works on API and Microservice Design

Various works address the design of API endpoints, often in the form of patterns,
which we consider in our decision options, or as decision models. The Microservice
API patterns [4] contain patterns on operation and link/embedded data design [39,
2]. The Enterprise Integration patterns [40] contain various patterns on message
construction, such as Command Message or Event Message, that are relevant in
message-based endpoint design. The Service design patterns [41] contain high-level
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patterns on API styles, as well as client-service interactions, which all are relevant
for service-based endpoint design.

Fowler [8] links patterns such as Domain Model to distributed system patterns
in an enterprise context. His work is one of the first patterns works linking domain
models with distributed systems designs using pattern-based design advice.

Richardson [26] presents microservice patterns which are linked in examples
to DDD models. Some solutions for those patterns relevant to microservice API
endpoints are in our model offered as ADD options. None of these approaches is
supported by automated detectors as in our approach yet.

Our work considers solutions akin to such patterns in the decision options, and
the patterns contain forces akin to the decision drivers which have led to our ground
truth assessment. However, none of the pattern works contains an automated ap-
proach, as proposed in our work.

7.2. Related Works on Conformance Assessment

Conformance assessment has been applied in various areas of software engineer-
ing such as service composition [16] and traceability to guidelines [42]. In general,
the conformance relation is defined as the consistency between models [16]. In
software architecture, conformance assessment addresses relation between a soft-
ware system’s architecture and its intended architecture [43]. With those works our
approach shares the general notion of architectural conformance assessment.

We study conformance of an ADD model and a microservice API model for
API endpoints. Very close to our work is architectural conformance assessment [44,
28, 29] in which first metrics are derived from a knowledge source and then those
metrics are compared to expert judgments based on patterns. Our work has some
commonalities with those earlier works, such as deriving a scoring scheme based on
human judgement (in the earlier works from patterns; in our work from an empirical
study of ADDs) and evaluating the investigated systems using the scoring scheme.

In contrast to these works, our work uses detectors instead of special-purpose
metrics to automatically detect the core decision points from an empirically grounded
ADD model. The reason for the differences is that we investigate ADDs on the
mapping of API and DDD models, whereas the prior works study conformance to
architectural microservice patterns. To establish traceability and clear judgments
on each decision point in the more complex mappings we investigated, we required
more detailed assessments (Success, Failure, and Partial Success) with links to the
identified violations for traceability, and reasons for detected failures (see Section 5)
for details).

7.3. Related Works on Checking Local APIs

Prior works have proposed various approaches to perform checks of certain kinds
of conformance for local APIs or API libraries as opposed to the remote, message-
based microservice APIs in focus of our work. For example, Zhong et al. [45]
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propose a method for deriving an API specification from a natural language API
documentation. They show that APIs specifications can be inferred with high
accuracy scores and the derived specifications can help to find defects in the projects.
Tan et al. [46] propose an approach to test the conformance of Javadoc comments
and source code, specifically for testing method properties about null values and
related exceptions. The approach is tested on six open-source projects and 24
inconsistencies between Javadoc comments and method bodies have been found.

In the PaRu approach [47] API parameter rules describe constraints on parame-
ters of API methods. These can be described as document rules in Javadoc or code
rules where the rule is inferred from the source code. PaRu enables the automatic
extraction of such local API parameter rules. It can also find overlaps between these
two types of rules, which very seldomly occur in the studied open-source systems.
In contrast, if a DDD model is modeled for an API, the API and DDD models
addressed in our approach should always have substantial overlaps, as one is de-
rived from the other, and it is the goal of our approach to infer whether the two
kinds of models are correctly mapped according to the ADDs informally expressed
in Section 2.

Such local API approaches are substantially different from the conformance
checking provided in our approach, as firstly they do not address properties that
require architectural abstraction from the code, such as our ADDs. Thus, the
approaches can check directly against source code fragments, and the code’s docu-
mented defects or existing inconsistencies can be used for building a ground truth.
In contrast, as the realization of ADDs cannot easily be spotted from the code, we
needed to design our detector approach and construct the ground truth based on
our scoring scheme.

Secondly, local APIs do not expose the level of complexity of interaction that
remote, message-based APIs offer, e.g. none of the ADDs described in Section 2
needs to be considered at all in a local context. Finally, our focus is not on the link of
documentation/comments to source code fragments, but on the consistency between
API and DDD models. Nonetheless, the named approaches use natural language-
based methods, and it would be interesting to study as possible future work if such
approaches would work well in our context, too, e.g. applied on structured API
documentation.

