
Towards a Security Benchmark for the Architectural Design of
Microservice Applications

Anusha Bambhore Tukaram
anusha.bambhoretukaram@tuhh.de
Hamburg University of Technology

Hamburg, Germany

Simon Schneider
simon.schneider@tuhh.de

Hamburg University of Technology
Hamburg, Germany

Nicolas E. Diaz Ferreyra
nicolas.diaz-ferreyra@tuhh.de

Hamburg University of Technology
Hamburg, Germany

Georg Simhandl
georg.simhandl@univie.ac.at

University of Vienna
Vienna, Austria

Uwe Zdun
uwe.zdun@univie.ac.at
University of Vienna

Vienna, Austria

Riccardo Scandariato
scandariato@tuhh.de

Hamburg University of Technology
Hamburg, Germany

ABSTRACT
The microservice architecture presents many challenges from a
security perspective, due to the large amount of services, leading to
an increased attack surface and an unmanageble cognitive load for
security analysts. Several benchmarks exist to guide the secure con-
figuration of the deployment infrastructure for microservice appli-
cations, including containers (e.g., Docker), orchestration systems
(e.g., Kubernetes), cloud platforms (e.g., AWS), and even operating
systems (e.g., Linux). In this paper we approach the creation of a
benchmark for the design of the microservice applications them-
selves. To this aim, we inventorize a number of relevant security
rules for the architectural design of microservice applications and
assess (in a preliminary way) how these rules could be checked
automatically.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
microservices, security, architecture, rules, constraints
ACM Reference Format:
Anusha Bambhore Tukaram, Simon Schneider, Nicolas E. Diaz Ferreyra,
Georg Simhandl, Uwe Zdun, and Riccardo Scandariato. 2022. Towards a
Security Benchmark for the Architectural Design of Microservice Applica-
tions. In The 17th International Conference on Availability, Reliability and
Security (ARES 2022), August 23–26, 2022, Vienna, Austria. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3538969.3543807

1 INTRODUCTION
The microservice architectural style organizes an application as a
composition of services that have their own scoped responsibility
and implement a self-contained business capability. The size of
a microservice should be adequate for one team to develop and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2022, August 23–26, 2022, Vienna, Austria
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9670-7/22/08. . . $15.00
https://doi.org/10.1145/3538969.3543807

test it. Naturally, dependencies are unavoidable and microservice
can rely on other services. However, the goal is to create loosely
coupled services so that they can be developed and deployed in-
dependently. Loose coupling implies, for instance, that there is no
database shared across microservices and that there are no code
dependencies requiring code changes in lock-steps on multiple ser-
vices. Also, the API of a service should be small, stable over time,
and designed in a such a way that the internal workings of the
service are not exposed. For instance, there should not be any ex-
pectation on behavior or state changes across multiple invocations
of the same service.

The microservice architecture has become very popular as it
reflects the needs of agile development teams working in a continu-
ous integration and continuous delivery way. Further, services lend
themselves to be containerized and deployed in the cloud, which is
another major trend in the software industry.

On the flip side, microservice architecture presents many chal-
lenges from a security perspective, due to the large amount of
services combined with their exposure to attacks over the Internet.
These challenges have been described in several academic papers
[5, 9, 21] and are abundantly mentioned in the gray literature from
professionals [8, 14]. In particular, commonly mentioned challenges
refer to the problem of establishing trust between services via access
control, the issue of an increased attack surface, and the problem
of secret management.

The analysis of the above-mentioned literature reveals that a
principled approach to securing microservice architectures from
the ground up is still yet to come. Yarygina and Bagge [21] have
identified 6 abstraction levels at which security measures need to
be defined. These levels include (i) the lower levels of hardware,
virtualization, and cloud, as well as (ii) the higher levels of commu-
nication (e.g., using mTLS, or JWT security), services (e.g., using a
logging sidecar, or protecting data when stored), and orchestration
(e.g., using secure service discovery). Concerning the lower levels,
several guidelines have been developed (e.g., by CIS, the Center for
Internet Security1) in the form of benchmarks. These benchmarks
contain rules that need to be followed in order to avoid security
flaws and be in conformance with the benchmark. Typically, these
benchmarks contain rules that can be checked automatically via

1https://learn.cisecurity.org/benchmarks

https://doi.org/10.1145/3538969.3543807
https://doi.org/10.1145/3538969.3543807
https://learn.cisecurity.org/benchmarks

ARES 2022, August 23–26, 2022, Vienna, Austria Bambhore Tukaram et al.

tools like Kics2, Checkov3, Terrascan 4, and so on. The goal of this
paper is to focus on the higher levels and set the first steps to-
wards the construction of a security benchmark that could be used
to evaluate the architectural design of a microservice application.
Such a benchmark, especially if backed by automated tools, would
support a security-by-design approach to the construction of mi-
croservice architectures and would be beneficial for the certification
of microservice applications.

