
DISSERTATION / DOCTORAL THESIS

Titel der Dissertation / Title of the Doctoral Thesis

„The Evolving of CASM: Modern Compiler Engineering
and Empirical Guided Language Design for

a Rigorous State-Based Method“

verfasst von / submitted by

Dipl.-Ing. Philipp Paulweber, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2022 / Vienna 2022

Studienkennzahl lt. Studienblatt / A 786 880
Degree programme code as it appears on the student
record sheet:

Dissertationsgebiet lt. Studienblatt / Informatik /
Field of study as it appears on the student record sheet: Computer Science

Betreut von / Supervisor: Univ.-Prof. Dr. Uwe Zdun





For
Habibi
Cw�





Preface

CASM
Corinthian Abstract State Machine

Language, Interpreter, and Compiler

Puck, The Sandman by Neil Gaiman

The origin of the name Corinthian is unclear,

whether it is taken from ''the letters,

the pillars, the leather, the place,

or the mode of behavior''.

https://casm-lang.org

github.com/casm-lang

twitter.com/casm_lang

This PhD thesis is entirely written in GNU Emacs org-mode, generated to LATEX
via GNU emacs, and type-set into this PDF document via pdflatex. The build
process is based on GNU make. The statistical software R is used to generated LATEX
TikZ -based figures. All technical research artifacts of this thesis are contributed to the
Corinthian Abstract State Machine (CASM) open-source project which is implemented
in C++ and was initiated by the author on April 1st, 2014.
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Abstract

The demand for applying rigorous methods in the field of software engineering,
hardware engineering, and systems engineering is still as high as ever. Over the
last decades, several Domain-Specific Languages (DSLs) and tools were created to
tackle different kinds of design challenges, capturing of requirements, and providing
proper development support through code generation techniques for software as well
as hardware fields. Despite the intensive investigation and domain exploration in their
respective fields, most of the engineering methods lack proper techniques to reason
about the specified design. This is where formal methods come into the picture of all
engineering fields.

Industrial hardware engineering and development is mostly done or supported
by formal method-based techniques, whereas in software and system engineering in
general formal methods are still seen as a more academic discipline despite the effort
already achieved by researchers all other the world. Especially for the software domain
it becomes more and more relevant to industry because incorrect behavior, safety
flaws, security breaches etc. can impact a company’s reputation and market share or
it can even cost human lives in safety critical or embedded applications. As a result,
Model-Driven System Engineering (MDSE) methods were created which provide rich
Model-Driven Development (MDD) techniques for a specific engineering domain.

The MDD technique includes a DSL and tool which consists of a dedicated parser,
language validation analyzer, and code generator. Unfortunately, almost all MDSE
methods are tailor-made formalisms to deal with a specific problem domain. Some
of these techniques define and describe the language semantics through the code
generation process, others allow for full or partially simulated systems’ properties
of the specified design before the creation of the actual system. Furthermore, a
described design in one DSL cannot be reused or easily moved through rewriting into
another DSL because of the completely different domain-specific abstraction level of
the specification languages.

The Abstract State Machine (ASM) method is a state-based formal method which
can be seen exactly as the missing piece in the described puzzle or specification
dilemma above. It supports a domain independent way to capture a system’s behavior
regardless of whether the specified system is a software, hardware, or even a mixed
software/hardware system. Based on an ASM, specified system reasoning can be
applied in order to check certain system properties or even proof certain aspects of the
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described system like safety constraints. Notable to mention is that ASM specifications
are by default executable specifications, which means that any ASM-specified system
can be simulated without even creating or deriving a concrete implementation. By
definition, the latter can be derived either by refinement techniques or if supported
through code generation just like MDSE/MDD does. Nevertheless, the tooling support
for ASM-based specification languages regarding the interpretation (simulation) and
compilation (code generation) lack modern compiler techniques and state-of-the-art
language engineering.

A decade ago, a research project started to address both issues – interpretation
and compilation – and was made public by the author through an open-source
reimplementation named Corinthian Abstract State Machine (CASM). This PhD thesis
describes the incrementally derived ASM-based compiler foundation and framework for
CASM in order to research and explore further (optimizing) compiler and interpreter
potentials as well as give the ability to research new language design concepts. In the
course of this work, a novel ASM-based model-based transformation framework was
elaborated by using a multi-level Intermediate Representation (IR) compiler design in
order to achieve flexible software and/or hardware code generation with optimization
focus in the foreground as well as fast execution (interpretation/simulation) as a second
major research target. The defined ASM-based IR allows exploring and defining ASM-
related compiler optimizations through a well-defined model and to provide a unified
interface for other ASM-based language engineers and tool developers to e.g. reuse
the implementation in CASM. Furthermore, an improved symbolic execution effort
was achieved in this thesis for CASM as well, which is based in the ASM-based IR.

This PhD thesis reports on the investigation and introduction of an object-oriented
language construct for ASM-based languages, which was derived in an incremen-
tal process applying two controlled experiments and one eye-tracking study. The
first controlled experiment compared the understandability of three object-oriented
abstractions introduced in an ASM-based language namely interfaces, mixins, and
traits. Results showed that interfaces and traits have a similar good understanding,
which lead to a follow-up controlled experiment investigating the usability of the
two object-oriented language constructs interfaces and traits in the context of an
ASM-based language syntax extension. A significant difference was discovered in the
results, namely that the traits language construct is more usable compared to the
interfaces language construct. Based on this insight, we conducted another controlled
experiment in the form of an eye-tracking experiment for the trait-based language
construct to obtain knowledge about the comprehensability of the syntax extension by
analyzing the eye-gaze patterns as well as the eye fixation behavior. The outcome of
these conducted studies is manifested in a novel trait-based object-oriented language
construct in CASM, which provides an ability for ASM-based languages to easily
describe ASM language properties in the language itself.
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Die Nachfrage nach der Anwendung formaler Methoden im Bereich der Software-,
Hardware- und System-Entwicklung ist nach wie vor ungebrochen. In den letzten
Jahrzehnten wurden mehrere domänenspezifische Sprachen (DSLs) und Werkzeuge
entwickelt, um verschiedene Arten von Entwurfsherausforderungen zu bewältigen,
Anforderungen zu erfassen und geeignete Entwicklungsunterstützung durch Code-
generierungstechniken für Software- und Hardwarebereiche anzubieten. Trotz der
intensiven Untersuchung und Erforschung der jeweiligen Domäne fehlt es den meisten
Entwicklungsmethoden an geeigneten Techniken, um über das spezifizierte Design
Aussagen zu treffen. An dieser Stelle kommen formale Methoden ins Spiel, die in allen
verschiedenen Entwicklungs-Bereichen eine Rolle spielt.

Die industrielle Hardware-Entwicklung wird zumeist mit Hilfe formaler Metho-
den durchgeführt oder unterstützt, während formale Methoden in der Software- und
Systementwicklung im Allgemeinen immer noch als eine eher akademische Disziplin
angesehen werden, obwohl Forscher in aller Welt bereits große Anstrengungen unter-
nommen haben. Insbesondere im Softwarebereich werden sie für die Industrie immer
relevanter, da fehlerhaftes Verhalten, Sicherheitsmängel, Sicherheitsverletzungen usw.
den Ruf und den Marktanteil eines Unternehmens beeinträchtigen oder bei sicher-
heitskritischen oder eingebetteten Anwendungen sogar Menschenleben kosten können.
Infolgedessen wurden Methoden des modellgetriebene Systementwicklung (MDSE)
entwickelt, die umfangreiche Techniken der modellbasierten Entwicklung (MDD) für
einen bestimmten Entwicklungsbereich bieten.

Die MDD-Technik umfasst eine DSL und ein Werkzeug, das aus einem speziellen
Parser, einem Sprachvalidierungsanalysator und einem Codegenerator besteht. Leider
sind fast alle MDSE-Methoden maßgeschneiderte Formalismen für eine bestimmte Pro-
blemdomäne. Einige dieser Techniken definieren und beschreiben die Sprachsemantik
durch den Codegenerierungsprozess, andere ermöglichen die vollständige oder teilweise
Simulation der Systemeigenschaften des spezifizierten Entwurfs vor der Erstellung
des eigentlichen Systems. Darüber hinaus kann ein in einer DSL beschriebener Ent-
wurf nicht wiederverwendet oder durch Umschreiben in eine andere DSL übertragen
werden, da die Spezifikationssprachen auf einem völlig anderen domänenspezifischen
Abstraktionsniveau sich befinden.

Die abstrakte Zustandsmaschinen (ASM) Methode ist eine zustandsbasierte formale
Methode, die genau als das fehlende Teil in dem oben beschriebenen Spezifikationsdi-
lemma angesehen werden kann. Sie bietet eine domänenunabhängige Möglichkeit, das
Verhalten eines Systems zu erfassen, unabhängig davon, ob das spezifizierte System ein
Software-, Hardware- oder sogar ein gemischtes Software-/Hardware-System ist. Ba-
sierend auf einer ASM Spezifikation können Aussagen getroffen werden, um bestimmte
Systemeigenschaften zu überprüfen oder sogar bestimmte Aspekte des beschriebe-
nen Systems wie Sicherheitseinschränkungen zu beweisen. Erwähnenswert ist, dass
ASM Spezifikationen standardmäßig ausführbare Spezifikationen sind, was bedeutet,
dass jedes ASM spezifizierte System simuliert werden kann, ohne dass eine konkrete
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Implementierung erstellt oder abgeleitet werden muss. Letztere kann per Definition
entweder durch Verfeinerungstechniken oder durch Codegenerierung abgeleitet werden,
wie dies bei MDSE/MDD der Fall ist. Dennoch mangelt es der Tool-Unterstützung für
ASM-basierte Spezifikationssprachen in Bezug auf die Interpretation (Simulation) und
Codegenerierung an modernen Compilertechniken und aktuellen Sprachkonzepten.

Vor einem Jahrzehnt begann ein Forschungsprojekt, das sich mit beiden Pro-
blemen - Interpretation und Codegenerierung - befasste und vom Autor durch eine
Open-Source Reimplementierung namens Corinthian Abstract State Machine (CASM)
veröffentlicht wurde. Diese Dissertation beschreibt die inkrementell abgeleitete ASM-
basierte Compiler-Grundlage und das Framework für CASM, um weitere (optimierte)
Compiler- und Interpreter-Potenziale zu erforschen und zu untersuchen sowie die Mög-
lichkeit zu geben, neue Sprachdesignkonzepte zu erforschen. Im Rahmen dieser Arbeit
wurde ein neuartiges ASM-basiertes modellbasiertes Transformationsframework unter
Verwendung eines Compiler mit mehrstufigen Zwischendarstellungen (IR) erarbeitet,
um eine flexible Software- und/oder Hardwarecodegenerierung mit Optimierungsfokus
im Vordergrund sowie eine schnelle Ausführung (Interpretation/Simulation) als zweites
großes Forschungsziel zu erreichen. Die definierte ASM-basierte IR erlaubt es, ASM-
bezogene Compileroptimierungen durch ein klar definiertes Modell zu erforschen und
zu definieren und eine einheitliche Schnittstelle für andere ASM-basierte Sprachen- und
Werkzeugentwickler bereitzustellen, um z.B. die Implementierung in CASM wiederzu-
verwenden. Darüber hinaus wurde in dieser Arbeit auch eine verbesserte symbolische
Ausführung für CASM entwicklet, die auf der ASM-basierten IR umgesetzt wurde.

Diese Dissertation berichtet über die Untersuchung und Einführung eines objekt-
orientierten Sprachkonstrukts für ASM-basierte Sprachen, das in einem inkrementellen
Prozess durch zwei kontrollierte Experimente und von einer Eye-Tracking Studie
abgeleitet wurde. Das erste kontrollierte Experiment verglich die Verständlichkeit von
drei objektorientierten Abstraktionen, die in einer ASM-basierten Sprache eingeführt
wurden, nämlich Interfaces, Mixins und Traits. Die Ergebnisse zeigten, dass Interfa-
ces und Traits ähnlich gut verstanden werden, was zu einem weiteren kontrollierten
Experiment führte, in dem die Benutzerfreundlichkeit der beiden objektorientierten
Sprachkonstrukte Interfaces und Traits im Kontext einer ASM-basierten Sprachsynta-
xerweiterung untersucht wurde. Dabei wurde ein signifikanter Unterschied festgestellt,
nämlich dass das Traits-Sprachkonstrukt im Vergleich zum Interfaces-Sprachkonstrukt
besser nutzbar ist. Basierend auf dieser Erkenntnis führten wir ein weiteres kontrol-
liertes Experiment in Form eines Eye-Tracking Experiments für das Trait-basierte
Sprachkonstrukt durch, um durch die Analyse der Blickbewegungsmuster sowie des
Fixationsverhaltens der Augen Erkenntnisse über die Verständlichkeit der Syntaxer-
weiterung zu gewinnen. Das Ergebnis der durchgeführten Studien manifestiert sich in
einem neuartigen Trait-basierten objektorientierten Sprachkonstrukt in CASM, das
ASM-basierten Sprachen nun sogar die Möglichkeit bietet vorhandene und neue ASM
Spracheigenschaften einfach in der ASM Sprache selbst zu beschreiben.
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CHAPTER 1
Introduction

Nowadays, the spectrum of theories and tools to create various software and/or
hardware systems in different design domain contexts is rather huge, starting from
pure software development fields like web, desktop, server, kernel, and embedded-based
all the way to pure hardware development fields like network, machine and chip-based.
And in between are the joined hardware software co-design development fields, which
require the knowledge, theories, tools and specification languages from both domains.

All of these design domain contexts have over time evolved different domain-specific
and tailor-made practical solutions, sometimes some of them are even applicable in
a reusable template mechanism. Additionally, to address topics like verification,
validation, safety, fault-tolerance etc., all different research fields try to extend existing
development techniques by checking partially specific properties and constraints.
Especially in the field of embedded systems and Cyber-Physical Systems (CPS) with
the need for safety-critical applications in the context of Industry 4.0 [76], the design
philosophy of the Internet of Things (IoT) [62], and edge computing [140], a strong
need for a formal foundation is required to describe small to large scaling systems.
Such a formal foundation shall consist of a precise specification language to capture
the system’s behavior, a description of environmental influences, and the possibility
to use the system’s description to perform various validation and verification checks.

There are several modeling techniques to serve as valid representatives to address
and express a system’s structure and behavioral description such as the Unified
Modeling Language (UML) [55] standard1 or the Systems Modeling Language (SysML)
[56] standard2. UML was successfully used in different domains to describe (software)
systems. A popular software architectural view where UML is used is the 4+1 View
Model by Kruchten [84]. SysML is based on the UML standard and provides an
extension to express requirements and parametric properties [56] and can be seen
as an industry de facto standard for Model-Driven Systems Engineering (MDSE).

1See https://www.omg.org/spec/UML/About-UML for the UML specification website.
2See https://sysml.org for the SysML open-source project website.
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Depending on the target domain of the specified systems for UML or SysML, an
implementation of the system has to be manually derived.

If a specification is defined in UML or SysML, it is specified conflict free (no
syntactical violation), and a system structure of a possible implementation can be very
easily derived through automated code generation. One famous example is the Eclipse
Modeling Framework (EMF) [147] application3, which provides a class diagram-based
editor to compose a software system’s data model. In this concrete example, the
behavior of the system is not captured by the specification and has to be provided
by hand-written code. Examples for MDSE frameworks for the embedded software
domain which include specifications of systems’ behavior are the SCADE [16] tool4

or MATLAB/Simulink [107] suite5. There are even efforts to combine UML, SysML,
and MATLAB to form an MDSE framework [153].

On the hardware side, the industry has established good development approaches
along with Verification and Validation (VV) methods, which are built around Hardware
Description Language (HDL) specifications like Very High Speed Integrated Circuit
Hardware Description Language (VHDL) [96], Verilog [7], and SystemVerilog [150].
Independent from the various HDL versions, a designer in this hardware field has to
obtain a certain level of knowledge (skills) to produce valid hardware designs which can
be used for syntheses and programmed into a Field Programmable Gate Array (FPGA)
or manufactured into an Application-Specific Integrated Circuit (ASIC). The problem
with the existing HDLs is that they include additional language elements in order to
create simulation environments along with the structural and behavioral descriptions
of a system. The lack of abstraction and expressiveness of classical HDLs like VHDL
and Verilog has been addressed in the last years by introducing new HDLs – Chisel
[9] and SpinalHDL6. There has been some academic effort to provide a Model-Driven
Development (MDD) approach by translating UML to HDL [37]. Nevertheless, the
existing MDD approaches already have a specific target domain or environment in
mind. So in order to provide a more generic MDD method and approach to address
specification issues in the problem space ranging from high-level software to low-level
hardware in mixed and non-mixed form, more abstract models have to be considered
instead of models developed for a certain engineering purpose like SysML or SCADE.

A popular representative technique in academia and industry is to use state-based
formal methods together with well-formed specifications. Prominent examples are Alloy
[74], Event-B [1], Temporal Logic of Actions (TLA) [86], the Vienna Development
Method (VDM) [19], and Z [75], which have been used in several academic and
industrial scenarios as MDSE technique and for VV purposes. Nevertheless, these
state-based formal methods are extremely mathematical and they require experts to
specify the (software) system. If state-based formal methods are a good choice for an

3See https://www.eclipse.org/modeling/emf for EMF project website.
4See https://www.ansys.com/products/embedded-software/ansys-scade-suite for website.
5See https://www.mathworks.com/products/matlab for MATLAB project website.
6See https://spinalhdl.github.io/SpinalDoc-RTD for SpinalHDL project website.
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1.1. MOTIVATION

MDD approach, what is a suitable specification language representation (notation)
and abstraction level for novice, moderate, and professional language users [83] which
is applicable to software, hardware, and systems design? The answer is a rigorous
state-based method named Abstract State Machine (ASM) [63] [26].

The ASM theory and its formal methods provide the foundation to specify, analyze,
and execute software and/or hardware systems. The main concepts are: (1) an
executable ASM specification language which looks similar to pseudo code to express
rule-based computations over algebraic functions with arbitrary data structures and
type domains; (2) a ground model serving as a rigorous form of blueprint and reference
model; (3) a stepwise refinement of the reference model by instantiating more and more
concrete models which uphold the properties of the reference model [26]. Due to its
mathematical foundation, ASM specifications can be analyzed using numerous existing
rigorous verification and validation methods [25]. Based on the ASM language model
by Gurevich [65], several tools with Domain Specific Language (DSL) implementations
were created to solve application-specific problems [22]. There is a large diversity in
the state-of-the-art of these applications7, ranging from formal specification semantics
of programming languages, such as those for Java [146] or VHDL [133], compiler
back-end verification [90], software run-time verification [11], or software and hardware
architecture modeling, e.g. of Universal Plug and Play (UPnP) [60] or even Reduced
Instruction Set Computing (RISC) designs [72].

1.1 Motivation

So far, the state-of-the-art in ASMs does not yet support MDD structures and work-
flows well (see Section 1.7). Especially the functionality to execute ASM specifications
symbolically is not covered in any other existing major ASM implementation like
CoreASM [50] or AsmL [65]. In addition, the existing state-of-the-art does not address
ASM-based specification reuse and retargeting to various execution environments and
target languages. Despite its huge potential of existing ASM modeling languages,
tools, and the well-defined ASM method, it did not achieve wide popularity. The work
described in this thesis tries to increase the level of awareness for ASM-based modeling
techniques in software engineering as well as hardware engineering communities.

In a previous research project called Correct Compilers for Correct Application
Specific Processors8 carried out by the Vienna University of Technology (TU Wien), a
prototype ASM-based language named CASM9 was created by Lezuo et al. [93] [91] to
describe the Instruction Set Architecture (ISA) of RISC-based computer architectures.
The further exploration of this ASM-based language towards optimized compilation
and code generation to C/C++ by Lezuo et al. [94] had shown a huge potential and

7See https://abz-conf.org/method/asm for a list of various ASM applications.
8This research project was partially supported by the Austrian Research Promotion Agency

(FFG) under contract 827485 and Catena DSP GmbH.
9The “C” was not named in the CASM acronym before 2014 and the name CASM was inspired

by CoreASM because the roots of the CASM language were based in part on the CoreASM syntax.
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research field for ASM-based compiler optimization, interpretation, and compilation
(code generation) techniques. Unfortunately, the research project was discontinued
and there was no plan to make the technical research artifacts publicly available to
continue ASM-based research. In 2014, the author of this thesis started from scratch
and provided a reimplementation of the CASM prototype as an open-source project and
named the acronym for the first time as Corinthian Abstract State Machine (CASM)10.

Lezuo [90] raised several open topics and research questions in the future work
chapter in his dissertation, which were the starting point of this thesis which lead to
the continuous improvement of the CASM language, interpreter, and compiler. One of
the open core ideas was to apply the “Translation Validation” [90] approach by Lezuo
on the CASM compiler itself because the prototype implementation “[. . . ] performs
the optimizations directly on the [. . . ]” [90] Abstract Syntax Tree (AST). But this
realization is easier said than done because this requires a concise ASM representation
and an internal model of all supported ASM constructs inside the compiler framework
(see Section 1.3, RQ2). This implies that first, a proper definition and transformation
for ASM specifications has to be explored in the form of an MDD approach for modern
compiler design in order to address the “Translation Validation” [90] possibilities in
CASM and for ASM languages in general (see Section 1.3, RQ1).

Besides the above-mentioned compiler engineering related issues, Lezuo mentions
another very interesting topic by stating that a “CASM Object Model” would be
beneficial because the “[. . . ] CASM language currently operates on one global state. To
create composable models, it would be advantageous to have objects. Rules would then
operate on their object’s state. An open research question however is the composition
of objects, especially considering the transactional semantics of ASM.‘ [90] This stated
research question was one of the main motivations for the different language construct
investigations in this thesis because to address this properly, several aspects have to
be elaborated. First of all, the question which kind of object-oriented concept is the
appropriate one for ASM-based languages had to be answered. As a next step, how is
it possible to describe object-oriented ASM specifications without compromising the
ASM theory, which raises the need for a formalization or refinement of object-oriented
ASMs towards the basic ASM definition from Börger [26].

1.2 Research Methods

For the technical part, this PhD thesis uses the principles of the Design Science
Research method [69] [155], as a research approach, which is also known as the
Constructive Research method [124] for the practical tasks and technical contributions.
The Design Science Research method defines the following steps: (1) a research
question is posed, which can include simplified assumptions; (2) a development and/or
evaluation cycle is continuously repeated until a satisfactory solution for the research

10See https://casm-lang.org for open-source project website.
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question has been obtained; and (3) altering the research question either by removing
assumptions or by tightening the research question itself.

Besides the Design Science Research method, controlled experiments are used for
the empirical part of this PhD thesis and to solve the related research problems listed
in Section 1.4 and derive the answers to the stated research questions in Section 1.3.
Two different kinds of controlled experiments are used to obtain empirical evidence.

First, we performed two controlled experiments in which participants process a
printed survey. These controlled experiments are designed, executed, and described in
this PhD thesis according to the guidelines by Kitchenham et al. [82] [81], Wieringa
[156] and Wohlin et al. [158], as well as the specific software architecture research and
empirical research guidelines by Falessi et al. [49] on how to conduct such studies
in order to derive empirical evidence and by applying proper statistical analysis
procedures on the obtained quantitative data.

Second, we used eye-tracking experiments [110] for investigating human interaction
with the given stimuli by measuring eye movement. Based on the latter, so called
eye-gaze patterns can be derived by analyzing the eye fixations, which leads to new
empirical evidence.

1.3 Research Questions

Based on the motivation described in Section 1.1, this PhD thesis wants to explore
modern compiler engineering methods for an ASM-based specification language using
MDD techniques in the form of multi-level Intermediate Representation (IR)s. More-
over, besides the compiler engineering aspects, a major concern in this thesis is the
exploration and introduction of an object-oriented abstraction into the ASM language
implementation CASM. We state the following research questions (RQn):

RQ1 How to translate ASM specifications capturing the structural and behavioral
properties of described systems into software, hardware, and/or mixed software
and hardware applications and artifacts using an MDD approach?

RQ2 How can the optimization potential regarding execution of ASM specifications
as well as the translation validation capabilities in an ASM-based compiler be
addressed in a unified manner?

RQ3 How well are object-oriented abstractions understandable, applicable, and
comprehensible by novice, moderate, and expert engineers by using a corre-
sponding language construct syntax extension in an ASM-based specification
language?
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1.4 Research Problems

In order to be able to derive an MDD-based transformation of ASM specification in a
modern compiler, we have to deal with several design and implementation concerns
either for the language user [83] or language engineer [83] perspective (see problem
space elaboration in Section 1). The following research problems (Pn) are addressed
in this PhD thesis:

P1 Lack of Statically Strong Typed ASM Specification Languages

This problem relates to RQ1 because in order to cover all engineering domains
a precisely typed ASM language is needed to fulfill the needs for software and
hardware engineering. Current ASM implementations only include mathematical
abstract data structures. Due to the fact that every ASM-based language will
eventually be executed by a real machine, a term, expression, or even a value will
have a concrete type. Even Gurevich [64] suggested his ASM language definition
lacks explicit typing, and it would be more practical to introduce such.

P2 Lack of Abstractions for Reusability in ASM Specification Languages

In order to answer RQ1 and RQ3, existing ASM languages have to be extended
with a proper type abstraction (object-oriented concept) to enable structuring
and reuse of ASM specifications, which is mentioned by Börger [24] in his latest
article. Furthermore, to improve the (re)usability, a module and import system
is missing in existing ASM languages.

P3 Lack of Transformations to Different Execution Contexts and Environments

The RQ1 cannot be answered with existing ASM implementations because
besides the simulation of ASM specifications, a generic code generation (compi-
lation) to arbitrary target execution contexts and environments from high-level
software, low-level software, high-level hardware, to low-level hardware of ASM
specifications is missing.

P4 Lack of Performance-related Optimizations for the Execution Contexts

As pointed out by Lezuo et al. [94], there is a huge optimization potential (e.g.
execution performance) for statically typed ASM-based specification languages
in the form of static compiler analyses and transformations by eliminating
redundancy. No ASM compiler infrastructure exists yet to provide rewriting
and optimization techniques for ASM-based languages. This problem is part of
RQ2 because it affects the generated code and should be addressed in a unified
manner.

P5 Lack of Translation Validation Support inside of ASM Language Tooling

In order to answer the remaining part of RQ2, the existing tool landscape of ASM
implementations does not provide any ability to perform translation validation
capabilities inside an ASM language tooling in an automatic fashion.
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P6 Lack of Empirical Evidence Understanding ASM Specification Languages

According to the state-of-the-art, so far no study has investigated the reading and
writing of ASM-based specifications as well as evaluated the understandability
or usability of ASM language syntax, features, and/or constructs. This research
problem relates to RQ3.

1.5 Research Contributions

This section provides an overview of all contributions of this PhD thesis, which are
linked to their corresponding research problems described in Section 1.4. All technical
implementation artifacts are published and contributed to the CASM project11.

In the course of this thesis, the contributions were published in formal method
communities and conferences like the International Conference on Rigorous State-
Based Methods (ABZ)12 as well as in prominent journals like ElseVier Journal of
Systems and Software (JSS)13 or ACM Transactions on Software Engineering and
Methodology (TOSEM)14. Besides this, one contribution was published in the eye-
tracking community and workshop named Eye Movements in Programming (EMIP)15

and another contribution was published in the hardware community and conference
called Asynchronous Circuits and Systems (ASYNC) 16. The contributions (Cn)
published in the course of this PhD thesis are:

C1 Reusable and Retargetable ASM Specifications (ABZ’16) [123]

This contribution addresses P3 by introducing a new compiler infrastructure
design for CASM, which uses a model-based transformation approach to separate
the CASM front-end and different back-end implementations by multiple IR
levels.

C2 Asynchronous Logic Design Approach (ASYNC’19) [115]

This contribution is part of P3 by envisioning the design and development
potential of the proposed reusable and retargetable model-based transformation
approach of C1.

C3 Precise Type System and IR for ASM Compilers (ABZ’18) [117]

To solve P1 as well as in part P3 and P4, a specific CASM IR for ASM languages
was designed and implemented to provide all ASM related properties in a uniform
way decoupled from ASM language dialects to design and implement ASM-based
compiler analysis and transformation (optimization) passes in an independent
manner.

11See https://github.com/casm-lang for the open-source project and organization website.
12See https://abz-conf.org for ABZ conference and community website.
13See https://www.journals.elsevier.com/journal-of-systems-and-software for website.
14See https://tosem.acm.org for the journal website.
15See http://www.emipws.org/workshop/emip-2019 for the workshop website.
16See http://async2019.jp for the conference website.
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1.5. RESEARCH CONTRIBUTIONS

C4 Symbolic Promotion and Concolic Execution for ASMs (ABZ’21) [118]

As a first step to solve P5, a new concolic execution was implemented for CASM
with a novel symbolic function promotion for ASM functions which uses a
model-based Thousands of Problems for Theorem Provers (TPTP) [149] trace
generation approach to create symbolic traces in a generic way. This contribution
generalizes the prototype work of Lezuo [90].

C5 Type Abstractions in ASM Specifications (ABZ’20) [116]

This contribution addresses P2 and in part P6 by providing a new type abstrac-
tion (object-oriented concept) to the CASM language to specify structure and
behavioral elements in a reusable manner.

RQ1: How to translate
ASM specifications
capturing the struc-
tural and behavioral
properties of described
systems into software,
hardware, and/or
mixed software and
hardware applications
and artifacts using an
MDD approach?

RQ2: How can the
optimization potential
regarding execution of
ASM specifications as
well as the translation
validation capabilities
in an ASM-based com-
piler be addressed in a
unified manner?

RQ3: How well are
object-oriented abstrac-
tions understandable,
applicable, and com-
prehensible by novice,
moderate, and expert
engineers by using a
corresponding language
construct syntax exten-
sion in an ASM-based
specification language?

P1: Lack of Statically
Strong Typed ASM Spec-
ification Languages

P2: Lack of Abstractions
for Reusability in ASM
Specification Languages

P3: Lack of Transforma-
tions to Different Execu-
tion Contexts and Envi-
ronments

P4: Lack of
Performance-related
Optimizations for the
Execution Contexts

P5: Lack of Transla-
tion Validation Support
inside of ASM Language
Tooling

P6: Lack of Empirical
Evidence Understanding
ASM Specification Lan-
guages

C2:
ASYNC’19
Chapter 2 [115]

C1: ABZ’16
Chapter 2 [123]

C3: ABZ’18
Chapter 3 [117]

C4: ABZ’21
Chapter 4 [118]

C5: ABZ’20
Chapter 5 [116]

C6: JSS’21
Chapter 6 [119]

C7:
TOSEM’21
Chapter 7 [121]

C8: EMIP’19
Chapter 8 [141]

Figure 1.1: Research Overview
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C6 Understandability Study for Type Abstractions in ASMs (JSS’21) [119]

To solve in part P6, this contribution investigates how well three different
object-oriented ASM syntax extensions are understandable through a controlled
experiment where participants needed to read (comprehend) ASM specifications
and answer a survey about the structural and behavioral properties of the given
stimuli.

C7 Usability for Object-Oriented Concepts in ASMs (TOSEM’21) [121]

This contribution addresses in part P6 by providing significant results in a direct
comparison of two ASM-based type abstractions (object-oriented concepts) to
the CASM language where participants received an informal specification of a
system as textual description and they had to write (specify) the corresponding
ASM specification using a given ASM-based object-oriented abstraction.

C8 Eye-Tracking Study on Language Concept in ASMs (EMIP’19) [141]

To conclude and solve in part P6, in this contribution an eye-tracking experi-
ment was conducted to explore the eye-gaze behavior and fixation patterns of
participants when they are comprehending an ASM-based specification language
with a concrete object-oriented abstraction and language syntax extension in
place.

Research Overview

Figure 1.1 provides a complete overview of the research carried out in this PhD thesis
by visualizing the research questions (RQn), the research problems (Pn), and the
contributions (Cn) with their connections and relationships between each other.

1.6 Abstract State Machines

In 1995 Gurevich [63] described the ASM theory, which is a well-known formal
method based on transition rules, agents, and mathematical function states that can
be used to specify arbitrary algorithms, applications or even whole systems. The
mathematical function state is defined with a corresponding type relation. Agents are
able to execute rules, which enables the producing of updates resulting in a change
of the global mathematical function state. Since the appearance of the ASM theory,
several definitions and implementations of ASM-based languages, interpreters, and
compilers have been created. However, all of them focus mainly on the analysis of
ASM specifications for certain properties or on software-sided simulations. The CASM
language [91] and project17 focuses on enabling a way to not only analyze and simulate
ASM-based specifications. One of the main research objectives is to establish a generic
transformation of CASM specifications to various target languages and execution

17See https://casm-lang.org for CASM project website.
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environments including the software and hardware domain through a model-based
transformation approach [123]. Important to note is that in contrast to already existing
hardware-based languages or IRs (Chisel [9], Flexible Intermediate Representation for
Register Transfer Level (FIRRTL) [73], or YoSys [159]), CASM does not include any
assumptions of the resulting circuit style (synchronous design, clock etc.). Therefore,
the same CASM input specification can be (re)used and (re)targeted. In order to
achieve this goal, multiple compiler IRs [117] were introduced to separate the languages’
own run-time implementation of a certain target environment or language. A possible
asynchronous hardware target environment could be the link and joint model by
Roncken et al. [131].

Basic and Turbo ASMs

The Basic ASM is defined by Börger and Stärk [26] as consisting of abstract
states, signatures, locations, updates, update sets, firing of updates, terms, formulas,
transition rules, ASM move, and ASM run. The abstract states are algebraic structures
and can be seen as abstract memories. A location is a concrete position (argument
vector of a function) in the abstract memory. A signature (vocabulary) consists of all
function names in an ASM. Every function can be classified either as derived, static,
or dynamic18. Updates are location value (content of a function at a certain location)
pairs, which are collected in an update set during an ASM move. After an ASM move,
the collected updates from the update set are applied (fired) to the (global) function
states. An ASM run consists of one or multiple ASM moves. The transaction rules in
a Basic ASM are: (1) skip to perform no operation; (2) update to create a new update
l := v of an n arity function location l = (f, a1, . . . , an) and a value v; (3) block to
express bounded parallelism; (4) conditional to express branching; (5) let to express
variable bindings; (6) forall to express parallel execution over a universal quantifier;
(7) choose to express indeterministic choice; and (8) call to invoke sub transaction

18The dynamic functions can be further classified into in, controlled, shared, and out.

