
API Description-Based Conformance Assessment of
Architectural Design Decision

1st Apitchaka Singjai
Research Group Software Architecture

University of Vienna
Vienna, Austria

apitchaka.singjai@univie.ac.at

2nd Uwe Zdun
Research Group Software Architecture

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Microservice APIs are often designed based on
Domain-Driven Design. It can be challenging to judge the quality
of the relation between such a design and the implemented API,
especially when facing frequent releases and changes in an API
and its design models. Manual conformance assessment of this
relation is time-intensive and error prone. This paper proposes
a novel approach for automated conformance assessment of API
designs in relation to API design decisions. Our approach aims
to provide the first fully automated conformance assessment
approach based solely on the code of API Descriptions such
as OpenAPI. We applied and exemplified our approach for
checking conformance to the patterns and practices in an API
design decision for mapping links in a system’s domain model
to API representations. The total accuracy score (F1-measure)
for decision option identification in our multi-case study for this
decision is 97.22%.

Index Terms—API Design, ADD, Architecture Conformance
Assessment, DDD, Microservice Architecture.

I. INTRODUCTION

Microservice architectures consist of independently deploy-
able, scalable, and changeable services [1]–[3]. API design is
an important aspect of microservice architectures and includes
aspects such as which microservice operations should be
offered in the API, how to exchange data between client
and API, how to offer links, and how to represent API
messages [2], [4]. Many microservices and API abstractions
are identified using Domain-Driven Design (DDD) [5]. DDD
is a design approach that places the (business) domain at the
center of software designing and architecting. In this paper, we
focus on a specific aspect of mapping domain models to APIs:
We apply and exemplify our approach using an Architectural
Design Decision (ADD) on link mapping.

Supporting rapid release cycles is one of the key goals of
many microservices architectures. Development teams want to
deliver their APIs through a Continuous Integration/Continu-
ous Delivery (CI/CD) pipeline. Continuous updates of APIs
can quickly lead to violations of conformance of ADDs being
taken in API design. Manual checking for such violations
is error-prone and time-consuming. In general, such confor-
mance evaluation has been used in a variety of domains of
software engineering, including service composition [6] and
conformance to standards [7]. The conformance relation is
often described as the consistency of models [6]. In our

context, architectural conformance assessment is used to verify
that ADDs are implemented appropriately in a particular API
endpoint. API Descriptions, such as OpenAPI1, Swagger2, or
RAML3, are widely used today. Our approach aims to provide
the first fully automated conformance assessment based solely
on the code of API Descriptions (we focus on OpenAPI). We
set out to answer the following research questions:

• RQ1 How to provide a fully automated conformance
assessment of API ADDs?

• RQ2 a) To which extent can OpenAPI-based parsing
provide sufficient information for design option iden-
tification in API ADDs? b) Which level of accuracy
can be expected in such fully automated conformance
assessment of API ADDs?

To address the research questions, we obtained empirically
validated scoring schemes for the exemplary ADD LMD from
our previous research. We then derived assessment algorithms
and realized novel OpenAPI parser and assessor tools for
conformance assessment. In parallel, we selected and analyzed
case studies. Then we conducted a manual identification for
ground truth assessment in our multi-case study. After that, we
executed the automatic parsing and analysis of the case studies.
Finally, we performed an empirical validation. For this, firstly,
we computed accuracy measures (Precision, Recall, and F1-
measure) for the identification of decision options compared
to our ground truth. Secondly, we calculated the simple
count comparison metric between the correct identification of
conformance results and the number of API endpoints.

To address RQ1, we built the OpenAPI parser and assessor
tools to automate the following tasks: parsing the OpenAPI
description, identifying decision options, and assessing con-
formance. Regarding RQ2, we reached an overall average
accuracy score of 97.22 (F1-measure) in our multi-case study.

These numbers seem to indicate that the OpenAPI de-
scriptions (in the cases and for the selected ADD) provide
enough information for an acceptable automatic conformance
identification.

1https://www.openapis.org/
2https://swagger.io/
3https://raml.org/

This paper is organized as follows. Section II we describe
our motivation and background. Section III we discuss our
research methods. Then, we explain how we prepared the
case studies in Section IV. In Section V, we present the au-
tomated approach for assessing the conformance, and present
the empirical validation results in Section VI. After that, we
discuss our results in Section VII. We compare to related
works in Section VIII. Finally, we discuss threats to validity
in Section IX and draw conclusions in Section X.

II. BACKGROUND

The primary motivation for this work can be linked to
the results from our earlier empirical study of practitioners’
perspectives on the interrelations between APIs and DDD [8].
In this work, we empirically identified multiple ADDs in API
design that contains API design best practices as decision
options. We selected one ADD from this work, the Link
Mapping Decision (LMD), to exemplify and validate our work
in this paper. The Link Mapping Decision (LMD) was selected
because it proved to be the hardest to assess automatically [9].

How to Map Links between Domain Model Elements
to the API? : Decision

: Do Nothing
Use Distributed or

Hypermedia Links in
the Payload : Practice

Linked Information
Holder : Pattern

Pass Object
Identifiers in the
Payload : Practice

Object Identifier : Pattern

Embed Linked
Data in the

Payload : Practice

Embedded Entity :
Pattern

Link :
Domain Class

«Option»
{name = "Do Not Offer
the Link Via the API"}

«Option»
{name = "Pass Distributed

or Hypermedia Links
in the Payload to

Represent Domain
Model Links"}

«Option»
{name = "Pass Object

Identifiers in the Messages
to Represent Domain

Model Links"}

«Option»
{name = "Pass Embedded

Data in the Messages
to Include Perhaps

Needed Data"}

decide for
some instances of

Uses Uses Uses

Fig. 1: Link Mapping Decision

The Link Mapping Decision (LMD) describes possible
options for the connections between API endpoints. Links
between model elements in a domain model describing the
API have a similar function in DDD. Obviously, not all
links in a DDD model are eligible for API exposure, but
only those between model elements that are designated to
be exposed in API endpoints. The Link Mapping Decision is
shown in Figure 1 along with its alternative decision options.
A link in a domain model to be exposed to an API endpoint
can be mapped in the following possible ways: Firstly, the
option Use Distributed or Hypermedia Links in the Payload
maps the domain model link to a standard distributed or
hypermedia link, such as URIs in RESTful HTTP or URIs
and HAL/JSON-LDs in JSON. An alternative is Embed Linked
Data in the Payload where the content is added to the message
payload rather than connecting to it via a distributed link.
Next, there is the option to Pass Object Identifiers in the
Payload which sends an Object Identifier that is meaningful
(only) in the server context, but contains no remote location
information. Note that each of these options is linked to an
API Design Pattern described in the literature, namely LINKED
INFORMATION HOLDER [4], OBJECT IDENTIFIER [4], [10],