7.4. Related Works on Microservices/APIs and DDD

Various approaches to modeling microservices with DDD, or integrating the two
concepts have been proposed [9, 10, 48, 49, 50]. Evans [9] a microservice parti-
tioning approach based on DDD’s Bounded Contexts. Merson and Yoder suggest
five strategies for microservice design based on DDD aggregates, bounded contexts
(BC), domain events and other strategies. Rademacher et al. [48] propose a UML
profile for Domain-driven microservice modeling. In another work, Rademacher et
al. [49] discuss challenges of using DDD modeling for microservice architectures in
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the context of model-driven software development. Pautasso et al. [50] discuss the
use of DDD in the context of microservice design in practice. Fan and Ma [51]
provide an experience report on migrating a mobile application to microservices, in
which they use DDD concept to establish the mapping.

Our approach includes modeling and integrating such concepts, with more de-
tailed mappings to API concepts than prior approaches, and in contrast to the other
approach also offers conformance assessment. While most of the named approaches
consider API aspects, most cover broader microservice architecture aspects as well,
which are not part of our approach.

The Context Mapper tool [52] goes one step further than the other microser-
vice/DDD integration approaches and generates various kinds of API specifications
from high-level DDD domain models. It is a tool that implements parts of the
design options covered in this paper, especially those options related to the API
contracts, including links and operations. In this it is complementary to our work,
as our Context Mapper could help in the manual creation of the models required for
our approach, and our detectors could check models created with Context Mapper.

Petrillo et al. [53] conducted an empirical study to answer the question how well
REST APIs for cloud computing are designed. The conformance of these REST
APIs is evaluated by investigating best practices. While their work concentrates on
REST APIs only, our work focus on wider range of microservices APIs and includes
the DDD and modeling perspective.

CHARMY [54] aims to provide a tool for the model-based design and validation
of software architectures. In contrast to our work, it is focused on the early stages
of software development.

8. Threats to Validity

Our ground truth assessment depends on the interpretation of the ADDs, and
different practitioners might come to slightly different assessments. We mitigated
this subjectivity by comparing the ground truth assessment in each iteration of
our research study to multiple data points from our prior study [11]. In this em-
pirical work, we considered a relatively high number of practitioner sources (32).
Nonetheless, some misinterpretation or bias could have been introduced.

Regarding internal validity, we avoided researcher bias by faithful modeling from
the evidence-based information. However, the modeling process can be another
source of an internal validity threat. We mitigated this threat by independently
cross-checking our models numerous times in the author team. Each author studied
the sources line-by-line, and then refined them in at least five alternating iterations
by both authors, until consensus of correct and consistent modeling was reached.
We also confirmed that all modeled practices conform to industry best practices
reported in [11]. That is, our modeling procedure has produced acceptable models
with a high degree of confidence. Even if minor misinterpretations made their way
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into our models, as all models follow existing industry best practices, the systems
still could have been implemented in this way. This means, such misinterpretations
might invalidate the empirical results for a specific model (which are a by-product
of our study, not the study goal), but not the evaluation results of our automation
approach.

Regarding validity of the detector results, there is a threat that our detector
implementation contains defects. To mitigate this threat, each detector implemen-
tation and changed detector result, throughout our study, was double-checked inde-
pendently by both authors. Due to the full traceability provided by our approach,
our implementation alerts us of changes. It offers a full trace to respective detector
causing a change, its status (Success, Failed, or Partial Success), the affected mod-
eling elements (violations), and a reason for the outcome (see Section 5). Upon a
change in an assessment, both authors inspected the change in-depth to determine
whether the result conforms to the expected result.

In addition to these measures, during writing of this article both authors inde-
pendently checked the complete data and all models of this study 3 times each, to
avoid mistakes in earlier steps of the research. We also provide all artifacts (code,
data set) as open access artifacts to enable reproducibility, so that our modeling
and assessments can be independently reproduced.

To avoid system composition and structure bias, we studied many cases in a
multi-case study from various third-party authors. Also, the generalizability (exter-
nal validity) is increased due to the broad range of third-party systems. Nevertheless
the threat to validity remains that most of our systems and the case authors have
a business/enterprise system background (where DDD is usually applied). Thus
our results might not be easily transferable to other contexts such as embedded
systems.

Further, some systems are built for demonstration purpose. Thus, it is possi-
ble that some aspects important in full-scale commercial systems are missing. To
mitigate these threats, we aimed in our selection of the systems, summarized in
Table 3, to cover many different kinds of domains (all within the broader enterprise
system context), including purchase ordering, publication management, banking,
shopping, process tools, game-related knowledge-bases, disease statistics, and in-
surance. In addition, they cover all of the possible decision options in our ADDs in
many different combinations.

The search process for the case systems might have led to the unconscious ex-
clusion of certain sources. We mitigated this by collecting a relatively high number
of cases (12), and checking for each the background, for example including that all
case authors are practitioners or have a practitioner background.