1 Identifier ::= /* symbol names */.
2 Type ::= Identifier | /* other type representations */.
3 Literal ::= /* literal representations */.
4 Term ::= Literal | /* other terms and expressions */.
5 Rule ::= BlockRule | CallRule | LetRule | ImportRule | /* other rules */.
6 BlockRule ::= ’{’ Rule ’}’.
7 UpdateRule ::= Identifier [ ’(’ Term (’,’ Term)* ’)’ ] ’:=’ Term.
8 LetRule ::= ’let’ Identifier ’=’ Term ’in’ Rule.
9 CallRule ::= Identifier [ ’(’ Term (’,’ Term)* ’)’ ].

10 ImportRule ::= ’let’ Identifier ’=’ ’new’ Type ’in’ Rule.
11 DomainDefinition ::= ’domain ’ Identifier.
12 FunctionDefinition ::= ’function ’ Identifier ’:’ [ Type
13 ( ’*’ Type )* ] ’->’ Type [ ’=’ Term ].
14 DerivedDefinition ::= ’derived ’ Identifier ’(’ Identifier ’:’ Type
15 ( ’,’ Identifier ’:’ Type )* ’)’ ’->’ Type ’=’ Term.
16 RuleDefinition ::= ’rule’ Identifier ’(’ Identifier ’:’ Type
17 ( ’,’ Identifier ’:’ Type )* ’)’ [ ’->’ Type ] ’=’ Rule.
18 // ... other grammar rules of ASM language

Listing 1.1: Turbo ASM Syntax (Excerpt)
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rules.

The Basic ASM gets extended to a Turbo ASM [26] by adding additional transaction
rules: (1) seq to express sequential composition transaction rules; (2) iterate to express
fix-point iterations; (3) named rule construct to create submachines; and (4) local rule
to define local functions.

We use the following mathematical notation: (1) Σ defines a finite set of all
function names and f denotes a function name of Σ (f ∈ Σ); (2) D defines a finite set
(subset of Σ) of function names classified as derived and d denotes a derived function
name of D (d ∈ D ∧ D ⊆ Σ); (3) R defines a finite set of rule names and R denotes
a rule name of R (R ∈ R); and (4) U defines a finite set of universe (domain) names
and X denotes a type name of U (X ∈ U).

We only present the necessary Turbo ASM language [26] elements in order to
understand the given transformation for the trait-based construct in Chapter 5. The
necessary syntax rules are defined in Listing 1.1.

The grammar rules Identifier and Type represent a symbol name in ASM, which
can be a function name (e.g. f, d ∈ Σ), a named rule (e.g. R ∈ R), a variable
which appears in the let rule (e.g. v), or a type name of a given universe (domain)
(e.g. X ∈ U). Literal represents a constant of a certain universe (domain), e.g.
the Boolean algebra ΣBoolean consists of the constants undef , false, and true. The
grammar rule Term contains either a given constant literal or a formula.

Rule represents a transaction rule [26] of an ASM. BlockRule represents bounded
parallelism of rules R and S ({R,S}). UpdateRule represents the creation of a new
update u consisting of a location l and a value (term) t pair, which gets placed into
the update set (u = (l, t) ∧ l = (f, a1, . . . , an)). LetRule represents a variable
binding by creating an equation consisting of a variable name v and a term t and
evaluating a rule R in the scope of the variable v (let v = t in R). CallRule

represents invocation of a submachine rule R with call-by-value semantics for the
parameters p. Note that by default, the Basic ASM uses call-by-name semantics.
In this definition, we use call-by-value semantics, which evaluates the parameters in
the current state of the ASM before the evaluation of the submachine rule. This
can be modeled by binding all the parameters first through a let rule and evaluating
the rule R afterwards (R(p1, . . . , pn) ⇔ let v1 = p1, . . . , vn = pn in R(v1, . . . , vn)).
ImportRule is a syntactic abbreviation for the import rule [26] to extend a domain X

with a "completely fresh symbol" [26] x from the reserve of an ASM to increase the
workspace of a specified algorithm and use the new symbol x in the evaluation of rule
R (let x = new X in R ⇔ import x do { X(x) := true,R }).

DomainDefinition defines a new unique universe (domain) name X, which
gets added to U (X ∈ U). FunctionDefinition defines a new unique function
name f , DerivedDefinition defines a new unique derived function name d, and
RuleDefinition defines a new unique rule name R, where all have a non-negative
arity n of argument types {X1, . . . , Xn} and a target type Xt (f, d,R ∈ Σ ∧ n ∈

11
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N≥0 ∧ {X1, . . . , Xn}, Xt ∈ U) 19. Since the target type of rule definitions is optional
in the grammar, we use a special domain named V oid to type the target type in case
of absence for all named rule definitions.

1.7 Related Work

This section covers the state-of-the-art by presenting the related work of ASM language
implementations and ASM transformation and code generation approaches.

ASM Languages and Implementations

One of the best-known ASM implementations is the Asmeta20 tool-set with the
AsmetaL language [58]. The core of Asmeta is designed and implemented using the
EMF Ecore meta-model21. Based on the Ecore meta-model, the ASM language model
of Asmeta is directly described as an instance (model). Therefore, the execution
and precise calculation of the implemented ASM simulator is bound to the run-time
implementation of the Ecore meta-model and its EMFs Java interface realizations.

Another notable ASM language and implementation is CoreASM 22, originally
developed by Farahbod et al. [50]. The focus of CoreASM is to provide a flexible and
extensible ASM implementation and to be as near as possible to the described ASM
method by Börger [26]. CoreASM is implemented in Java and its IR and run-time is
directly bound to the Java Virtual Machine (JVM).

Microsoft research designed and implemented an ASM language named AsmL23

[65]. AsmL is implemented and based to the .NET framework.

Arcaini et al. [5] proposed a Unified Abstract State Machine (UASM) language
syntax. Their approach is to unify the front-end ASM syntax representation. Similar
to the ASM language proposed by Anlauff [3], the eXtensible ASM (XASM) language24

compiles XASM specifications to C.

Ouimet and Lundqvist [113] presented another ASM language named Timed
Abstract State Machine (TASM). Their language and simulator approach focused on
a real-time ASM notation.

Lezuo et al. [93] introduced the CASM language in 2013. The origin of this
language was that all the (publicly available) existing ASM tools were impracticable
for industrial sized applications [91]. The tool-chain presented by Lezuo et al. [94] [90]
focuses, like the other ASM designs, only on the input specification itself, thus those
research results were not directly usable by other ASM-based language frameworks.

19N≥0 = {n ∈ N | n ≥ 0}
20See https://asmeta.github.io for Asmeta project website.
21See http://eclipse.org/modeling/emf for EMF project website.
22See https://github.com/coreasm for CoreASM project website.
23See http://asml.codeplex.com for AsmL project website.
24See http://sourceforge.net/projects/xasm for XASM documentation website.
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ASM Transformation and Code Generation

Different representation and transformation approaches have been investigated in the
AsmGofer language by Schmid [136], which is based on the programming language
Gofer [78], and the ASM Workbench with the ASM-SL language introduced by Del
Castillo [43], which is implemented in Standard ML [68]. The ASM-SL has been
explored further by Schmid [135] to represent and encode specifications in C++.
The translation (compilation) scheme was limited to a double buffering concept and
therefore unable to encode mixing sequential and parallel rules.

Another transformation scheme for ASMs was presented by Bonfanti et al. [20]
to represent and encode AsmetaL specifications in C++ code targeting Arduino
platforms. Their code generator directly converts the ASM specification to the desired
target language and run-time environment. By targeting a different target run-time
environment, platform, or architecture, the encoded and implemented ASM behavior
would have to be re-implemented in every code generator.

Notable to mention is the effort by Sinha et al. [142] to use CoreASM as IR for
HDL synthesis of synchronous digital circuits. By only implementing a certain sub-set
of the CoreASM language rules and providing additional specialized ASM rules to
introduce clock-driven behaviors, the approach results in a very customized one and
does not provide a generic solution as this work will address.

1.8 Structure of this Thesis

The remainder of this PhD thesis is structured as follows: Chapter 2 provides an
overview of the model-based transformation approach used in CASM to design and
implement a modern and state-of-the-art compiler framework in order to provide a
foundation for researching ASM-based language constructs, language analysis and
transformation techniques, interpretation, and code generation.

In Chapter 3 the CASM IR is introduced, which is part of the CASM compiler
framework and allows capturing ASM specifications in a unified manner as well as pro-
vides the basis for ASM-aware front-end (syntax) independent compiler optimizations.

Chapter 4 describes the improved concolic execution along with an ASM symbolic
function promotion analysis approach to improve the symbolic trace generation and
outlines the corresponding implementation in CASM.

Chapter 5 introduces a novel ASM-based object-oriented abstraction and corre-
sponding language construct by defining its syntax and semantics and describing the
actual implementation in the CASM project. This object-oriented abstraction was the
result of three conducted controlled experiments, which are described in the following
Chapters 6, 7, and 8.

Chapter 6 describes the pilot study to gather insights about the understandability
of three different object-oriented abstractions which could be introduced into an
ASM-based language where CASM was used as an ASM representative.

13
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Based on the outcome of the previous chapter, Chapter 7 describes the closer
comparison of a controlled experiment between two object-oriented language constructs
with the focus on their usability and applicability for ASM-based languages with CASM
as an example language.

Chapter 8 describes an eye-tracing experiment, where the more applicable language
construct of the previous study in Chapter 7 was investigated in detail by analyzing
eye-gaze behavior, fixation points, and cognitive loads visible through certain timing
behavior.

All chapters contain a small conclusion section. Therefore, Chapter 9 provides an
overall summary of the contributions and concludes this PhD thesis.
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CHAPTER 2
Model-Based Transformation

As described in the previous chapter in Section 1.6, the ASM theory is a way
to specify algorithms, applications and systems in a formal model. Recent ASM
languages and tools address either the translation of ASM specifications to a specific
target programming language or aim at the execution in a specific environment. In
this chapter1 we outline a model-based transformation approach supporting (1) the
specification of applications or systems using the CASM modeling language and (2)
retargeting those applications to different programming language and hardware target
domains. An intermediate model is introduced, which not only captures software-based
implementations, but also the generation of hardware-related code in the same model.
This approach offers a new formal modeling perspective onto modular, reusable and
retargetable software and hardware designs for the development of embedded systems.
We provide a short overview of our CASM compiler design as well as the retargetable
model-based approach to generate code for different target domains. Furthermore we
discuss the possible accelerating of asynchronous logic in the hardware developing
community through the mentioned model-based transformation approach.

2.1 Introduction

Since 1995 where Gurevich has described the ASM theory [63], many approaches have
been proposed to interpret, execute, translate, verify and validate ASM specifications
(summarized by Börger [23]). Generally speaking all available (public) tools either aim
to integrate an ASM language into a specific (software) platform system/framework
or focus on a domain specific purpose. We want to enlarge the scope of ASM
language tools and provide a general purpose modeling system for the CASM modeling
language (introduced by Lezuo et al. [91]). Such a system will enable us to specify
arbitrary applications/systems in this language and translate them into one or multiple

1The content of this chapter is a revised version of the ABZ’16 paper [123] and an adapted version
of the ASYNC’19 paper [115].
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2.1. INTRODUCTION

programming language and hardware target domains. To the best of our knowledge,
such a generic translation does not yet exist.

Furthermore, not only is the focus of our investigation not limited to translations to
several software environments, it also includes the idea to translate CASM specifications
to different HDL contexts. This will enable us to even describe electronic circuit
designs with CASM specifications and will result in a broad range of applications from
specifying small embedded applications up to RISC microprocessors or even complete
System-on-Chip (SoC) designs in a formal way.

The CASM modeling language was designed and used by Lezuo et al. [91] to
describe the semantics of machine languages. Moreover, they performed compiler
correctness proofs through the usage of the ASM machine models and compiled
specifications written in this language into efficient C/C++ applications [94].

Unlike other ASM specification languages such as AsmL [65] or CoreASM [50],
CASM currently consists of a small grammar and a static, strong type system, and
it only supports a subset of rules from the CoreASM modeling language. The static,
strong type system allows to optimize such specifications. Initially, the syntax of CASM
followed CoreASM, but over time it diverged significantly (differences to other ASM
modeling languages are described by Lezuo et al. [91]). Due to the (currently) small
grammar, the optimization potential and simplicity, the CASM modeling language is
a good fit for our effort to retarget ASM specification.

Before we go into details, let us review the design of the compiler infrastructure
proposed by Lezuo et al. [94]. Figure 2.1 depicts the translation process. The parsed
CASM specifications are transformed into an AST, and after that type checks and type
annotations are performed. Several static optimizations are performed to eliminate
run-time overheads. All transformations which need run-time specific calculations
and knowledge are redundantly implemented in the AST-based optimizations. The
compiler directly emits C/C++ code in the next step, which then gets compiled and
linked against the C/C++ run-time library. Important to mention here is that the
generated code and the run-time are not synchronized in their implementation state.

The design in Figure 2.1 is not a retargetable infrastructure. That is, in this
design, the existing code emitter and run-time implementation need to be checked for
correctness, and it must be tested that the execution and calculation of the generated
C program equals the specified CASM input specification. If we would retarget this
design to different software or hardware environments, we would have to check for
the code emitter and run-time implementation again for each new environment that

Source
(CASM)

Typed-
AST

Target
(C/C++)

Binary
Run-time
(C/C++)

parse

optimize

emit compilecompile

Figure 2.1: CASM Compiler with C/C++ Back-end
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the calculation behavior of the generated target equals the specified CASM input
specification.

The emitting stage depicted in Figure 2.1 is the main focus of our approach. Our
solution to this retargetable CASM specification problem is to abstract the run-time
and the emitted code in a specific calculation model. This will allow us to check
the transformation from the CASM model to this specific computational model once.
And for every new target environment (software or hardware) we add to the compiler,
only the transformation has to be checked from the specific calculation model to the
new target environment. Therefore, we can develop several different code emitter
implementations hand-in-hand with one run-time implementation and one CASM
transformation implementation.

This approach enables us to create and generate reusable and retargetable software
or hardware artifacts. Those artifacts are self-contained because in our approach we
even include the full CASM run-time in the generated artifacts. Hence, the generated
artifacts of CASM input specifications can be deployed without further libraries
or dependencies. The latter is very important when it comes to hardware-related
generated code, because it will not only ease the integration in other hardware designs,
but will also allow HDL compilers to fully optimize the generated HDL code on module
level.

2.2 Retargetable Approach and Models

The design of our CASM implementation follows a strict model-based transformation
approach to overcome the retargetable CASM specification problem. Figure 2.2 depicts
our model-based transformation approach where we introduce two models – the IR
and the Emitting Language (EL) model.

Intermediate Representation Model

The IR is a full CASM semantics aware model which will be described in detail in
Chapter 3. It is to analyze and optimize the input specification. An instance of this
model is created during the AST to IR transformation which is the first transformation
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AST IR

Model
(IR)

EL

Model
(EL)

Target
(EL)

Run-time
(EL)

Target
(X)

compile,
interpret,
synthesize,

. . .
parse

transf.
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combine

combine emit

conforms
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Figure 2.2: CASM Compiler with Model-Based Transformation
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step depicted in Figure 2.2. The IR model consists of two important characteristics –
parallel/sequential Control Flow Graph (CFG) (introduced by Lezuo et al. [94]) and
explicitly modeled operations which are not covered in the AST representation from
Lezuo et al. [94] e.g. the location of a ASM state function. The proposed ASM specific
lookup and update elimination optimizations by Lezuo et al. [94] are planned to be
implemented at this level. Software back-ends will profit from those optimizations to
be able to execute the specifications much faster (as shown in [94]). Furthermore, we
strongly believe the hardware back-ends will benefit from the proposed optimizations
too. Because the generated HDL code will result in a less complex digital design by
reducing the number of performed calculations just like it applies to the generated
software code.

Emitting Language Model

An instance of this model is created during the IR to EL transformation of the IR
instance which is depicted in Figure 2.2 as second transformation step. It allows us to
express the CASM run-time and the CASM input specification in a CASM semantics
unaware fashion. Thereby we are forced to find generic abstract language constructs
for the EL model which allow us to express calculations, procedures and sequential
and parallel execution behavior. Figure 2.3 depicts the class diagram of the EL model.

The EL model is designed to make the mapping to different software/hardware
targets easier, but this generic abstraction does not come without limitations. For
example the only data type allowed in the EL model is a bit-precise (arbitrary bit-size)
integer value (Bit-type) to enable a clean translation to HDL data types. To represent
complex or compound data a structure concept is available in the EL model as well to
create records of several bit-precise integer values.

The overall model construct is a Module which can contain besides Constants,
Variables, CallableUnits also explicitly defined Memory blocks. The Memory blocks
are used to properly allocate the appropriate amount of wiring and memory storage in
the generated HDL designs. The difference between a Memory and Variable storage
is that Variables are translated to HDL designs as plain registers and only permit a
single write access.

Memory blocks permit multiple write access. We assume in the EL model that

EL Model

Module

Constant

Structure Bit-typeVariable

Memory CallableUnit

Intrinsic Function

Scope Statement Instruction

*
*

* *

*

*
*

*

*

*

* *

Figure 2.3: Emitting Language Model Class Diagram
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each write access is mutually exclusive. The latter is important, because the model
allows the construction of mixed parallel and sequential Statement blocks.

CallableUnits are divided into two procedural constructs – Functions and Intrinsics.
Software back-end languages like C, Python etc. use this differentiation to emit efficient
target language code, which can be used by the target compiler/interpreter to optimize
the execution of the program. Hardware back-end languages can derive a differentiation
between behavioral descriptions and computational logic blocks. At this point, another
important EL model characteristic is that a CallableUnit does not have a “return"
value. All incoming and outgoing data of a CallableUnit has to be explicitly defined
through “in" and “out" parameters. Hence, software back-ends will use this to generate
“call-by-reference" constructs and hardware back-ends generate direct component
wiring. All CallableUnits can contain mixed parallel and sequential Scopes to define a
concurrent and sequential calculation hierarchy. Every Scope in the EL model can
contain several Statements.

A Statement can either be a “trivial", “branch" or “loop" behavioral container.
Every Statement consists of a list of Instructions, which form the leaf nodes in the EL
model and perform the actual operations.

Furthermore, due to the flexibility of the EL model and the possibility of unbounded
in time of rule evaluations in the sense of CASM, we decided to translate EL instances
in the HDL back-ends to asynchronous digital designs. Hence, every Function, Intrinsic,
Statement etc. from the EL model follows a request-acknowledge handshake protocol.
Currently we only focus, besides the software C back-end, for the hardware back-ends
on the generation of VHDL code with an assumed annotated timing information. The
generated designs are validated in a HDL simulator environment. But in the future
the generated code shall be synthesizeable to FPGA boards as well.

Compiler Design

From the software design point of view of the compiler, both presented models (IR
and EL) follow a Single Static Assignment (SSA) based internal representation. They
use a similar class design and analyze/transformation pass design proposed by the
Low Level Virtual Machine (LLVM) compiler infrastructure by Lattner and Adve
[89]. The latter was used in early experiments to translate the CASM IR model to
the LLVM IR model, but due to the retargetable focus for assembly code it turned
out that the LLVM IR model was to low-level to realize our retargetable approach.
Therefore, we started the design of the EL model.

2.3 Discussion

The presented model-based transformation approach can have various applications
and implications. As one example, the designing and developing of asynchronous logic
in the hardware domain is a quite challenging topic. Despite its development several
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decades ago and several very beneficial properties asynchronous logic design, which
is data driven and runs as fast as possible in all situations, is rarely used nowadays.
Reasons are of course its disadvantageous properties such as bad testability but also
required sophisticated knowledge for designers and missing tools.

The presented model-based transformation approach in this chapter can be used
to tackle the latter points by suggesting a tool or a way to generate multiple circuit
implementations from a single description. The aim for hardware communities to
convert specifications written in various input languages, e.g. C or VHDL, to an
unified representation is the main goal, which can be achieved by creating building
blocks (semantic vocabulary) specified through the ASM-based formal method.

The ASM artifact can be used to generate the circuit in the desired (a)synchronous
design style. In contrast to the broadly used synchronous approach, which uses a
central clock to coordinate the single units, data-driven asynchronous logic utilizes
dedicated signals to indicate when new data has arrived (request) and when the old
data has been processed (acknowledge). This allows the circuit (1) to work as fast
as possible and (2) to adapt much better to Process-Voltage-Temperature (PVT)
variations. Where synchronous circuits fail due to timing violations their asynchronous
counterparts still deliver correct results.

Despite these argument and being available for several decades now, asynchronous
logic is still used only marginally in digital design [109]. Reasons for that are manifold:
Since data is processed immediately after arrival, a very high level of concurrency is
achieved. This leads however also to a huge amount of possible states and thus bad
testability, as all of them have to verified. Furthermore, tool support is still lacking.

At the moment this seems to be a chicken-egg problem: Companies are not ready
to develop new tools until the demand is high, which does however not grow due to
the lacking tool support. Please note that, albeit with increased effort, it is actually
possible to design asynchronous logic with available tools assumed that the designer
has sophisticated knowledge about the asynchronous design style, which differs in
certain points significantly from the synchronous one.

For example one has to make sure that the communication protocol (request
and acknowledge) can be fully executed, which sometimes requires the introduction
of additional memory elements [36]. Thus switching to asynchronous logic means
retraining the designer which results in high risk for a company.

Generating asynchronous circuits systematically from Data Flow Graph (DFG)s,
i.e., models that show how data is propagated from one operation to the next but
neglects the inherent timings, is already possible. For this purpose operations and
special constructs such as merge or join are simply replaced by corresponding asyn-
chronous block as shown e.g. in [79]. In computer architectures similar concepts
have already been implemented successfully, e.g. in data flow processors [44] or in
out-of-order computational units, which essentially generate a DFG at run time.

In summary, we currently have a very good IR for asynchronous logic, namely
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DFGs, and various methods to describe the behavior on different abstraction levels
(e.g. C, VHDL, or Verilog). The main issue is to properly close the gap between them.
Of course, we are aware that available compiler tools, for example LLVM [89], are
capable to generate data flow models, which was for example used by Josipović et al.
[79] to develop Elastic Pipelines [29] based on a algorithmic description in C.

In general, the latter approach cannot be used to generate the DFG into asyn-
chronous logic, due to the synchronous or computer architectural assumptions that
are utilized by the compilers. An example are memory references which are common
in software however hard to convert to hardware.

Therefore the biggest challenge currently in our opinion is the generation of an
IR that can be used as starting point for multiple purposes, e.g., development of
synchronous and asynchronous circuits. Therefore, we propose a tool that can convert
circuit descriptions in various formats and abstraction levels, e.g. pseudo code, C, or
VHDL, into a single common IR.

The latter is based on the well-known formal method ASM [63] [23] which allows
exactly what we need: a unified specification of the circuit behavior independent of
the desired implementation details. The latter are only fixed during the export to
an implementation specific IR, for example DFG in the case of asynchronous circuits.
Overall the task of the desired tool is to (a) extract valuable information from different
descriptions and (b) export this information to the desired format and circuit style.

Due to the fact that asynchronous logic is only marginally used at the moment,
the actual question is how the proposed tool can change this situation?. Specifying
the new IR building blocks (semantic vocabulary) as well as the implementation of
various front-ends and back-ends can only happen in steps. One step would be to start
with specific front-ends for Verilog and VHDL and, naturally, with an asynchronous
circuit style back-end.

In the beginning this would allow designers to read existing (synchronous) circuit
descriptions and generate asynchronous counterparts, which gives them the chance
to (a) get a quick estimation what asynchronous logic is capable of and thus support
future asynchronous implementation and (b) learn by comparison how to properly
design asynchronous circuits on the fly. The proposed tool is also supposed to enhance
verification and validation as the transformation to a formal model enables the usage
of automatic verification methods to proof specific properties and thus show correct
behavior.

Since the tool described in this discussion does not exist yet, we would first have
to specify the IR building blocks (semantic vocabulary) as first step. To find a proper
abstraction, we have to analyze the structure of asynchronous circuits and systems
and based on these create suitable data structures that are capable to model the data
flow graph appropriately. From that it should be easy to generate asynchronous logic
automatically by using the already available gates and building blocks.
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2.4 Conclusion

We have outlined our CASM based retargetable compiler infrastructure and the model-
based transformation approach which will enable the reuse, integration and execution of
a single CASM specification in different software and hardware environments through
the usage of the EL model.

The current development status of the compiler and the models are in an early
state. Major compiler infrastructure and transformation passes are implemented to
parse, dump and transform CASM input specifications. We were able to retarget a
small CASM filter application to a valid C program and VHDL digital design (not
synthesizeable yet). The example application consists of three functions, one rule and
two parallel update terms.

The overall goal we want to achieve in our future work is to create at least for
four language domains a translation back-end implementation. CASM specifications
shall be translated to C11 (native), Python (script), JavaScript (web) and VHDL
(hardware). A possible field of application would then be the construction of a new
RISC microprocessor design in CASM like RISC-V2 [8] or Small-Scale Experimental
Machine (SSEM)3 [35]. The proposed retargetable approach of our modeling system
would generate then directly an Instruction Set Simulator (ISS) for software debugging,
an ISS for integration in a website (e.g. for presentation and testing purposes), and a
valid synthesizeable hardware implementation for e.g. FPGA or ASIC platforms.

Regarding the asynchronous circuits development, they are far less popular than
their synchronous counterparts. We have discussed in this chapter a possible road-map
of a tool that might change this, as it is capable to generate from a single (high-level)
description both synchronous and asynchronous circuits by using the presented model-
based transformation approach. For that purpose we need an IR that represents
through proper building blocks (semantic vocabulary) parsed input descriptions. This
IR is specified using an ASM-based language like CASM.

2See https://riscv.org for the computer architecture description.
3See https://github.com/casm-lang/libcasm-tc/blob/master/application/SSEM.casm ex-

ample specification.
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CHAPTER 3
Intermediate Representation

Over the past years, there have been many approaches to implement concrete
ASM-based modeling and specification languages. All of those approaches define
their type systems and operator semantics differently in their internal representation,
which leads to undesired or unexpected behavior during the modeling, the execution,
and code generation of such ASM specifications. Moreover, all approaches address
specific refinement and optimization needs directly in their compiler infrastructure,
which makes reuse of compiler analyses and transformation passes highly unlikely. To
address this problem, the core elements of ASM-based languages have to be defined
in a reusable and uniform representation. The goal is to enable a language engineer
to avoid specifying and implementing core features of ASM languages in a redundant
way and focus only on the needs of the language user during the language design and
development. In this chapter1, we present the CASM modeling language’s compiler
IR, named CASM Intermediate Representation (CASM-IR), which can be seen as the
ASM core part of the described compiler design from previous chapter 2 (see Section
2.2). CASM-IR is based on a well-formed ASM-based specification format. The
CASM-IR is conceptualized from the ground up to ease the formalization of compiler
analysis and transformation passes to create ASM-based optimizations. Based on
our CASM-IR implementation, we were able to easily integrate the front-end of our
statically inferred CASM modeling language.

3.1 Introduction

ASMs are used to describe formally the evolving of function states in a step-by-step
manner. This also explains why ASM theory was formerly called Evolving Algebra [64].
Based on the ASM programming language model from Gurevich, several tools with
DSL implementations were created to solve application-specific problems, which were
summarized by Börger [22]. The diversity of ASM-based applications2 is widespread,

1The content of this chapter is a revised version of the ABZ’18 paper [117].
2A list of various ASM applications is depicted at https://abz-conf.org/method/asm.
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ranging from formal specification semantics of programming languages, such as those
for Java by Stärk et al. [146] or VHDL by Sasaki [133], compiler back-end verification
by Lezuo [90], software run-time verification by Barnett and Schulte [11], software
and hardware architecture modeling e.g. of UPnP by Glässer and Veanes [60], or even
RISC designs by Huggins and Campenhout [72].

Despite this diversity in applications, over the past years, different ASM-based
language dialect were created to cover single or multiple application specific problem
domains. This might not be perceived as a problem, as many language users [83] like
to choose among multiple language dialects. The problem however is that the language
engineers [83] craft and design those languages according to the needs of the language
user and bind their implementations to a specific execution environment technology,
instead of generalizing the mathematical foundation of the ASM-based languages in
an independent model representation. As a consequences, those languages are difficult
to integrate with each other [154], cannot easily be based on a common execution
environment technology, and establishing a common set of language tools is difficult.

Moreover, the binding to various execution environment technologies introduces
undesired and unexpected behaviors, e.g. if the same algorithm so to say is specified
with different ASM modeling languages and the model execution leads to different
floating point values or depending on the Integer representation to different overflow
states. To overcome this uniform ASM representation problem a clear, precise, and
formal IR has to be introduced, which has the ability to represent various ASM
language constructs of different contexts. A potential of such an ASM-based IR is
depicted in Figure 3.1. Due to the decoupling of the ASM syntax from the specific
execution environments and target languages other ASM languages can benefit from
the same IR as mid-level target in their language implementation and design by
reusing language definitions and run-time features. The transformation step from
the ASM-based IR to specific targets was sketched in one of our earlier work about a
model-based transformation approach to reuse and retarget ASM specifications [123].

The major advantages of such an approach are the generalization of ASM-related
analyzes, optimization, and transformation capabilities of compilers – first envisaged
by Lezuo et al. [94] – based on a single uniform model. Furthermore, another benefit
for existing ASM languages is to directly reuse the numeric as well as the – proposed by

AsmL

CoreASM

CASM

Asmeta

. . .

ASM-aware
Intermediate

Representation
(CASM-IR)

Specific Environment

Software Language

ASM language

Hardware Language

. . .

Figure 3.1: Potential of ASM-aware Intermediate Representation
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Lezuo [90] – symbolic execution of specified ASM models. A huge disadvantage in the
perspective of a language engineer is to port existing ASM language implementations
to such a uniform ASM model.

This chapter focuses on the design, implementation, and integration of an ASM-
based IR model named CASM-IR to address the uniform ASM representation problem.
The main contribution of this chapter is the definition of a well-formed ASM-based IR
model which is independent of language front-ends and provides a well-defined type
system, operator and built-in semantics.

This chapter is organized as follows: In Section 3.2 we provide an introduction
and background to the theory and formal method of ASMs. Section 3.3 describes
the research context and the motivation of this chapter. In Section 3.4 we describe
our CASM-IR model. Section 3.5 presents details about the current implementation
and integration of the CASM-IR. Section 3.6 gives an overview of the related work
regarding IR’s of other ASM languages and tools. Finally, in Section 3.8 we conclude
the chapter and outline the future work.

3.2 Background

This section provides a small introduction into the ASM theory and discusses relevant
properties for understanding this chapter. Readers already familiar with ASMs and
their corresponding syntax representations and semantics may consider to skip the
whole or some parts of this section.

Accordingly to Gurevich and Tillmann [66], the ASM thesis states that, if there is
a computer system A it can be simulated in a step-by-step manner by a behavioral
equivalent ASM B.

The ASM theory and its resulting formal method consists of three core concepts:
(1) an ASM specification/ language which looks similar to pseudo code to express
rule-based computations over algebraic functions with arbitrary data structures and
type domains; (2) a ground model serving as a rigorous form of blueprint and reference
model; (3) stepwise refinement of the reference model by instantiating more and more
concrete models which uphold the properties of the reference model [26].

An ASM specification defines a state out of mathematical functions with corre-
sponding a type domain mapping or, in short, a type relation. Every function has
an arity and if z⃗ is an n-dimensional vector and f an n-ary function then z⃗ is called
a location. In order to change and manipulate the current function state, rules are
used to define computations and transitions of function location values. This change
is specified by an update rule, which produces a new update u = (f(z⃗), v) consisting
of the new value v, an n-ary function f , and a specific location z⃗. A specified agent
executes a rule in an atomic step behavior an collects all produces (partial) updates
[66] and applies those to the function state. A named rule3 can contain sub-rules

3The named rule refers to a user defined transaction and computational rule.
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the following basic ASM rules: skip, update, conditional, for-all, choose, iterate, and
call. A skip rule does not perform any computation. An update rule produces new
updates as explained before. The conditional rule enables branching and selective
rule computations in form of an if-then-else block. A for-all rule expresses bounded
parallelism to be applied to a rule r over a variable x in the form if ∀x : r(x). The
choose rule introduces non-determinism to ASM by selecting randomly a value of a
given set which shall be used for further computation in the underlying rule. Rep-
etitions can be expressed through the iterate rule. Last but not least, the call rule
enables the possibility to invoke sub-rule calls, even recursion is possible to express in
ASM specifications.

Each of the above named rules can be assigned to certain execution semantics. By
default, ASM uses a parallel execution semantics, meaning that all rules inside a rule
are executed in a synchronous parallel manner. In 2000 Gurevich [64] extended the
ASM computation model with a sequential execution semantics allowing to introduce
sequential sub-machine steps producing pseudo updates [94] to describe sequential
computations. This allows to interleave parallel and sequential execution semantics
inside a specified named rule. As described in [66] the interleaving introduces a
complex situation to ASM interpreter and compiler developers, since the lookup of a
certain function at a certain location has to respect the surrounding nested parallel
and sequential state. This problem was efficiently addressed and solved by Lezuo et
al. [94] by introducing a ASM specific update-set implementation based on hashing.

An important concept in ASM languages is the agent. ASMs have a single- and
a multi-agent concept [63]. The basic ASM specification uses a single-agent that
executes a given named rule and collects the produces updates, which are applied to
the global function state. The latter is called in ASM a step.

Multiple steps form an ASM run and every run ends with a specified termination
condition. To describe and specify concurrent problems, the multi-agent concept in
ASMs defines three different modes of operations allowing the definition of more than
one agent executing a named rule. The three modes of operations are: (1) synchronous,
(2) asynchronous, and (3) concurrent ;

A synchronous mode of operation can be seen as a lock-step scenario. All agents
wait as long as all agent have performed one step and if the termination condition is
not fulfilled another step is performed. In an asynchronous mode of operation, one
agent gets randomly selected to perform its step one after another. The concurrent
mode of operation is the most generic one and can be seen as a free-run scenario.

All agents run independently and execute their assigned named rule as long as the
termination condition is reached. Börger and Stärk [26] define multiple termination
conditions. The two most common termination conditions are: (1) that an ASM
run terminates if all agents have no valid named rule assigned to them and (2) if no
updates are produced during an ASM step by any agent the ASM run terminates.
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3.3 Motivation

The broader context of our research is the creation of a modern state-of-the-art ASM
modeling language implementation named the CASM, as well as transformation and
deployment of CASM specifications to executable artifacts4. The primary application
context of this work is the specification of embedded systems in a formal way.

However, in the context of CASM, we not merely focus on specific application
contexts like embedded systems, but rather aim to describe and specify arbitrary
systems and therefore software and/or hardware application applications and compo-
nents. This overall idea is not new, but our approach to achieve this goal of generic
transformations is different from a language engineering perspective, because we set
our ASM-based IR into the center of the front-end language development.