and EMBEDDED ENTITY [4]. Finally, there is the option to
choose not to map the domain model link to the API.

The choice of an option has positive or negative influences
on desired API qualities. For example, compared to the EM-
BEDDED ENTITY option, use of distributed links is beneficial
for Data Consistency as the link is always up-to-date, and
thus API Evolvability and API Modifiability are positively
influenced. It leads also to smaller Message Sizes. Links
however lead to higher Protocol Complexity, making it harder
to Minimize API Calls, and can have a worse Performance and
Scalability because of many resulting distributed calls. The
Object Identifier based option is very similar in its effects to
the distributed links based option. In direct comparison, it has
the disadvantages of possibly Exposing Domain Model Details
in API as well as higher Coupling of Clients to Server.

In our previous work [9], we derived an ordinal scoring
scheme for manual assessment of an API—Domain Model
mapping. It is our goal in this work, to automate the human
judgement in this scoring scheme solely based on the OpenAPI
description of an API. The scoring scheme reflects the empir-
ical insights how practitioners judge different combinations of
the above explained decision options:

• IF FOR SOME domain links which are needed by the
clients: Do not offer the Link via the API THEN assess-
ment = (- -).

• IF (FOR ALL domain links dl which are needed by the
clients: (IF for dl clients usually require most of the
linked data elements immediately: THEN Embed Linked
Data in the Payload is used for the required linked data
elements, ELSE Use Distributed or Hypermedia Links in
the Payload is used)) THEN assessment = (++).

• IF ALL domain links dl which are needed by the clients:
(IF For dl clients usually require most of the linked
data elements immediately: THEN Embed Linked Data
in the Payload is used for the required linked data
elements, ELSE Use Distributed or Hypermedia Links
in the Payload OR Pass Object Identifiers in the Payload
is used)) THEN assessment = (+).

• IF (FOR SOME domain links dl which are needed by
the clients: If for dl clients usually require most of the
linked data elements immediately: Embed Linked Data in
the Payload is NOT used for dl) THEN assessment = (-)

• IF any other combination is used (e.g. for some domain
links dl which are needed by the clients, and for dl clients
usually do NOT require most of the linked data elements
immediately AND Embed Linked Data in the Payload is
used for dl) THEN assessment = (o).

In general, our conformance assessment approach is based
on the notion of a structured API description or API con-
tract [11] as input. API DESCRIPTION [12] is a pattern that
was previously released as part of the Microservice API
Patterns [4], and API CONTRACT is a variant of the general
INTERFACE DESCRIPTION pattern [10].

Core Contributions of this WorkContributions from
Prior Work

Derivation of Ordinal
Scoring Scheme

Development of
Assessment
Algorithms

Realization of
OpenAPI Parser and

Assessor Tools

Case Studies
Selection and

Analysis

Manual Inspection of
Case Studies

Ground Truth
Definition

Automatic Parsing
and Analysis of Case

Studies

Evaluation of Case
Studies Results

Fig. 2: Research Methodology Overview

III. RESEARCH METHODOLOGY

Figure 2 illustrates the research methods applied in our
study. The derivation of ordinal scoring scheme from the
previous section has been performed in previous work [9].
Github4 served as the primary source for case studies selection
and analysis. We followed the recommendations established
by Petersen et al. [13] (originally for systematic mapping stud-
ies) for establishing search phrases according to the PICO prin-
ciples [14]. We applied two principles from PICO, which are
population and intervention. Then, we applied inclusion/ex-
clusion rules. The case studies were chosen independently
and in parallel to our approach’s development. We performed
a manual inspection of case studies and created the ground
truth definition for each API endpoint in the case studies. This
ground truth is based on the scoring scheme from the previous
work. We have followed the following definitions during our
inspections [4], [12], [15]: An API endpoint is the provider-
side end of a communication channel and a specification of
where the API endpoints are located so that APIs can be
accessed by API clients. Each endpoint thus needs to have a
unique address such as a Uniform Resource Locator (URL), as
commonly used on the World-Wide Web (WWW), as well as
in HTTP-based SOAP or RESTful HTTP. Each API endpoint
belongs to an API; one API can have different endpoints.

For Automatic Parsing and Analysis of Case studies, we
applied the Panda and Numpy libraries. We compared the
results of the automatic assessment with the ground truth
assessments in our Evaluation. We quantified our findings by
counting the correct assessment identifications and calculating
accuracy scores.

In the following subsections, we explain the methods for
each of these core contributions.

A. Realization of OpenAPI Parser and Assessor Tools

We constructed the parsing and assessment algorithms us-
ing our prior work’s scoring scheme. While the conditions
remained constant, the scope of identification shifted. Rather
than analyzing the whole system, we opted to assess individual
API endpoints. Then, we created an algorithm that receives
the endpoint name, HTTP methods, and the binary value of
each decision option. It returns the assessment result and

4https://github.com/

the endpoint name. We used the OpenAPI specification as a
starting point to identify three kinds of relations:

1) single decision option per data elements,
2) multiple decision options per operation, and
3) the existence of decision options per API endpoint.