The construction of our scoring scheme is based on an interpretation and ag-
gregation of practitioner texts in a qualitative, empirical study [11]. While precise
decision drivers and impacts have been identified in the empirical study and fol-
lowed by us in our scheme, an exact mapping e.g. to crisp numerical assessments
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would have introduced a significant threat of misinterpretations. In contrast, the
used ordinal scale enabled us to turn the qualitative practitioner judgments into
numerical information, significantly reducing this threat.

While ordinal scales are commonly used to reflect qualitative judgments [55,
56, 57], the threat to validity remains that some interpretations might not reflect
the practitioner judgments accurately. Please note that this threat is mitigated by
the fact that our study in first place provides a method for automation, not an
empirical assessment of 12 system. If others have a different interpretation of some
practitioner judgments in [11], it is easily possible to adapt the respective failing
detector(s) accordingly.

As we provide all artifacts (code, data set) as open access artifacts to enable
reproducibility, such a calibration of our approach can be easily performed. Our
approach even provides traceability helping to locate the failing detectors. The con-
crete system assessment results in Table 9 would then change, but the automation
approach would not require any alterations.

Our approach assumes that there is a domain model in an API project that
follows DDD practices. We conducted a study of practitioners’ work in our previous
empirical study [11], which shows that domain models for API design are indeed
commonly used in practice. But of course, for many existing APIs, DDD or domain
models might not be available. This would mean that before applying our approach
in such projects, a manageable effort is required on the part of the domain experts
or developers of such a project to model the relevant domain model extract for the
API. The conformance testing that our approach provides is intended to be used
to continuously check conformance, e.g., as part of a continuous delivery pipeline.
Therefore, in projects where developers need to check APIs frequently, modeling the
domain model in conjunction with our approach could actually lead to a reduction
in effort. In addition, one gains the other benefits of such domain models such as
an easier and better understanding of the API domain. However, there remains the
threat that in some API projects the assumption that a domain model exists or can
be created with little effort is not justified. In these projects, our approach would
then not be applicable.

9. Conclusions

In this paper, we introduced an automated assessment approach for conformance
to ADDs on API endpoint design based on DDD domain models, specifically fo-
cusing on operations, links, and resource segregation (to answer RQ1). Such an
assessment is mainly required in the work for API developers and architects. Using
the data set from an empirical study on those ADDs, we created an empirically
grounded scoring scheme. Based on this, we developed novel automated detectors
to identify each of the decision points in our scoring scheme.

We evaluated this approach in a multi-case study in which we compared the
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manually created ground truth to the detector results. In the cases of the multi-
case study we were able to identify 83% of the decision points from our scoring
scheme correctly (to answer RQ2). The remaining approximately 17% are those
cases where more detailed modeling of aspects beyond architecture-level models,
e.g. with a simple additional flag, could have solved the issue. That is, a single
manual inspection and correction could lead to correct detection in future runs,
e.g. in a continuous delivery pipeline context. To confirm the results, we performed
a statistical evaluation which showed no statistically significant difference between
the two variables (ground truth and automated detector results), as well as a negli-
gible effect size between the two variables. In general, manually establishing ADD
conformance requires high and continuous effort. Our detectors can spot the vio-
lations automatically, support the human-in-the-loop, and support the automated
assessment.

Our results indicate that such an automated approach is needed for architec-
tural conformance checking, especially when a frequent release schedule is used,
as often repeated manual checking is rather infeasible. A modeling framework and
traceability support, as provided in our approach, can help to adapt or calibrate the
approach to a given system setting and set of best practices, and create or improve
detectors in a straightforward manner with low effort. In our approach all aspects,
except the case study modeling were automated; we discuss in Section 3 how this
step can be automated, too, using our existing static code analysis approach [33].

In our future work, we plan to work on other ADDs for API design, as well as
related design patterns. We aim to apply our approach as part of Continuous Inte-
gration/Delivery (CI/CD) pipelines which perform a series of related architectural
conformance assessments. Additionally, it would also be interesting to study the
combination of our approach and natural language-based approaches, e.g. to obtain
information from architecture documentations.

Acknowledgments. This work was supported by FWF (Austrian Science Fund)
project API-ACE: I 4268. Our work has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
No 952647 (AssureMOSS project).

References

[1] O. Zimmermann, Microservices tenets, Computer Science-Research and Devel-
opment 32 (3-4) (2017) 301–310. doi:10.1007/s00450-016-0337-0.
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[39] O. Zimmermann, D. Lübke, U. Zdun, C. Pautasso, M. Stocker, Interface
responsibility patterns: Processing resources and operation responsibilities,
in: Proceedings of the European Conference on Pattern Languages of Pro-
grams 2020, EuroPLoP ’20, ACM, New York, NY, USA, 2020, pp. –.
doi:10.1145/3424771.3424822.

[40] G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley, 2003.

[41] R. Daigneau, Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services, Addison-Wesley, 2011.
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