Other ASM language approaches, which are described in Section 3.6, do not,
because they implement a forward directed transformation from ASM to the desired
target language like C or C++. The transformation of ASM source specifications
to specific target languages is by no means trivial. It involves the mapping of a
mathematical-based specification model to a real executable program, which for itself
resides in a specific execution environment.

To overcome this complex transformation, we proposed and followed a model-based
transformation approach in our earlier work [123], which defines four abstraction layers
(illustrated in Figure 3.2). At the top resides the ASM Source Modeling Language
layer that includes besides the language grammar definition the lexer, parser, type
inference, type checker, and AST representation. A parsed input specification gets
translated to the next layer, the ASM-aware Intermediate Representation layer. At
this abstraction layer the CASM-IR, proposed in this chapter, is defined. It allows us
to analyze, transform and optimize the input specification for ASM related properties.

To elaborate and describe the optimization potential of ASM-based languages
consider the following swap example specification depicted in Listing 3.1 described
in CASM language5. It defines a single-agent execution environment starting at the
named rule swap (Line 1), two null-ary functions with relation %: → Integer$ (Line 3
and Line 4), and the named rule swap at (Line 6 to Line 11) with a parallel execution
semantics (denoted by curly braces) containing three update rules.

4For more information about CASM refer to the project website at https://casm-lang.org.
5The CASM syntax is described at https://casm-lang/syntax.

ASM Source Modeling Language

ASM-aware Intermediate Representation (CASM-IR)

ASM-unaware Intermediate Representation

Software and/or Hardware Target Language

Figure 3.2: CASM Abstraction Layers
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An efficient code generator – as proposed by Lezuo et al. [94] – would have generated
code as depicted in Listing 3.3. This generated code is a valid C implementation
of the input CASM specification for the swap example. Still there is a lot of room
for possible optimizations, because a closer look and appropriate ASM-based static
compiler analysis would detect that in this example the explicit termination condition
(see Listing 3.1 at Line 10) reduces this specification to only one ASM step without
the need to track any ASM-related functional state.

The optimal code for this swap example is depicted in Listing 3.2. It would simply
transform into an empty C main function. So there is a huge optimization potential
on the CASM-IR level.

1 CASM init swap
2
3 function x : -> Integer
4 function y : -> Integer
5
6 rule swap =
7 {
8 x := y
9 y := x

10 program( self ) := undef
11 }

Listing 3.1: Swap Example (CASM)

1 int main( int argc , char** argv )
2 {
3 return 0;
4 }

Listing 3.2: Swap Example (C, optimal code generation through optimization)

1 struct Integer x;
2 struct Integer y;
3 struct Agent program;
4
5 void swap( void )
6 {
7 struct Integer tmp;
8 tmp = x;
9 x = y;

10 y = tmp;
11 program = { 0 };
12 }
13
14 int main( int argc , char** argv )
15 {
16 program = { &swap , 1 };
17 while( program.defined )
18 {
19 (* program.value )();
20 }
21 return 0;
22 }

Listing 3.3: Swap Example (C, efficient code generation)
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The CASM-IR gets further transformed in the next layer called ASM-unaware
Intermediate Representation (see Figure 3.2). At this abstraction layer the transformed
specification has no longer any knowledge about the semantics or behavior of ASMs.
Therefore it can be analyzed, transformed and optimized for traditional properties like
execution speed or program size. In the final layer of Figure 3.2, the ASM-unaware
Intermediate Representation is mapped to various Software and/or Hardware Target
Languages.

Those CASM system abstraction layers describe a full transformation of an ASM
specification to its desired target language. Due to the proposed layered structure, it is
possible to only use a sub-set of the full functionality as well. For example, AST-based
execution is used to recursively walk over the in-memory AST representation and
interpret the input specification as it was parsed.

In the context of AST-based execution, language engineers can (re)use the type
system from the ASM-aware IR layer and can rely on its defined behavior and semantics.
Therefore the CASM-IR can be used not only for transformation and code generation
purposes, but also for AST-based interpreter applications.

Furthermore, besides ASM-based languages, this proposed IR and its functionality
could be used for other functional programming languages as well for their function
definitions, type relations, numeric and symbolic computations. The approach to
address the uniform ASM representation problem – introduced and described in Section
3.1 – with the CASM-IR raises several concerns regarding its existence and usefulness.

First of all, the effort to investigate into such an IR design arises from the fact
that accordingly to the state-of-the-art and to our knowledge no comparable IR for
ASM languages with the focus on well-formed, reusable, retargetable, and optimizable
ASM specifications exist yet.

Second, as presented by Lezuo et al. [94], the optimization potential is huge of
ASM languages regarding redundancy eliminations, but still not covered and addressed
by any ASM language implementation in a unified manner.

3.4 CASM-IR

This section describes our ASM-based IR design that can be (re)used for designing
and building ASM-based and other possible functional related specification languages.
Before we go into the details of the model and the format of this IR, we first outline
the composition of our CASM system [123].

Figure 3.3 depicts a more detailed overview of the sketched abstraction layers
from Section 3.3 (see Figure 3.2). A parsed ASM source – in our case the CASM
language – gets translated to an AST representation and necessary type information
gets inferred. In order to do so, the CASM-IR – depicted as Model (IR) – needs to
provide type information for all possible operators and their type relations, which a
language front-end can use, to implement a type inference pass. Furthermore, the
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CASM-IR model provides the ability to directly implement AST-based interpreter
applications on top of it, because language front-ends can access the implemented
run-time of the IR to evaluate expressions and terms.

If the execution shall be done directly using the IR model itself, a language
front-end just has to perform a model-to-model transformation from its AST-based
representation to an instance of this IR model. At this point the IR can optimize
the specification for ASM-related properties fully decoupled from the original input
specification in form of an AST representation. Some optimization properties were
proposed by Lezuo et al. [94]. Furthermore, then the IR instance can be executed by
the run-time implementation of the IR model.

For further processing (code generation) of the specification to a specific pro-
gramming target language, the IR instance can be transformed into an EL model,
as proposed in our earlier work [123]. The EL model is another compiler IR, which
allows to express the CASM run-time in a target independent way.

Furthermore, the CASM-IR instance of an input specification gets transformed and
combined on EL level and enables ASM-unaware compiler optimizations for properties
like execution speed or final target program size. In the final step, the transformed
EL instance gets combined with the run-time from the EL itself and transformed into
the desired target language or execution environment.

As proposed in [123] the EL model needs to be designed and evolved that allows
generic targeting ranging from high-level software (e.g. C, C++, JavaScript), low-level
software (LLVM [89], GENERIC/GIMPLE [104], Assembler), high-level hardware
(VHDL, Verilog, SystemVerilog), to low-level hardware (FIRRTL [73], Yosys [159],
Register Transfer Level (RTL) netlists).

Motivating Example

To better understand the solving of the research question regarding the uniform
ASM representation problem that CASM-IR deals with, we describe a small ASM
specification and point out the issues, which are addressed by the CASM-IR design
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1 CASM init swap
2
3 function x : -> Integer
4 function y : -> Integer
5
6 rule swap =
7 {
8 x := y
9 y := x

10 program( self ) := undef
11 }

Listing 3.4: Swap Example (CASM)

1 var x as Integer
2 var y as Integer
3
4 swap()
5 x := y
6 y := x
7
8 Main()
9 swap()

10 step
11 // terminates after this step

Listing 3.5: Swap Example (AsmL)

1 CoreASM swap
2 use StandardPlugins
3 init swap
4
5 function x : -> Integer
6 function y : -> Integer
7
8 rule swap =
9 par

10 x := y
11 y := x
12 program( self ) := undef
13 endpar

Listing 3.6: Swap Example (CoreASM)

1 asm swap
2 import ../ STDL/StandardLibrary
3
4 signature:
5 dynamic controlled x : Integer
6 dynamic controlled y : Integer
7
8 definitions:
9 main rule swap =

10 par
11 x := y
12 y := x
13 endpar

Listing 3.7: Swap Example (Asmeta)
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and implementation. Listing 3.4 depicts a valid (high-level) CASM specification of a
modeled swap algorithm6. It defines a rule swap (Line 6) and two nullary functions
x (Line 3) and y (Line 4) of result type integer. The init (Line 1) defines a single
execution agent with starting top-level rule swap. Rule swap defines a parallel block
rule (Line 7 to Line 11) and three update rules.

The first two update rules in Listing 3.4 (Line 8 and Line 9) are producing updates
to swap the function values from x and y. In the last update rule (Line 10), the
ASM program function gets updated with an undefined value, which results into a
termination of the specification, because the single execution agent top-level rule
gets set to an undefined value and therefore the ASM execution concludes the model
execution.

To get a feel for the swap algorithm ASM specification in other ASM languages,
we depict three further examples of the same algorithm modeled in AsmL [65] (Listing
3.5), CoreASM [50] (Listing 3.6), and Asmeta [58] (Listing 3.7).

Even in this small specification, several behaviors and definitions are implicit and
slightly different in the various ASM languages. E.g. the used function program

(Listing 3.4 at Line 10) is not an explicitly defined function in this valid CASM
specification, because this function definition is hidden from the language user and it
gets implicitly defined, because it depends on an agent type domain. The type relation
of this function would be a projection of the current agent type domain to a stored
top-level rule, which is similar in the CoreASM specification (Listing 3.6 at Line 12).

Furthermore, the initialization of this program function to the rule swap is implicit
as well. In CASM and CoreASM this is achieved by setting the underlying agent
through the init definition (Listing 3.4 at Line 1, and Listing 3.6 at Line 3). Similar
behavior can be achieved in Asmeta by setting a certain rule to a main rule (Listing
3.7 at Line 9) or in AsmL which forces the uses to define a Main() rule (Listing 3.5 at
Line 8) which controls the computation directly.

Moreover, it can be observed that the swap examples of CASM and CoreASM
explicitly define the termination of the specification whereas the swap examples written
in AsmL and Asmeta do not. In order to implement e.g. an AST-based interpreter to
execute this specifications a language engineer would have to implement a run-time
kernel, which handles those implicit defined behaviors.

Furthermore, if we think about optimizing such specifications, implicitly defined
behaviors cannot be optimized by transformation passes in a generic way.

Generally speaking we have discovered two implicit behaviors – initialization
of functions and agent life cycle handling. Latter is very important if we consider
synchronous and asynchronous multi-agent ASM specifications. To express ASM
specifications in a well-formed IR we present in the following sub-sections the definition
of our CASM-IR model and its textual representation.

6A detailed explanation of the CASM swap example is given in Section 3.3.
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Type System

Due to the fact that every ASM-based language will eventually be executed by a real
machine a term, expression or even a value will have a concrete type. Even Gurevich
[64] suggested his ASM language definition lacks explicit typing, and it would be more
practical to introduce such. Therefore, in the center of our CASM-IR model stands
the type system with all of its possible type domains, which we will call from now on
just types7.

An overview is depicted in Figure 3.4. We can observe that the type system
defines very basic (Primitive) types like Boolean or Integer up to very abstract ones
(Template) like List or File.

Notable to mention in contrast to other ASM languages is that CASM-IR always
tries to be as close as possible to the mathematical foundation of a type. This means
e.g. the Integer representation is represented as an arbitrary precise Integer with range
]−∞,∞[. There is even the possibility – similar to the Ada programming language
– to restrict the type to a certain sub-range. Furthermore, CASM-IR introduces a
Binary type which can be used to represent any binary bit-precise value with defined
bit-size. Along with this type CASM-IR features a set of Binary built-in arithmetic
operations (see Section 3.4). In the implementation of Lezuo et al. [94] this type was
indirectly specified with Integer types by limiting built-in operations over a predefined
bit-size values and the language itself was not aware of these operations. Another novel
type in CASM-IR compared to other languages is that it features a typed Reference
type. All references to rules, functions, and derived functions have to be typed to
ensure type safety for indirect calls.

Constant Values

Due to the mathematical foundation of ASMs, all typed CASM-IR constants8 can
have besides the type-specified (domain) content, an undefined value. Furthermore,
we directly include in CASM-IR the notion of symbolic values that enable a clear

7The CASM-IR type description is given at https://casm-lang.org/ir/types.
8The CASM-IR constant definition is given at https://casm-lang.org/ir/constants.

TypeSynthetic

Composed
Primitive

Template

Reference

Location RelationLabelVoid

IntegerBinaryBoolean Rational Decimal String

Rule Function

Record

Enumeration

Tuple
List

Range

File

Port

Figure 3.4: CASM-IR Type System (Inheritance Tree)

33

https://casm-lang.org/ir/types
https://casm-lang.org/ir/constants


3.4. CASM-IR

definition of numeric as well as symbolic execution, whereas the symbolic values are
its own domain value as suggested by Lezuo [90].

Function States

States are modeled through the function definitions9. As defined in [26] every ASM
function has a name and an arbitrary type relation. By default every function –
accordingly to the ASM definition – is undefined over its type relation domain and
needs to be explicitly initialized in CASM-IR. Listing 3.8 depicts a constant @c0 of type
Integer and value 123, a constant @c1 of type Rule Reference with relation :→ V oid and
an undefined value, and a function foo with relation : Boolean ∗Rational → Integer.

Agents

ASM specifications can either be single or multi execution agent-based systems [63].
Therefore we provide a model instance to declare only the agent type domain that
directly results in the desired behavior. For instance, if we would define the agent
type domain to a Boolean type, we would define two operational agents. The agent
type domain has an important role in the execution of all ASM specifications because
starting from a defined agent rule the nested rules get called and so on. Furthermore,
the defined agent domain is also used in a special internal function named program to
store the current agent top-level rule as a rule reference.

Listing 3.9 depicts how to set the model instance of the current agent type domain.
In Line 2 an enumeration type bar gets defined with enumerators A, B, and C, and in
Line 5 the agent type domain gets set to the type bar. Therefore, we have specified in
this example a multi-agent ASM with three agents. As already mentioned in Section
3.4 there is a special function named program that controls the execution of the
agents in its kernel of ASM specifications, which heavily depends on the agent type
domain. Line 9 shows the corresponding program function definition with the agent
type domain bar. Furthermore, this shows clearly the explicit definition of the special
internal function named program in CASM-IR compared to the indirect definition in
the CASM high-level specification from the Section 3.4.

9The CASM-IR function definition is given at https://casm-lang.org/ir/functions.

1 ;; integer constant ’123’
2 @c0 = i 123
3 ;; ’undefined ’ rule reference
4 ;; constant of relation : -> Void
5 @c1 = r< -> v > undef
6 ;; function definition ’foo ’
7 ;; with relation:
8 ;; Boolean * Rational -> Integer
9 @foo = < b * q -> i >

Listing 3.8: Constants and Functions

1 ;; enumeration type definition
2 bar = { A, B, C }
3 ;; setting agent type domain
4 ;; to enumeration type ’bar ’
5 .agent = bar
6 ;; function definition ’program ’
7 ;; with relation:
8 ;; bar -> RuleRef < -> Void >
9 @program = < bar -> r< -> v > >

Listing 3.9: Enum. and Agents
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Rules

The actual computation in ASMs is specified through transition rules and CASM-IR
does contain a notation of rules as well, but only for the named rule definitions.
Other ASM rules like update, conditional, for-all, choose, call etc. are represented in
CASM-IR through nested blocks and instructions (see Section 3.4).

Derived Functions

Another important specification component in CASM-IR are derived functions or
deriveds for short. It can be seen as a kind of typed macro to reuse state-less or
side-effect free calculations. This means, that in deriveds, no state changes are allowed
to be performed; ergo, no Update rules are allowed in derived function definitions.

Built-in Functions

The CASM-IR features several built-in functions10. Depending on the behavior they
act like deriveds or rules. Since CASM is a statically typed language and it does not
allow implicit type casts, all of the required casting facilities are directly specified
at IR level. Besides basic casting facilities, a set of arithmetic operations is defined
for the Binary type at built-in level inside the IR as well. Figure 3.5 depicts the
definition of a Boolean to Binary of bit-size b cast definition and a Zero-Extension
(zext) definition by resizing a Binary type of bit-size n to a bit-size of b.

Blocks, Instructions, and Registers

All basic expressions and state-modifying rules are represented in CASM-IR as In-
structions in a SSA form. So produced results of instructions are stored in registers
and the type is directly yielded from the specified instruction. This conceptual idea

10The CASM-IR built-in definition is given at https://casm-lang.org/ir/builtins.

asBinary : Boolean ∗ Integer → Binary(b), b ̸= undef ∧ b > 0

asBinary(a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
undef if a = undef

sym′ if a = sym

0 if a = false

1 if a = true

zext : Binary(n) ∗ Integer → Binary(b), b > n

zext(a, b) =

⎧⎪⎨⎪⎩
undef if (a = undef) ⊻ (b = undef)

sym′ if (a = sym) ∨ (b = sym)

a if otherwise

Figure 3.5: CASM-IR Built-in Function Definitions (excerpt)

35

https://casm-lang.org/ir/builtins


3.4. CASM-IR

is borrowed from the LLVM compiler IR design by Lattner and Adve [89]. So any
instruction call can be specified by a resulting unique register name, an instruction
name and possible instruction operands with explicit types. This also indicates that
the CASM-IR follows a register machine design and implementation approach.

Basic ASM rules like skip, choose, or the definition of execution semantics (fork and
merge) are represented as single instructions. Novel in CASM-IR is that it explicitly
models the reading (lookup) and writing (update) of ASM function states by dedicated
instructions. This allows to analyze and optimize CASM-IR specifications as suggested
by Lezuo et al. [94].

A location instruction performs the function location calculation. How the location
is calculated is not fixed and has to be decided in the run-time implementation. E.g. a
common technique would be the calculation of a function location by a certain hashing
algorithm.

The lookup instruction determines at a certain point in the specification, which
state value is assigned to a certain function depending on the nested parallel and
sequential execution semantics. The argument needed to perform a lookup is a location
constant.

An update instruction produces a new location and value pair, which gets applied
to the surrounding (local) function state also known as pseudo state [94]. Therefore,
an update instruction needs, besides the exact calculated function location, a value
operand.

Listing 3.10 depicts an example usage of the location, lookup, and update instruction.
In Line 2 a location calculation is performed for the function foo which has accordingly
to the type one Integer argument. At Line 3 the actual lookup of the function value is
performed. And in Line 5, a new update is performed to the same location were the
lookup was performed.

Similar to traditional assembler languages, the CASM-IR includes a call instruction
as well, but this call instruction is used for multiple invocation types. It is used to
call specified rules, derived functions, and pre-defined built-ins either directly by its
name or indirectly through a register value of a reference type. Besides the generic
call instruction there exist several instructions to perform intermediate calculations of
arithmetic, logical, and comparison operations11. Figure 3.7 depicts the definition of
the addition (add) and the equal (equ) instruction.

11The CASM-IR instruction definition is given at https://casm-lang.org/ir/instructions.

1 %r0 = ;; ... calculation which yields result of type ’i’
2 %r1 = location < i -> i> @foo , i %r0 ;; yields type ’loc ’
3 %r2 = lookup loc %r1 ;; yields type ’i’
4 %r3 = ;; ... calculation which yields result of type ’i’ and uses ’%r2’
5 update loc %r1 , i %r3 ;; produces an update to function ’foo ’

Listing 3.10: Location-, Lookup-, and Update-Instruction
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Multiple instructions are compound to a Statement Block (SB) whereas the
execution semantics of the instructions is always sequential. Several blocks are
grouped together and form an Execution Semantics Block (ESB) which can either
have a parallel or sequential execution semantics. Additionally, every ESB contains,
besides the sub-blocks, an entry and an exit SB, in which the actual execution
semantics is specified by appropriate fork and merge instructions. Figure 3.6 depicts
the composition of rules, the ESB and SB blocks as well as instructions.

Motivating Swap Example in CASM-IR

In this section we present an example output of the transformed motivating example
swap CASM specification from Listing 3.4 to our CASM-IR. The performed model-
to-model transformation is implemented in the CASM front-end (see Section 3.5).
It shall summarize several of the presented concepts and sketch some optimization
possibilities, which can be obtained through the representation of ASM specifications
in the CASM-IR. Note that this presented transformed motivated example is valid
for the other presented ASM swap specifications as well (Listing 3.5, Listing 3.6, and
Listing 3.7).

Listing 3.11 visualizes a CASM-IR instance, where the missing definitions and
implicit behaviors from Listing 3.4 are explicitly specified. In the transformed specifi-

Rule Exec. Sem. Block Statement Block Instruction
1..* 1..*

entry

exit

Figure 3.6: CASM-IR Rules, Blocks, and Instructions

add : Integer ∗ Integer → Integer

add(a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
undef if (a = undef) ∨ (b = undef)

sym′ if ((a ̸= undef) ∧ (b = sym))

⊻((a = sym) ∧ (b ̸= undef))

a+ b if otherwise

equ : Type ∗ Type → Boolean

equ(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

true if (a = undef) ∧ (b = undef)

false if ((a = undef) ∧ (b ̸= sym))

⊻((a ̸= sym) ∧ (b = undef))

sym′ if (a = sym) ∨ (b = sym)

a = b if otherwise

Figure 3.7: CASM-IR Instruction Definition (excerpt)
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cation we can observe that first of all the agent type domain gets set to a enumeration
type named a (Line 3) with the name $ (Line 2). This means that the agent type
domain consists of only one concrete value and hence we have a single execution agent
ASM specification. Thereafter, a forward declaration of the rule swap is specified (Line
4) because the next listed constants (Line 5-8) contain the symbol of the swap rule
to define a rule reference constant. Next, three functions are defined. The program

function (Line 9) with the previous defined agent type domain that stores the ASM
agent top-level rule reference. After that the functions x (Line 10) and y (Line 11) are
defined accordingly to the originally input specification. Before the definition of the
swap rule gets defined, the initialization of the ASM state has to be specified, which
at least has to set the correct starting rule of the agents. Note that all function states
in ASMs are by default undefined. Last but not least the rule swap gets defined. It
contains a parallel execution semantics block with three trivial statements and several
location, lookup and update instructions.

Regarding the optimization potential in this revised example we can detect several
possible ASM-related optimizations. The most obvious one would be a hoisting opti-
mization of redundant location calculations, because the location of nullary functions
will always be the same. The calculation e.g. of the location of function y at register
%r1 (Line 28) could be moved up before the fork instruction of the entry section at
lbl2 (Line 24). And the location calculation of function y at the register %r6 (Line
36) can be removed and all its uses can be replaced by %r1. The same applies for the
location of function x and register %r3 and %r4 (Line 30, Line 34).

Figure 3.8 depicts an excerpt of the AST from Listing 3.4 were the focus set on
the update rules. By comparing this representation with the CASM-IR in Listing

RuleDefinition
6:1..11:2

< → Void >

BlockRule
7:1..11:2

UpdateRule
8:5..8:11

DirectCallExpression
Target type: function

8:5..8:6
Integer

Absolute IdentifierPath
8:5..8:6

x
8:5..8:6

DirectCallExpression
Target type: function

8:10..8:11
Integer

Absolute IdentifierPath
8:10..8:11

y
8:10..8:11

UpdateRule
9:5..9:11

DirectCallExpression
Target type: function

9:5..9:6
Integer

Absolute IdentifierPath
9:5..9:6

y
9:5..9:6

DirectCallExpression
Target type: function

9:10..9:11
Integer

Absolute IdentifierPath
9:10..9:11

x
9:10..9:11

. . .

. . .

Figure 3.8: Swap Example (AST, excerpt)
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3.11, we can detect, that every lookup and location calculation is explicitly stated
in the CASM-IR representation whereas in the parsed CASM specification AST
representation only the function symbol names x and y appear on the left-hand side
(location of the update) and right-hand side (location and implicit lookup) of an update
node.

3.5 Implementation

Figure 3.9 depicts the CASM system implementation libraries visualized as a library
dependency graph. The CASM run-time and back-end libraries are based on corre-
sponding CASM unaware Just-in-time Emitting Language (CJEL) libraries (situated
one layer below the CASM libraries). The CJEL is the concrete implementation of

1 CASM -IR ;; CASM -IR specification header
2 a = { $ } ;; definition of enum. type ’a’
3 .agent = a ;; set agent type domain to type ’a’
4 @swap < -> v> ;; declaration of rule ’swap ’
5 @c0 = r< -> v> @swap ;; ’swap ’ rule reference
6 @c1 = a $ ;; agent constant of single agent
7 @c2 = r< -> v> undef ;; undefined rule reference
8 @c3 = a $ ;; agent constant of single agent
9 @program = <a -> r< -> v>> ;; ’program ’ function definition

10 @x = < -> i> ;; definition of function ’x’
11 @y = < -> i> ;; definition of function ’y’
12 @init -> v = { ;; definition of ’init ’ rule
13 lbl0: entry ;; ESB entry block of lbl0
14 fork par ;; fork instruction parallel
15
16 lbl1: %lbl0 ;; SB lbl1 in ESB lbl0
17 %r0 = location <a -> r< -> v>> @program , a @c1
18 update loc %r0 , r< -> v> @c0
19
20 exit: %lbl0 ;; ESB exit block of lbl0
21 merge par ;; merge instruction parallel
22 }
23 @swap -> v = { ;; definition of ’swap ’ rule
24 lbl2: entry ;; ESB entry block of lbl2
25 fork par ;; fork instruction parallel
26
27 lbl3: %lbl2 ;; SB lbl3 in ESB lbl2
28 %r1 = location < -> i> @y
29 %r2 = lookup loc %r1 ;; lookup of function ’y’
30 %r3 = location < -> i> @x
31 update loc %r3 , i %r2 ;; update of function ’x’
32
33 lbl4: %lbl2 ;; SB lbl4 in ESB lbl2
34 %r4 = location < -> i> @x
35 %r5 = lookup loc %r4 ;; lookup of function ’x’
36 %r6 = location < -> i> @y
37 update loc %r6 , i %r5 ;; update of function ’y’
38
39 lbl5: %lbl2
40 %r7 = location <a -> r< -> v>> @program , a @c3
41 update loc %r7 , r< -> v> @c2
42
43 exit: %lbl2 ;; ESB exit block of lbl2
44 merge par ;; merge instruction parallel
45 }

Listing 3.11: Swap Example (CASM-IR)
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the EL model, which is explained in Section 3.4. All libraries are implemented in the
C++11/14 standard.

The implementation of the CASM-IR model consists of two major base classes -
Type and Value. The type system and type hierarchy is implemented according to
the definition presented in Section 3.4. All other model instances are sub-classes of
the Value class. This design approach was borrowed again from the LLVM compiler
project where everything is a value [89].

Furthermore, every value has a type. The CASM-IR implementation provides
a rich Application Programming Interface (API) to provide certain information to
front-end implementations. To be more precise here, for every instruction and built-in,
it is possible to fetch all defined type relations through an internal type map structure.
This enables a clean separation between a front-end language definition and the IR
internals.

Based on the CASM-IR, we have designed and implemented our CASM language
front-end. Compared to the CASM language implementations from Lezuo et al. [94]
the AST has resulted in a much simpler and clearer design then before, because all
type, operator, and built-in design decisions were already made in the CASM-IR
implementation. Therefore the AST only focuses on the input language itself.

CASM is a statically strong inferred typed language. Hence, the difference between
the front-end CASM input specification language and the CASM-IR model is that
the front-end language requires a symbol resolver, type checker and type inference
pass to fully type the parsed input specification AST representation. In the analyzer
passes we use the provided API of the CASM-IR to query and check if certain types,
built-ins, and operators (e.g. arithmetic instructions) exist.

Furthermore, during type inference, the front-end can infer the correct type through
the pre-defined type relations of the specified CASM-IR operators. E.g. if a type is
not possible to be inferred in the front-end, the possible types can be retrieved from
the CASM-IR and used as helpful debugging information for language users.

Besides type inference and other analyzes done by the front-end implementation,
the most important benefit of targeting the CASM-IR is that a language front-end
engineer can directly call evaluation instrumentation functions of the CASM-IR to
perform calculations of operator instructions and built-ins.

IR
(CASM)

Front-End
(CASM)

Back-End
(CASM)

Run-Time
(CASM)

IR
(CJEL)

Back-End
(CJEL)

Run-Time
(CJEL)

depends

depends

depends

depends

depends

depends

depends

uses

uses

Figure 3.9: CASM System Implementation (Library Dependency Graph)
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3.6 Related Work

One of the best-known ASM implementations is the Asmeta12 tool-set with the
AsmetaL language [58]. The core of Asmeta is designed and implemented using the
EMF Ecore meta-model13. Based on the Ecore meta-model, the ASM language model
of Asmeta is directly described as an instance (model). Therefore, the execution
and precise calculation of the implemented ASM simulator is bound to the run-time
implementation of the Ecore meta-model and its EMFs Java interface realizations.

Another notable ASM design and implementation is CoreASM14 originally devel-
oped by Farahbod et al. [50]. The focus of CoreASM is to provide a flexible and
extensible ASM implementation and to be as near as possible to the described ASM
method by Börger and Stärk [26]. CoreASM is implemented in Java and its IR and
run-time is directly bound to the JVM.

Microsoft research designed and implemented an ASM language named AsmL15

[65]. AsmL is implemented and based to the .NET framework.

Besides CASM-IR, which solves a uniform ASM IR to be language front-end
independent, Arcaini et al. [5] proposed a UASM language syntax. Their approach
is to unify the front-end ASM syntax representation and this is in the perspective of
CASM-IR yet another ASM front-end input specification.

The XASM language16 by Anlauff [3] compiles the XASM input specifications
to C. Ouimet and Lundqvist [113] presented another ASM language named TASM.
Their language and simulator approach focused on a real-time ASM notation.

Lezuo et al. [93] introduced in 2013 the CASM language. The origin of this
language was that all the (publicly available) existing ASM tools were impracticable
for industrial sized applications [91]. The tool-chain presented by Lezuo et al. [94]
focuses like the other ASM designs only on the input specification itself, thus those
research results were not directly usable by other ASM-based language frameworks.
The latter motivated, as already stated in Section 3.3, to rethink the proposed ASM
language engineering designs, leading to our model-based transformation approach
[123] for the CASM language17.

Different representation and transformation approaches have been investigated in
the AsmGofer language by Schmid [136], which is based on the programming language
Gofer (similar to Haskell), and the ASM Workbench with the ASM-SL language
introduced by Del Castillo [43], which is implemented in Standard ML.

The ASM-SL has been explored further by Schmid [135] to represent and encode
specifications in C++. The translation (compilation) scheme was limited to a double
buffering concept and therefore unable to encode mixing sequential and parallel rules.

12See https://asmeta.github.io for the Asmeta project.
13See http://eclipse.org/modeling/emf for the EMF project.
14See https://github.com/coreasm for the CoreASM open-source project.
15See http://asml.codeplex.com for the AsmL documentation and project.
16See http://sourceforge.net/projects/xasm for the XASM documentation.
17See https://github.com/casm-lang for the CASM open-source project.
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CASM-IR solves this by using block-level nested fork and merge instructions to control
the update-set behavior.

Another transformation scheme for ASMs was presented by Bonfanti et al. [20] to
represent and encode AsmetaL specifications in C++ code targeting Arduino platforms.
Their code generator directly converts the ASM specification to the desired target
language and run-time environment. By targeting a different run-time environment,
platform, or architecture the encoded and implement ASM behavior would have to be
re-implemented in every code generator.

Important to point out is that CASM-IR tries to establish a mid-end IR for ASM-
based languages similar to the approach for classical programming language IR models
such as GCCs GENERIC and GIMPLE by Merrill [104] or the LLVM IR by Lattner
and Adve [89]. All three compiler IR models are independent from the front-end and
back-end were they are used and provide an infrastructure for front-end language
engineers to target it and an interface for back-end implementer to retarget the IR to
different assembler machine code for various computer architectures. The difference to
our work is that the abstraction level of those IRs focus more on procedural languages
like C whereas concepts like undefined and symbolic states are not addressed and
handled at all.

3.7 Discussion

Multiple benefits can be observed in the application of our approach to use and
transform to an IR based on ASMs. First of all, due to the fact that all of the
basic ASM behavioral elements are specified and implemented in the CASM-IR, an
ASM-based language front-end engineer can focus on the high-level language design
and directly reuse the implemented run-time and type system. The latter is crucial
because the design and implementation of a correct and proper type system for a
specification and programming language is complex and time consuming. Second,
the transformation to the CASM-IR enables (re)use of the interpreter, compiler, and
debugging mechanisms, which are already specified, implemented, tested, and validated
in one place of the language tool-chain. This goes hand in hand with introducing
new complex or syntactic sugar syntax elements that can be mapped to CASM-IR
primitives; that is, it is much easier to support experimentation with new syntax
elements which is especially useful for early language design and improvement. Last
but not least, by using CASM-IR as a target any supported ASM-based optimization
can directly be applied and used in the technology in question.

The first attempt towards an ASM-based IR was presented by Lezuo et al. [94]
with a Par/Seq CFG representation, which has two major problems compared to the
CASM-IR. It does only distinguish between lookup and update operations including
indirectly the location calculation. A location pre-calculation optimization is not
possible to implement. Furthermore, the CFG is used for analyze purposes only and
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if an ASM optimization wants to alter the specification it required huge effort to
implement correct AST modifications based on the CFG information [94].

A major drawback of the proposed CASM-IR is that in order to transform to
this IR, you need a fully-typed specification or program because of the well-formed
and statically typed nature of the CASM-IR. It requires even for other ASM-based
languages an implementation of proper type inference passes, to correctly resolve
the type relation of expressions, functions, etc. Of course, for highly dynamically
typed languages, proper Just-in-Time (JiT) compilation techniques can still (re)use
the CASM-IR to perform partial evaluation.

We believe our CASM-IR approach to be generalizable across many different ASM
language syntaxes. Rather likely our approach can also be applied for other behavioral
formalisms. Both claims have would however requires further studies in future work
to be tested.

3.8 Conclusion

We have presented in this chapter CASM-IR, a statically and strongly typed, well-
formed ASM-based IR, to provide the ability for ASM-based language engineers to
specify the internals of their ASM language in a well-defined representation model.
Besides the type system, agent, functions, deriveds, rules, blocks, and instruction
semantics, we discussed ASM properties, which are indirectly represented in ASM
source languages and made explicitly and typed in the CASM-IR. There are several
other issues regarding implicit behavior in ASM-based high-level languages we could
point out, but it would go beyond of the scope of this chapter. We have given a short
overview of our implementation, corresponding libraries, and discussed the usefulness
of our approach.