We analyze these three relations in turn. To identify the
operation, we used the operationId element of OpenAPI-
based specification in the first place. When the operationId
is omitted; we inspect the HTTP method instead. To obtain
this relation, we use a parser-based detection technique. We
adapted the swagger-reader [16] for this purpose. Our Ope-
nAPI parser converts the information into a decision option
identification. Moreover, our output identifies the interrelation
between the set of decision options and the API operation.

a) Decision Options Identification and Verification: For
the decision option identification, we started by applying the
parser-based detection approach. The result is the automated
generation of the option per API data element (Relation 1
in the previous section). For validation, we generated the
raw accuracy data (True Positives: TP, True Negatives: TN,
False Positives: FP, and False Negatives: FN) by comparing
the automated detection with the manual detection. Then, we
calculated the accuracy scores (Precision, Recall, and F1-
Measure) using the following equations:

Precision =

∑∞
n=1 TP∑∞

n=1(TP + FP)
(1)

Recall =

∑∞
n=1 TP∑∞

n=1(TP + FN)
(2)

F1−Measure = 2 ∗

[
Precision ∗Recall

Precision+Recall

]
(3)

IV. CASE STUDIES SELECTION AND ANALYSIS

This section elaborates on how we selected the case studies
and what the ground truth assessments of each case study are
that resulted from our manual assessment of the cases.

Firstly, we determined the search string keywords. Our
population was restricted to the Github repositories. The
interventions are the API DESCRIPTION pattern and OpenAPI.
As a result, we utilized the Github Search API to do the queries
based on a number of criteria:

• The search string (“OpenAPI”, “API”, “specification”) in
project name, description, and/or README file.

• The repository’s size in the rank 10-100 MB.
• The author has more than 9 followers.
• The search string(“OpenAPI”, “API specification”) with-

out any conditions.
As a result, we obtained 83 repositories in total from the
Github repository. Then, we subjected all sources to an in-
depth investigation. The following inclusion/exclusion criteria
were used to include sources:
• Sources with OpenAPI specifications: We reviewed each

source individually and rejected sources that did not use
OpenAPI.

• Sources with API specifications relevant to the project
itself: we examined each API specification and filtered
out test files, package files, sample files, example files,
configuration files, and generated API specification files.

• Sources with valid API specifications: We used the
OpenAPI Tree tool5 to test whether or not an API
specification was legitimate. A graphical representation,
such as the one provided in Section V, is generated when
the API specification is valid. We also included sources
where the API specification came with API contracts and
the ability to assess the LMD was given, even if the
OpenAPI Tree tool failed.

• Sources with more than 500 SLOCs.
Moreover, we included two sources from the prior case studies
that met these criteria. They came with API contracts and the
ability to assess the LMD as well. The Table I shows a brief
summary of each of the inspected cases studies, ID, number of
slocs, number of endpoints, number of pairings between API
endpoint/API operation, and the number of pairings between
API endpoint/API data element.

To provide a baseline for further assessment, we manually
analyzed each API endpoint in our multi-case studies based
on the scoring scheme from Section II. Regarding the ground
truth agreement, one author used the scoring scheme to derive
the ordinal scale of each API endpoint. Then, the other author
verified these judgements. Table II summarizes the ground
truth assessments. Please note that this is not the result of
the automated assessment approach presented below but the
manually derived ground truth obtained by manually assessing
every single endpoint of the 7 cases. We use it later for
scientific evaluation of the automatically computed results.
As can be seen, the cases cover a wide range of possible
combinations of the decision options for the decisions.

V. PROPOSED APPROACH

This section elaborates on the proposed approach, i.e. how
API developers would use our approach. Our approach starts
by parsing an API description and then performs an identifi-
cation of the decision options. In particular, we first identify
the decision option chosen in the API description per API data
element, then per API operation, and then per API endpoint.

5http://api-ace.inf.usi.ch/openapi-to-tree/

Three levels of step-wise decision option identification are
needed to reflect the complexity of the decision’s relation, as
explained in Section II.

«metaclass»
API Contract

«metaclass»
Domain Class

exposes

«metaclass»
API Endpoint

«metaclass»
API Data Element

offer

้has

«metaclass»
API

uses

«metaclass»
API Operation

1

*
*

*

*

*

*

*

*

* ><

API Endpoint

API Operation

API Data Element

Group

Generic Association

Specific Association

(a.)

(b.)

(c.)

Fig. 3: Three Levels of Step-wise Identification

Figure 3 shows an overview of the three levels of step-wise
decision option identification. To illustrate these levels, we
selected three API meta-model elements—API Endpoint, API
Operation, and API Data Element—that are shown on the left-
hand side of the figure. We show these meta-model elements
in Figure 3 in relations using three kinds of associations:
Group, Generic Association, and Specific Association. One
API endpoint, two API operations, and five API data elements
are depicted in Figure 3 (a.)-(c.). They depict the relationships
between API endpoints/API data elements, API endpoints/API
operations, and API endpoints with six, two, and one pairs
between the API endpoint and its data elements, respectively.
Our three identification levels are used to identify each of these
possible structures in OpenAPI.

Based on the detected information, the approach then as-
sesses the conformance using the scoring scheme. Finally, it
generates the assessment results to be displayed to the API
developer. Please note that these steps are to be conducted en-
tirely based on OpenAPI-based API descriptions, i.e. requiring
no human effort for modeling creation.

Figure 4 shows the tree model of the Real World Example
App case’s OpenAPI specification, which we use as a running
example. It contains 12 API endpoints for which we evaluated
LMD conformance. The decision option chosen for each end-
point depends on the relationship between the API endpoint
and the API data elements used in its operations. Since we
studied both the incoming and outgoing data elements in
the API specification, we have 61 pairings between the API
endpoint and its data elements. Further, there are 19 relations
between the API endpoints and their operations. To illustrate
this further, we use the endpoint “/profiles/{username}/follow”
highlighted in red in Figure 4 as a running example.