Regarding the CASM-IR itself, there is a lot of future work in the direction of the
type system. The providing of types like trees, sets, bags, and so on, is still an open
topic. One solution could be the introduction of a proper type abstraction mechanism
inside the CASM-IR itself. We are already working on the implementation, formal
definition and verification of ASM-related optimization transformations based on the
gained knowledge from Lezuo et al. [94] for our CASM-IR. Another research direction
we are working on is the byte-code representation of the CASM-IR. This would allow
the implementation of very compact virtual machines for ASM-based specifications.
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CHAPTER 4
Concolic Execution

ASMs are a well-known state based formal method to describe systems at a very
high level and can be executed either through a concrete or symbolic interpretation.
By symbolically executing an ASM specification, certain properties can be checked
by transforming the described ASM into a suitable input for model checkers or
Automated Theorem Provers (ATP) tools. Due to the rather fast increasing state
space, model checking and ATP solutions can lead to inefficient implementations of
symbolic execution. More efficient state space and execution performance can be
achieved by using a concolic execution approach. In this chapter1, we describe an
improved concolic execution implementation for the CASM language which is based
on the previous introduced CASM-IR in Chapter 3. We outline the transformation of
a symbolically executed ASM specification to a single TPTP format. Furthermore,
we introduce a compiler analysis to promote concrete ASM functions into symbolic
ones in order to obtain symbolic consistency.

4.1 Introduction

Due to the mathematical foundation of the ASM theory [63] [25], ASM specifications
can be evaluated through either concrete or symbolic interpretation.

All available ASM implementations offer a concrete execution, and some ASM
implementations provide a symbolic execution based on model checking (e.g. Farahbod
et al. [50] for CoreASM ). Besides the approaches targeting model checking applications,
some ASM implementations transform the specifications into ATP problems to check
with off-the-shelve solver tools desired properties (e.g. Arcaini et al. [6] for AsmetaL
with Satisfiability Modulo Theories (SMT) solver Yices).

A major disadvantage of such techniques is that for rather small ASM specifi-
cations, huge ATP input problems are generated which result into large states and
long evaluation times of the underlying solver. To overcome this problem, a concolic

1The content of this chapter is a revised version of the ABZ’21 paper [118].
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execution [10] can be used to reduce the number of symbolic path conditions by per-
forming a mixed concrete and symbolic interpretation. Branches inside an evaluation
are driven by concrete results and only symbolic states of interest are tracked in
the output trace which directly optimizes the results. Therefore, concolic execution
[10] trades completeness for computation speed. So far, only Lezuo [90] described a
concolic execution approach for ASM specifications.

Based on a prototype version of the CASM language2 [94], the described concolic
execution performed a model-to-text transformation by emitting directly multiple
TPTP [149] traces of the symbolically executed specification. A downside of Lezuos’
[90] approach is that for each conditional rule (path condition) the generated TPTP
trace gets forked into an if-then and else part resulting into two TPTP specifications
which are emitted during the symbolic execution of an ASM specification.

Listing 4.1 depicts an example CASM specification consisting of two functions – x

and y – and a named rule test with a block rule, conditional rule, skip rule, and two
update rules. This specification represents the running example which was used by
Lezuo [90] to describe a division-by-zero-free ASM specification expressed in the latest
CASM language syntax. Both functions – x and y – are set explicitly to symbolic in
order to determine a TPTP trace showing that the function y gets only updated with
a non-zero Integer value of function x.

Two TPTP traces are generated by using Lezuos’ [90] implemented (closed source)
symbolic execution. Listing 4.2 depicts the if-then part and the Listing 4.3 depicts the
else part. Based on this traces, a language user can use an external ATP solver Z3
[42] or vanHelsing [92] and prove the division-by-zero-free property for the functions y
and x by analyzing each TPTP trace.

We present in this chapter an improved version of the concolic execution for the

2See https://casm-lang.org/syntax for the CASM syntax description.

1 CASM
2
3 init test
4
5 [symbolic]
6 function x : -> Integer
7
8 [symbolic]
9 function y : -> Integer

10
11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program( self ) := undef
18 }
19 // ...

Listing 4.1: Example.casm
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(open-source) CASM language and implementation. Based on the concolic execution
definition by Lezuo [90], we provide two major improvements in the current presented
implementation state: (1) the concolic execution generates a single TPTP trace and
does not generate forked TPTP traces for each path condition (see Section 4.2); and (2)
a language user only has to set ASM functions of interest to symbolic and each ASM
function is automatically promoted to symbolic if there exists a path which updates
that ASM function (see Section 4.3). Furthermore, we do not directly generate TPTP
traces through a model-to-text transformation. We have implemented an abstraction
of the TPTP model and provided an in-memory model-to-model transformation. This
design decision allows us to directly (re)use in the CASM compiler the transformed
TPTP instance either for further analysis, in-memory evaluation, or emitting to a
textual representation in order to use an external solver.

4.2 CASM Concolic Execution and TPTP Model

CASM is a concrete ASM implementation with a strongly typed inferred specification
language. The concolic execution is implemented as forward symbolic execution by
reusing and extending the AST based concrete execution3.

Due to the CASM compiler design [117], the symbolic constant, calculation, and
environment handling is directly implemented on the CASM IR level4 (see Chapter 3).
Our own TPTP implementation5 supports in-memory model-to-model transformation
based on the SMT and Boolean Satisfiability Problem (SAT) solver Z3 [42] to invoke
a Z3-based evaluation without external tooling.

3See https://github.com/casm-lang/libcasm-fe/pull/206 for CASM front-end changes.
4See https://github.com/casm-lang/libcasm-ir/pull/29 for CASM mid-end modifications.
5See https://github.com/casm-lang/libtptp/pull/5 for TPTP model implementation.

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2 )).
3 fof(’Example.casm :13’,hypothesis ,sym2 =0).
4 fof(id1 ,hypothesis ,x(2,sym2 )).
5 fof(final0 ,hypothesis ,x(0,sym2 )).

Listing 4.2: If-Then-Branch TPTP Trace of Example.casm by Lezuo [90]

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2 )).
3 fof(’Example.casm :13’,hypothesis ,sym2 !=0).
4 tff(symbolNext , type , sym4: $int).
5 tff(symbolNext , type , sym5: $int).
6 fof(id1 ,hypothesis ,y(1,sym5 )).
7 fof(id2 ,hypothesis ,x(2,sym2 )).
8 fof(id3 ,hypothesis ,y(2,sym4 )).
9 fof(final0 ,hypothesis ,x(0,sym2 )).

10 fof(final1 ,hypothesis ,y(0,sym4 )).

Listing 4.3: Else-Branch TPTP Trace of Example.casm by Lezuo [90]
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Since each ASM function can be explicitly selected to be evaluated as symbolic
state (annotation syntax), a complete selection of all available ASM functions inside a
specification would enable a full symbolic execution of the provided specification. So
far we support all basic ASM rules in the transformation except for symbolic iterate

rules consisting of symbolic path conditions.

Listing 4.4 depicts the same division-by-zero-free running example as shown in
Listing 4.1 with one small change. In this listing the function y is not explicitly set
to symbolic, because the function of interest we want to analyze is the function x.
Function y gets implicitly set to symbolic through a novel compiler analysis pass
(see Section 4.3) in order to provide symbolic consistency for the specified update to
function y where function x is used in the division operation (see Listing 4.4 at Line
16).

Listing 4.5 corresponds to the result TPTP trace of the concolic execution. A first
look at this TPTP trace gives the impression that it is longer than both TPTP traces
combined of the previous implementation depicted in Listing 4.2 and Listing 4.3, but
besides the path condition fork there is a huge difference in the form of the trace
representation itself.

Lezuos’ [90] implementation uses mixed First Order Form (FOF) and Typed First
Order Form (TFF) formulae to represent the state evolving which fully complies to
the deprecated TPTP versions before 7.0 [149]. Since the latest major revision 7 of
TPTP the mixing of FOF and TFF does not work anymore, because variables and
constants in FOF formulae are assumed to be in the same infinite domain, which
is not the case for any type in a TFF formulae [149]. The later implies that each
variable or constant in a TFF formulae is not equal to any variable or constant in
a FOF formula. Therefore, we generate a fully typed TPTP trace by using only
TFF formulae in the trace result. A transformed TPTP trace consists of four parts:
(1) type declarations for intermediate calculations (see Listing 4.5 Line 1 to 7); (2)

1 CASM
2
3 init test
4
5 [symbolic]
6 function x : -> Integer
7
8 // concrete , not set symbolic
9 function y : -> Integer

10
11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program( self ) := undef
18 }

Listing 4.4: Example.casm
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language operand definitions (see Listing 4.5 Line 8); (3) all function definitions (see
Listing 4.5 Line 9 to 10); and (4) the actual trace itself (see Listing 4.5 Line 11-21).
Each line in the TPTP trace represents a TFF formulae.

Since in TPTP each variable can only be used once and there exists no notion of
time, each ASM function gets mapped to a TPTP predicate with 2 or more arguments
where the first argument represents an Integer based time. Similar to the definition by
Lezuo [90], we use time at 1 to represent the initialization of ASM functions. Time
at 0 equals the termination of an ASM execution. This encoding provides an elegant
way to describe start and termination constraints, since the times are known before
the concolic execution starts.

Furthermore, since CASM supports block rules (parallel execution semantics) and
sequential rules (sequential execution semantics) the handling of parallelism is an
important issue. The evolving of function states (ASM steps) is encoded in the time
value of each function in the first argument. Sequential rule computations which
create pseudo update-sets [94] are not shown and tracked in the TPTP trace except
for the remaining update to functions.

4.3 ASM Function Promotion and Symbolic Consistency

Due to the possibility that some ASM functions in a CASM specification can be
marked as symbolic, the concolic execution can reach an interpretation of the ASM
specification where a symbolic value or calculation could be used in an update rule
to a concrete ASM function. This would abort the concolic execution and would
lead to an execution error, because the symbolic consistency is violated. Therefore,
we implemented a symbolic consistency analysis in the compiler pass pipeline which

1 tff(2,type ,’%0’:$int).
2 tff(4,type ,’%1’:$o).
3 tff(6,type ,’%2’:$int).
4 tff(10,type ,’%3’:$int).
5 tff(12,type ,’%4’:$int).
6 tff(14,type ,’%5’:$int).
7 tff(17,type ,’%6’:$int).
8 tff(7,hypothesis ,’#div#i’:($int*$int*$int)>$o).
9 tff(0,hypothesis ,’@x’:($int*$int)>$o).

10 tff(1,hypothesis ,’@y’:($int*$int)>$o).
11 tff(3,hypothesis ,’@x’(1,’%0’)).
12 tff(5,hypothesis ,’%1’<=>(’%0’=0)).
13 tff(8,hypothesis ,~’%1’=>(’#div#i’(12,’%0’,’%2’))).
14 tff(9,hypothesis ,~’%1’=>(’@y’(2,’%2’))).
15 tff(11, hypothesis ,’@y’(1,’%3’)).
16 tff(13, hypothesis , (’%1’ =>(’%3’=’%4’))&
17 ((~’%1’)=>(’%2’=’%4’))).
18 tff(15, hypothesis ,’@x’(1,’%5’)).
19 tff(16, hypothesis ,’@x’(0,’%5’)).
20 tff(18, hypothesis ,’@y’(2,’%6’)).
21 tff(19, hypothesis ,’@y’(0,’%6’)).

Listing 4.5: TPTP Trace of Example.casm
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analyses in advance which concrete ASM functions will be updated by symbolic values.
Note that updating a symbolic ASM function with a concrete value (e.g. a numeric
value) is possible and does not violate symbolic consistency.

The symbolic consistency pass is an AST-based compiler analysis pass and checks
if any function update produces a symbolic conflict. Each function, rule parameters,
and expression AST node gets annotated by the analysis which labels the nodes either
symbolic, concrete, or unknown.

Depending on the annotated functions through the annotation syntax, all functions
are labeled either symbolic or concrete and all other nodes in the AST are labeled
unknown at the beginning of the analysis. Since CASM supports named rule calls,
each possible rule call hierarchy starting from the init statement has to be evaluated
in order to determine symbolic consistency. The analysis derives in a step-by-step
manner a Rule Call Graph (RCG) where each callable rule has to go through four
states – init, started, evaluated, and finished. The resulting RCG is used to derive the
final symbolic function promotion which assures symbolic consistency.

We implemented a proper reporting of ASM functions which are promoted to
symbolic. Listing 4.6 depicts a console output of our CASM interpreter Command Line

1 casmi: info: promoting function ’y’ to be symbolic , because function is
2 updated with symbolic value.
3 Example.casm :16:8..16:19
4 y := 12 / x
5 ^---------^

Listing 4.6: CLI Tool Information of ASM Symbolic Function Promotion
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Figure 4.1: CASM Compiler Translation Validation Concept
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Interface (CLI) tool named casmi6 which evaluated in concolic/symbolic execution
mode the Example.casm specification shown in Listing 4.4 and outputs an information
message that function y gets promoted to a symbolic ASM function.

4.4 Discussion

Based on the derived concolic execution transformation described in this chapter along
with the new TPTP trace generation the current effort is directed to derive a complete
CASM compiler internal translation validation [90]. Figure 4.1 depicts the ongoing
work. For every intermediate model transformation, a corresponding TPTP trace will
be generated and either checked for equivalence inside the same abstraction level or
between two different model levels.

4.5 Conclusion

In this chapter, we describe an improved ASM based concolic execution approach
which is implemented for the CASM language and its framework.

Novel about this contribution is that the transformation of an ASM specification
towards a TPTP model instance is performed through an in-memory model-to-model
transformation which allows either further in-memory analysis, optimization, and
evaluation of the TPTP instance or a flexible model-to-text transformation into a
TPTP textual representation. Furthermore, the implemented approach only generates
a single TPTP trace and promotes non-symbolic ASM functions to symbolic ones
if the symbolic consistency is violated which is determined in advance through a
symbolic consistency pass.

With our new concolic execution approch we aim at a complete translation vali-
dation of the CASM compiler implementation itself by checking each internal trans-
formation step of the intermediate models [117]. Moreover, due to the introduction
of state and behavioral separation in the CASM language [116], we are currently
investigating the ability of automated semantic checking for imported ASM rules from
loaded libraries or modules.

6See https://github.com/casm-lang/casmi/pull/12 for the CLI tool casmi.
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CHAPTER 5
Structuring Specifications

Nowadays, as in other state-based formal methods, the proposed specification
languages for ASMs still lack easy-to-comprehend language constructs for type ab-
stractions to describe reusable and maintainable specifications. Almost all built-in
behaviors are implicitly defined inside a concrete ASM language implementation and
thus, the behavior is hidden from the language user. In this chapter1, we present a
new ASM syntax extension based on traits, which allows the specifier (language user)
to define new type abstractions in the form of structure and behavior definitions to
reuse, maintain, structure, and extend the functionality in ASM specifications. We
describe the proposed language construct by defining its syntax and semantics. The
decision to use a trait-based syntax extension over other object-oriented language con-
structs like interfaces or mixins was motivated and driven by the results of previously
conducted empirical studies (see Chapter 6, Chapter 7, and Chapter 8). Moreover, we
outline the implementation of the trait-based syntax extension in our CASM language
implementation on AST level in the new compiler design as presented in Chapter 2.

5.1 Introduction

In 1993, Gurevich [63] introduced the ASM theory, which is a well-known state-based
formal method consisting of transition rules and algebraic functions. It has been used
extensively by scientists for a broad research field ranging from software and hardware
to system engineering perspectives in order to specify, analyze, and verify systems in
a formal way. ASMs are used to formally describe the evolution of function states
in a step-by-step manner2 and are used to describe sequential, parallel, concurrent,
reflective, and even quantum algorithms.

Based on the ASM theory by Gurevich [63], several theory improvements and
ASM-based language implementations were developed, which were summarized by
Börger and Stärk [26] and Börger and Raschke [25]. Prominent ASM languages

1The content of this chapter is a revised version of the ABZ’20 paper [116].
2ASM theory was formerly called Evolving Algebra.
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and tools are AsmetaL [58], CASM [117], and CoreASM [50]. Today, a common
thread in the various ASM languages and tools, as well as in most other state-based
formal methods, is that the proposed specification languages lack easy-to-comprehend
abstractions to describe reusable and maintainable type specifications. While very
few have embraced basic object-oriented abstractions such as classes and inheritance,
more advanced type abstractions are usually missing. Therefore, in this chapter we
propose a new language construct for ASM specification languages to express type
abstractions in the form of traits [38] to modularize specifications into structural state
and behavioral parts.

5.2 Motivation

Modern object-oriented languages offer a variety of advanced type abstractions, and
most offer either interfaces [28], mixins [53], or traits [38] in addition to classes and
inheritance concepts. Interfaces establish a protocol and define method signatures to
which a type has to conform [28]. They are often compared to a contract. Mixins
define reusable behavior and structure that can be used to combine and form new
types [53] [27]. Traits are similar to interfaces except that they can define stateless
behavior which depends on the trait itself [134]. There is a heated debate in the
object-oriented community3, which of these abstractions is best suited to promote
reusable and maintainable type specifications, and many implementations combine
different language constructs to define type abstractions. A notable example would
be the programming language Scala [111], which offers a trait syntax that is similar
to the Java 8 [126] interface syntax and offers mixins type abstractions through the
class-based implementation and extension syntax. Another example of mixed type
abstraction concepts, namely interfaces and traits, can be found in the programming
language Rust [101], where the language user has to express every interface definition
through traits, and the types have to conform to specified traits and implement all
required functionalities.

In the world of ASMs, only AsmL [65] has introduced an object model in the
language through classes and interfaces to represent type abstractions, and to achieve
structuring of the ASM specifications. Only the ASM implementation and language
XASM by [3] has introduced a sub-ASM construct to achieve a component-based
modularization approach. A more generic concept called ambient ASMs [25] introduces
the possibility to achieve hierarchical state partitioning through nesting of context-
sensitive (sub)program environments. Based on this state of the art, we started to
investigate the introduction of a new type abstraction language construct in ASMs.
But which language construct is suitable for ASMs to represent such type abstractions?

Basically every language construct for forming type abstractions is suitable for
ASMs, but it influences the understandability of the language considerably. For such

3See e.g. https://stackoverflow.com/questions/925609 for the discussion page.
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an ASM extension, we consider the following properties important: (1) reuse and
embed existing specifications; (2) describe built-in behavior of a language itself in
the language; and (3) allow encapsulation of ASM states and corresponding behavior
through modularization.

Driven by the properties and questions raised, we conducted three empirical
studies to determine, which language construct – interfaces, mixins, or traits – is
most understandable to ASM language users for expressing type abstractions (see
Chapter 6, Chapter 7, and Chapter 8). The result of the experiments showed that the
participants with strong object-oriented backgrounds (highly familiar with interfaces,
not familiar with traits at all) had a similar to equal understanding of an interface
and traits language construct in the experimental ASM syntax variants. Mixins, on
the other hand, had a significantly lower understandability compared to traits and
interfaces. Since the interface and traits type abstraction language constructs offer
a similar to equal understandability, and novice language users seem to understand
traits without even knowing the concept of traits, we investigated introducing traits
into ASMs.

Moreover, the object-oriented communities often discuss traits more favorably
than interfaces4 and even point out that "Traits are Interfaces"5 just with code-level
reuse functionality. To gain a better understanding of how specifiers (language users)
comprehend such trait-based specifications, we performed an eye-tracking experiment
[141], where we observed the participants’ gaze patterns (see Chapter 8). The results
of this experiment showed that the participants could easily distinguish between
behavioral and non-behavioral aspects of a given specification, when we applied our
trait-based language construct to form state/behavior type abstractions.

5.3 Traits Fundamentals

In 1982, Curry et al. [38] introduced traits for the first time for the Self programming
language. Roughly speaking, traits can be seen as an inter-object communication
between interfaces and mixins.

Interfaces [28] only have the capability to define a finite set of operations. Every
operation (declaration) has a name and a typed relation. Each class (structure)
that wants to use the interface has to implement the operation (definition). Each
implemented interface operation can only access the state information of the cor-
responding class (structure). Therefore, redundant behavior has to be specified in
multiple classes (structures) and cannot be fostered at the same location with proper
reuse functionality.

Apart from the definition of behavior (declaration and/or definition of operations),
mixins [53] allow defining state information as well. Moreover, mixins enforce the
"dependency inversion principle" (pattern) [100], which states that higher level modules

4See e.g. https://stackoverflow.com/questions/9205083 for the discussion page.
5See e.g. https://blog.rust-lang.org/2015/05/11/traits for traits in Rust elaboration.
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shall be decoupled from lower level modules through abstractions. The problem here
are the linear composition capabilities of mixins due to the included state information
of objects inside the mixin.

Traits are placed between interfaces and mixins because they offer the definition
of operation declarations and operation definitions, whereas the behavior can only
depend on the trait itself. Moreover, a trait does not contain any state information
(stateless). Based on these capabilities, traits offer a variety of advantages compared
to interfaces and mixins, which are summarized by Schärli et al. [134].

The biggest advantage is that traits avoid the "diamond problem" [99] that occurs
in multi-inheritance object-models because it does not require linear composition. If
a class (structure) implemented multi-inherited behavior, the conflict (ambiguous
behavior) would have to be manually resolved (explicit conflict resolution) by the
language user.

Fisher and Reppy [52] defined properties, operations, a typed calculus, and proven
type soundness for traits to achieve statically-typed traits. A trait (denoted as upper
case letters) consists of one or multiple unique operations (denoted as lower case
letters), so a trait equals a set of operations (i.e. A = {a1, . . . , an}).

Operations over traits are defined as: (1) symmetric sum: the addition of two
traits results in a new trait (e.g. A + B = X); (2) asymmetric sum: the addition
of operations with possible overwrites to an existing trait results in a new trait (e.g.
A+ b = C); (3) alias : the addition of a new unique name for an existing operation in
a trait results in a new trait (e.g. (A \ {a1}) + b = D); and (4) exclusion: removing
an operation from a trait results in a new trait (e.g. A \ {a1} = E).

The properties of traits are: (1) trait composition is commutative and thus, the
order of implementing a trait does not affect the behavior of a trait (e.g. X =

A+B ∧ Y = B +A ⇒ X = Y ); and (2) nested traits hierarchies are equal to their
flatted representation and thus, the trait hierarchy does not affect the behavior of a
trait (e.g. X = A+ Z ∧ Z = B + C ⇒ X = A+B + C).

5.4 A Trait-Based Construct for ASMs

This section proposes our trait-based language construct to extend the syntax of ASM
specification languages.

The syntax rules are defined and expressed in Backus–Naur Form (BNF) (see
Listing 5.1). The semantics of the proposed trait-based syntax extension is defined by
lowering and transforming the new syntax elements to appropriate Turbo ASM [26]
equivalent definitions (see example trait-based ASM Listing 5.2 and the transformed
Turbo ASM Listing 5.3). The ASM specifications presented use the syntax of the
CASM specification language6. The trait-based syntax extension is divided into three
parts, namely structural types, basic type behavior, and extended type behavior.

6For the CASM syntax description, see: https://casm-lang.org/syntax
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Structural Types

In order to modularize the states (functions not classified as derived) in ASM, we
introduce a structural type construct (see Listing 5.1, Line 1-4), which allows a language
user to group one or multiple functions together (similar to members of an object-
oriented class) to form a new structure type (see StructureDefinition grammar
rule).

1 // Structural Types
2 StructureDefinition ::= ’structure ’ Identifier ’=’ ’{’ ( FunctionDefinition )+ ’}’.
3 StructureLiteral ::= [Type] ’{’ [Identifier ’:’ Term (’,’ Identifier ’:’ Term )*] ’}’.
4 Literal ::= StructureLiteral | /* other literals */.
5 // Basic Type Behavior
6 ImplementDefinition ::= ’implement ’ Identifier ’=’ ’{’
7 ( ObjectRuleDefinition | ObjectDerivedDefinition )+ ’}’.
8 ObjectRuleDefinition ::= ’rule’ Identifier ’(’ ’this’
9 ( ’,’ Identifier ’:’ Type )* ’)’ [ ’->’ Type ] ’=’ Rule.

10 ObjectDerivedDefinition ::= ’derived ’ Identifier ’(’ ’this’
11 ( ’,’ Identifier ’:’ Type )* ’)’ ’->’ Type ’=’ Term.
12 MethodCall ::= Term ’.’ Identifier [’(’ Term (’,’ Term)* ’)’].
13 CallRule ::= MethodCall | ( Identifier [ ’(’ Term (’,’ Term)* ’)’ ] ).
14 Term ::= MethodCall | ’this’
15 // Extended Type Behavior
16 BehaviorDefinition ::= ’behavior ’ Identifier ’=’ ’{’
17 ( ObjectRuleDeclaration | ObjectDerivedDeclaration
18 | ObjectRuleDefinition | ObjectDerivedDefinition )+ ’}’.
19 ImplementForDefinition ::= ’implement ’ Identifier ’for’ Identifier ’=’ ’{’
20 ( ObjectRuleDefinition | ObjectDerivedDefinition )+ ’}’.
21 ObjectRuleDeclaration ::= ’rule’ Identifier ’:’ ’Object ’ (’*’ Type)* ’->’ Type.
22 ObjectDerivedDeclaration ::= ’derived ’ Identifier ’:’ ’Object ’ (’*’ Type)* ’->’ Type.

Listing 5.1: Trait-Based ASM Syntax Extension

1 structure X = {
2 function f1 : -> Integer
3 function f2 : Integer -> Boolean
4 }
5
6
7
8
9

10
11 rule R1 =
12 let v1 = X{ f1: 1,
13 f2: (2) -> false } in skip
14 implement X = {
15 derived d1(this) -> Integer =
16 this.f1
17
18 rule R2( this , a1 : Integer ) =
19 if a1 > -5 and this.d1 < 5 then
20 this.f2(a1) := true
21 }
22 behavior Y = {
23 derived d2 : Object -> Integer
24
25 derived d3( this ) -> Boolean
26 = this.d2 * this.d2 > 100
27 }
28 implement Y for X = {
29 derived d2(this) -> Integer =
30 this.f1
31 }
32 // ...

Listing 5.2: Trait-Based ASM

1 domain X
2 function X_f1 : X -> Integer
3 function X_f2 : X * Integer -> Boolean
4 rule X_instantiate( a1 : Integer
5 , a2 : Integer -> Boolean ) -> X =
6 let object = new X in {
7 X_f1( object ) := a1
8 X_f2( object ) := a2
9 result := object

10 }
11 rule R1 =
12 let v1 = X_instantiate( 1,
13 { (2) -> false } ) in skip
14
15 derived X_d1( this : X ) -> Integer =
16 X_f1(this)
17
18 rule X_R2( this : X, a1 : Integer ) =
19 if a1 > -5 and X_d1(this) < 5 then
20 X_f2(this , a1) := true
21
22
23
24
25 derived X_d3( this : X ) -> Boolean
26 = X_d2(this) * X_d2(this) > 100
27 }
28
29 derived X_d2(this:X) -> Integer =
30 X_f1(this)
31
32 // ...

Listing 5.3: Turbo ASM Equivalent
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Each structure type defines a trait type through the defined state functions. The
access to these functions is only allowed inside a proper basic behavior definition to
clearly specify the access to an instantiated structure’s state over dedicated behaviors
(data encapsulation).

We extend the mathematical notation (introduced in Section 1.6): (1) S defines a
finite set of all structure type names; (2) M defines a unary relation of structure names
to a finite set of function names (M : S → {f1, . . . , fn} ∧ n ∈ N>0) 7; (3) B defines a
finite set of all behavior (trait) type names, whereas T represents a behavior (trait) type
name (T ∈ B); and (4) B defines a unary relation of behavior type names to a finite set
of corresponding behavior type names and thus, the relation B represents the behavior
(trait) type hierarchy (B : B → {T1, . . . , Tn} ∧ n ∈ N>0). (5) I defines a unary relation
of behavior type names to a finite set of corresponding function f , derived function d,
and rule R names (I : I → {f1, . . . , fn, d1, . . . , dm, R1, . . . , Rw} ∧ n,m,w ∈ N>0).

A StructureDefinition defines a new unique structure type name Xs, which
gets added to S, and M contains the corresponding mapping to the n nested functions
{f1, . . . , fn} (⇒ Xs ∈ S ∧ M(Xs) = {f1, . . . , fn} ∧ M(Xs) ∩ Σ = ∅).

The Literal grammar rule gets extended by a StructureLiteral to define a
term t consisting of a non-negative number n assignments. Each assignment binds a
term tn of position n to a unique variable name vn resulting in t = {v1 = t1, . . . , vn =

tn} ∧ n ∈ N≥0. The term t initializes the structure S.

Lowering The transformation to an equivalent Turbo ASM is defined as:
(1) ∀Xs ∈ S, ∀f ∈ M(Xs) expand the argument types {X1, . . . , Xn} of function
f of non-negative arity n with the structure type Xs resulting in a new function
f ′ of non-negative arity n+ 1 with argument types {Xs, X1, . . . , Xn}, add f ′ to
Σ, add f ′ to I(Xs), and remove f from M(Xs).
(2) ∀Xs ∈ S create a named rule Xinstantiate, which has n arguments {a1, . . . , an},
and a target type of Xs, add Xinstantiate to R, add Xs to U , add Xs to B(Xs),
and remove Xs from S. The rule Xinstantiate creates a new symbol object of Xs

and performs an update to the corresponding function f ′
n for all arguments an and

returns the value of the object. Therefore, the StructureLiteral gets directly
mapped in a transformation to the Xinstantiate rule. After the transformation,
all structures shall be consumed (S = ∅).

An example of a defined structural type and its initialization is depicted in Listing
5.2. At Line 1, we defined the structure X consisting of two functions f1 and f2. At
Line 12, we can see a rule R1, which uses the structure literal syntax to create an
object of type X. Listing 5.3 shows the corresponding Turbo ASM representation. We
can see that the structure definition results in a domain definition X along with two
function definitions X_f1 and X_f2 with an additional preceded type argument of X

7N>0 = {n ∈ N | n > 0}
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(Lines 1 to 3). Moreover, we can observe the created X_instantiate rule in Line 5
and its usage in Line 13.

A behavior has to be defined in order to modify (access) the state of an instantiated
structure. We distinguish between basic and extended type behavior.

Basic Type Behavior

A basic type behavior (see Listing 5.1, Line 5-14) defines a set of rules and derived
functions, which are associated with a certain domain type. We introduce a new
ImplementDefinition to define a basic behavior consisting of one or more object-based
derived function and/or rule definitions.

The syntax for ObjectRuleDefinition and ObjectDerivedDefinition introduce
a new keyword this as the first argument for all object-based rule and/or derived
function definitions. The type of the argument variable this equals the type of
the ImplementDefinition and it enables the access to the domain’s or structure’s
behavior.

The access happens through a MethodCall syntax, which uses a dot operator
between a term, a target name, and a non-negative arity of arguments. The target
name can be a function name or a rule name.

Lowering The transformation to an equivalent Turbo ASM is defined as:
(1) ∀X ∈ B,∀d,R ∈ I(X) create a d′ of d and R′ of R, set in d′ and R′ the
argument type for argument this to X, add d′ to Σ, and add R′ to R.
(2) each MethodCall with t . u(a1, . . . , an) gets transformed to u′(t, a1, . . . , an),
where u′ is either a transformed function f ′, derived function d′, or rule R′ name.

Listing 5.2 defines a basic behavior (Line 14) for type X (example structural type
from Listing 5.2) consisting of a derived function d1 (Line 15) and a rule R2 (Line 18).
The transformed Turbo ASM representation is shown in Listing 5.3. In this example,
we can observe that all method calls are resolved to the corresponding function names
X_f1, X_f2 and the derived name X_d1 of structural type X.

Extended Type Behavior

An extended type behavior (see Listing 5.1, Line 15-22) defines a set of rules and derived
functions, and forms a new type in the type system. If a domain and/or structural
type wants to use the functionality, it has to implement the extended behavior.

The BehaviorDefinition defines an explicit trait with type name consisting of zero
or more ObjectRuleDeclaration rule names and/or ObjectDerivedDeclaration

derived function names. Please note that for all object-based declarations we introduced
a generic Object argument type at the first position. The Object type gets checked
against the domain or structural type which is implementing this declared behavior.
A specifier can use the Object type for any other argument or target type in a
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declaration. Additionally, a trait can define a default behavior through zero or
more ObjectRuleDefinition rule names and/or ObjectDerivedDefinition derived
function names, which depends only on the functionality of the trait itself. Each
domain and/or structural type that wants to support a certain behavior has to
specify an ImplementForDefinition and provide the missing definitions of the trait
declarations. If the trait defines a default behavior, the domain and/or structural type
inherits this definition. This enables code reuse capabilities.

Lowering The transformation to an equivalent Turbo ASM is equivalent to the
defined basic behavior transformation (lowering) from Section 5.4.

Listing 5.2 defines a behavior Y (Line 22) consisting of two derived functions d2
and d3 (Lines 23 and 25). Moreover, on Line 28 the behavior Y gets implemented
for type X by specifying the missing behavior of d2. The transformed Turbo ASM
representation is shown in Listing 5.3. It contains the transformed derived function
X_d2 of the implementation and the defined behavior of Y as X_d3.

Based on the proposed trait-based syntax, it is possible to express the operator
behaviors and other language features through traits directly in the ASM language
itself. Listing 5.9 shows a behavior definition of the Equality trait (see Section 5.4)
which declares the operation equal and defines and operation unequal by using the
negated result of the equal behavior. This behavior is needed by the evaluation of
the equal operator (=) in an ASM language. Moreover, if a function uses a domain or
structure type as an argument type, an implemented Equality behavior is needed
to compare location values during the evaluation. Listing 5.10 defines a function f3

(Line 1) with the structure X as argument. In order to have a valid specification, the
language user has to define the semantics of the Equality behavior for the structure X

as well (Lines 3 to 7). The transformed Turbo ASM representation is shown in Listing
5.11.

Example Specification

Listing 5.2 depicts an example trait-based ASM specification using all new syntax
grammar rules and Listing 5.3 depicts the equivalent semantics-preserving Turbo
ASM specification. The proposed trait-based syntax extension is realized in our

1 function f4 : -> X = {
2 f1: 1,
3 f2: { ( 2 ) -> false }
4 }
5
6 // ...

Listing 5.4: Trait-Based ASM

1 function f4 : -> X
2 rule f4_initially = {
3 f4 := X_instantiate( 1,
4 { ( 2 ) -> false } )
5 }
6 // ...

Listing 5.5: Turbo ASM
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CASM language implementation8. In order to provide a clean solution of the defined
transformations of the trait-based ASM to an equivalent Turbo ASM, we updated
our CASM language front-end implementation and introduced two new internal AST
representations before the specification gets transformed to the CASM-IR [117] which
is introduced in Chapter 3.

Prelude Specification

By introducing the proposed trait-based construct, we were able to explicitly specify the
behavior of the CASM language itself in CASM in the form of a prelude9 specification,
which gets automatically loaded (imported) for every parsed CASM specification.

Each functionality of the CASM language (e.g. operators) is mapped to a behavior
(trait) in the prelude specification. The language user can explore and extend the

8See https://github.com/casm-lang/libcasm-fe/pull/205 for sources.
9See https://github.com/casm-lang/libcasm-fe/blob/master/lib/CASM.casm for the prelude

specification.

1 CASM init test
2 behavior Incrementing = {
3 rule increment : Object -> Void
4 rule doubleIncrement(this) = {
5 increment increment
6 }
7 }
8 structure Counter = {
9 function value : -> Integer

10 }
11 implement Counter = {
12 derived currentValue(this) -> Integer
13 = this.value
14 }
15 implement Incrementing for Counter = {
16 rule increment(this) =
17 this.value := this.value + 1
18 }
19 function a : -> Counter = { value: 1 }
20 function b : -> Counter = { value: 0 }
21 rule test = {|
22 a.increment
23 b.doubleIncrement
24 if a = b then
25 println( "Equal" )
26 else
27 println( "Unequal" )
28 |}

Listing 5.6: Counter Specification (counter.casm)

error: counter.casm :24:6..24:11: invalid binary operator ’=’,
because the behavior ’Equality ’ is not defined for type ’Counter ’

if a = b then
^~~~^

Listing 5.7: Type Inference Error Message
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behaviors of CASM in CASM. Moreover, the prelude specification reduced the
complexity of the CASM implementation.

5.5 Implementation

The parsed CASM specification gets transformed to a Concrete Syntax Tree (CST)
representation. The CST gets transformed to the AST representation, which includes
syntactic sugar rewrites and the widening of the functions argument relation of
structural types. as specified in the lowering of Section 5.4. Moreover, the AST gets
transformed to the Lowered Abstract Syntax Tree (LST) representation. The latter
only defines AST nodes supported by an equivalent Turbo ASM. The AST to CST
transformation implements the lowering as defined in Section 5.4.

Lets have a look at a small example specification to demonstrate the trait-based
syntax extension. Listing 5.6 shows a specification which defines an Incrementing

behavior (Lines 2 to 7). Moreover, a structural type Counter is defined (Lines 8 to
10) containing a nullary function value of target domain Integer. A basic behavior
for Counter is provided to access the object’s state (Lines 11 to 14). The Counter

behavior gets extended by implementing the Incrementing behavior (Lines 15 to

29 implement Equality for Counter = {
30 derived equal( this , other : Counter ) -> Boolean =
31 (this.value = other.currentValue)
32 }

Listing 5.8: Extension of Counter Specification (counter.casm)

1 behavior Equality = {
2 derived equal : Object * Object -> Boolean
3 derived unequal( this , other : Equality ) -> Boolean =
4 not this.equal( other )
5 }

Listing 5.9: Prelude Equality Behavior Specification (Excerpt of CASM.casm)

1 function f3 : X -> Integer
2
3 implement Equality for X = {
4 derived equal
5 (this , other : X) -> Boolean =
6 this.f1 = other.f1
7 }
8
9

10
11 // ...

Listing 5.10: Trait-Based ASM

1 function f3 : X -> Integer
2
3
4 derived X_equal
5 (this : X, other : X) -> Boolean =
6 X_f1(this) = X_f1(other)
7
8 derived X_unequal
9 (this : X, other : X) -> Boolean =

10 Boolean_not(X_equal(this ,other))
11 // ...

Listing 5.11: Turbo ASM
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18). Two functions are defined with target type Counter (Lines 19 to 20). A single
execution agent (Line 1) evaluates the rule test, increments the function value a,
increments the function value b twice (Lines 23 to 24), and checks if the contents of
a and b are equal (Line 24). Since the behavior of the equal operator at Line 24 is
not yet defined for the structural type Counter, the error message shown in Listing
5.7 appears during a type inference analysis of the specification. To provide a correct
counter specification, it has to be extended with the implementation of the Equality

behavior for the structure Counter as shown in Listing 5.8.

5.6 Related Work

To the best of our knowledge, traits have so far not been introduced in an ASM
language. Thus, we compare CASM against the current state of the art of ASM
languages to find out if and how they support certain language features to achieve
structuring and modularization of state and behavior in specifications. We extend the
comparison to the scope of the ABZ conference formal methods as well as to some
selected object-oriented programming languages.

Thus, the comparison analyzes if and how the following language features are
realized: (1) state abstraction; (2) behavior abstraction; (3) composition capabilities;
(4) inheritance model; (5) modularization; (6) namespace concept; (7) syntax extension
capabilities; and (8) semantics extension capabilities. Table 5.1 provides a complete
overview of the following language features discussed.

In contrast to CASM, AsmL [65] is the only other ASM language to define state
and behavior abstractions, which is achieved by encapsulating the state and behavior
in classes, since this language is directly integrated into the .NET run-time. Where
AsmL uses single inheritance to allow sub-typing, CASM only relies on behavior (trait)
types and the accompanying composition capabilities. Both provide the ability of a
namespace concept. XASM [3] introduced a composition concept as well, but in the
form of a component-based approach to form sub-ASM hierarchies. The composition
capabilities are limited compared to CASM since no separation of state and behavior
abstraction is possible. Moreover, XASM sub-components (modules) cannot be reused
in other specifications because the connection has to be bidirectionally defined by the
sub-ASMs. AsmetaL [58] and CoreASM [50] do not provide any for state or behavior
abstraction concepts. Both offer a light-weight module concept which is based on
a simple file-include mechanism. In comparison, CASM offers a full module-based
import and namespace resolving of specification symbols. Besides CoreASM, none
of the other ASM implementations offer the extension of syntax and semantics, but
the extensions have to be written in the form of Java plugins. With the trait-based
construct, CASM enables the extension and definition of custom semantics directly in
the ASM language itself.

In the scope of the ABZ, Alloy [74] has a built-in object-orientation concept by
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State Behavior Compo- Inheri-
Language Abstract. Abstract. sition tance
AsmetaL - - - -
AsmL class interface yes single
CASM structure trait yes -
CoreASM - - - -
XASM - - yes -
Alloy signature signature yes single
Event-B record - - -
TLA+ record - - -
VDM++ class mixin - multiple
Z++ class mixin - multiple
C++ class mixin yes multiple
Java class interface yes single
Rust structure trait yes -
Swift class protocol yes single

Modulari- Name- Syntax Semantics
Language zation spaces Ext. Ext.
AsmetaL light - - -
AsmL yes yes - -
CASM yes yes - yes
CoreASM light - plugin plugin
XASM yes - - -
Alloy yes yes - -
Event-B - - - -
TLA+ yes - - -
VDM++ yes yes - -
Z++ - - - -
C++ light yes operat. operat.
Java yes yes - -
Rust yes yes plugin yes
Swift yes - operat. operat.

Table 5.1: Feature Comparison of Specification and Programming Languages

extending signatures by signatures. Alloy implements a single inheritance concept,
package-based namespace and module concept. Thus, it offers composition, state,
and behavior abstraction over one syntactical element. Event-B [47] and TLA+ [87],
on the other hand, just offer to structure the state through records (named tuples).
VDM++ [45] and Z++ [88] are object-oriented extensions of their underlying notation
(VDM and Z), where both provide the ability to create state and behavior abstractions
over classes with mixin capabilities through a multiple inheritance model. All existing
methods in the ABZ scope besides CASM have either no state and behavior abstraction
construct or one based on classes over a dedicated inheritance model.

Some well-known programming languages like C++ [148], Java [126], and Swift
[57] all use classes as state abstractions. They differ in the usage of their main behavior
abstraction, where C++ uses mixins (abstract, virtual, and pure virtual classes), Java
uses interfaces, and Swift uses traits (protocols with extensions). Furthermore, C++
uses multiple inheritance, whereas Java uses a single inheritance model. Java does
not offer syntax and semantics extension capabilities over the language operators,
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which is possible in C++ through operator overloading. Since C++ and Java use an
inheritance model, we have a look at another object-oriented programming language.
Rust [101] offers the same state and behavior abstractions and composition capabilities
as CASM and it does not have an inheritance model either. Moreover, Rust allows to
extend the syntax through handwritten Rust plugins, which is not possible in CASM
so far, but planned. Our trait-based syntax was influenced by Rust.

5.7 Conclusion

In this chapter, we present a trait-based construct for ASM languages. It allows to
specify composable models through the usage of domain and structural type objects,
where the behavior can be defined and implemented in a reusable manner. The
modularization and composing of object-oriented models is achieved by specifying
structural states along with their behaviors clearly separated through traits. Novel
about this contribution is that ASM language users can directly define the semantics
of operations over domain (structure) types through this trait-based construct in the
ASM language itself. To clearly separate structure and behavior, we only allow the
definition of modifications to structural objects through a proper behavior definition.
Based on previously conducted empirical studies, the current state of the art, and our
current proposed trait-based construct, we believe that this is the first step towards
clearer and more understandable ASM specifications by separating the structural
(state) and behavioral elements through dedicated definitions.
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CHAPTER 6
Understandability Study

As in other state-based formal methods, the proposed modeling languages for ASMs
still lack easy-to-comprehend abstractions to structure state and behavior aspects of
specifications. Modern object-oriented languages offer a variety of advanced language
constructs, and most of them either offer interfaces, mixins, or traits in addition to
classes and inheritance. Our goal is to investigate these language constructs in the
context of state-based formal methods using ASMs as a representative of this kind
of formal methods. In this chapter1, we report on a controlled experiment with 105
participants to study the understandability of the three language constructs in the
context of ASMs. Our hypotheses are influenced by the debate of object-oriented
communities. We hypothesized that the understandability (measured by correctness
and duration variables) shows significantly better understanding for interfaces and
traits compared to mixins, as well as at least a similar or better understanding for traits
compared to interfaces. The results indicate that understandability of interfaces and
traits show a similar good understanding, whereas mixins shows a poorer understanding.
We found a significant difference for the correctness of understanding when comparing
interfaces and mixins.

6.1 Introduction

Several scientists of different research fields used and applied the ASM theory and its
ASM method [26]. This usage ranges from software, hardware and system engineering
perspectives to specify, analyze, verify, and validate systems in a formal way [129]
[128]. The diversity of ASM-based applications ranges from formal specification of
semantics of programming languages, such as those for Java by Stärk et al. [146] or
VHDL by Sasaki [133], compiler back-end verification by Lezuo [90], software run-time
verification by Barnett and Schulte [11], software and hardware architecture modeling

1The content of this chapter is a revised version of the JSS’21 article [119].
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e.g. of UPnP by Glässer and Veanes [60], to even RISC designs by Huggins and
Campenhout [72].

By definition, an ASM formally describes the evolution of function states through
dedicated transaction rules in a step-by-step manner2 and are used to specify sequential,
parallel, concurrent, reflective, and even quantum algorithms [26]. In order to describe,
analyze, and even execute ASMs, several languages and tools were developed over time
to model ASM specifications based on the ASM theory description by Gurevich [63].
Additionally, several theory improvements were provided to increase the expressiveness
of ASM languages which were summarized by Börger and Stärk [26] and Börger and
Raschke [25].

The landscape of developed ASM languages and the corresponding tools is rather
limited nowadays. Best known are the ASM implementations AsmetaL [58] and Core-
ASM [50]. AsmetaL provides a feature-rich tool set to model, analyze, interpret, and
generate code of described ASM specifications3. The core of AsmetaL is implemented
and based on the EMF and provides therefore a Java-based interpreter. CoreASM4

is another Java-based interpreter implementation for ASM specifications. Its main
focus is on the language extensibility which is supported through the adaption of
the parser implementation [50]. The base implementation CoreASM is written in
Java as well as all language extensions have to be written in Java. Besides this two
interpreter-oriented implementations there exists AsmL [65] and CASM [91]. AsmL is
based on the .NET framework and allowed the compilation (code generation) of ASM
specifications. Gurevich itself was part of this project but it discontinued. CASM
was introduced by Lezuo and provides compilation as well as interpreting of modeled
ASM specifications. Due to the compilation focus of CASM it uses a statically typed
inferred language design and Lezuo et al. [91] established compilation techniques to
outperform CoreASM and AsmL in terms of ASM execution performance. There are
several other ASM language tool implementations like AsmGofer [136] or XASM [3],
but those projects are discontinued.

ASMs are part of the state-based formal methods which provide their own languages
and tools. The most prominent candidates are Alloy [74], Event-B [2], TLA [86], VDM
[19], and Z [125].

Problem Statement

Today, a common threat in the various ASM languages and tools, as well as in most
other state-based formal methods, is that the proposed modeling languages lack easy
to comprehend abstractions to describe reusable and maintainable specifications [103].
While very few have embraced basic object-oriented abstractions such as classes and
inheritance, more advanced language constructs are usually missing. Mernik et al.
[102] point out that the lack of such object-oriented abstractions in formal methods

2The ASM theory was formerly called Evolving Algebra.
3See https://asmeta.github.io for the AsmetaL project site.
4See https://github.com/CoreASM for the CoreASM project site.
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is one of main the reason why formal methods and their languages are not widely
used and are more or less unpopular compared to feature-rich programming languages.
Börger [24] suggests in one of his latest article that we need better abstractions
(language constructs) in existing ASM modeling languages without focusing on class
and inheritance concepts.

In contrast modern object-oriented languages offer a variety of advanced language
constructs, and most offer either interfaces [28], mixins [53], or traits [134] in addition
to classes and inheritance. All of those three language construct have similar and
some different properties and characteristics, which are depicted in Figure 6.1 and
described as follows:

Interfaces define (typed) operations (signatures) to which an implementer of a
certain interface (type) has to conform [28]. Therefore, an interface defines a so
called contract [105]. No behavioral or state information can be defined through
interfaces.

Mixins can define reusable behavioral and state information that can be used to
combine (mix) and form new types [53] [27]. Mixins enrich interfaces with
behavioral and state information.

Traits are similar to interfaces with the difference that they can define stateless
behavior which depends on the trait itself [134]. Therefore, compared to mixins,
a definition of a state in a trait is not allowed. The properties and capabilities of
traits are situated between the other language constructs interfaces and mixins.

There is a heated debate in the object-oriented community, which of those abstrac-
tions is best suited to promote reusable and maintainable specifications, and many
implementations combine different language constructs. A notable example would
be the programming language Scala [111], which offers a trait syntax that is similar
to the Java 8 [126] interface syntax and offers mixins language constructs through
the class-based implementation and extension syntax. Another example of mixed
language constructs, namely interfaces and traits, can be found in the programming
language Rust [101], where the language user has to express every interface definition
through traits and the structures (as well as types) have to conform to specified traits
and implement all required functionalities.

Empirical research on language constructs in ASM languages and similar state-
based formal methods has the potential to influence language designers and compiler

Interfaces Traits Mixins
Protocol Protocol

Behavior
Protocol
Behavior

State

Figure 6.1: Overview of Language Construct Properties
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engineers when making decisions on choosing language constructs in specification
language designs and implementations.

Research Objectives, Hypotheses, and Results

In this empirical study we investigate how well and fast a participant under-
stands textual language construct representations for state-based formal
methods. State-based formal methods and their modeling languages are usually
based on base concepts that are significantly different from classes. Reusable and
maintainable specifications would be highly useful in these methods and languages,
too, and are largely missing in today’s methods and languages. In our study, we use
ASMs as a representative of state-based formal methods, and the modeling language
CASM [91] [94] [123] [117] as a representative for ASM-based languages and tools. As
our study focuses on the general notion of adding advanced language constructs to
CASM, we believe that most of our results can be generalized to other ASM languages
and tools. The latter could be confirmed with a follow-up study.

In this study the term understandability corresponds to how well and fast a
participant understands a given language construct in example ASM specifications.
We define the experiment goal using the Goal Question Metric (GQM) template [152]
as follows: Analyze the Interfaces, Mixins, and Traits language constructs for the
purpose of their evaluation with respect to their understandability from the
viewpoint of the novice and moderately advanced software architect, designer, or
developer in the context (environment) of the Advanced Software Engineering
(ASE) and Distributed Systems Engineering (DSE) courses at the Faculty of Computer
Science of the University of Vienna5.

Our hypotheses are influenced by the debate in the object-oriented community,
which recently discuss traits often more favorably than mixins6. In particular, mixins
contain state information whereas traits do not, mixins use implicit conflict resolution
whereas traits use explicit resolution and mixins are linearized (order of used language
construct matters) whereas traits are flattened (order of used language construct
does not matter). Also, the community often discusses traits more favorably than
interfaces7 or point out that "Traits are Interfaces"8 with code-level reuse functionality.
On the other hand, interfaces are probably the best known abstraction to developers
today, and like most ordinary developers our participants are trained in programming
languages offering the language construct interfaces in Java or how to model inter-
faces through and abstract class in C++. As a consequence, we hypothesized that
understandability measured by correctness and duration variables shows a significantly
better understanding for traits compared to mixins and for interfaces compared to

5See https://cs.univie.ac.at for faculty website.
6See, e.g. https://stackoverflow.com/questions/925609.
7See, e.g. https://stackoverflow.com/questions/9205083.
8See, e.g. https://blog.rust-lang.org/2015/05/11/traits.
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mixins. Further, we derived from the debate another hypothesis that traits offer at
least a similar or even better understanding compared to interfaces.

The obtained results in this study indicate that the language constructs interfaces
and traits show a similar good understanding. The language construct mixins shows
poorer understanding compared to interfaces and traits, which indicates that from a
language user perspective the strict separation of behavioral and structural elements
is better understandable than the intermixed representation form.

Structure of this Chapter

In Section 6.2, we describe ASMs, the used language and constructs used in this
study, and present related studies. Section 6.3 elaborates the planning of the language
construct study. In Section 6.4, we describe the execution of the experiment, while
the results are presented in Section 6.5 and discussed in Section 6.6. Last but not
least, we conclude the chapter in Section 6.7.

6.2 Background

This section discusses some properties regarding ASMs and language constructs that
are of interest in this study. Readers already familiar with ASMs and the discussed
type abstractions and their corresponding representations may consider to skip the
whole or some parts of this section.

Abstract State Machines

ASMs are used to express calculations in an abstract manner for all kind of different
application fields. According to Gurevich and Tillmann [66], the ASM thesis states
that if there is a computer system A, it can be simulated in a step-by-step manner by
a behavioral equivalent ASM B. The resulting ASM theory and formal method consist
of three core concepts: (1) an ASM specification language, which looks similar to
pseudo code to express rule-based computations over algebraic functions with arbitrary
data structures and type domains; (2) a ground model serving as a rigorous form of
blueprint and reference model; and (3) stepwise refinement of the reference model
by instantiating more concrete models which uphold the properties of the reference
model [26].

ASMs has two field of works – modeling and refinement. In order to model an
application or system through an ASM specification, an ASM language user has to
understand the three most important modeling concepts [25] of ASMs:

States are the notion in ASMs to define the objects and attributes of an application or
system through relations and function types. Therefore, every state information
in an ASM specification is expressed through a function definition (see Section
6.2).
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Transactions describe under which conditions the modeled states evolve (value
change). The evolving is expressed through transaction rules. ASMs define
several kinds of rules (conditional, iterative etc.) but the most important one is
the update rule. An update rule in ASMs defines which state (function location)
shall be updated with a new value. More than one update during a transaction
is collected in a so called update-set. ASM rules allow interleaved parallel and
sequential execution semantics [64], a correct ASM specification does not allow
the update (insertion to the update-set) of the same function location twice
or more, which is referred in the literature as an inconsistent update [25]. A
language user can model transactions through named rules (see Section 6.2).

Agents are the actors of an ASM specification. There can be one (single) agent or
multiple agents. Every agent activates his top-level rule and applies the collected
updates after the rule termination to the states. This is called an ASM step.
Multiple ASM steps (of one or multiple agents) form the notion of an ASM
run, which ends depending on the termination condition modeled in the ASM
specification.

Refinement of a modeled ASM specification can be achieved by one of the three
kinds – data, horizontal, or vertical refinement. A data refinement makes the usage
replacing abstract operations with refined operations which have a one-to-one mapping
(e.g. change or make a type more concrete). A horizontal refinement makes the usage
of upgrading the functionalities or changing the environmental settings. A vertical
refinement adds more and more details about the application or system (e.g. add
another requirement, more states etc.).

A more detailed description and elaboration of the ASM modeling and refinement
concepts is given by Börger and Raschke [25].

ASM Language Representative

In this study, we use the basic syntax elements from the CASM language9 [117].
The CASM language elements used can be found in a similar fashion in other ASM
languages; hence, we believe it is likely that our results can be generalized to these
other ASM languages and also to other state-based formalisms. CASM is a statically
typed ASM-based specification language. Every specification is composed of definition
elements. Relevant to this study are the following three definitions – Function, Derived,
and Rule definitions.

Function Definition A function definition specifies an n-dimensional state (argu-
ment types) which maps to a certain function type (return type). E.g. variables
in a programming language are modeled as nullary functions in ASMs, or hash-
maps can be expressed as unary functions in ASMs. Listing 6.1 illustrates the
concrete syntax and some examples.

9See https://casm-lang.org/syntax for CASM language description.
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Derived Definition A derived definition specifies functions which state values can
only be derived from other functions or deriveds without modifying the ASM
state. Therefore, deriveds are side-effect free functions and can be in some
cases even pure functions. Listing 6.2 illustrates the concrete syntax and some
examples which use state information from Listing 6.1.

Rule Definition A rule definition specifies a named rule (language user defined
rule) which describes the actual computation and transaction of the ASM state
evolving through basic ASM rules which are: (1) update rule to produce a new
value for a given state function (location); (2) block rule to express bounded
parallelism of multiple rules ; (3) sequential rule to express sequential execution
semantics of multiple rules; (4) conditional rule to specify branching (if-then-
else); (5) forall rule to express parallel computations; (6) choose rule to specify
non-deterministic choice; (7) iterate rule to express iterations; and (8) call rule
to invoke named rules (sub-rule call).

A more detailed explanation of all ASM rules is given by Börger and Raschke [25].
Listing 6.3 illustrates the concrete syntax and an example which depends on some
definitions from Listing 6.1 and Listing 6.2.

Experiment Language Construct Representations

Besides a class concept used in AsmL [65], no other advanced language construct
has been introduced in the ASM language and tool landscape. To enable moving the
state-of-the-art in advanced language constructs for such formal languages forward,

1 function counter : -> Integer // variable
2
3 function personsAge : String -> Integer // hash -map

Listing 6.1: Function Definition Example

1 derived nextCounter -> Integer = counter + 1
2
3 derived isFullAged( name : String ) -> Boolean =
4 ( personsAge( name ) >= 18 )

Listing 6.2: Derived Definition Example

1 rule incrementOrResetCounter = // named rule
2 if nextCounter != 10 then // conditional rule (if-then part)
3 counter := nextCounter // update rule
4 else // conditional rule (else part)
5 counter := 0 // update rule

Listing 6.3: Named Rule Definition Example
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this study tests three representations of language constructs, namely interfaces, mixins,
and traits, to search for a suitable language construct, structuring and extension of
functionality for such languages in general and specifically for CASM. In order to do
so, we introduced three new definitions for this study into the existing CASM syntax –
Feature, Structure, and Implement definitions.

Feature Definition A feature definition specifies a new type (functionality) to-
gether with a set of operations (derived and rule declarations) which form a
protocol.

Structure Definition A structure definition specifies a composition of (function)
states which can be extended with one or multiple features (functionalities).

Implement Definition An implement definition specifies which feature gets imple-
mented and used by which structure.

Please note that we use these very general terms on purpose as they can be mapped
to all three language constructs under investigation. As a consequence, we can avoid
that participants in the experiment are biased by knowing keywords identifying the
language construct through interface, mixin, or trait which especially applies for
the keyword feature. All three language construct syntax are designed in the style of
modern object-oriented programming languages.

Language Construct Interfaces (Experiment Group A) The feature syntax
in the language construct Interfaces only describes the protocol consisting of
the set of operations [97] [28] a structure has to implement. Therefore, it
consists only of derived and/or rule declarations. In order to use a feature,
the keyword implement has to be used to extend the current structure. Listing
7.4 depicts an example specification with the Interface language construct10.

10See form_ifaces.pdf at [120].

1 feature Formatting = {
2 derived toString : -> String
3 }
4
5 structure Person implement Formatting = {
6 function name : -> String
7 function age : -> Integer
8
9 derived getName -> String = this.name

10 derived getAge -> Integer = this.age
11
12 rule setName( name : String ) = this.name := name
13 rule setAge( age : Integer ) = this.age := age
14
15 // encapusalted feature implementation
16 derived toString -> String = this.getName () + (this.getAge () as String)
17 }

Listing 6.4: Interfaces-Based Example Specification
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This syntax is primarily influenced by the Java programming language [126]
interface syntax.

Language Construct Mixins (Experiment Group C) The feature syntax in
the language construct Mixins is equal to Interfaces except that it supports an
optional default implementation through an implement definition. Besides the
default behavior such a definition can define an internal state through function
definitions. Therefore, mixins can define required type behavior and state [106]
[53]. To indicate that a structure shall provide the behavior of a feature, the
implement keyword is used to extend the current structure implementation by

1 feature Formatting = {
2 derived toString -> String
3 }
4
5 implement Formatting = {
6 derived toString -> String = ""
7 }
8
9 structure Person implement Formatting = {

10 function name : -> String
11 function age : -> Integer
12
13 derived getName -> String = this.name
14 derived getAge -> Integer = this.age
15
16 rule setName( name : String ) = this.name := name
17 rule setAge( age : Integer ) = this.age := age
18
19 // overwrite of feature implementation
20 derived toString -> String = this.getName () + (this.getAge () as String)
21 }

Listing 6.5: Mixins-Based Example Specification

1 feature Formatting = {
2 derived toString -> String
3 }
4
5 structure Person = {
6 function name : -> String
7 function age : -> Integer
8 }
9

10 implement Person = {
11 derived getName -> String = this.name
12 derived getAge -> Integer = this.age
13
14 rule setName( name : String ) = this.name := name
15 rule setAge( age : Integer ) = this.age := age
16 }
17
18 // decoupled feature implementation
19 implement Formatting for Person = {
20 derived toString -> String = this.getName () + (this.getAge () as String)
21 }

Listing 6.6: Traits-Based Example Specification
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the default implementation and function state. Every default implementation
can be overwritten by an explicit concrete implementation of a certain operation.
Listing 6.5 depicts an example specification with the Mixins language construct11.
This syntax is primarily influenced by the Scala programming language [111]
trait syntax which enables mixins capabilities.

Language Construct Traits (Experiment Group B) The feature syntax in the
language construct Traits is equal to Interfaces except that it supports defi-
nition of optional default implementations inside the feature definition itself.
A structure only contains the state information. The behavior in the Traits
abstraction is implemented through two different kinds of separated implement

definitions: (1) provides the behavior of the structure; (2) provides the behav-
ior of a certain feature for a structure. It is important to note here that a
default implementation provided in the feature syntax can be overwritten in
the implement definition. Listing 7.5 depicts an example specification with the
Traits language construct12. This feature and implement syntax is influenced
by the Rust programming language [101] trait syntax13.

Related Studies

So far, interfaces, mixins and traits have mainly been studied in the context of
programming languages and mainly by proposing new solutions. A small number
of empirical studies exists in this field which are mainly case studies. For instance,
Murphy-Hill et al. present a case study on the potential of traits to reduce code
duplication [108]. Apel and Batory present a case study comparing aspect and feature
abstractions using a mixin layer approach to unify the two [4]. Batory et al. present
another case study on achieving extensibility through product-lines and domain-specific
languages using a mixin-based approach [12]. However, so far no study comparing the
three advanced language constructs covered in our study exists and also no controlled
experiments.

Interface abstractions have been extensively studied in the context of formal
methods [33] [41] [31] and architecture description languages that offer formal repre-
sentations [112] [59]. Traits and mixins, in contrast have not yet been studied in the
context of formal methods. We are not aware of any formal method that unifies or
integrates any two or all three advanced language constructs covered in our study.

Overall formal methods have been studied before in only a few empirical studies
other than case studies. An example of the few existing studies is the one by Sobel
and Clarkson, who study the aiding effect of first-order logic formalisms in software
development [145]. Czepa and Zdun [40] and Czepa et al. [39] have studied the

11See form_mixins.pdf at [120].
12See form_traits.pdf at [120].
13See https://doc.rust-lang.org/rust-by-example/trait.html for the discussion.
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understandability of formal methods for temporal property specification using similar
research methods as used in this study.

Ferrarotti et al. [51] report on a recent study where ASM-based high-level software
specifications are extracted from Java programs by using an semi-automated approach.
This study is of interest, because it maps the Java object-oriented programming
language concepts to the ASM sub-machine [51] concept in order to represent the
abstract type (interfaces) and sub-classing mechanisms.

Related to this study, we conducted another controlled experiment [121] with
98 participants where we analyzed the specification efficiency by using only the
language constructs interfaces and traits. Since this study only investigates how well
participants can understand (read, comprehend) ASM specifications by answering
questions about certain properties, the other study [121] investigates how efficient and
effective participants can write (specify) ASM specifications using a certain language
construct and receiving an informal system description as stimuli. The results indicate
that the language construct trait is more efficient than interfaces. Apart from that, we
are not aware of any other empirical study that systematically investigated advanced
language constructs in the context of formal methods.

6.3 Experiment Planning

This study is structured following the guidelines by Jedlitschka et al. [77] on how
empirical research shall be conducted and reported in software engineering. Moreover,
the guidelines by Kitchenham et al. [82], Wohlin et al. [158], and Juristo and Moreno
[80] for empirical research in software engineering were used in our study design. For
the statistical evaluation of the acquired data we considered and applied the robust
statistical method guidelines for empirical software engineering by Kitchenham et al.
[81].

Goals

The goal of this experiment is to measure the construct understandability
on how well and fast a participant understands a given textual representation of
three different language constructs, namely Interfaces, Mixins, and Traits. The
quality focus of the construct understandability is the correctness and duration of the
participant’s answers.

Context and Design

This study reports on a controlled experiment with 105 participants in total
to study the understandability of the language constructs interfaces, mixins, and
traits in the context of ASMs. We used a completely randomized design with one
alternative per experimental group, which is appropriate for the stated goal. Through
this, we tried to avoid learning effects of the participants and experimenter bias in the
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assignment of the groups. The statistical evaluation technique is based on measuring
how well a participant understands a textual representation of applications described
in an ASM language and how well and correct the participant answers behavioral and
structural questions about the given applications.

The study was carried out with 70 computer science students who had enrolled in
the course ASE14, which is a mandatory part of the Master of Science (MSc) curricula
at the University of Vienna, and with 35 computer science students who had enrolled
in the course DSE15, which is an optional part of the Bachelor of Science (BSc) and
MSc curricula at the University of Vienna, at the same time respectively in the summer
term 2018. All participants had a limited time of 105 minutes to process the survey.

Participants

All participants of the experiment are BSc and MSc students of the Faculty of Computer
Science at the University of Vienna, Austria enrolled in at least one of the following
courses:

DSE: BSc and MSc students are enrolled in the course and used as proxies for
novice to moderately advanced software architects, designers, or developers. This
course, which is intended for students in the fourth semester of the BSc curricula or
first semester of the MSc curricula, is concerned with teaching principles of distributed
systems, programming and engineering methods for distributed software, and solving
accompanying problems like latency, concurrency, unpredictability, and scalability.

ASE: MSc students are enrolled in the course and used as proxies for moderately
advanced software architects, designers, or developers. This course, which is intended
for students in the second semester of the MSc curricula, is concerned with teaching
principles of modern software engineering methods, including distributed software
architectures, design methods, and advanced software engineering tools and techniques
for DSL [54] and MDD [17] approaches.

For both courses, the participants (students) received training in programming,
software engineering, (data) modeling, basic formal methods, algorithms, and mathe-
matics. At the beginning of the courses, the students were informed that during the
semester there will be an opportunity to participate in an experiment. The attendance
of the experiment was optional, and the submitted solutions (filled out survey forms)
were rewarded with up to 6 bonus points.

There was the option to receive the 6 bonus points by performing the tasks, but not
participate in the experiment (opt out option). How well (correctness) a participant
answered the survey determined the bonus points achieved (for correctness definition,
see Section 6.3).

In total, there were 105 participants, which were randomly allocated to the
treatments (i.e. the three language construct representations in an ASM specification

14See https://ufind.univie.ac.at/en/course.html?lv=053020&semester=2018S for ASE.
15See https://ufind.univie.ac.at/en/course.html?lv=052500&semester=2018S for DSE.
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language, see Section 6.2). Due to random assignment of the participants to groups –
Interfaces (Group A), Mixins (Group C), and Traits (Group B) – the final distribution
resulted in 36 : 34 : 35.

Someone may argue that students as experiment participants are not good proxies
for novice and moderately advanced software engineers. The participants in our
experiment are students of two advanced courses (DSE and ASE) at the University of
Vienna, which trained the students in abstractions needed for the experiment task
domain, and were trained in basic formal methods in prior courses. Easy to understand
formalisms are key to correct specifications in practice. We expect advanced students
to be good proxies for inexperienced developers and architects.

In this study, we do not focus on well trained experts as they are usually also
much better trained in formalisms, because the goal of the study is not to focus on
techniques that can only be applied by a few very well trained experts. Furthermore,
according to Kitchenham et al. [82] using students “is not a major issue as long
as you are interested in evaluating the use of a technique by novice or nonexpert
software engineers. Students are the next generation of software professionals and,
so, are relatively close to the population of interest”. This is directly reflected in
this study because some of the students who participated in the experiment show
several years of programming experience as well as several years of work experience
in the software and/or hardware industry (see Figure 6.2c, which summarizes the
participants’ industrial work experiences).

Other studies by Svahnberg et al. [151] or Salman et al. [132] would argue even
further and state that under certain circumstances, students are valid representatives
for professionals in empirical software engineering experiments.

Material and Tasks

The experiment is based on a selection of basic software design patterns for distributed
system applications. The selection includes the Message Queue, Publish-Subscribe,
and Remote Procedure Call patterns as example applications inspired by examples
provided by Börger and Raschke [25].

The selected software design patterns are related to the subjects taught in both
courses – DSE and ASE. This study consists of two major experiment material
artifacts:

(1) Information Sheet An experiment information document16 explaining the ASM
language syntax and semantics without the experiments’ language con-
struct syntax and semantics extensions.

(2) Survey Form Three experiment survey forms17 per experimental group and
language construct contain the actual survey along with the explicit experi-

16See info.pdf at [120].
17See form_ifaces.pdf, form_mixins.pdf, and form_traits.pdf at [120].
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ments’ language construct syntax and semantics extension and description
per experimental group.

All three experiment survey forms are structured the same way consisting of
four parts: (1) a participant information questionnaire; (2) the experiments’ group
language construct syntax and semantics extension description; (3) three experiment
tasks (equal to all experiment groups); (4) an overall experiment questionnaire.