TABLE I: Overview of the Inspected Case Studies

ID Description (#) (#) (#)Endpoint (#)Endpoint
sloc Endpoint -operation -data

RW Realworld Example App: The API specification supports technology stack diversity. The
documentation of a full-stack app called Conduit is available in the YAML format (version
3.0.1). Ref:https://github.com/gothinkster/realworld

916 12 19 61

DX Graph DevX API: It provides a backend RESTful API that has resources used by the
Microsoft Graph documentation, Graph Explorer, Powershell SDK, and Graph samples
workload teams, all of which are handled by the Graph PM team. Ref: https://github.com/
microsoftgraph/microsoft-graph-devx-api

875 10 11 55

NC Disease Statistics App: It delivers a variety of virus-related information. Its public API is
an open-source project that is spearheaded by four primary contributors from four different
countries. The specification for is available in JSON format (version 3.0.0).
Ref: https://github.com/disease-sh/API)

2773 39 39 107

EA Admin Example API Description: It provides the activity of the admin. The current version
of the OpenAPI specification is 3.0.1. Ref: https://github.com/mohsenTalal/OpenAPI-Swagger

865 7 10 95

PT Pinterest’s REST API OpenAPI Description: This description is utilized internally by
Pinterest’s API architecture. It contains OpenAPI specifications in version 3.0.3 Ref:
https://github.com/pinterest/api-description

4981 23 30 190

RG Registry API: It enables teams to maintain API descriptions. The Registry API is a database
of business APIs that is machine-readable and serves as the basis for web directories, portals,
and workflow managers. Ref:https://github.com/apigee/registry

1846 20 35 203

ST STITCH API Description: STITCH is a database that projected chemical-protein interactions.
Correlations are formed both directly (physically) and indirectly (functionally) through
computer prediction, information transfer between species, and aggregated interactions from
other (primary) databases. Ref: https://github.com/micheldumontier/API-descriptions

716 12 12 65

TABLE II: Ground Truth Assessment: Number of Results per
Ordinal Score in each Case Study

Assessment RW DX NC EA PT RG ST
Results

+ + 5 6 28 0 5 0 0
+ 0 0 0 0 3 6 0
o 5 3 0 7 13 11 12
- 2 1 11 0 1 3 0

- - 0 0 0 0 0 0 0

Fig. 4: OpenAPI Tree of the Real World Example App case

A. Parsing API Description

For the LMD decision, we parse the following information
using our OpenAPI Parser: 1.) Endpoint Data 2.) Operation ID
3.) Incoming Distributed Link 4.) Incoming Embedded Data
5.) Incoming Object ID Based Link 6.) Response Code 7.)

Outgoing Distributed Link 8.) Outgoing Embedded Data 9.)
Outgoing Object ID Based Link.

The 1.) Endpoint Data here contains the API endpoint’s
name and the HTTP method. Since one API endpoint can
bind with more than one HTTP method, we also included the
HTTP method to make this endpoint data be usable as an
identifier. The HTTP method identification, performed here,
is helpful for API data element identification later on. The 2.)
Operation ID helps to check whether the operation is already
implemented in the backend, while the 6.) Response Code
helps to check the availability of the outgoing data.

The three incoming data patterns, 3.) Incoming Distributed
Link, 4.) Incoming Embedded Data, 5.) Incoming Object ID
Based Link, as well as the three outgoing data patterns, 7.)
Outgoing Distributed Link, 8.) Outgoing Embedded Data, 9.)
Outgoing Object ID Based Link, are the specific information
needed for identifying the LMD decision options (using the
approach explained above).

Table III shows the sample output that we retrieve from
the OpenAPI Parser for the Real World Example App study
case. This table is also the sample input of the assessor in
Section V-C.

B. Identification of Decision Options

There are 916 SLOCs in RW’s OpenAPI specification. The
code snippet of the endpoint ”/profiles/{username}/follow”
using the POST HTTP method is shown in Listing 1. Listing 1
contains one API endpoint (/profiles/{username}/follow), one
relation between API endpoint and API operation (/profiles/
{username}/follow - POST or FollowUserByUsername), and
three relations between API endpoint and API data element
that we used to identify the decision option as follows:
• /profiles/{username}/follow - username
• /profiles/{username}/follow - ProfileResponse

TABLE III: Sample Output for Real World Example App from the OpenAPI Parser

ID 1 2 3 4 5 6 7 8 9
RW-A1 /profiles/{username}/follow-

DELETE
UnfollowUserByUsername null username:true null 200—401—422 application/json:

#/components/schemas/
ProfileResponse|
application/json:
#/components/schemas/
GenericErrorModel

null null

RW-A2 /profiles/{username}/follow-
POST

FollowUserByUsername null username:true null 200—401—422 application/json:
#/components/schemas/
ProfileResponse|
application/json:
#/components/schemas/
GenericErrorModel

null null

• /profiles/{username}/follow - GenericErrorModel

Listing 1 contains snippets that correspond to the detected
options RW-V5 and RW-V7 in Table IV.

Listing 1: The API Description Example
” / p r o f i l e s /{ username } / f o l l o w ” : {
” p o s t ” : {

” t a g s ” : [” P r o f i l e ”] ,
” summary ” : ” Fol low a u s e r ” ,
” d e s c r i p t i o n ” : ” Fol low a u s e r by username ” ,
” o p e r a t i o n I d ” : ” FollowUserByUsername ” ,
” p a r a m e t e r s ” : [{

”name ” : ” username ” ,
” i n ” : ” p a t h ” ,
” d e s c r i p t i o n ” :

” Username of t h e p r o f i l e you want t o f o l l o w ” ,
” r e q u i r e d ” : t r u e ,
” schema ” : {” t y p e ” : ” s t r i n g ”}