Each experiment task consists of a given ASM specification, which is provided
in the different experiment groups in the respective language construct (Interfaces,
Mixins, or Traits) textual representation. Every task is divided into sub-tasks to
test the participants’ understandability of the given ASM specification. The students
(participants) were instructed to read the given ASM specification before they start
to process the following four sub-tasks:

(1) Behavioral Four yes-and-no questions were used to determine understanding
of behavioral properties. An example question in task 2: "A Service can only
handle structure values, which implement the Subscriber feature".

(2) Structural Four filling-out-blanks sentences were used to determine understand-
ing of structural properties. An example sentence in task 2: "The feature
is implemented (included) two times for a structure."

(3) Operational Multiple-choice answers of console outputs were used to deter-
mine understanding of operational and executable properties of the given ASM
specification.

(4) Self Assessment A task-based questionnaire was used to obtain an objective
perspective of the participants’ self assessment of how correct their answers are
with a certain level of confidence.

Important is that all the sub-tasks (questions) are identical except for the textual
representation of the given ASM specification in the corresponding experiment groups’
language construct.

Variables

This controlled experiment measures the following two dependent variables:

(1) Correctness as achieved in answering the questions, which include trying to
mark the correct answer and filling in the blanks in the tasks;

(2) Duration as the time it took to answer the questions of all tasks in an experiment
survey form (see Section 6.3) excluding breaks.

These two dependent variables are commonly used to measure the construct
understandability (cf. Hoisl et al. [71], Czepa and Zdun [40]). The independent
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variables (factors) have three treatments, namely the three different representations of
language constructs Interfaces, Mixins, and Traits.

Hypotheses

We hypothesized that Traits are easier to understand than Mixins due to the explicit
and separated functionality extension definition blocks offered by traits. And Interfaces
are easier to understand than Mixins due to their simplicity without the additional
overhead of possible default implementations and optional local state bound to a
certain type.

Furthermore, we hypothesized that Traits are easier to understand than or as
understandable as Interfaces due to their almost equal API declaration styles. Con-
sequently, we formulate the following null hypotheses, where understandability is
measured by correctness and duration variables, for this controlled experiment:

H0,1 There is no difference in terms of understandability between Interfaces and
Mixins.

H0,2 There is no difference in terms of understandability between Traits and Mixins.

H0,3 There is no difference in terms of understandability between Interfaces and
Traits.

Based on the formulated null hypotheses, we can derive and formulate the following
alternative hypotheses for this controlled experiment:

HA,1 The understandability shows a significantly better understanding of Interfaces
compared to Mixins.

HA,2 The understandability shows a significantly better understanding of Traits
compared to Mixins.

HA,3 The understandability shows a significantly better or similar understanding of
Interfaces compared to Traits.

6.4 Experiment Execution

This experiment was executed in two steps, namely a preparation and a procedure
phase.

Preparation

Two weeks before the experiment we handed out the preparation material (the
experiment information sheet, see Section 6.3) through an e-learning platform18.

18See https://moodle.org for e-learning platform information.
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This document provided general information of the upcoming experiment and an
introduction to the ASM language syntax and semantics used without explaining one
of the three language constructs. All ASM language concepts used are depicted with
short example ASM specification snippets. The participants were allowed to use this
document during the experiment in printed form. The main reason why we provided
the experiment information document is that all participants needed to be educated
to the same level of detail with regard to a state-based formal method and specifically
to a concrete ASM language representation (see Section 6.2).

Procedure

The experiment was carried out using paper and pencil, as if it were an (closed book)
exam. Participants were allowed to bring only one aid to process the experiment survey
form as described in the previous Section 6.4. At the beginning of the experiment,
every participant received a random experiment survey form (see Section 6.3). They
were instructed to fill out and process the survey from the first page to the last page in
this particular order. Furthermore, a clock with seconds granularity was projected onto
a wall to provide timestamp information to the participants. They were asked to track
start and stop timestamps during the processing of the experiment tasks. After the
experiment every participants’ answer was recorded in a LibreOffice19 OpenDocument
Spreadsheet (ODS) file [114]. The participants’ task start and stop timestamps were
converted to a duration in seconds and summed up to a total duration for all tasks.
We used the four-eyes principle during every manual work step (answer obtaining and
timestamp conversion) in the data collection.

Deviations

The experiment execution and the data collection were performed as described in
Section 6.4 and Section 6.4. We did not observe any unforeseen difficulties and did
not deviate from the experiment plan.

6.5 Analysis

All statistical analysis was performed with the software tool R20. The analysis pro-
cesses21 contain the following steps: (1) load the prepared data-set from Section 6.5;
(2) calculate the descriptive statistics for the dependent variables which are explained
in detail in Section 6.5; (3) perform a group-by-group comparison with appropriate
statistical hypotheses tests which are explained in detail in Section 6.5; (4) generate
table/plot information in order to include this information in this chapter. In order

19See https://www.libreoffice.org for version 6.1.4.2.
20See https://www.r-project.org for version 3.5.2.
21See analyze.r at [120].
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to reproduce the analysis results, some R library package dependencies have to be
installed22.

Data-Set Preparation

The raw data23 collected during the experiment execution phase (see Section 6.4)
was prepared24 in the following manner: (1) the obtained LibreOffice ODS file [114]
was exported to a Comma-Seperated Values (CSV) file [138]; (2) the CSV file was
imported for further processing; (3) type castings of several data rows were performed;
(4) overall correctness C of all task correctness values C1, C2, and C3 is obtained
by the following formula C =

∑︁n=3
1

Cn∗n
6 , which means that we weighted the first

task correctness C1 with 1
6 , the second task correctness C2 with 2

6 , and the third task
correctness C3 with 3

6 of the overall task correctness C to represent a complexity
gain in understanding the given ASM specifications. Every task correctness Cn where
n = 1, 2, 3 is determined by accumulating the percentage of the correct answers of the
sub-tasks 1), 2), and 3) which were explained in Section 6.325; (5) and stored as an R
Data-Set (RDS) file [127] for further processing and analysis.

Descriptive Statistics

The participants’ experience and characteristics (background information) are captured
in the experiment by: age (see Figure 6.2a), gender, course, and level of education,
programming experience (see Figure 6.2b), modeling experience, software (SW) and
hardware (HW) industry experience (see Figure 6.2c), and programming and specifi-
cation languages used26. Overall, the random distribution of the participants to the
experiment groups is almost balanced.

The participants’ programming experience (see Figure 6.2b) refers to the amount
of years using one or multiple programming languages either in an industrial work
context or an educational work environment or both.

Table 6.1 contains the number of observations, central tendency measures, and
dispersion measures per language construct for the dependent variable Correctness27

and this acquired data is visualized as a kernel density plot in Figure 6.3a and a box
plot in Figure 6.3b. In the box plot we can observe that for the Interfaces group the
median and its quantiles are above those of the other groups. There is one outlier in
the Mixins group. Note that the Traits group has almost a similar median to the
Interfaces group and that this distribution is strongly right skewed. According to the
kernel density plot, the data does not appear to be normally distributed, and all three
distributions look different, which implies unequal variances. The Interfaces has its

22See install.r at [120].
23The data-set is published in the long term open data archive Zenodo [120] together with all

documents and R scripts.
24See prepare.r at [120].
25For detailed formula, see prepare.r Line 235-340 at [120].
26See appendix.pdf at [120] for supplementary background information.
27Unit is correctness rate between 0.0 and 1.0 (denoted [1]).
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peak at 0.55 and Mixins has its peak at 0.45. In contrast to the two other groups, the
Traits groups has two peaks, one at about 0.215 and the other one at about 0.525.

Table 6.2 contains the number of observations, central tendency measures, and
dispersion measures per language construct for the dependent variable Duration28

and this acquired data is visualized as a kernel density plot in Figure 6.4a and a box
plot in Figure 6.4b. In the box plot we can observe that for the Traits group has the
lowest median compared to the other groups, but the quantiles of the Traits group
are similar to the Interfaces group in contrast to the Mixins group. According to
the kernel density plot, the data does not appear to be normally distributed, and all
three distributions look different, which implies unequal variances. The Traits group
has its peak at 2500 seconds and the Mixins group has its peak at 2750 seconds. In
contrast to the two other groups, the Interfaces group has two peaks, one very flat
one at about 2250 seconds and another much bigger one at about 3125 seconds.

Hypothesis Testing

Due to the presence of three experiment groups and two dependent variables, the
Multivariate Analysis of Variance (MANOVA) [21] would be a suitable statistical
procedure, but necessary assumptions must be met to apply this method. The
investigation of the kernel density plots – Figure 6.3a for Correctness and Figure
6.4a for Duration – indicates that not all distributions of the experiment groups are

28Unit is duration in seconds (denoted [s]).
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Table 6.1: Descriptive Statistics per Group of Correctness

Interfaces Mixins Traits
Observations [1] 36 34 35

Mean [1] 0.5294 0.4574 0.4598
Standard deviation [1] 0.1110 0.1147 0.1533

Median [1] 0.5448 0.4707 0.5231
Median abs. deviation [1] 0.0869 0.0950 0.1030

Minimum [1] 0.2639 0.1528 0.1204
Maximum [1] 0.7083 0.6759 0.6528

Skew [1] -0.6132 -0.4984 -0.7713
Kurtosis [1] -0.1797 0.2185 -0.6515

Shapiro-Wilk Test p [1] 0.0685 0.3822 0.0017

normally distributed, which the MANOVA would need in order to be applied. We
applied the Shapiro-Wilk normality test [139] (last row in Table 6.1 and Table 6.2)
and only the Traits group for the dependent variable Correctness shows a significant
(p ≤ 0.05) difference to the normal distribution, which would make MANOVA not
suitable to be applied to Correctness. To finally conclude that the MANOVA method
cannot be applied, we visually inspected the normal Q-Q plots for both dependent
variables, which are depicted in Figure 6.3c for Correctness and Figure 6.4c for
Duration. All distribution plots indicate that the linearity assumption is not met
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Figure 6.3: Descriptive Plots per Group of the Dependent Variable Correctness
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Table 6.2: Descriptive Statistics per Group of Duration

Interfaces Mixins Traits
Observations [1] 35 33 34

Mean [s] 2833.00 2753.33 2856.97
Standard deviation [s] 718.33 702.84 815.27

Median [s] 3001.00 2723.00 2636.00
Median abs. deviation [s] 762.06 612.31 728.70

Minimum [s] 1244.00 1011.00 1312.00
Maximum [s] 4102.00 4256.00 4838.00

Skew [1] -0.3657 -0.0757 0.5375
Kurtosis [1] -0.7073 -0.0528 -0.1457

Shapiro-Wilk Test p [1] 0.4215 0.9737 0.4259

and the power of the test might be affected. Thus we ruled out multivariate and
parametric testing because it could lead to unreliable results. Instead, we selected a
non-parametric testing method.

When we considered our acquired data, according to Kitchenham et al. [81], we
cannot use the Kruskal-Wallis test [85] because it is strongly affected by unequal
variances. Therefore, we select a robust non-parametric test called Cliff’s δ [34]. This
testing method is unaffected by non-normal data, change in distribution, and (possible)
unstable variance.
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Table 6.3: Hypothesis Tests per Group Combination of Correctness

Interfaces Interfaces Mixins
vs. Mixins vs. Traits vs. Traits

Cliff’s δ -0.4003 -0.2667 0.1361
sδ 0.1294 0.1317 0.1434
vδ 0.0168 0.0173 0.0206
zδ -3.0931 -2.0254 0.9492

CIlow -0.6212 -0.5023 -0.1496
CIhigh -0.1205 0.0059 0.4009

P (X > Y ) 0.6985 0.6294 0.4252
P (X = Y ) 0.0033 0.0079 0.0134
P (X < Y ) 0.2982 0.3627 0.5613

p 0.0029 0.0467 0.3460
pFDR 0.0172 0.1401 0.6668

Wilcoxon Test W 857 798 514
(two-tail, ̸=) pW 0.0041 0.0540 0.3338

pWFDR 0.0246 0.1620 0.6647

The results of the Cliff’s δ test is shown in Table 6.3 for the dependent variable
Correctness and in Table 6.4 for the dependent variable Duration. Due to the fact
that we applied this hypothesis test six times, we are required to lower the significance
level in order to avoid Type I errors, which is about not detecting an effect that is not
present.

A suitable approach would be to apply the Bonferroni correction [46], which
suggests to lower the current significance level α = 0.05 divided by the times a
certain test was applied (n = 6), which would result into α′ = α

n = 0.05
6 = 0.0083̇.

Unfortunately, this significance level correction is known to increase Type II errors,
which is about not detecting an effect that is present. Therefore, we choose a more
robust correction method which does not increase Type II errors, namely the False
Discovery Rate (FDR) adjusted p-values [14].

According to the FDR adjusted p-values (pFDR) in Table 6.3 and Table 6.4, there is
evidence not to reject some null hypotheses of this study (see Section 6.3). Since Cliff’s δ
test is closely related to the Wilcoxon rank sum test [157] (also know as Mann-Whitney
test [98]), we performed a two-tailed (pW ) sample Wilcoxon test for all language
construct (group) combinations to determine the possibility of misinterpretations of
the used Cliff’s δ test. The results are presented at the bottom of Table 6.3 and Table
6.4 along with the appropriate FDR adjusted p-value pWFDR .

Only for the Correctness of Interfaces vs. Mixins we found evidence of a better
understanding of answering structural, behavioral, and operational questions about
given ASM specifications.

The test results on Correctness are significant for the comparison of the language
constructs Interfaces and Mixins. This would suggest to reject H0,1 and to accept
HA,1. Nevertheless, the hypothesis test results on the dependent variable Duration
are not significant which would indicate not to reject H0,1. For the inferential statistical
test results on Correctness and Duration we can observe that those dependent
variables do not show any significant difference for the comparison of Mixins vs. Traits
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Table 6.4: Hypothesis Tests per Group Combination of Duration

Interfaces Interfaces Mixins
vs. Mixins vs. Traits vs. Traits

Cliff’s δ -0.1091 -0.0286 0.0285
sδ 0.1418 0.1416 0.1431
vδ 0.0201 0.0201 0.0205
zδ -0.7692 -0.2017 0.1993

CIlow -0.3734 -0.2985 -0.2484
CIhigh 0.1716 0.2456 0.3011

P (X > Y ) 0.5541 0.5143 0.4857
P (X = Y ) 0.0009 0.0000 0.0000
P (X < Y ) 0.4450 0.4857 0.5143

p 0.4445 0.8407 0.8426
pFDR 0.6668 0.8426 0.8426

Wilcoxon Test W 640.5 612 545
(two-tail, ̸=) pW 0.4431 0.8430 0.8459

pWFDR 0.6647 0.8459 0.8459

Table 6.5: Correlation per Group of Correctness to Duration

Interfaces Mixins Traits
Spearman’s ρ 0.1720 -0.1277 0.1428

p 0.3231 0.4788 0.4204
S 5911.7954 6748.2555 5610.2857

as well as for the comparison of Interfaces vs. Traits, which suggests not to reject
the null hypotheses H0,2 and H0,3. Therefore, both alternative hypotheses HA,2 and
HA,3 cannot be accepted in this controlled experiment.

6.6 Discussion

The descriptive statistics are not in favor of any language construct in the overall
comparison. By looking only at the Correctness, Interfaces and Traits seem to
perform better than Mixins.

The median of the Correctness variable is for language construct Interfaces
54%, Mixins 47%, and Traits 52%, which can be considered rather low in an overall
participants’ correctness performance. Due to the fact that all participants have no
prior knowledge of ASMs and formal methods in general (checked by an informational
question in the survey), a median for the correctness between 47% to 54% can be
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considered a rather good result in this study. For the Duration descriptive statistical
results, Traits and Mixins seem to perform better than Interfaces. The median of
the Duration variable is for language construct Interfaces 3001s (50min 1s), Mixins
2723s (45min 23s), and Traits 2636 (43min 56s), which are good results in the
scope of the processed survey and the achieved Correctness results with a limited
experiment time of 105min (1h 45min). Note that the highest participant duration
was 4838s (1h 20min 38s).

In the inferential statistics Interfaces show a significantly better understanding
than Mixins in terms of Correctness. If we compare all language constructs, there is
no real difference in terms of understanding for the inferential statistics. This implies
that for the ASM language user (novice and moderately advanced software architect,
designer, or developer) it does not matter, which language construct is used.

By looking at the scatter plot (Figure 6.5) and correlation (Table 6.5) of the
two dependent variables Correctness and Duration, we cannot observe a linear
trend that the dependent variables are correlated since in all language constructs the
significance p-value is greater than the significance level of α < 0.5. The kernel density
plots for the participants’ self assessment is depicted in Figure 6.6. The self assessment
was measured by calculating the difference between the actual Correctness value and
the participants Confidence value that a certain task was correct. A self assessment
value ≤ 0 means overestimated and ≥ 0 means underestimated the Correctness
of the given experiment answers. All three groups show a similar self assessment
with its peak in the underestimated section. This implies that all three language
constructs show a similar participants’ self assessment regarding their Confidence in
the Correctness of their given solutions.

Threats to Internal Validity

During the experiment, we did not observe any disturbing environmental events or
history effects. Due to the total (limited) time of 105 minutes of the experiment, the
chances for maturation effects and experimental fatigue were limited, and we did not
observe such. Furthermore, due to the randomized design of the experiment every
participant is only tested once with one assigned treatment – interfaces, mixins, or
traits – to carry out the experiment for the provided tasks. Therefore, learning effects
can be ruled out. Every participant was able to score the same amount of points and
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Figure 6.6: Kernel Density Plot per Group of Participants’ Self Assessment
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we graded all groups with the same procedures. This rules out instrumental bias.
Selection bias was limited due to the random assignment of participants to groups.

We cannot rule out cross-contamination between the groups as a potential threat to
internal validity because the participants are computer science students and share
the same social group and interact outside of the research process as well. We have
not observed any demoralization or compensatory rivalry. All participants are graded
based on their correctness value in the processed survey by gaining points for their
enrolled course (but had an opt out option, as explained in Section 6.3).

Threats to External Validity

A possible threat to external validity is that we carried out the experiment with
students as participants because this limits the ability to make generalizations. As
only one participant has prior knowledge in Rust and Scala language, only further seven
participants have prior knowledge in Scala, but all participants know Java, a higher
familiarity with Interfaces than with the other two tested language constructs can be
assumed in our participants. Nonetheless, in our study results, the understandability
of Traits is almost equal to the understandability of Interfaces, which might be
surprising. Further study is needed to investigate if the relation between the two
language constructs – Interfaces and Traits – is different for developers highly familiar
with Traits.

In addition to the types of the participants in this experiment (students as novice
and moderately advanced software architect, designer, or developer), it would be
useful to repeat the experiment with broader and more experienced test groups like
professionals in different fields ranging from high-level software design to low-level
hardware specifications. Furthermore, the selected experiment tasks are limited to
basic software patterns for distributed systems.

In order to reduce the risk that participants are biased to identify the used
language construct in the experiment, we use the syntax keyword feature for all
three language constructs under investigation and not the well known abstraction
keywords interface, mixin, or trait with are highly familiar to participants in
modern programming languages.

Threats to Construct Validity

We focus in this study on the understandability of language constructs for an ASM
language. The understandability is measured by two dependent variables namely
correctness and duration. These two dependent variables are commonly used to
measure the construct understandability (cf. Hoisl et al. [71], Czepa and Zdun
[40]), but it cannot be ruled out that other constructs would be a better measure for
understandability.

Berger et al. [15] for example uses the concept of efficiency in their controlled
experiment. The construct efficiency measures the ratio of correct answers to time.
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In this case the amount of time represents only the time it takes after receiving the
stimuli to answer certain questions. Since we allow in this controlled experiment the
participant to reread the stimuli if needed multiple times during the processing of the
questions, the amount of time includes, besides the actual time to answering questions,
the time of comprehending the task stimuli, which compromises to reason about
efficiency. In another study [121] we established by the controlled experiment design
that the participants track the timings (duration) of comprehending and answering
separately which allows to reason about efficiency.

Threats to Content Validity

In this study, we only focus on three language constructs – interfaces, mixins, and
traits. The understandability is tested for three ASM syntax variations, not commonly
existing in today’s languages and tools, which use one of the language constructs.
Testing more complex scenarios (more structures and language constructs) would
improve the content validity.

Threats to Conclusion Validity

Due to some missing timestamps for the dependent variable duration and missing
answers for the dependent variable correctness we cannot rule out that statistic validity
might be affected. Still, those outliers are important measurements because they reflect
that for a certain group of the participants the given ASM specifications in a certain
language construct are too complex or not understood at all. Deleting those would
compromise the conclusion validity. To improve the conclusion validity, we selected a
test with great statistical power which fits the best explored model assumptions of all
statistical tests suitable for the collected data set.

Inferences

Based on the evidence found in this research, a possible use of either Interfaces and
Traits in ASM language designs should provide a similar understandability. As Mixins
perform significantly worse for the dependent variable Correctness than Interfaces,
they should be used with more caution and might perform worse in some respects
than the other two language constructs. Regarding the dependent variable Duration,
it seems that for all the different kinds of textual language construct representations
the participants need a similar duration to process the surveys and without further
studies no generalized claim can be drawn from the gathered results.

Relevance to Practice

State-of-the-art abstractions are key for acceptance of formal methods in practice.
So far many formal specification languages lack in their support for other advanced

language constructs, such as Interfaces, Mixins, and Traits. As there were no empirical
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studies on their use in formal specification languages, little was known before this
study on how they compare relative to each in the formal methods context.

The findings in this study are first indicators for language engineers [83] in
practice to choose, specify, and implement new language constructs in existing or
newly developed programming/specification languages in order to achieve a more
understandable language syntax for the language user.

Many formalisms, including ASMs, have been implemented in different program-
ming and/or specification languages. Our empirical results can help language users
of these formalisms to choose one of those languages using the available language
constructs in the language syntax as a decision criterion (among others) and/or by
considering the extensibility of the language options with regard to language constructs.

Due to the fact that the understandability of formal methods has not been
empirically investigated to a larger extend so far, these results and future studies can
contribute to an increased usage of formal methods in practice. Moreover, the explained
method can be used in communities of practice, e.g. by conducting online experiments.
The feedback of language users is a valuable source for language extensions and further
development.

6.7 Conclusion

This chapter reports on a controlled experiment with 105 participants on the under-
standability of language constructs tested for the applicability in the context of an
ASM-based modeling language as a representative for other ASM-based languages
and other state-based formal methods.

The focus of the study is the understanding of structural and behavioral properties
of given ASM specifications modeled in three CASM language syntax extensions,
which are not yet part of CASM or any other ASM-based language, namely Interfaces,
Mixins, and Traits.

According to the descriptive and inferential statistics, Interfaces and Traits can be
used interchangeably with regard to their expectations in terms of understandability,
whereas Mixins should be used with caution, as they show significantly worse under-
standing in comparison with Interfaces for the dependent variable Correctness. As
Mixins show no significant difference in terms of Duration compared to Interfaces
and for both dependent variables compared to Traits, more research is needed to
understand the reasons why they perform worse with regard to only one dependent
variable.

This study is a first step towards establishing an understandable ASM language
design with regard to language constructs for structuring behavioral specifications.
The outcomes can be used by language designers and compiler engineers to define a
suitable language construct in an ASM language like CASM. They indicate that at
least some of the heated debates on language constructs can be neglected and the
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best suited abstraction in the context of other language design concerns like language
consistency can be chosen. It would be interesting to study further if our results can
be transferred to other state-based formal methods and maybe even to abstractions in
object-oriented languages.
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CHAPTER 7
Usability Study

Modern object-oriented languages offer a variety of language constructs to provide
easy-to-comprehend abstractions to express structural and behavioral aspects of
specifications. Most of them either offer interfaces or traits in addition to classes
and inheritance. In this chapter1, we describe a follow-up study of Chapter 6 about
the investigation of object-oriented abstractions such as interfaces and traits for
ASM-based specification languages. We report on a controlled experiment with 98
participants to study the specification efficiency and effectiveness in which participants
needed to comprehend an informal specification as problem (stimulus) in form of a
textual description and express a corresponding solution in form of a textual ASM
specification using either interface or trait syntax extensions. The study was carried
out with a completely randomized design and one alternative (interface or trait) per
experimental group. The results indicate that specification effectiveness of the traits
experiment group shows a better performance compared to the interfaces experiment
group, but specification efficiency shows no statistically significant differences. To
the best of our knowledge, this is the first empirical study studying the specification
effectiveness and efficiency of object-oriented abstractions in the context of formal
methods.

7.1 Introduction

In 1993, Gurevich [63] described the ASM theory, which is a well-known state-based
formal method consisting of transition rules and algebraic functions. It has been used
extensively by scientists for a broad research field ranging from software, hardware
and system engineering perspectives to specify, analyze, verify, validate, and construct
systems in a formal way [129]. ASMs are used to formally describe the evolution of
function states in a step-by-step manner2 and are used to specify sequential, parallel,
concurrent, reflective, and even quantum algorithms. Based on the ASM theory by

1The content of this chapter is a revised version of the TOSEM’21 article [121].
2The ASM theory was formerly called Evolving Algebra.
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Gurevich [63], several theory improvements and ASM-based language implementations
were developed, which were summarized by Börger and Stärk [26] and Börger and
Raschke [25]. The diversity of ASM-based applications ranges from formal specification
of semantics of programming languages, such as those for Java by Stärk et al. [146] or
VHDL by Sasaki [133], compiler back-end verification by Lezuo [90], software run-time
verification by Barnett and Schulte [11], software and hardware architecture modeling
e.g. of UPnP by Glässer and Veanes [60], to even RISC designs by Huggins and
Campenhout [72].

Nowadays, there are several ASM language syntax definitions and tool imple-
mentations available like AsmetaL [58], AsmL [65], CASM [91], and CoreASM [50].
AsmetaL and CoreASM offer a rich tool set to analyze and model ASM specifications
and provide a Java-based interpreter to execute and simulate the ASM models. AsmL
and CASM are compiler oriented language implementations and offer code generation
support of modeled ASM specifications. AsmL is based on the .NET framework
whereas CASM provides C/C++ code generation and a high performance interpreter
as well. Besides the mentioned ASM languages and tools there exists AsmGofer [136]
and XASM [3], but those projects are discontinued.

In addition, many other state-based formal methods besides ASMs exist with their
own languages and associated tools e.g. Alloy [74], DEVS [32], EFSM [30], Event-B
[2], STATEMATE [67], TLA [86], VDM [19], and Z [125].

Problem Statement

For various ASM languages and tools, as well as in most other state-based formal
methods, the proposed modeling languages lack easy-to-comprehend abstractions
for describing structural and behavioral aspects of specifications in a reusable and
maintainable manner. Most of today’s specification languages have implemented
basic object-oriented abstractions such as classes and inheritance. As there are
known problems in such abstractions, leading to complexity, ambiguity, and low
comprehensibility, such as the diamond inheritance problem of multiple inheritance
[99], it would make sense to study more advanced abstractions as well. Today, many
modern language implementations restrict class-based language constructs to allow
only single inheritance models and add additional abstractions such as interfaces
[28] or traits [134] to the language. A prominent example for ASMs is the modeling
language AsmL [65] which uses the class abstraction along with a single inheritance
model to encapsulate the state and behavior. A similar approach can be observed
in the state-based formal methods community. Object-Z [143] or Z++ [88] provide
class-based language constructs with inheritance and polymorphism concepts.

But it is unclear if insights from modern object-oriented programming languages
can be transferred to state-based formal specification languages, as those two kinds of
languages are substantially different. For example, a specification language should
be rigorous, simple, and self-explanatory, which is not the case for many modern
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programming languages. Therefore, we aim at empirically investigating how a language
user performs by only using one object-oriented abstraction, namely interfaces or
traits.

There is a debate in the object-oriented community3, which of the abstractions,
interfaces or traits, is best suited to express behavioral aspects, and many imple-
mentations combine different language constructs. A notable example would be the
programming language Scala [111], which offers a trait syntax that is similar to the
Java [126] interface syntax and offers a class-based implementation and extension
syntax. Another example of mixed language constructs, namely interfaces and traits,
can be found in the programming language Rust [101], where the language user has to
express interface definitions through traits. Empirical research on language constructs
in ASM languages and similar state-based formal methods can provide some decision
guidance to language designers and compiler engineers on choosing language constructs
in specification language designs and implementations. So far such empirical research
is rare. Höfer and Tichy [70] analyzed 133 reviewed articles of the Journal of Empirical
Software Engineering in the timescale from 1996 to 2006. They have discovered that
controlled experiments about formal methods in general are underrepresented and that
“studies about programming languages and programming paradigms are conspicuously
absent”. They further concluded more experiments in this direction would encourage
more discussions on the comprehensability of programming languages and formal
methods, and eventually improve the language engineering process.

Due to the fact that so far studies about state-based formal methods and the
comprehensibility of object-oriented abstractions and language constructs in their
context are missing (see Section 7.2), our study also aims to make a contribution to
improve the state of empirical knowledge about formal specification languages. Prior
to this work, we already have conducted another study [119] and investigated the
effects on how language users (experiment participants) understand structural and
behavioral aspects of a state-based formal method language (ASM) by reading a given
ASM specification as stimuli and answering questions about the properties of given
specifications. The provided ASM specifications were represented in three different
language constructs – interfaces, mixins, and traits.

Research Objectives, Hypotheses, and Results

In this empirical study we investigate which of the object-oriented abstraction
syntax extensions – interfaces or traits – is easier to use by a participant
while comprehending an informal textual description and modeling a cor-
responding specification with a certain textual language representation in
the context of state-based formal methods.

State-based formal methods and their modeling languages are usually based on
core concepts that are significantly different from classes and objects. Reusable and

3See, e.g. https://stackoverflow.com/questions/9205083.
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maintainable specifications would be highly useful in these methods and languages, too,
and are largely missing in today’s methods and languages. In our study, we use ASMs
as a representative of state-based formal methods, and the modeling language CASM
[91] [94] [123] [117] as a representative for ASM-based languages and tools. As our
study is focused on the general notion of adding object-oriented language constructs to
these languages and tools, we believe most of our results can have an impact on other
ASM languages. In this study the term specification effectiveness corresponds to
how well (reading, understanding, and writing) and the term specification efficiency
corresponds to how fast (duration time of processing) a participant comprehends
a given stimuli and specifies an example ASM specification using one of the two
object-oriented abstractions. We define the experiment goal using the GQM template
[152] as follows: Analyze the Interfaces and Traits object-oriented abstractions
(language constructs) for the purpose of their evaluation with respect to their
specification effectiveness and efficiency from the viewpoint of the novice software
developer or designer in the context (environment) of a moderately advanced
university software engineering course. Our hypotheses are influenced by the debate
in the object-oriented communities which seems to favor traits over interfaces. We
hypothesized that specification effectiveness measured by the dependent variable
correctness shows a significantly better performance for traits compared to interfaces
as well as that specification efficiency measured by the dependent variable duration
shows a significantly better performance for traits compared to interfaces. This
hypothesis was influenced by the debate in the object-oriented community, which
often discusses traits more favorably than interfaces4 or points out that “Traits are
Interfaces”5 with code-level reuse functionality. However, it is not obvious whether
or not such opinions yield a statistically significant difference, and whether or not
they can be mapped to the domain of state-based formal languages. In addition,
interfaces are probably the best known abstraction to developers today, and like most
ordinary developers our participants are trained in programming languages offering
the language construct interfaces in Java or how to model interfaces through a C++
abstract class.

For those reasons, it was interesting to perform the empirical study presented in
this chapter. The obtained results in this study indeed indicate that the language
construct traits show far better understanding compared to interfaces.

Structure of this Chapter

In Section 7.2, we describe object-oriented abstractions, ASMs, the used ASM-based
language representations used in this study, and present related studies. Section 7.3
elaborates the planning of this study. In Section 7.4, we describe the execution of the

4See, e.g. https://stackoverflow.com/questions/9205083.
5See, e.g. https://blog.rust-lang.org/2015/05/11/traits.html.
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experiment, while the results are presented in Section 7.5 and discussed in Section 7.6.
We conclude the chapter in Section 7.7.

7.2 Background

This section discusses some properties regarding object-oriented abstractions, ASMs,
and ASM-based language constructs that are of interest in this study. Readers
already familiar with object-oriented abstractions, ASMs, and the discussed language
abstractions and their corresponding representations may consider to skip some parts
of this section.

Object-Oriented Abstractions

Interfaces define a protocol of (typed) operations (signatures) to which an implementer
of a certain interface (type) must conform [28]. An interface defines a type signature.
No behavioral or state information can be defined through interfaces. Each implementer
of the interface has to provide an implementation of the complete interface. Traits are
similar to interfaces with the difference that they can define stateless behavior which
depends only on the trait itself [134]. Therefore, each implementer can reuse and
rely on existing behavioral implementations which is not possible through Interfaces.
Figure 7.1 depicts both object-oriented abstractions and exemplifies the language
construct properties. On the left side, an Interface example with two interfaces is
shown. Interface1 gets implemented by Implementer1 and Implementer2, whereas
Interface2 is only implemented by Implementer2. The same scenario is expressed
through the object-oriented abstraction Traits on the right side of the figure. As traits
can define not only a protocol, the Trait1 directly defines Behavior1 in the trait itself.
Thus Behavior1 can be reused by both implementers.

Abstract State Machines

ASMs are used to express calculations in an abstract manner for many different
application fields. According to Gurevich and Tillmann [66], the ASM thesis states

Interfaces

Interface1 Interface2
Protocol1 Protocol2

Implementer1 Implementer2
Structure1 Structure2
Behavior1 Behavior1

Behavior2

Traits

Trait1 Trait2
Behavior1 Protocol2

Implementer1 Implementer2
Structure1 Structure2

Behavior2

Figure 7.1: Overview of Language Construct Properties
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that if there is a computer system A, it can be simulated in a step-by-step manner by a
behaviorally equivalent ASM B. The resulting ASM theory and formal method consist
of three core concepts: (1) an ASM specification language, which looks similar to
pseudo code to express rule-based computations over algebraic functions with arbitrary
data structures and type domains; (2) a ground model serving as a rigorous form of
blueprint and reference model; and (3) incremental refinement of the reference model
by instantiating more and more concrete models which uphold the properties of the
reference model [26].

ASMs has two fields of works – modeling and refinement. In order to model an
application or system through an ASM specification, an ASM language user has to
understand the three most important modeling concepts [25] of ASMs:

States are the notion in ASMs to define the objects and attributes of an application
or system through relations and function types. Therefore, all state information
in an ASM specification is expressed through a function definition (see Section
7.2).

Transactions describe under which conditions the modeled states evolve (value
change). The evolving is expressed through transaction rules. ASMs define
several kinds of rules (conditional, iterative etc.) but the most important one is
the update rule. An update rule in ASMs defines which state (function location)
shall be updated with a new value. More than one update during a transaction
is collected in a so called update-set. Since ASM rules allow interleaved parallel
and sequential execution semantics [64], a correct ASM specification does not
allow the update (insertion to the update-set) of the same function location
twice or more with a different value, which is referred in the literature as an
inconsistent update [25]. A language user can model transactions though named
rule definitions (see Section 7.2).