}] ,
” r e s p o n s e s ” : {

” 2 0 0 ” : {
” d e s c r i p t i o n ” : ”OK” ,
” c o n t e n t ” : {

” a p p l i c a t i o n / j s o n ” : {
” schema ” : {

” $ r e f ” : ” # / components / schemas / P r o f i l e R e s p o n s e ”
}

}
}
} ,
” 4 2 2 ” : {

” d e s c r i p t i o n ” : ” Unexpec ted e r r o r ” ,
” c o n t e n t ” : {

” a p p l i c a t i o n / j s o n ” : {
” schema ” : {

” $ r e f ” : ” # / components / schemas / G e n e r i c E r r o r M o d e l ”
}

}
}
} ,

Table IV presents the decision option identifications. The
Columns identifier and decision-option are generated automat-
ically. Moreover, we included an ID column for the reporting
purpose. The six entries (RW-V1 to RW-V6) are all addressing
the same API endpoint (/profiles/username/follow). The two
operations are UnfollowUserByUsername and FollowUser-
ByUsername. Even though, we can retrieve these operations’
name from the “operationTd” element, the HTTP methods
are interchangeable because the relation between the HTTP
method and “operationId” elements is 1:1. There are three
data elements involved in the example with these two opera-
tions: GenericErrorModel, ProfileResponse, and username. In
conclusion, the API endpoint contains two relations between

an API endpoint and API operations, and six relations between
the API endpoint and API data elements.

Due to the fact that we have three solution patterns and we
investigated all of them in both incoming and outgoing data,
we have six different decision options to detect as shown in
Table V. The table summarizes the concepts applied to retrieve
the decision option from API description.

The input is the OpenAPI description. To collect infor-
mation from OpenAPI, we adopted the swagger model and
swagger parser libraries. The output is a hashmap of the
identifier and the decision option as shown in Table A IV. We
aimed to identify the decision options of LMD between an
API endpoint and a single data element of this API endpoint.
We investigated the parameters and requestBody elements for
request data (incoming data), while the responses element was
investigated for response data (outgoing data). The parameters
element holds the information related to the GET, DELETE,
and HEAD HTTP methods. The requestBody element contains
the information related to the POST, PUT, and PATCH HTTP
methods. Moreover, we added checkKeywords() to allow us
identifying id-related keywords, such as “id” or “identifier”.
For DISTRIBUTED LINKS, the investigated sub-element is §ref.
For EMBEDDED DATA and OBJECT ID LINKS, the syntax is
almost identical. We checked the name and description sub-
elements in the parameters element and the item.name sub-
element in the responses element. The association between
API endpoint and the API data element turns to the OBJECT
ID LINKS decision option when checkKeywords() is positive,
but the EMBEDDED DATA decision option is the opposite.

C. Conformance Assessment

To provide our assessment algorithm, we further needed to
resolve the difficulty of identifying decision options through
the parser-based approach. We were able to associate the
multiple decision options per operation using the parser-based
detection technique. To assess the conformance assessment per
API endpoint, we focused on the existence of decision options.
Concerning the scoring scheme in Section II, we interpreted
the information for two conditions: C1.) domain links are
needed by the clients or not? C2.) clients usually require most
of the linked data elements immediately or not? The answer
for C1 should be “need” or “no need”, whereas the answer
of C2 should be “yes” or “no”. Based on this, we can then
fully assess the conformance to one of the decision options

TABLE IV: Decision Options Detection

ID IDENTIFIER DECISION-OPTION
RW-V1 /profiles/{username}/follow;DELETE;UnfollowUserByUsername;application/json:#/components/schemas/GenericErrorModel RES-DistributedLink
RW-V2 /profiles/{username}/follow;DELETE;UnfollowUserByUsername;application/json:#/components/schemas/ProfileResponse RES-DistributedLink
RW-V3 /profiles/{username}/follow;DELETE;UnfollowUserByUsername;username:true REQ-EmbededData
RW-V4 /profiles/{username}/follow;POST;FollowUserByUsername;application/json:#/components/schemas/GenericErrorModel RES-DistributedLink
RW-V5 /profiles/{username}/follow;POST;FollowUserByUsername;application/json:#/components/schemas/ProfileResponse RES-DistributedLink
RW-V6 /profiles/{username}/follow;POST;FollowUserByUsername;username:true REQ-EmbededData

TABLE V: The rule of Decision Options Identification

Decision
Option

Request Response

element parameters requestBody responses
DISTRIBUTED $ref $ref $ref
-LINK + checkResponse()
EMBEDDED name, description x item.name
-DATA + !checkKeywords() + !checkKeywords()

+ checkResponse()
OBJECT-ID name, description x item.name
-LINK + checkKeywords() + checkKeywords()

+ checkResponse()

(“Distributed Link”, “Embeded Data”, “Object ID Link”, and
“None Link”). Due to the scoring scheme’s complexity, we
included the HTTP method to represent the operation since
certain API endpoints in the API specification lacked an
operationID.

The handling of a single decision option per data elements
was explained in Section V-B. The judgment of LMD was
based on the relation between the single data element and
the API endpoint. The existence of decision options per API
endpoint was explained in the Algorithm 1.

Algorithm 1: Assessment Pseudocode
i n p u t : S t r i n g api description
o u t p u t : DataFrame assessment results
beg in

assessment results = p a r s e A P I D e s c r i p t i o n (api description)
assessment results . g roupByAPIEndpoint ()
assessment results . t r a n s f o r m O p t i o n s T o B o o l e a n ()
addAssessmentColumn (assessment results)
r e t u r n assessment results

end

Algorithm 1 presents the assessment pseudocode. The input
is the String from API description. The output is a DataFrame
with assessment result. addAssessmentColumn() handles the
multiple decision options per operation that have been identi-
fied by grouping the decision options based on their operation.
We modified the prior parser-based detection rule to enable it
to extract the association between the multiple decision options
and the operation. Since one API Endpoint possibly contains
multiple operations, we applied groupByAPIEndpoint() to re-
duce the investigated entries. These investigated entries are
the information per one API endpoint. After that, we turn the
decision options which is the String value in to the Boolean
value using transformOptionsToBoolean(). Thus the existence
of each decision option is denoted as TRUE or FALSE.
For addAssessmentColumn(), the input—assessment results—
refers to the endpoint name, the HTTP method, and a collec-
tion of Boolean values. The set of Boolean values represent

the existence of that particular decision options of each API
enpdoint. The results are returned as a tuple.

As previously stated, the /profiles/username/follow API
endpoint has two associations between the API endpoint and
the operation. Table III shows these two associations, whereas
Table VI shows the final outcome, the conformance assessment
result of a single API endpoint.

VI. EMPIRICAL VALIDATION RESULTS

To empirically validate our approach, we conducted two
empirical validations: the verification of decision options and
the comparison to the ground truth. While the verification of
decision options are measured by the accuracy scores, the
comparisons to the ground truth are using a simple count
metric.

a) Verification of Decision Options: Table VII summa-
rizes the results for the seven API descriptions that we selected
from the third-party sources in our multi-case study. Accuracy
score information includes the number of inspected relations
(ED), and the prediction outcome in terms of True Positives
(TP), False Positives (FP), False Negatives (FN), and True
Negatives (TN). The number of inspected relations for the
cases varied from 55 to 203. These relations refer to the links
between the API endpoint and the single data elements. There
are a total of 776 inspected relations (ED).

Consequently, the average Precision, Recall, and F1-
Measure values are 0.9479, 1, and 0.9722, respectively. To
provide an audit trail of the research and enable repeatability
of the study, we provide open access to our the data set and
the source code6.

b) Comparison to the Ground Truth on the Scoring
Scheme: This comparison is for the conformance assessment
correctness of the LMD decision based on the extracted data
are shown in Table VIII.

The endpoints of Real World Example App (RW), The
Graph DevX API (DX), Disease Statistics App (NC), Admin
Example API Description (EA), Pinterest’s REST API Ope-
nAPI Specification (PT), The Register API (RG), STITCH API
Description (ST) are 12, 10, 39, 7, 23, 20, and 12, respectively.
AR stands for an actual assessment, which denotes an actual
assessment produced automatically by our assessor tool. On
the other hand, ER stands for an expected result, which
conforms to the ground truth. Table VIII summarizes the
evaluation results for the seven case studies using simple count
metrics, with an overall match of 95.12 %. This score was

6We provide generated data, Python source code, and two excutable java
files with dependencies as a replication package for download in the Zenodo
long-term open access archive (10.5281/zenodo.6564304)

TABLE VI: The Output of Real World Example App from the Assessor Tool

Index API-Endpoint(1–) HTTP-Method (–1) 3 4 5 7 8 9 Actual-
Assessment

Expected-
Assessment

...
7 /profiles/{username}/follow POST; DELETE FALSE TRUE FALSE TRUE FALSE FALSE Neutral Neutral
...

TABLE VII: Information of Accuracy Scores

ID ED TP FP FN TN P R F1
RW 61 61 3 0 306 0.9531 1 0.976
DX 55 55 4 0 271 0.9322 1 0.9649
NC 107 107 20 0 515 0.8425 1 0.9145
EA 95 95 0 0 475 1 1 1
PT 190 172 18 0 950 0.9503 1 0.9503
RG 203 203 0 0 1015 1 1 1
ST 65 65 0 0 325 1 1 1
Total 776 Average Accuracy Scores 0.9479 1 0.9722

TABLE VIII: Information of Accuracy Scores

Assessment Correct Identification
Results (+ +) (+) (o) (-) (- -) API Endpoints’ number

RW AR 4 0 6 2 0
ER 5 0 5 2 0 11/12

DX AR 7 0 2 1 0
ER 6 0 3 1 0 9/10

NC AR 28 0 0 11 0
ER 28 0 0 11 0 39/39

EA AR 0 0 7 0 0
ER 0 0 7 0 0 7/7

PT AR 3 1 15 4 0
ER 5 3 13 2 0 19/23

RG AR 0 6 11 3 0
ER 0 6 11 3 0 20/20

ST AR 0 0 12 0 0
ER 0 0 12 0 0 12/12

Total 117/123 = 95.12%

determined by dividing the number of correct identifications
by the number of endpoints. Disease Statistics App, Admin
Example API Description, The Register API, and STITCH API
Description are four case studies with perfect matching.

VII. DISCUSSION

Our automated conformance assessment is intended to sub-
stitute the time-consuming manual assessment. Concerning
the API design from a DevOps or CI/CD perspective, auto-
mated quality control tasks are beneficial in terms of ensuring
quality and avoiding error-prone and time-consuming manual
inspections. We provided the novel concepts for the OpenAPI
parser and the assessor tools to address RQ1. The OpenAPI
parser is used to generate the input for the assessor tool
that reports the ordinary scale conformance assessment per
API endpoint. These tools aid in the following manual tasks:
parsing OpenAPI description, identifying the decision options,
and assessing conformance. Additionally, we demonstrated an
approach using the LMD ADD and Real World Example App
case study as examples.

To answer RQ2a, we conducted an empirical study to
validate the decision option as discussed in Section VI-0a
above. Overall, with 97.22% the accuracy score (F1 measure)
is quite high (substantially better than 0.8). Occasionally,
Embedded Data is unrecognized by the parser-based detector.
Because in OpenAPI the source of the root of the OBJECT

ID and EMBEDDED DATA is the same, we may presume that
they are not different. Please note that this problem may be
resolved by assigning an array string datatype rather than
a single string datatype. While this would require changing
the OpenAPI specifications that are inspected, with a simple
developer guideline and an automated test of its application,
we could potentially achieve 100% accuracy in our cases.

To answer RQ2b, we conducted an empirical study to
compare the automated results to the application of the scoring
scheme in the ground truth. We also illustrate these comparison
results of all seven API specifications with the stack bars in
Figure 5. The stack bars show the assessment information for
both the expected results (ER) and the actual results (AR).
Our case studies include a wide range of endpoints, ranging
from seven in the Admin Example API Description case study
to 39 in the Disease Statistics App case study.

0

5

10

15

20

25

30

35

40

DX EA NC PT RG RW ST

A
R

E
R

A
R

E
R

A
R

E
R

A
R

E
R

A
R

E
R

A
R

E
R

A
R

E
R

- -
+
+ +
-
o

Result

Fig. 5: The Comparison of Case Studies’ Assessment Results

In the Real World Example App and The Graph DevX
API case studies, one result does not match due to two API
operations’ involvement. We could achieve 100% matching in
these scenarios by implementing further processing to analyze
the relationship before combining the API operation element.