Agents are the actors of an ASM specification. There can be one (single) agent or
multiple agents. Every agent triggers its top-level rule and applies the collected
updates after the rule termination to the states. This is called an ASM step.
Multiple ASM steps of one or multiple agents form the notion of an ASM
run, which ends depending on the termination condition modeled in the ASM
specification.

Refinement of a modeled ASM specification can be achieved by one of the three
kinds – data, horizontal, or vertical refinement. A data refinement replaces abstract
operations with refined operations which have a one-to-one mapping (e.g., change or
make a type more concrete). A horizontal refinement makes upgrades to functionalities
or changes the environmental settings. A vertical refinement adds more details about
the application or system (e.g., adding another requirement, more states etc.).

A more detailed description and elaboration of the ASM modeling and refinement
concepts is given by Börger and Raschke [25].
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ASM Language Representation

In this study, we use the basic syntax elements from the CASM language6 [117].
The CASM language elements used can be found in a similar fashion in other ASM
languages; hence, we believe it is likely that our results can be applied to other ASM
languages. CASM is a statically typed ASM-based specification language. Every
specification is composed of definition elements. Relevant to this study are the
following three definitions – Function, Derived, and Rule definitions.

Function Definition A function definition specifies an n-dimensional state (argu-
ment types) which maps to a certain function type (return type). E.g. variables
in a programming language are modeled as nullary functions in ASMs, or hash-
maps can be expressed as unary functions in ASMs. Listing 7.1 illustrates the
concrete syntax and some examples.

Derived Definition A derived definition specifies functions which state values can
only be derived from other functions or deriveds without modifying the ASM
state. Therefore, derived functions are side-effect free. Listing 7.2 illustrates the
concrete syntax and some examples which use state information from Listing
7.1.

Rule Definition A rule definition specifies a named rule (language user defined
rule) which describes the actual computation and transaction of the ASM state
evolving expressed through basic ASM rules namely: (1) update rule to produce

6See https://casm-lang.org/syntax for CASM language description.

1 function counter : -> Integer // variable
2
3 function personsAge : String -> Integer // hash -map

Listing 7.1: Function Definition Example

1 derived nextCounter -> Integer = counter + 1
2
3 derived isFullAged( name : String ) -> Boolean =
4 ( personsAge( name ) >= 18 )

Listing 7.2: Derived Definition Example

1 rule incrementOrResetCounter = // named rule
2 if nextCounter != 10 then // conditional rule (if-then part)
3 counter := nextCounter // update rule
4 else // conditional rule (else part)
5 counter := 0 // update rule

Listing 7.3: Named Rule Definition Example
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a new value for a given state function (location); (2) block rule to express
bounded parallelism of multiple rules; (3) sequential rule to express sequential
execution semantics of multiple rules; (4) conditional rule to specify branching
(if-then-else); (5) forall rule to express parallel computations; (6) choose rule
to specify nondeterministic choice; (7) iterate rule to express iterations; and (8)
call rule to invoke named rules (sub-rule call).

A more detailed explanation of all ASM rules is given by Börger and Raschke [25].
Listing 7.3 illustrates the concrete syntax and an example which depends on some
definitions from Listing 7.1 and Listing 7.2.

Experiment Language Construct Representations

Besides a class concept used in AsmL [65], no other object-oriented language construct
has been introduced in the ASM language and tool landscape. To enable moving the
state-of-the-art in advanced object-oriented abstractions for such formal languages
forward, this study tests two language construct representations, namely interfaces
and traits, to search for a suitable object-oriented abstraction to structure state and
behavioral aspects for such languages in general and specifically for CASM. In order
to do so, we introduced three new definitions for this study into the existing CASM
syntax – Feature, Structure, and Implement definitions.

Feature Definition A feature definition specifies a new type (functionality) to-
gether with a set of operations (derived and rule declarations) which form a
protocol.

Structure Definition A structure definition specifies a composition of (function)
states which can be extended with one or multiple features (functionalities).

Implement Definition An implement definition specifies which feature gets imple-
mented and used by which structure.

This definition element binds default or extended functionalities (behaviors) to a
certain type (structure).

Please note that we use these very general terms on purpose as they can be
mapped to the two language constructs under investigation. As a consequence, we can
avoid bias from participants in the experiment are who know keywords identifying
the language construct through interface or trait which especially applies for the
keyword feature. The syntax of the two language constructs are designed in the style
of modern object-oriented programming languages.

Language Construct Interfaces (Experiment Group A) The feature syntax
in the language construct Interfaces only describes the protocol consisting of
the set of operations [97] [28] a structure has to implement. Therefore, it
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consists only of derived and/or rule declarations. In order to use a feature,
the keyword implement has to be used to extend the current structure. Listing
7.4 depicts an example specification with the Interface language construct7. This
syntax is primarily influenced by the Java programming language [126] interface
syntax.

Language Construct Traits (Experiment Group B) The feature syntax in the
language construct Traits is equal to Interfaces except that it supports defi-

7See form_ifaces.pdf at [122].

1 feature Formatting = {
2 derived toString : -> String
3 }
4
5 structure Person implement Formatting = {
6 function name : -> String
7 function age : -> Integer
8
9

10
11 derived getName -> String = this.name
12 derived getAge -> Integer = this.age
13
14 rule setName( name : String ) = this.name := name
15 rule setAge( age : Integer ) = this.age := age
16
17
18
19 // encapusalted feature implementation
20 derived toString -> String =
21 this.getName () + ( this.getAge () as String )
22 }

Listing 7.4: Interfaces-Based Example Specification

1 feature Formatting = {
2 derived toString -> String
3 }
4
5 structure Person = {
6 function name : -> String
7 function age : -> Integer
8 }
9

10 implement Person = {
11 derived getName -> String = this.name
12 derived getAge -> Integer = this.age
13
14 rule setName( name : String ) = this.name := name
15 rule setAge( age : Integer ) = this.age := age
16 }
17
18 // decoupled feature implementation
19 implement Formatting for Person = {
20 derived toString -> String =
21 this.getName () + ( this.getAge () as String )
22 }

Listing 7.5: Traits-Based Example Specification
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nition of optional default implementations inside the feature definition itself.
A structure only contains the state information. The behavior in the Traits
abstraction is implemented through two different kinds of separated implement

definitions: (1) describes the behavior of the structure; (2) describes the behav-
ior of a certain feature for a structure. It is important to note here that a
default implementation provided in the feature syntax can be overwritten in
the implement definition. Listing 7.5 depicts an example specification with the
Traits language construct8. This feature and implement syntax is influenced
by the Rust programming language [101] trait syntax9.

Related Studies

So far, interfaces and traits have mainly been studied in the context of programming
languages and mainly by proposing new solutions. A small number of empirical
studies exists in this field which are mainly case studies. For instance, Murphy-Hill et
al. present a case study on the potential of traits to reduce code duplication [108].
However, so far no study comparing the two language constructs interfaces and traits
covered in our study exists and also no controlled experiments.

Interface abstractions have been extensively studied in the context of formal
methods [33] [41] [31] and architecture description languages that offer formal repre-
sentations [112] [59]. Traits in contrast have not yet been studied in the context of
formal methods. We are not aware of any formal method that unifies or integrates
the two object-oriented language constructs covered in our study.

Overall formal methods have been studied before in only a few empirical studies
other than case studies. An example of the few existing studies is the one by Sobel
and Clarkson, who study the aiding effect of first-order logic formalisms in software
development [145]. Czepa and Zdun [40] and Czepa et al. [39] have studied the
understandability of formal methods for temporal property specification using similar
research methods as used in this study.

Snook and Harrison [144] performed structured interviews with formal method
users asking them about scalability, understandability, and tool support issues. A
very interesting aspect of this study is that the participants report that “the precise
and accurate nature of the specification makes the coding task straightforward and
the coder is less likely to build in redundant code.” [144]. Another interesting finding
in this study is that the “interviewees thought that the difficulties with using formal
specifications were in finding the useful abstractions from which to create models.” [144].
Snook and Harrison [144] argue that the problem behind the interviewees statement is
that programming languages mainly focus on structural aspects first whereas formal
methods focus on behavioral aspects.

8See form_traits.pdf at [122].
9See https://doc.rust-lang.org/rust-by-example/trait.html for Rust’s trait syntax.
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We are not aware of any empirical study systematically investigating object-
oriented language constructs in the context of state-based formal methods. Only,
in our own prior work we conducted a study [119] with 105 participants where we
analyzed how well experiment participants understand given ASM specifications which
are represented in three different language constructs – interfaces, mixins, and traits.
The results of this experiment showed that the object-oriented abstractions interfaces
and traits are better understandable than mixins.

7.3 Experiment Planning

This study is structured following the guidelines by Jedlitschka et al. [77] on how
empirical research shall be conducted and reported in software engineering. Moreover,
the guidelines by Kitchenham et al. [82], Wohlin et al. [158], and Juristo and Moreno
[80] for empirical research in software engineering were used in our study design.

For the statistical evaluation of the acquired data we considered and applied the
robust statistical method guidelines for empirical software engineering by Kitchenham
et al. [81].

Goals

The goal of this experiment is to measure the construct specification ef-
fectiveness and efficiency on how well and fast a participant understands a given
problem provided as informal textual description and expresses an ASM specification
as textual representation using one of the two different language constructs,
namely Interfaces and Traits. The quality focus of the construct specification effec-
tiveness and efficiency is the correctness and duration of the participant’s modeled
ASM specification solution.

Context and Design

This study reports on a controlled experiment with 98 participants* in total to
study the specification effectiveness and efficiency of the language constructs interfaces
and traits in the context of ASMs. We used a completely randomized design*
with one alternative per experimental group, which is appropriate for the stated goal.
Through this, we tried to avoid learning effects of the participants and experimenter
bias in the assignment of the groups. The statistical evaluation technique is based
on measuring how well a participant understands a given problem by specifying an
appropriate solution written as textual representation in an ASM language.

Participants

All 98 participants of the experiment are BSc students of the Faculty of Computer
Science at the University of Vienna, Austria enrolled in the course Software Engineering
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2 (SE2)10 in the winter term 2018/19. The BSc students enrolled in the SE2 course
are used as proxies for novice to moderately advanced software architects, designers,
or developers. This course, which is a mandatory part of the BSc curricula at the
University of Vienna, is intended for students in the fourth semester of the BSc
curricula. The content of this course is about teaching principles of the construction
and design of software systems, investigating different methods and tools, design
patterns, programming styles, and how to tackle non-functional requirements. The
participants (students) received training in programming, software engineering, (data)
modeling, basic formal methods, algorithms, and mathematics in previous courses.

At the beginning of the SE2 course, the students were informed that during the
semester there will be an opportunity to participate in an experiment. The attendance
of the experiment was optional, and the submitted solutions (filled out survey forms)
were rewarded with up to 6 bonus points. There was the option to receive the 6 bonus
points by performing the tasks, but not participate in the experiment (opt out option).
How well (correctness, see Section 7.5) a participant answered the survey determined
the bonus points. In total, there were 98 participants, which were randomly allocated
to the treatments (using one of the two language construct representations in an ASM
specification language, see Section 7.2). Due to random assignment of the participants
to groups – Interfaces (Group A) and Traits (Group B) – the final distribution
resulted in 49 : 49. Some may argue that students as experiment participants are
not good proxies for novice software engineers. The experiment participants are
students of an advanced course (SE2) at the University of Vienna, which trained the
students in abstractions needed for the experiment task domain, and were trained
in basic formal methods in prior courses. Easy to understand formalisms are key to
correct specifications in practice. We expect advanced students to be good proxies for
inexperienced developers and architects.

In this study, we do not focus on well trained experts as they are usually also
much better trained in formalisms, because the goal of the study is not to focus on
techniques that can only be applied by a few very well trained experts. Furthermore,
according to Kitchenham et al. [82] using students “is not a major issue as long
as you are interested in evaluating the use of a technique by novice or nonexpert
software engineers. Students are the next generation of software professionals and,
so, are relatively close to the population of interest”. This is directly reflected in this
study because some of the students who participated in the experiment show several
years of programming experience as well as several years of work experience in the
software and/or hardware industry (see Figure 7.2d). Other studies by Svahnberg
et al. [151] or Salman et al. [132] would argue even further and state that under
certain circumstances, students are valid representatives for professionals in empirical
software engineering experiments.

10See https://ufind.univie.ac.at/en/course.html?lv=051050&semester=2018W for SE2.
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Material and Tasks

The experiment is based on a selection of basic software system applications. The
selection includes a Calculator System, an Event Scheduling/Pooling System, and a
Traffic Control System as example applications inspired by some examples provided
by Börger and Raschke [25].

The Calculator System example focuses on the aspect on the decomposition of
states and behaviors of a client-server application by defining and reusing a message-
based interface or trait between them.

In the Event Scheduling/Pooling System example a participant shall express the
use of abstract behavior by using interface-based or trait-based parameters (behavioral
typed parameters) to separate the event scheduling from the event execution behavior.

The Traffic Control System example focuses expressing, mixing, and reusing
multiple behaviors to form and compose certain structural state properties. Therefore,
the key aspect in this example application is to detect which behavior can be expressed
through a proper interface or trait and can be combined to achieve certain structural
state property.

The principles and concepts to comprehend the given example system applications
are related to the subjects taught in the SE2 course. This study consists of two major
experiment material artifacts:

(1) Information Sheet An experiment information document11 explaining the ASM
language syntax and semantics without the experiments’ language con-
struct syntax and semantics extensions.

(2) Survey Form Two experiment survey forms12 per experimental group and lan-
guage construct containing the actual survey along with the explicit experi-
ments’ language construct syntax and semantics extension and description
per experimental group.

The two experiment survey forms are structured the same way consisting of four
parts: (1) a participant background information questionnaire; (2) the experimental
group language construct syntax and semantics extension description; (3) three
experiment tasks (equal to all experiment groups); and (4) an overall experiment
questionnaire at the end. Each experiment task is divided into three sections:

(1) Informal Description of a selected software system application as an informal
textual representation. The students (participants) were instructed to read and
understand the given informally described software system application before*
they start to process the next section of the experiment task.

11See info.pdf at [122].
12See form_ifaces.pdf and form_traits.pdf at [122].
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(2) Formal Specification is an open question field where the participants were
instructed to write down the corresponding ASM specification for the given
informally described software system application by using the experimental
group assigned language construct syntax extension for the ASM language.

(3) Self Assessment is a questionnaire used to obtain a perspective of the partici-
pants’ self assessment of how correct their answers are with a certain level of
confidence.

Important is that all task sections are identical for both experiment groups, since
only in the participants’ written solution a difference is visible due to the different
assigned treatment (language construct) in the modeled ASM specification.

Variables

The independent variables (factors) for this controlled experiment have two treatments,
namely the two different representations of the language constructs Interfaces and
Traits. The dependent variables of this study are measured through:

(1) Correctness The specification effectiveness (correctness) is derived from the
participants’ modeled ASM specification and examined through evaluation
criteria by analyzing structural, behavioral, reusable, functional, and syntax
properties.

The precise description on how the correctness is computed is given in Section 7.5.

(2) Duration The specification efficiency (duration) is the time it took the partic-
ipants to comprehend the informal specification (stimuli) and model a corre-
sponding ASM specification by using one of the two object-oriented abstractions.
Important to note here is that the measurement of the duration variable only
includes the processing time (reading, comprehending, and writing) and excludes
breaks (see Section 7.3).

Hypotheses

We hypothesized that Traits are easier to comprehend than Interfaces due to the fact
that Traits have the ability to avoid code duplication and clearer separation of state
and behavioral aspects by having almost equal API declaration styles as Interfaces.
Consequently, as suggested by Wohlin et al. [158] we formulate the following null
hypotheses, where specification effectiveness is measured by the correctness variable
and specification efficiency is measured by the duration variable:

H0,1 The specification effectiveness shows no significant difference (similar perfor-
mance) for Interfaces compared to Traits.
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H0,2 The specification efficiency shows no significant difference (similar performance)
for Interfaces compared to Traits.

From the null hypotheses above we can derived and formulate the following
alternative hypotheses, for this controlled experiment:

HA,1 The specification effectiveness shows a significant difference (better performance)
for Traits compared to Interfaces.

HA,2 The specification efficiency shows a significant difference (better performance)
for Traits compared to Interfaces.

7.4 Experiment Execution

This experiment was executed in two steps – a preparation and a procedure phase.

Preparation

Two weeks before the experiment we handed out the preparation material (the
experiment information sheet, see Section 7.3) through an e-learning platform13.
This document provided general information of the upcoming experiment and an
introduction to the ASM language syntax and semantics used without explaining one
of the two language constructs. All ASM language concepts used are depicted with
short example ASM specification snippets. The participants were allowed to use this
document during the experiment in printed form. The main reason why we provided
the experiment information document is that all participants needed to be educated
to the same level of detail with regard to a state-based formal method and specifically
to a concrete ASM language representation (see Section 7.2).

Procedure

The experiment was carried out using paper and pencil, as if it were an (closed book)
exam. Participants were allowed to bring only one aid – the information sheet – to
process the experiment survey form as described in the previous Section 7.4. At the
beginning of the experiment, every participant received a random experiment survey
form (see Section 7.3). They were instructed to fill out and process the survey from
the first page to the last page in this particular order. Furthermore, a clock with
seconds granularity was projected onto a wall to provide timestamp information to
the participants. They were asked to track start and stop timestamps during the
processing of the experiment tasks. After the experiment every participants’ modeled
ASM specification was examined through a list of evaluation criteria (see Section 7.5)
and the results of the examination was recorded in a spreadsheet. The participants’
task start and stop timestamps were converted to a duration in seconds and summed

13See https://moodle.org for e-learning platform information.
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up to a total duration for all tasks. We used the four-eyes principle during every
manual work step (answer obtaining and timestamp conversion) in the data collection.
The experiment execution and data collection were performed as described in this
section and we have not observed any form of deviations or unforeseen difficulties.

7.5 Analysis

All statistical analysis was performed with the software tool R14. The analysis pro-
cesses15 contain the following steps: (1) load the prepared data-set from Section 7.5;
(2) calculate the descriptive statistics for the dependent variables which are explained
in detail in Section 7.5; (3) perform a group-by-group comparison with appropriate
statistical hypotheses tests which are explained in detail in Section 7.5; (4) generate
table/plot information in order to include this information in this chapter. In order
to reproduce the analysis results, some R library package dependencies have to be
installed16.

Data-Set Preparation

The raw data17 collected during the experiment execution phase (see Section 7.4) was
prepared18 in the following manner: (1) the obtained LibreOffice ODS file [114] was
exported to a CSV file [138]; (2) the CSV file was imported for further processing; (3)
type castings of several data rows were performed; (4) the calculation of task-based and
overall Duration times; (5) the calculation of task-based and overall Correctness
values; and (6) stored as an RDS file [127] for further processing and analysis.

The calculation of the Correctness value is composed out of a check list of yes-and-
no statements19 for all the different tasks in the experiment survey forms (see Section
7.3). This list of yes-and-no statements was derived before the experiment execution by
specifying ground truth models for both object-oriented language abstractions variants
– interfaces and traits – of the informal described experiments’ example software
application systems. In order to enable a flexible way to compare the participants’
solutions from the experiment, the obtained list of yes-and-no statements reflects
generic properties the provided and specified models by the participants shall contain.
The yes-and-no statements are grouped into five evaluation criteria (categories) –
structure, behavior, syntax, reusability, and functionality. The following list depicts
for each of the evaluation criteria an example yes-and-no statement:

14See https://www.r-project.org for version 3.5.2.
15See analyze.r at [122].
16See install.r at [122].
17In order to enable reproducability of our results, the data-set (README.ods) is made public in

the long term open data archive Zenodo [122] together with all documents and R scripts.
18See prepare.r at [122].
19See README.ods for the complete list of the yes-and-no statements along with the collected data

for all participants at [122].
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Table 7.1: Number of Yes-and-No Statements per Evaluation Criteria and Tasks

Evaluation Criteria Task 1 Task 2 Task 3 All Tasks
Structure 4 3 5 12
Behavior 4 3 5 12

Syntax 5 5 7 17
Reusability 4 4 6 14

Functionality 4 2 4 10
Total 21 17 27 65

(1) Structure Did the participant specify certain structural elements? An example
structural evaluation criteria statement for Task 120 is defined as follows: “Proxy
structure defined”?

(2) Behavior Did the participant specify certain behavioral elements? An example
behavioral evaluation criteria statement for Task 120 is defined as follows: “Client
implemented default behavior”?

(3) Syntax Did the participant use the correct language construct syntax for the
assigned treatment? An example syntactical evaluation criteria statement for
Task 120 is defined as follows: “Server valid abstraction syntax”?

(4) Reusability Did the participant recognized reusable elements and did (s)he spec-
ify it through the correct language construct syntax for the assigned treatment?
An example reusable evaluation criteria statement for Task 120 is defined as
follows: “Operations implemented for Proxy”?

(5) Functionality Did the participant specify certain functionalities? An exam-
ple functional evaluation criteria statement for Task 120 is defined as follows:
“Message provides unique identification”?

In total there exist 65 yes-and-no statements per experiment participant. By
accumulating the percentage value of all yes-and-no statements a total of 100%

correctness21 can be achieved. Table 7.1 depicts the number of yes-and-no statements
in total and the dissection per evaluation criteria and tasks.

Descriptive Statistics

Background Information: The participants’ experience and characteristics are
captured in the experiment through eight parameters22 and the results indicate that
overall, the random distribution of the participants to the experiment groups is almost
balanced. The participants’ age (see Figure 7.2a) shows a similar distribution for both
groups with a peak around 23 years. The programming experience of the participants
measured in years (see Figure 7.2b) indicate that the interfaces group has a more than

20See form_ifaces.pdf or form_traits.pdf for description of Task 1 at [122].
21See prepare.r Line 97-250 at [122] for a detailed formula.
22See appendix.pdf at [122] for more detailed supplementary background information.
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twice higher density around 3 years of experience in programming compared to the
traits group which has its peak around 2.5. This is the only background information
parameter showing a slightly unbalanced distribution and indicates that the general
programming experience level is higher in the interfaces experiment group. This
discrepancy is attributed to the randomized distribution of the experiment survey to
the participants.

In contrast to the programming experience, the distribution of the participants’
specification (modeling) experience measured by years (see Figure 7.2c) is quite similar
for both groups with a peak at 2 years. Since our participants are students, the peak
of the software (SW) and hardware (HW) industry experience measured in years (see
Figure 7.2d) is at zero years, but a number of students show a similar level of industry
experience between 1 to 3 years.

The experiment total ratio between female and male participants is 37 (37.76%)
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Figure 7.2: Descriptive Plots per Group of Participants’ Background Information

112



7.5. ANALYSIS

Table 7.2: Participants’ Gender

Gender Interfaces Traits
Female 20 17

Male 29 32

Table 7.3: Participants’ Level of Education
Education Interfaces Traits

None 42 45
BSc 7 4

Table 7.4: Participants’ Programming Language Knowledge
Language Interfaces Traits

Java 49 49
Cpp 46 48
PHP 41 39

C 13 17
Scala 11 16
Swift 7 3

Assembler 3 5
Basic 2 3

Fortran 2 2
Rust 1 0

Kotlin 0 3
Haskell 0 2

Table 7.5: Participants’ Prior Knowledge of Formal Methods
Interfaces Traits

5 4

: 61 (62.24%). The interfaces group has 20 (40.82%) female and 29 (59.18%) male
participants and the traits groups has 17 (34.69%) female and 32 (65.31%) male
participants.

From the perspective of prior computer science education (see Table 7.3) only 11

(11.22%) students have a previous BSc degree and the other 87 (88.78%) participants
are undergraduates. The numbers are quite comparable in the two experiment groups.
All participants (100%) are familiar with Java and 94 (95.92%) participants – 46

(93.88%) interfaces group and 48 (97.96%) traits group – are familiar with C++. That
means the interface abstraction should be more than familiar to both experimental
groups. We can further observe languages offering traits, besides the programming
language PHP (total 80 (81.63%) – interfaces group 41 (83.67%) and traits group
39 (79.59%)), are rather underrepresented in both experimental groups. This is the
case for the programming languages Scala (total 27 (27.55%) – interfaces group 11

(22.45%) and traits group 16 (32.65%)), Swift23 (total 10 (10.20%) – interfaces group
7 (14.29%) and traits group 3 (6.12%)), and Rust where only one of all participants
(interfaces group 2.04%) is familiar with the language.

23Swift has implemented traits through the protocol extension syntax. See, e.g. https://docs.
swift.org/swift-book/LanguageGuide/Extensions.html.
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A very important parameter of the background information is if there are partici-
pants which have a prior knowledge of formal methods (see Table 7.5). Accordingly to
the obtained results, only 9 participants (9.18%) in total – interfaces group 5 (10.20%)

and traits group 4 (8.16%) – have stated that they have prior knowledge in a formal
method.

Dependent Variable Correctness: Table 7.6 contains the number of observa-
tions, central tendency measures, and dispersion measures per language construct for
the dependent variable Correctness24 and this acquired data is visualized as a kernel
density plot in Figure 7.3a and a box plot in Figure 7.3b. In the box plot we can
observe that the median of the Interfaces group is almost at the lower quartile value
of the Traits group. There is one outlier in the Interfaces group which performed very
well.

The distribution of the Interfaces group is left skewed whereas the Traits group is
right skewed. The Traits group has no outlier at all. According to the kernel density

24Unit is correctness rate between 0.0 and 1.0 (denoted [1]).
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Figure 7.3: Descriptive Plots per Group of Correctness
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Table 7.6: Descriptive Statistics per Group of Correctness

Interfaces Traits
Number of observations [1] 49 49

Mean [1] 0.2585 0.3283
Standard deviation [1] 0.1624 0.1370

Median [1] 0.2206 0.3389
Median abs. deviation [1] 0.1673 0.1737

Minimum [1] 0.0000 0.1044
Maximum [1] 0.7678 0.6059

Skew [1] 0.7353 0.0061
Kurtosis [1] 0.4169 -1.1433

Shapiro-Wilk Test p [1] 0.0437 0.0421

Table 7.7: Hypothesis Tests per Group Combination of Correctness
Interfaces
vs. Traits

Cliff’s δ 0.2932
sδ 0.1109
vδ 0.0123
zδ 2.6449

CIlow 0.0635
CIhigh 0.4934

P (X > Y ) 0.3528
P (X = Y ) 0.0012
P (X < Y ) 0.6460

p 0.0095
pFDR 0.0191

Effect Size small

plot, the data does not appear to be normally distributed, and both distributions look
different, which implies unequal variances and both distributions have two peaks as
well. The Interfaces group has one peak at 0.16 and another one at 0.37 whereas the
Traits group has one peak at 0.17 and another one at 0.41.

Dependent Variable Duration: Table 7.8 contains the number of observations,
central tendency measures, and dispersion measures per language construct for the
dependent variable Duration25 and this acquired data is visualized as a kernel density
plot in Figure 7.4a and a box plot in Figure 7.4b. In the box plot we can observe that
for both groups the median is almost the same (Interfaces at 3935 and Traits at 3980),
but the lower and upper quantiles of the Traits group indicate a wider distribution
which is reflected in Figure 7.4a. The latter shows the data does not appear to be
normally distributed for the Interfaces group and almost for the Traits group, and
the two distributions look different, which implies unequal variances. The Interfaces
group has its peak at 3950 seconds and the Traits group has its peak at 4000 seconds.
Moreover, the box plot shows three outliers for the Interfaces group – two participants
which processed the experiment (survey form) really fast and one participant who

25Unit is duration in seconds (denoted [s]).
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processed it really slow.

Hypothesis Testing

Due to the presence of two experiment groups and two dependent variables, the
MANOVA [21] would be a suitable statistical procedure, but necessary assumptions
must be met to apply this method. The investigation of the kernel density plots –
Figure 7.3a for Correctness and Figure 7.4a for Duration – indicates that not all
distributions of the experiment groups are normally distributed, which the MANOVA
would need in order to be applied. We applied the Shapiro-Wilk normality test [139]
(last row in Table 7.6 and Table 7.8) and for both groups (Interfaces and Traits) for
the dependent variable Correctness shows a significant (p ≤ 0.05) difference to the
normal distribution, which would make MANOVA not suitable for Correctness but
suitable for Duration. To finally conclude that the MANOVA method cannot be
applied, we visually inspected the normal Q-Q plots for both dependent variables,
which are depicted in Figure 7.3c for Correctness and Figure 7.4c for Duration.
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Table 7.8: Descriptive Statistics per Group of Duration

Interfaces Traits
Number of observations [1] 49 49

Mean [s] 3937.96 3997.45
Standard deviation [s] 1060.92 960.31

Median [s] 3935.00 3980.00
Median abs. deviation [s] 794.67 1086.75

Minimum [s] 1260.00 2002.00
Maximum [s] 6467.00 5833.00

Skew [1] -0.2517 0.0730
Kurtosis [1] 0.2615 -0.9831

Shapiro-Wilk Test p [1] 0.4969 0.4108

Table 7.9: Hypothesis Tests per Group Combination of Duration
Interfaces
vs. Traits

Cliff’s δ 0.0217
sδ 0.1179
vδ 0.0139
zδ 0.1837

CIlow -0.2074
CIhigh 0.2484

P (X > Y ) 0.4890
P (X = Y ) 0.0004
P (X < Y ) 0.5106

p 0.8547
pFDR 0.8546

Effect Size negligible

All distribution plots indicate that the linearity assumption is not met and the power
of the test might be affected. Thus we ruled out multivariate and parametric testing
because it could lead to unreliable results.

Instead, we selected a non-parametric testing method. When we considered our
acquired data, according to Kitchenham et al. [81], we cannot use the Kruskal-Wallis
test [85] because it is strongly affected by unequal variances. Therefore, we select a
robust non-parametric test called Cliff’s δ [34]. This testing method is unaffected by
non-normal data, change in distribution, and (possible) unstable variance.

The results of the Cliff’s δ test is shown in Table 7.7 for the dependent variable
Correctness and in Table 7.9 for the dependent variable Duration. Due to the fact
that we applied this hypothesis test two times, we are required to lower the significance
level in order to avoid Type I errors, which is about not detecting an effect that is
not present. A suitable approach would be to apply the Bonferroni correction [46],
which suggests to lower the current significance level α = 0.05 divided by the times
a certain test was applied (n = 2), which would result into α′ = α

n = 0.05
2 = 0.025.

Unfortunately, this significance level correction is known to increase Type II errors,
which is about not detecting an effect that is present. Therefore, we choose a more
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robust correction method which does not increase Type II errors, namely the FDR
adjusted p-values [14]. According to the FDR adjusted p-values (pFDR) in Table 7.7
and Table 7.9, there is evidence to reject one of the hypotheses of this study (see
Section 7.3). For the dependent variable Correctness we found evidence of a better
specification effectiveness of expressing structural, behavioral, syntactical, reusable,
and functional aspects through ASM specifications from a given informal description
of software system applications. The test results on Correctness are significant with
a small effect size magnitude [81] for the comparison of Interfaces and Traits, which
suggests to reject H0,1 and to accept HA,1. For the dependent variable Duration
the null hypothesis H0,2 cannot be rejected as the test results are not significant.
Therefore, the alternative hypothesis HA,2 cannot be accepted.

7.6 Discussion

This section covers the evaluation, implications, threats to validity, inferences, and
relevance to practice.

Evaluation of Results and Implications

The descriptive statistics do directly favor one of the language constructs, because by
looking at the dependent variable Correctness, Traits performs better than Interfaces.
The median of the Correctness variable is for language construct Interfaces 22.06%

and Traits 33.89%. Due to the fact that all participants have almost no prior knowledge
(< 10%) of ASMs and formal methods in general (checked by an informational question
in the survey, see Section 7.5), a median for the specification effectiveness (correctness)
between 22% to 34% can be considered a rather good result in this study. For the
Duration descriptive statistical results, Interfaces and Traits seem to have a similar
distribution. The median of the Duration variable is for language construct Interfaces
3935s (1h 5min 35s) and Traits 3980s (1h 6min 20s), which are good results in the
scope of the processed survey and the achieved Correctness results with a limited
experiment time of 120min (2h). Note that the highest participant duration was
6467s (1h 47min 47s).

In the inferential statistics Traits show a significantly better performance than
Interfaces in terms of Correctness (specification effectiveness). This significance
implies that for the ASM language user (novice software developer or designer) it is
easier and more effective to express informal descriptions and their properties with
Trait-based ASM specifications rather than with Interface-based ASM specifications.

In order to explain and gain more details about the better Correctness results for
the Traits group compared to the Interfaces group, we have dissected the correctness
to the five evaluation criteria (see Section 7.5) and analyzed them individually.

The structural correctness (see Figure 7.5a) value shows a density about twice
as high for the Traits group with a peak correctness value for both groups around
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Figure 7.5: Descriptive Plots per Group of Correctness and Self Assessment
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Table 7.10: Correlation per Group of Correctness to Duration

Interfaces Traits
Spearman’s ρ 0.4980 0.5596

Pearson’s r 0.4374 0.5584

61%. The distribution of the behavioral correctness (see Figure 7.5b) depicts that
the participants of the Traits group performed much better (peak around 50%) in
specifying behavioral aspects in the provided ASM specification solution compared
to the Interfaces group (peak around 7.5%). It is interesting that the results on the
reusability properties (see Figure 7.5c) of the specified ASM specifications performed
only slightly better for the Traits group. This indicates, together with the low
correctness values, that the participants had problems to detect possible interfaces
inside the informal descriptions of the software system applications.

The distributions of the functionality correctness (Figure 7.5d) show that a large
number of participants of the Interfaces group were not able to express functionalities
very well. The Traits group, in contrast, shows a very stretched distribution from 0%

up to 65%. Apparently the participants were able to express (non object-oriented
related) functionalities better through the Traits-based ASM syntax extension. Figure
7.5e compares syntactical correctness results. We can observe that both groups’
distribution have two peaks – 7% and 35% for the Interfaces group, and 21% and 45%

for the Traits group.

The kernel density plot for the participants’ self assessment is depicted in Figure
7.5f. The self assessment was measured by calculating the difference between the
actual Correctness value and the participants Confidence value that a certain
solution to a task they worked on was correct. A self assessment value ≤ 0 means
the participant overestimated and ≥ 0 means the participant underestimated the
Correctness of the given experiment answers. Both experiment groups show almost
a similar self assessment with its peak in the underestimated section. This implies
that both object-oriented abstractions show a similar participants’ self assessment
regarding their Confidence in the Correctness of their given solutions.