For the Pinterest’s REST API OpenAPI Specification case
study, four results are not matching. There are two reasons: 1.)
from Negative to Positive: sometime, the OBJECT ID and EM-
BEDDED DATA can refer to the same item in certain cases. 2.)
from Neutral to Very Positive: more caution is required when
two operations are involved. Additionally, such mismatches
could be caused in cases where just the ID-object is specified
or where double linking is used to facilitate distributed links.

Four case studies got a fully correct match to the ground
truth, namely Disease Statistics App, Admin Example API
Description, Registry API, and STITCH API Description. Due
to the fact that Disease Statistics App is composed entirely
of GET HTTP methods, it is relatively simple to retrieve

a correct conformance assessment here. Also, this project’s
evaluation result has just two values: very positive (++)
and negative (-). When clients require the majority of the
linked data elements instantly, very positive means, “Embed
Linked Data in the Payload” is utilized for the necessary
linked data, unless “Distributed or Hypermedia Links in the
Payload” is used. The negative value indicates that “Embed
Linked Data in the Payload” is not utilized for certain domain
connections required by clients. Both the Admin Example
API Description and STITCH API Description case studies,
even though their assessment results show only neutral val-
ues (o), allow clients to input the request in various forms
(“application/json-patch+json”, “application/json”, “text/json”,
and “application/*+json”). Nevertheless, we treated it as one
association between an API endpoint and a single API data
element. For the RG, we added the “id.” keyword to checkKey-
words() since the authors of this API description often used
“id.” to indicate their OBJECT ID LINK. As a result, we were
able to achieve a 100% of the matching score. This shows that
sometimes minimal development effort is needed, like adding
an identifier name, to achieve fully correct results.

In conclusion, 117 endpoints out of 123 were assessed
correctly. The overall matching score is 95.12 percent.

VIII. RELATED WORKS

Three strategies exist for ensuring static architectural con-
formance: dependency-structure matrices, source code query
languages, and reflexion models [17]. Architecture confor-
mance or compliance checking has been employed to en-
sure architecture consistency [18]. Both terms are often used
synonymously. Architectural documentation that preserves the
architectural knowledge becomes irrelevant when the confor-
mance between documentation and implementation is non-
existent [19]. This kind of conformance is constructed through
model-driven engineering or reverse engineering. Some stud-
ies have been conducted on the conformance assessment
of ADDs [20]–[22]. Zdun et al. [20] studied ensuring and
assessing architecture conformance to microservice decompo-
sition patterns. Their work consists of two main contributions:
microservice design constraints and metrics to evaluate the
architecture conformance to microservice patterns. Ntentos
et al. [21] proposed a model-based technique for evaluating
architectural conformance to microservice architecture patterns
and practices. They also offered the metrics for assessing
architecture conformance if an architecture complies with a
typical architectural design option in the microservice do-
main [22]. In contrast to our approach, these approaches work
from models; our approach only requires the OpenAPI code.

Some researchers studied conformance related to API or
DDD. Athanasopoulos et al. [23] interpreted the framework for
assessing interface uniformity in REST by discussing a con-
ceptual framework and a criteria’s collection. Domain-specific
strategies might be used to map these criteria in terms of
directing and/or inspecting the level of uniformity of a REST-
based API. Kapferer and Zimmermann [24] proposed domain-
driven architecture modeling and rapid prototyping with a tool

called Context Mapper. They considered the conformance of
the Domain-Specific Language (DSL) with the original DDD
patterns. Our approach is the first to study conformance in
the mapping between DDD models and APIs, ADDs in this
context, and works by checking the API description code
directly without human specification effort.

Concerning API design from a DevOps perspective, auto-
mated tasks are beneficial. Numerous tasks during the design
phase are difficult to automate. The following related works,
however, advocate for an automated API method over a
manual one, similar to what we propose. Robillard et al. [25]
surveyed automated API property inference techniques. They
classify 60 various strategies into five groups based on their
systematic review. Scheller and Kühn [26] proposed the API
concepts framework for automated measurement of API us-
ability. Sohan et al. are interested in automated API documen-
tation. They introduced automatic RESTful API documenta-
tion using an HTTP proxy server [27].

IX. THREATS TO VALIDITY

This section discusses threats to the validity of our study.
Our ground truth assessment is dependent on how the ADDs
are interpreted, and different practitioners might get slightly
different conclusions. We mitigated this subjectivity by com-
paring the ground truth assessment in each iteration of our
research study to the prior study [8]. In this empirical work,
we considered a relatively high number of practitioner sources
(32). Nonetheless, some misinterpretation or bias could have
been introduced. The construction of our scoring scheme is
based on an interpretation and aggregation of practitioner texts
in a qualitative, empirical study [8] While precise decision
drivers and impacts have been identified in the empirical
study and followed by us in our scheme, an exact mapping
e.g. to crisp numerical assessments would have introduced a
significant threat of misinterpretations. In contrast, the ordinal
scale allowed us to convert qualitative practitioner assessments
to numerical data, considerably lowering this threat.

Ordinal scales are often used to reflect qualitative judg-
ments. The threat to validity remains that some interpretations
may not reflect the practitioner’s judgments. This threat is
mitigated by the fact that our study presents a strategy for
automation rather than an empirical judgment. If others per-
ceive any practitioner’s decisions differently, it is simple to
update the source code. As we provide all artifacts (code,
data set) as open access artifacts to enable reproducibility,
such calibration of our approach can be easily performed. The
specific findings of the system evaluation would vary, but the
automation technique would remain the same.

Regarding the validity of the outputs of the parser-based
detectors, there is a threat that they might contain defects. To
counteract this issue, we have included an empirical validation
effort to ensure that the decision options are legitimate.