Studying the scatter plot (Figure 7.6), Spearman’s rank correlation, and Pearson
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Figure 7.6: Scatter Plot per Group of Variables Correctness to Duration
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product-moment correlation (Table 7.10) of the two dependent variables Correctness
and Duration, we cannot observe a clear (linear nor a non-linear) monotonic trend
that the dependent variables are strongly correlated somehow.

As described in Section 7.3 we also asked the participants to fill in a post experiment
questionnaire where they could provide us answers using six Likert-scale [95] questions
(Qn) with five possible answers: (1) strongly agree, (2) agree, (3) neutral, (4) disagree,
(5) strongly disagree. The questions and their corresponding results are:

Q1 “Every given specification was easy to read and understand.” According to the
obtained answers (see Table 7.11a), the perceived difficulty was almost equal.
This means that most of the participants in both groups agree that the provided
informal descriptions of the software system applications were easily understood.

Q2 “I had no trouble to specify structural elements of the given informal specifica-
tions.” The results in Table 7.11b show that for the Traits group 17 (34.69%)

participants rank their expressing of structural properties neutral. Among the
other participants, one half tends to strongly agree and the other half to strongly
disagree. The Interfaces group answers of Q2 are more split with the two biggest
groups saying they agree and the other one disagrees.

Q3 “I had no trouble to specify behavioral elements of the given informal specifications.”
The answers of this question (see Table 7.11c) reflect that in both language
construct groups the participants had more or less troubles to express behavioral
properties, but the results of the behavioral correctness (see Figure 7.5b) show
clearly that the Traits group performed way better than the Interfaces group.

Q4 “I had no trouble to specify functionality extensions for the given informal specifi-
cations.” Similar to the answers of Q3, Table 7.11d shows that the participants
of the Traits group perceived that they had troubles to express functionality
extensions (reusable protocol and behavioral properties) but the results for the
correctness values of reusability (see Figure 7.5c) indicate that the Interfaces
group performed worse than the Traits group.

Q5 “I am familiar with the language concept called Interfaces.” Accordingly to the
participants’ background information (see Table 7.4), 100% of them know Java
which is more or less reflected in the results to this question (see Table 7.11e),
where we asked the participants if they are familiar with the language construct
interfaces.

Q6 “I am familiar with the language concept called Traits.” In contrast to Q5, the
results of this question (see Table 7.11f) are surprising, because more participants
of the Interfaces group know the language concept traits compared to the Traits
experimental group itself. So seemingly the good results for traits have been
achieved, even though more knowledge on traits was present in the interfaces
group.

121



7.6. DISCUSSION

Table 7.11: Questionnaire Results Qn

(a) Results of Q1 (Stimuli)

Q1 Interfaces Traits
strongly agree 4 4

agree 20 19
neutral 13 14

disagree 10 8
strongly disagree 2 4

(b) Results of Q2 (Structural)

Q2 Interfaces Traits
strongly agree 2 4

agree 17 10
neutral 11 17

disagree 18 10
strongly disagree 1 8

(c) Results of Q3 (Behavioral)

Q3 Interfaces Traits
strongly agree 1 2

agree 9 5
neutral 11 7

disagree 21 22
strongly disagree 7 13

(d) Results of Q4 (Functionality)

Q4 Interfaces Traits
strongly agree 1 1

agree 8 2
neutral 10 16

disagree 23 15
strongly disagree 7 15

(e) Results of Q5 (Interfaces)

Q5 Interfaces Traits
strongly agree 15 15

agree 22 24
neutral 6 6

disagree 5 1
strongly disagree 1 3

(f) Results of Q6 (Traits)

Q6 Interfaces Traits
strongly agree 2 1

agree 7 5
neutral 3 5

disagree 21 16
strongly disagree 16 22
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In summary, the post experiment questionnaire shows that the participants believe
they understood the constructs to be used reasonably well, and as expected interfaces
are better known than traits before the experiment. In this light, our results indicating
better results for traits are even more remarkable. It would be interesting to further
study how the results would change, if participants would receive training of traits
before the experiment.

Exploration of Moderating Variables

To increase the value of our findings and the resulting conclusions we investigated and
explored the following moderating variables – subject, experience, and gender.
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Figure 7.7: Descriptive Plots per Group of Overall and per Tasks Correctness
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Moderating Variable Subject

For this moderating variable, we are interested to analyze the participants’ task-based
performance and if such increases or decreases. In order to obtain such results, we
first investigated if there is a difference in the processing time. Due to the experiment
design (see Section 7.3), we are able to divide the dependent variable duration into
two parts – comprehend (reading/understanding) and specify (modeling/writing).

Figure 7.7a depicts the comprehend duration for all tasks whereas Figure 7.8a
depicts the specify duration for all tasks. We can observe from those two kernel density
plots that the participants spent more time on the actual specifying process than
reading and comprehending the informal specification of the given tasks. For both
experimental groups the distribution looks very similar. The comprehend and specify
duration can be further analyzed for each task. The comprehend duration has a very
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similar distribution for all three tasks26. For the specify duration we can observe
a decreasing effect for the processing time which is visualized for Task 1 at Figure
7.8b, for Task 2 at Figure 7.8c, and for Task 3 at Figure 7.8d. This slight decreasing
effect of the specify duration can have two origins. Either the participants experience
experimental fatigue [130] or a maturation effect [137] took place. In order to analyze
those effects we dissected the dependent variable correctness for each task – Task 1 at
Figure 7.7b, Task 2 at Figure 7.7c, and Task 3 at Figure 7.7d. We can observe that
the traits group performs significantly better for Task 1 and Task 2 compared to the
interfaces group. Despite the shorter specify duration (processing time) in Task 2 the
correctness and therefore the participants’ performance does not degrade at all. But
for Task 3 we can detect a complete drop of the participants’ performance for both
experimental groups which is the result of experimental fatigue.

26See appendix.pdf at [122] for comprehend duration per task plots.
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Figure 7.9: Descriptive Plots per Group of Correctness by Less/More Experience
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Moderating Variable Experience

In order to analyze the moderating variable experience we need to determine a
classification to separate the obtained experiment samples. Due to the collected
background information we can separately analyze a participants’ performance in
terms of correctness by programming and specifying experience. Therefore, we derive
two classifications – less experience and more experience.

We choose a threshold of 3.25 years in programming experience27 which results into
an exactly equal interfaces to traits sample size ratio for less of 28 : 28 and for more of
21 : 21. Moreover, we defined that a participant has less specifying experience if years
<= 2.5. From this it follows that a participant gets classified as more experienced if
the years > 2.5. This threshold separates the specifying experience28 with an exactly
equal interfaces to traits sample size ratio for less of 32 : 32 and for more of 17 : 17.

The kernel density plots for programming experience – less in Figure 7.9a and
more in Figure 7.9c – as well as the specifying experience – less in Figure 7.9b and
more in Figure 7.9d – indicate in all distributions the traits group is performing far
better than the interfaces group independently of the classification of their experience.
Notable to mention here is that the programming and specifying distributions of the
more experienced participants achieved a high dense correctness value around 0.4.
The latter is an indicator why the traits group is performing better in the overall
correctness value despite the number of more experienced participants is lower than
the number of less experienced participants.

27Abbreviated in Figure 7.9a and Figure 7.9c as “Prog. Exp.”.
28Abbreviated in Figure 7.9b and Figure 7.9d as “Spec. Exp.”.

0.0 0.2 0.4 0.6 0.8 1.0

0
1
2
3
4

D
en

si
ty

Correctness [1]
Interfaces
Traits

(a) Kernel Density Plot of Female Correctness

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

D
en

si
ty

Correctness [1]
Interfaces
Traits

(b) Kernel Density Plot of Male Correctness

Figure 7.10: Descriptive Plots per Group of Correctness by Gender
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Moderating Variable Gender

With the moderating variable gender we will determine an indicator if one of the
experimental treatments does perform in terms of correctness better for a certain
gender. According to the obtained participants’ background information (see Section
7.2) the traits to interfaces sample size ratio for females is 20 : 17 and for males is
29 : 32. Since theses numbers are almost equal within a gender we analyzed for each
gender the correctness distributions. Figure 7.10a depicts the kernel density plot for
the female correctness whereas Figure 7.10b depicts the kernel density plot for the
male correctness. For both gender the traits group performs slightly better than the
interfaces group.

Furthermore, we can observe in Figure 7.10a and Figure 7.10b that the participants
in this controlled experiment show a clear difference in the performance in terms
of correctness depending on the gender. Gren [61] mentions that if there are clear
differences in an empirical study based on gender, a proper investigation has to be
done to elaborate such effect. By comparing the gender results with the data of the
experience reveals that one possible explanation for the less correct results of the
female group can be attributed to lower prior programming experience in the female
group compared to the male group.

Threats to Internal Validity

During the experiment, we did not observe any disturbing environmental events or
history effects. Due to the total (limited) time of 120 minutes of the experiment,
the chances for maturation (carry-over) effects [137] and experimental fatigue [130]
were limited. Furthermore, as every participant is only tested once, learning effects
can be ruled out. Every participant was able to score the same amount of points
and we graded all groups with the same procedures to rule out instrumental bias.
Selection bias was limited due to the random assignment of participants to groups.
We cannot rule out cross-contamination between the groups as a potential threat to
internal validity because the participants are computer science students and share
the same social group and interact outside of the research process as well. We have
not observed any demoralization or compensatory rivalry. All participants are graded
based on their correctness value in the processed survey by gaining points for their
enrolled course (but had an opt out option, as explained in Section 7.3).

Threats to External Validity

A possible threat to external validity is that we carried out the experiment with
students as participants because this limits the ability to make generalizations. In
addition to the types of the participants in this experiment (students as novice
software developer or designer), it would be useful to repeat the experiment with
broader and more experienced test groups like professionals in different fields ranging
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from high-level software design to low-level hardware specifications. Furthermore, the
selected experiment tasks are limited to basic software system applications. Due to the
usage of the syntax keyword feature, we mitigated the risk that the participants are
biased by identifying language constructs through known object-oriented abstraction
syntax keywords names like interface or trait. The chosen language construct
representations in CASM syntax or their integration into the CASM language might
not be representative for potential language constructs and their integration in other
ASM languages or other state-based formal languages, and thus our results cannot be
generalized to those other languages. We tried to mitigate this threat by only using
CASM abstractions that are widely used in other languages, too, and by designing the
language constructs as closely as possible to canonical definitions of those abstractions.

Threats to Construct Validity

We focus in this study on the specification effectiveness and efficiency of object-
oriented abstractions for an ASM language. The dependent variables correctness and
duration are commonly used to measure the construct specification effectiveness
and efficiency, but other studies use different notations, like Razali et al. [130]
which uses Score (Accuracy) for specification effectiveness (correctness) and
Time Taken for specification efficiency (duration). Furthermore, other studies
analyze both variables under construct names like comprehensability (cf. Hoisl et
al. [71]) or understandability (Czepa et al. [39]). It cannot be ruled out that other
constructs would be a better to measure the specification effectiveness and efficiency.

Threats to Content Validity

In this study, we only focus on two object-oriented abstractions, namely interfaces
and traits. The specification effectiveness and efficiency is tested for two ASM syntax
variations, not commonly existing in today’s languages and tools, which use one of
the two language constructs (see Section 7.2). Testing more complex scenarios (more
complex software system applications and other language constructs) would improve
the content validity.

Threats to Conclusion Validity

Due to some missing timestamps for the dependent variable duration and unclear
written ASM specification solutions for the dependent variable correctness we cannot
rule out that statistic validity might be affected. Still, those outliers are important
measurements because they reflect that for a certain group of the participants the given
problem (informal description) to model it through an ASM specification by using a
certain language construct are too complex and/or not understood at all. Deleting
those would compromise the conclusion validity. To improve the conclusion validity,
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we selected robust tests with great statistical power which fits the best explored model
assumptions of all statistical tests suitable for the collected data set.

Inferences

Based on the evidence found in this research, a possible use of Traits in ASM language
designs should provide a good specification effectiveness and efficiency. As Interfaces
perform significantly worse for the dependent variable Correctness than Traits, they
should be used with more caution. Regarding the dependent variable Duration,
it seems that for both language constructs the participants need a similar duration
to process (read, comprehend, and specify) the tasks and without further studies
no generalized claim can be drawn from the gathered results. Taking into account
the qualitative measurements, participants using Traits without even knowing the
language construct specify more efficiently than the Interfaces group, which has high
familiarity of the language construct (see Section 7.6). Furthermore, the proposed
language syntax of the Traits-based ASM specification shows very efficient specification
performance for expressing structural and behavioral aspects (see Figure 7.5a and
Figure 7.5b) which is not the case for experimental group Interfaces.

Relevance to Practice

So far many formal specification languages lack in their support for other object-
oriented language constructs, such as Interfaces and Traits. As there were no empirical
studies on their use in formal specification languages, little was known before this
study on how they compare relative to each in the formal methods context.

The findings in this study are first indicators for specification language designers
in practice to choose, specify, and implement new language constructs for existing
or newly developed programming or specification languages. This could help to
create a more understandable language syntax which can be used more effectively and
efficiently by a language user [83]. Many formalisms, including ASMs, are implemented
in different programming and/or specification languages. Our empirical results can
help specification language designers to choose one of those languages using the
available language constructs in the language syntax as a decision criterion (among
others) and/or by considering the extensibility of the language options with regard
to language constructs. The outcome of this study already has made an impact in
the state-based formal method community by introducing a Traits-based language
construct in the CASM language [116] as described in Chapter 5.

Due to the fact that the specification effectiveness and efficiency of formal methods
has not been empirically investigated to a larger extent so far, these results and future
similar empirical studies can contribute to an increased usage of formal methods in
practice. Moreover, the explained methods can be used in communities of practice,
e.g. by conducting online experiments. The feedback of language users is a valuable
source for language engineers of language extensions and further development.
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7.7 Conclusion

This chapter reports on a controlled experiment with 98 participants on the specification
effectiveness and efficiency of the object-oriented abstractions interface and trait, tested
for their applicability in the context of state-based formal methods, with ASMs as a
representative method. The objective of this study is the investigation on how effective
and efficient participants are to specify (express) structural, behavioral, functional,
and reusable properties modeled through an ASM-based specification language by
using one of the two CASM language syntax extensions, which are not yet part of
CASM or any other ASM-based language, namely Interfaces and Traits.

According to the results of the descriptive and inferential statistics in this study,
the experiment group which expresses the given problems through Traits-based ASM
specifications shows significantly better results in terms of Correctness compared to
the experiment group which uses Interfaces-based ASM specifications. As only one
participant has prior knowledge in Rust, only 27 participants have prior knowledge in
Scala, but all participants know Java, a higher familiarity with Interfaces than with
the Traits language construct can be assumed for our participants. Nonetheless, in
our study results, the specification effectiveness of Traits is in terms of the dependent
variable Correctness significantly better than Interfaces, which might be surprising.
One explanation of this surprising effect can be drawn by looking at the gathered
results of the post experiment questionnaire. Participants from the experimental group
Traits judge that their understanding of behavioral aspects like extending functionality
is similar to the participants of the experimental group Interfaces. But the behavioral
correctness measurement shows that the results are far better in the Traits group
compared to the Interfaces group.

Furthermore, as both object-oriented abstractions perform very similarly in terms
of Duration, more research is needed to understand the reasons why Interfaces
perform worse with regard to only one of the two dependent variables. In such a
follow-up study an investigation is needed to examine if the specification effectiveness
is even better for developers (or professionals) which are highly familiar with Traits.

We further analyzed the dependent variable correctness according to the evalua-
tion criteria groups – structural, behavioral, reusable, functional, and syntactic, and
took into account the qualitative responses of participants. From this, we concluded
that the significant difference between the two language constructs is due to the fact
that even participants who are not yet familiar with the traits language concept specify
more effectively with traits than participants who use the interfaces-based syntax
extension and might already know it well.

We believe that this study is the first step towards more understandable and
comprehensible ASM language design with regard to object-oriented abstractions for
expressing state and behavioral aspects in a maintainable and reusable way. Just like
it is the case for CASM, the outcomes of this study can be used by language designers
and compiler engineers to define suitable language constructs in other ASM-based
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languages or state-based formal methods.
It would be interesting to study further our results and complement the statistical

analysis with a qualitative analysis of the errors the participants made during the
experiment to obtain a more in-depth knowledge how and why there are significant
differences in terms of the effectiveness.
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CHAPTER 8
Eye Tracking Study

Increasingly complex systems require powerful and easy to understand specification
languages. In this chapter1, we report about an eye-tracking experiment we performed
during course of the design of the new CASM trait-based language syntax extension.
We use our executable specification language based on the ASMs formalism in order
to understand how newly introduced language features for formal methods are com-
prehended by language users. In the course of this study we carefully recruited nine
engineers representing a broad range of potential users. For recording eye-gaze behav-
ior we used Pupil Labs eye-tracking headset. An example specification and simple
comprehension tasks were used as stimuli. The results of the eye-gaze behavior analysis
reveal that the new language feature was understood well, but the new abstractions
were frequently confused by participants. The foreknowledge of specific programming
concepts is crucial how these abstractions are comprehended. More research is needed
to automatically infer this foreknowledge from viewing patterns. This experiment was
another follow-up study after the understandability study described in Chapter 6 and
the usability study described in Chapter 7.

8.1 Introduction

Because of the increasing complexity of hardware-software systems, interdisciplinary
teams are needed to specify and implement them in a robust and especially efficient way.
Specification languages like SysML or UML enable communication across disciplines,
but fall short when it comes to executable models. Executable specification languages
try to fill this gap. A novel formal method based ASM [63] specification language
is CASM [117]. Feedback from users, i.e., engineers with various backgrounds in
software and/or hardware design and development, is of high importance for the
design of such specification languages. As engineers spend more time reading than
writing program code, to enable a flat learning curve, and as specification tasks require

1The content of this chapter is a revised version of the EMIP’19 paper [141].
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many stakeholders (including some non-technical stakeholders) to work together,
specification languages require a high degree of comprehensibility.

Eye tracking has been used frequently in computer science [110] to investigate
human factors of programs and especially established programming or modeling
languages. To our knowledge there is no study using eye gaze behavior as a feedback
for designing and improving a specification language yet. In the study described in
this chapter, we focus on eye-gaze behavior in order to investigate recently introduced
language concepts of the executable specification language CASM.

Our results of the eye-tracking experiment reveal that the syntax of the language
extension is well understood, but surprisingly its structural and behavioral elements
are confused. Furthermore the evidence becomes apparent that the foreknowledge of
specific programming concepts rather than the programming experience is decisive
how new programming language concepts are comprehended.

Considering that all participants have never seen the language before and had
only a short time to study the main concepts of CASM, the completion time is
relatively short. Fixation time and duration are mapped to areas of interest in the
presented code during the program comprehension process. Completed by a post-
hoc interview, we found that higher fixation duration and fixation counts are not
connected to difficulties to understand sections, but indicate a high interest in actively
comprehending (learning) the new specification language.

8.2 Background

Specification languages support engineers to capture requirements and specify hardware
and software systems in an easy and technology independent way. The ASM theory
and its formal methods provide the foundation to make specifications executable. The
foundational concepts are: (1) an executable ASM specification language which looks
similar to pseudo code to express rule-based computations over algebraic functions
with arbitrary data structures and type domains; (2) a ground model serving as a
rigorous form of blueprint and reference model; (3) a step-wise refinement of the
reference model by instantiating more and more concrete models which uphold the
properties of the reference model [26].

Despite its potential existing ASM modeling languages do not gain currency.
According to Börger [24] there is the need for better abstractions in existing ASM
modeling languages to reach the characteristic of a programming language without
focusing on class and inheritance concepts. These abstractions should not come at
the cost of increasing complexity but remain comprehensible on a high level.

The CASM aims to bridge this gap by providing these language features. Cur-
rently we investigate type abstraction with low implementation overhead on language
engineering side and high understandability on language user side.

The primary intention behind these new type abstractions is to guide programmers
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Table 8.1: Participants Experience

Participant Years Level Languages
P1 3 low Java, JavaScript, Python
P2 10 medium Java, JavaScript, Python
P4 19 high Java, JavaScript, Python, VisualBasic, PHP, C++, C#
P5 1 low Java, C++
P6 15 high Java, Python, C, Haskell, VHDL
P7 5 medium Java, JavaScript, C++, C#, PHP
P8 4 medium Java, Python, C, C#, C++

to use exclusive language features and therefore make specifications more comprehensi-
ble. Concretely we introduced new syntax definition elements – structure, feature,
and implement – to extend the functionality of structures and their behavior similar to
traits [134], whereas the syntax is influenced by the Rust [101] programming language2.

In a previous study [119] (Chapter 6) we compared three different type abstractions
interfaces, mixins, and traits in terms of their understandability. The understandability
was measured by correctness and response time of the participants performance
processing the survey. The results of this paper-and-pencil experiment indicate that
type abstractions based on interfaces and traits were more comprehensible than
mixins.

This follows another study [121] (Chapter 7) where we compared two different type
abstractions interfaces and traits in terms of their usability. In this experiment the
usability was measured by specification effectiveness (correctness) and specification
efficiency (duration) of the gathered results from the participants. The study results
show that there is a significant difference in terms of specification effectiveness where
traits perform better than interfaces.

What is not known so far is how language users comprehend these newly introduced
structural and behavioral elements and especially how they come to an understanding
of these abstractions, i.e. which search patterns are performed while reading and
comprehending the specification.

In the described study in this chapter we focus on the traits syntax and prepared
a simple but realistic specification TrafficLight (see Listing 8.1) as a stimulus for
the eye-tracking experiment. This sample code extends the basic syntax definition
elements from the CASM language3 [117], namely function, derived and rule by
the new structure, feature, and implement definitions.

We hypothesize that eye-gaze behavior can be used to draw conclusions about the
the effort, i.e. the cognitive load, which is necessary to understand the specification
code in general, and the newly introduced traits syntax in particular. Especially we
are interested in the language users’ effort to find and distinguish structural and
behavioral elements of the specification. The corresponding research question is: How

2See https://doc.rust-lang.org/rust-by-example/trait for Rust language description.
3See https://casm-lang.org/syntax for CASM syntax description.
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can eye-gaze behavior help to identify common search patterns and reveal the effort
to comprehend the introduced traits syntax?

It’s commonly known that engineers learn new language abstractions more effi-
ciently the more language paradigms they know. In this study we refer to programming
experience as a combination of the time spent with software programming and also
the range of different language paradigms.

In the context of the main research question, we investigate if and to which
extent programming experience influences the effectivity to spot and distinguish
structural and behavioral abstractions. The related hypothesis is that language users
with background in Object-Oriented Programming (OOP) languages with common
inheritance concepts distinguish less effectively between structural and behavioral
elements, while language users familiar with various languages paradigms easily spot
the structure and behavior elements.

8.3 Experiment

In order to analyze viewing patterns and visual effort during the process of compre-
hension of the new language features we set up an experiment to measure eye-gaze
behavior. We recorded eye movements with a monocular eye-tracking headset from
Pupil Labs4, equipped with a 200Hz eye camera and a world camera with a resolution
of 1280x720 pixels. The pupil capture software (version 1.10) was used for recording
eye movements and the front facing camera as well as the fixation detection and surface
mapping. Subsequently eye-gaze data was mapped to a browser window where stimuli
were presented. In this experiment each participant viewed a sequence of assignments
described below. As the main stimuli a sample CASM specification was chosen. To let
participants directly interact with the specification code, we used the browser-based
code editor Monaco5 supplemented with fiducial markers in the corners of the browser
window to facilitate the surface mapping. Instructions and comprehension tasks, simi-
lar to works of [18] were presented to the participant in addition to the specification
code, while eye gaze and world camera recordings were triggered via the web-socket
protocol and the Pupil Lab API controlled by the experiment server. Besides eye
and world camera raw recordings, we collected pupil positions, pupil diameter, gaze
positions, fixation data and the fixations on surface mappings.

Procedure

The procedure of the experiment included (a) the calibration of pupil and eye gaze
detection, (b) the presentation of a short introduction to CASM with the basic language
features including the newly introduced traits concept. (c) When participants hit the
Start button the recording of eye and world camera was triggered and a brief graphical

4See https://pupil-labs.com for eye-tracking camera device description.
5See https://microsoft.github.io/monaco-editor for editor software.
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representation of a system followed. Subsequent task assignments were shown on
the top of the window. After pressing the next button, (d) the source code of the
corresponding specification was shown. As the main stimuli of the experiment we have

1 enumeration Phase = { Stop , Go }
2
3 structure Light = {
4 function phase : -> Phase = { Stop }
5 }
6
7 implement Light = {
8 derived phase -> Phase = this.phase
9

10 derived oppositePhase -> = (if phase = Stop then Go else Stop)
11
12 derived isOn -> Boolean = (phase = Go)
13
14 derived isOff -> Boolean = (phase = Stop)
15
16 rule switch = {
17 this.phase := oppositePhase
18 }
19 }
20
21 feature TrafficController = {
22 derived lights -> [ Light ]
23
24 derived phases -> [ [ Phase ] ]
25
26 derived position -> Integer
27
28 rule nextPosition -> Integer
29
30 rule control = {
31 let currentPhase = phases[ position ] in
32 let nextPhase = phases[ nextPosition ] in {
33 assert( |currentPhase| = |lights| )
34 assert( |currentPhase| = |nextPhase| )
35 forall i in [ 1 .. |lights| ] do {
36 assert( light[i]. phase = currentPhase[i] )
37 if light[i]. phase != nextPhase[i] then
38 light[i]. switch
39 }
40 }
41 }
42 }
43
44 structure OneWayStreet = {
45 function lights : Integer -> Light = { 1 -> Light(), 2 -> Light() }
46
47 function position : -> Integer = { 1 }
48 }
49
50 implement TrafficController for OneWayStreet = {
51 derived lights -> [ Light ] = [ lights( 1 ), lights( 2 ) ]
52
53 derived phases -> [ [ Phase ] ] = [ [ Stop , Stop ], [ Go , Stop ]
54 , [ Stop , Stop ], [ Stop , Go ] ]
55
56 derived position -> Integer = this.position
57
58 rule nextPosition -> Integer =
59 this.position := if position = 1 then 2 else 1
60 }

Listing 8.1: Executable Specification Code (CASM)
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chosen the TrafficLight example specification (see Listing 8.1) inspired by the traffic
light examples from Börger and Raschke [25]. Participants were asked to (e) fill-in
the missing statements for each of the following tasks: (1) The central component of
this system is structure . . . (2) The rule . . . defines the main logic of the traffic light
signaling. (3) The feature . . . is implemented . . . times in this specification. (4) The
structure . . . does not implement a default behavior.

The answers were recorded synchronized with the frame count of the eye gaze
recordings. After completion of the experiment (f) a post-hoc interview was conducted
to evaluate task difficulty and perceived cognitive load as a ground truth of the
measured visual effort [48]. The semi-structured interviews aimed to learn about the
participant’s professional background and programming experience, concluding with a
brief discussion about the experiment and the language itself.

Participants

We recruited nine participants with a broad range of software engineering experience,
where low in the table corresponds to intermediate level, medium to advanced and
high to professional level correspondingly. Java is the most prevalent programming
language among the participants followed JavaScript and Python. Four participants
were recruited at a German and five at an Austrian university.

While all have different professional backgrounds and earned or work towards a
computer science degree. All participants volunteered to take part in the experiment.
It’s noteworthy that all participants - except one (P6) - were new to CASM as this
study especially aimed to investigate the first impression of this specification language.

Table 8.1 provides all gathered participants experience information except for
participant P0 and P3, because as described in the following analysis section, the
gathered experiment data for those participants had to be excluded from the results
due to technical problems during the eye-tracking recording process.

Analysis

Eye-gaze positions and fixation positions mapped to the browser window were calcu-
lated using Pupil Labs capture software 6.

The experiments were conducted in the participant’s offices. During two experi-
ments (participants P0 and P3) the front-facing camera of the eye-tracking headset
overexposed the white background of the computer screen due to changes in light
conditions. These two experiments were excluded from further analysis.

Although the calibration was performed for each participant eye-gaze position
data was skewed and had to be recalculated by using an individual offset for each
participant. Similar to [13] eye gaze positions were translated into character locations
in the web based editor to identify code elements of interest for the user. In total six

6See https://github.com/pupil-labs for eye-tracking device and software.
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areas representing new language features, i.e. structure, implement, and feature

and the task area above the code were selected as main Areas of Interest (AOI). In
regard to the research question and to measure the effort to identify and distinguish
between structural and behavioral elements of the newly introduced language features,
we applied scan path analysis to the eye-gaze data.

As shown in Table 8.3 four participants (P1, P2, P6, and P8) answered three out
of four questions correctly, while P1 and P2 did not identify the main component of
the system, namely OneWayStreet but chose the feature TrafficController instead.
In a further step we selected these experiments to contrast the viewing patterns of
incorrectly and correctly answered questions. Figure 8.1 and Figure 8.2 show the
indexed fixation positions represented in bubbles whereas the diameter of the circle
represents the fixation length. The color of the fixation marker indicates the start
time of each fixation. Furthermore the fixations were mapped to the AOIs to facilitate
viewing pattern analysis.

(a) Participant 1 (P1)

(b) Participant 2 (P2)

Figure 8.1: Fixation Positions for Specification Elements (Incorrect Answers)
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The analysis reveals independent of the correctness and completion time a common
eye-gaze pattern, i.e. eye-gazes moved between the elements feature TrafficController
and structure OneWayStreet forth and back, right after reading the assignment.
Furthermore the relation of programming experience and the comprehension of the
traits syntax was investigated. As shown in Table 8.1, Table 8.2, and Table 8.3, task
completion time is not correlated to the programming experience level.

While the eye-gaze behavior indicate the experience level, i.e. typical line-by-
line reading for novice and source code skimming for professional engineers, viewing
patterns explain - to a certain degree - the causal relationship between task correctness
and proficiency in language paradigms beyond script languages and OOP. The
interviews were analyzed in two ways. The structured data is shown in the Table 8.2
and Table 8.3. The summary of post-hoc open discussion was processed to cluster
inferential information and compiled in the results section.

(a) Participant 6 (P6)

(b) Participant 8 (P8)

Figure 8.2: Fixation Positions for Specification Elements (Correct Answers)
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Table 8.2: Results of Task 1

Participant Duration Correct
P1 22,52s no
P2 39,58s no
P4 64,51s yes
P5 32,14s no
P6 22,12s yes
P7 26,00s no
P8 39,04s yes

Table 8.3: Results of all Tasks
Participant Duration Correctness Severity

P1 164,57s 75% 5
P2 176,10s 75% 4
P4 237,60s 63% 4
P5 407,42s 13% 5
P6 164,50s 75% 3
P7 190,34s 38% 4
P8 178,91s 75% 3

8.4 Results

Eye-gaze behavior analysis, in general, can not only be used effectively to conclude
about the effort in understanding new language designs, but reveals specific issues in
comprehension of newly introduced concepts. In particular the results of the scan path
and fixation analysis indicate that there is a confusion of feature and structure

supported by the common pattern where participants eye-gaze fixations alternate
between the behavioral and the structural elements, exemplified by participant P1’s
insecurity to choose either TrafficController or OneWayStreet.

The surprising result of this study is that feature is understood as a structural
element while it’s designed as a behavioral element.

Language users with experience in OOP languages are commonly used to read
the interface entirely as structural and behavioral elements can occur at any point in
this type of abstraction. In contrast the traits syntax clearly distinguishes between
structural and behavioral elements. Hence, participants familiar with multiple language
paradigms spot these abstractions more effectively, see Figure 8.2a, scan path for
participant 6 (P6) for example.

The results of the post-hoc interview complement the findings and act as a ground
truth: The feature abstraction was perceived as a new thing. Furthermore the usage
of assert and also enumeration in this context were somewhat surprising for several
participants. The majority of participants found that the preparation time was too
short, and suggested to provide printed language instructions or online help to learn
about language features.

Although we presented a very simple code editor some participants reported
distractions by the editor itself, e.g. the scroll bar. Finally the post-hoc interviews
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revealed that participants particular familiar with the state machines concept perceived
the tasks as highly comprehensible and easy to complete.

8.5 Conclusion

While specification language comprehensibility can be evaluated by expert interviews,
eye-tracking reveals valuable and deep insights into the new language features and
related distractions resulting in high cognitive load. The viewing pattern analysis
indicates that the traits syntax is understood well by programmers with at least
intermediate programming skills, but the newly introduced language features feature
and structure are frequently confused. As a consequence it’s worth to repeat the
experiments using a more sounding keyword for the traits syntax, e.g. behavior

instead of feature. As the results of the study indicate the knowledge of specific
software engineering concepts such as state machines of traits syntax seem to be crucial
for the comprehensibility of a new specification language feature. The understanding of
viewing patterns related to this foreknowledge can not only help to design programming
languages targeted to a specific user group, but help to improve the learning curve by
e.g. custom tooltips in Integrated Development Environment (IDE) applications.

The future work, therefore, will not only include the repetition of the experiment
with more participants, the extension of the experiment by introducing code authoring
tasks and the improvement of fixation and surface tracking algorithms, the gaze-
to-code mapping algorithm as well as the experimental setup itself, but also the
investigation of (real-time) viewing pattern analysis as feedback for language designers
and prospectively also as an extension of an IDE to support engineers to learn and/or
apply executable specification languages effectively.
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CHAPTER 9
Conclusion

This PhD thesis describes several achievements for two major research directives
regarding the exploration and investigation of ASM-based language engineering – in
the field of compiler engineering and language design.

The first part is concerned with the foundation of an ASM-based compiler frame-
work in order to reuse and retarget CASM specified systems to various target domains
by following an MDD approach. Therefore, the resulting CASM compiler infrastruc-
ture uses a multi-level IR design with a novel ASM-based IR called CASM IR to
provide the necessary decoupling from dedicated ASM syntax dialects, and provided
the basis for upcoming ASM-based analysis, transformation, and optimization passes.
Based on the derived and elaborated CASM IR, the thesis reports about the further
exploration of the translation validation capabilities of ASM languages by introducing
an improved concolic execution implementation based on in-memory TPTP trace
generation for CASM.

The second part of this thesis elaborates the empirical investigation on finding
a proper object-oriented language construct and ASM-based syntax extension to
introduce an object model into the CASM language and into the ASM method in
general. By conducting two controlled experiments and comparing first interfaces,
mixins, and traits, it was shown that interfaces and traits have a similar under-
standability. A follow-up study has resulted in a significant difference in terms of
usability between interfaces and traits. Therefore, a trait-based syntax extension
was created and checked for comprehensability by conducting another study through
an eye-tracking experiment analyzing eye-gaze pattern behavior and eye fixations of
experiment participants. The outcome of all three experiments shaped and created a
novel trait-based syntax extension for the CASM language.
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