For the internal validity, we minimized the researcher bias
by doing several independent cross-checks of our findings
within the author team. Both authors independently reviewed
the whole data in this study three times throughout the writing

process to prevent errors in the early stages of the research.
We also offered all artifacts (code, data set) as open access
artifacts to facilitate reproducibility, allowing for independent
replication of our tools and evaluations.

X. CONCLUSION

The Link Mapping Decision (LMD) is one of the archi-
tectural design decisions in the context of the interrelation
between API and domain models. It is strongly associated
with API endpoints. An API description contains mainly
information on API endpoints. For this reason, in this paper,
we investigated how far it is possible to automatically assess
conformance to LMD solely based on OpenAPI code, which
has not been pursued before. To address RQ1, we developed
the OpenAPI parser and assessor tools to support the following
manual tasks: parsing OpenAPI descriptions, identifying the
decision options, and assessing conformance. To address RQ2,
we conducted empirical validations. For RQ2a, our accuracy
scores towards the identification of decision options are as
follows: Precision of 94.79 %, recall of 100 %, and F1-
measure of 97.22 %. For RQ2b, we compared our automated
approach’s outcomes to the ground truth. We discovered that
our results were on matching about 95.12 % correctly. This
indicates that full automation of conformance assessment is
indeed possible. In our future work, we plan to support other
ADDs related to the interrelation between API and DDD. Our
approach is potentially applicable to a variety of other model-
based techniques, too. In addition, it is possible to implement
our approach to other fields of interest, such as applying
it to the machine-readable document format in the machine
learning field or in the security and privacy field.

ACKNOWLEDGMENTS

This work was supported by FWF (Austrian Science Fund)
project API-ACE: I 4268.

REFERENCES

[1] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 301–310, Jul. 2017.

[2] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Introduction to microservice api patterns (map),” Post-proceedings of
Microservices 2017/2019, vol. 78, no. 4, pp. 1–17, 2020.

[3] S. Newman, Building Microservices: Designing Fine-Grained Systems.
O’Reilly, 2015.

[4] O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun,
“Microservice api patterns,” https://microservice-api-patterns.org/, 2021.

[5] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Reading, MA.: Addison-Wesley, 2003.

[6] D. Quartel and M. van Sinderen, “On interoperability and conformance
assessment in service composition,” in 11th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007). IEEE,
2007, pp. 229–229.

[7] P. Rempel, P. Mäder, T. Kuschke, and J. Cleland-Huang, “Mind the
gap: assessing the conformance of software traceability to relevant
guidelines,” in Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 943–954.

[8] A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner views on the
interrelation of microservice apis and domain-driven design: A grey
literature study based on grounded theory,” in 18th IEEE International
Conference on Software Architecture (ICSA 2021). Washington, DC,
USA: IEEE, March 2021, pp. –.

[9] A. Singjai and U. Zdun, “Conformance assessment of architectural
design decisions on api endpoint designs derived from domain models,”
Submitted for Publication, 2022.

[10] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns - Foundations
of Enterprise, Internet, and Realtime Distributed Object Middleware.
Hoboken, NJ, USA: J. Wiley & Sons, 2004.

[11] A. Singjai, U. Zdun, O. Zimmermann, and C. Pautasso, “Patterns on
deriving apis and api endpoints from domain model elements,” in Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP’21),
July 2021.

[12] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker,
“Interface evolution patterns: Balancing compatibility and extensibility
across service life cycles,” in Proceedings of the 24th European Con-
ference on Pattern Languages of Programs, ser. EuroPLop ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[13] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and software technology, vol. 64, pp. 1–18, 2015.

[14] S. Keele et al., “Guidelines for performing systematic literature reviews
in software engineering,” Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, Tech. Rep., 2007.

[15] M. Stocker, O. Zimmermann, U. Zdun, D. Lübke, and C. Pautasso,
“Interface quality patterns: Communicating and improving the quality
of microservices apis,” in Proceedings of the 23rd European Conference
on Pattern Languages of Programs, ser. EuroPLoP ’18. New York, NY,
USA: Association for Computing Machinery, 2018.

[16] D. Persson, “Swagger reader,” https://github.com/kalaspuffar/swagger-
reader, 2020.

[17] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonça,
“Static architecture-conformance checking: An illustrative overview,”
IEEE Software, vol. 27, no. 5, pp. 82–89, 2010.

[18] F. Tian, P. Liang, and M. A. Babar, “Relationships between software
architecture and source code in practice: An exploratory survey and
interview,” Information and Software Technology, vol. 141, p. 106705,
2022.

[19] W. Hasselbring, “Software architecture: Past, present, future,” in The
Essence of Software Engineering. Springer, Cham, 2018, pp. 169–184.

[20] U. Zdun, E. Navarro, and F. Leymann, “Ensuring and assessing ar-
chitecture conformance to microservice decomposition patterns,” in
International Conference on Service-Oriented Computing. Springer,
2017, pp. 411–429.

[21] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Assessing
architecture conformance to coupling-related patterns and practices
in microservices,” in European Conference on Software Architecture.
Springer, 2020, pp. 3–20.

[22] ——, “Metrics for assessing architecture conformance to microservice
architecture patterns and practices,” in International Conference on
Service-Oriented Computing. Springer, 2020, pp. 580–596.

[23] M. Athanasopoulos, K. Kontogiannis, and C. Brealey, “Towards an
interpretation framework for assessing interface uniformity in rest,” in
Proceedings of the Second International Workshop on RESTful Design,
2011, pp. 47–50.

[24] S. Kapferer and O. Zimmermann, “Domain-driven architecture modeling
and rapid prototyping with context mapper,” in International Conference
on Model-Driven Engineering and Software Development. Springer,
2020, pp. 250–272.

[25] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2012.

[26] T. Scheller and E. Kühn, “Automated measurement of api usability: The
api concepts framework,” Information and Software Technology, vol. 61,
pp. 145–162, 2015.

[27] S. M. Sohan, C. Anslow, and F. Maurer, “Spyrest: Automated restful api
documentation using an http proxy server (n),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2015, pp. 271–276.