As a first step towards establishing such as benchmark, this paper
addresses the following two research objectives:

• RQ1: What rules should be included in a security benchmark
for microservice architectures? In particular, we are interested
in rules that set security constraints and define checks that
are applicable at the level of architectural design.

• RQ2: What tool-based approaches already exists that could
be useful to check said rules? As we are aware that specific
tools for microservice architectures do not exist, here we are
more interested in collecting approaches that could provide
fruitful inspiration in the creation of a benchmark tool. In
future work, we plan on thoroughly analysing the identi-
fied tools with respect to the microservice-specific security
architecture rules.

Accordingly, this paper makes the following contributions:
• We analyze the relevant documentation, guidelines, and stan-
dards to distill a small yet comprehensive set of 18 security
rules. In this respect the main challenges are related to (i)
the overlaps we found in the relevant documents (e.g., the
same concepts are mentioned with different name, or slight
variations of the same concepts are presented), and (ii) the
different levels of abstraction contained in the documents,
which often mix architectural concepts with low level con-
cepts (e.g., OS configuration) and even process guidelines.

• We inventory 11 model-based security analysis approaches
that could be used to validate the architectural design against
the 18 rules.

• We provide an initial discussion of the applicability of the
11 approaches as a way to automate the execution of the
benchmark.

The rest of the paper is organized as follows. Section 2 discusses
the related work and Section 3 presents the methodology we have
applied for the elaboration of the rule set. Section 4 includes the
results of our analysis thus answering RQ1. Section 5 elaborates on
RQ2 by discussing suitable approaches for the automatic evaluation
of microservice security rules. Finally, Section 6 summarizes the
threats to validity of our study and Section 7 our concluding remarks
and directions for future work.

2 RELATEDWORK
A number of studies on securing microservice applications have
been published in recent years, including grey and white literature.
Pereira et al. [13] conducted a systematic literature review of 26
academic sources and collected a set of 18 security mechanisms
for microservice applications. The prevailing topics in this set are
2https://kics.io
3https://www.checkov.io
4https://runterrascan.io

authentication, authorization, and credentials. Another systematic
mapping study of 46 academic sources done by Hannousse et al. [9]
yielded an ontology of security threats and mechanisms for mi-
croservices. Similar to Pereira et al., the authors state the topics
that are discussed the most to be access control, protecting sensitive
data, and securing individual microservices. The two studies are a
valuable contribution to the body of knowledge, however we see
the need for a study that focuses on architectural constraints, which
does not exist in these sets of general rules.

Some authors see the academic literature to be trailing behind
experience already gained in industry and thus set forth to conduct
grey literature studies aiming to close this gap. A first systematic
grey literature mapping was done by Soldani et al. [19], where
the authors acknowledge both disadvantages and advantages of
the microservice architectural style as pains and gains. The men-
tioned gains correspond to the widely known and listed above
benefits, while the topics access control, centralised support, CI/CD,
endpoint proliferation, human errors, and size/complexity are iden-
tified as pains resulting from the inherent complexity introduced
by the architecture. The paper’s focus, however, is on microservices
Application Programming Interfaces (APIs).

A third body of knowledge aside from academic literature and
practitioner experience is formed by large organizations that pro-
duce guidelines, best-practices, and similar resources (see Table 1).
Although they are no standards, these documents carry a compa-
rable reputation in industry, as the publishing organizations often
enjoy large trust by developers.

Our work is different from the above related work in two major
regards: (i) we focus on architectural constraints that cover the
higher levels of the classification done by Yarygina and Bagge [21]
and (ii) we strive to create rules that can be checked automatically.

3 METHODOLOGY

Figure 1: Research methodology for the identification of the
security rules.

Figure 1 shows the methodology we followed in order to identify
relevant security rules. To arrive at the rules for microservices
architectural security, we started from 3 sources that are contributed
by well-known security organizations (OWASP, NIST, CSA) and
are shown in Table 1. These sources have been identified by the
authors as part of a literature survey on microservice security and
by looking at the systematic literature studies mentioned in Section
2, thus concluding that the majority of the references point to these
3 sources.

https://kics.io
https://www.checkov.io
https://runterrascan.io

Towards a Security Benchmark for the Architectural Design of Microservice Applications ARES 2022, August 23–26, 2022, Vienna, Austria

Table 1: Identified sources of microservice security recommendations.

ID Organization Sources Recommendations Retained

S1 OWASP Microservices Security – Cheat Sheet Series (https://cheatsheetseries.owasp.
org/cheatsheets/Microservices_security.html) 27 20

S2 NIST SP 800-204 – Security Strategies for Microservices-based application systems
(https://csrc.nist.gov/publications/detail/sp/800-204/final) 54 21

S3 CSA
Best Practices in Implementing a Secure Microservices Architecture
(https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-
secure-microservices-architecture)

69 16

150 57

Table 2: Filtering criteria.

Filtering Criteria

Concrete
(i) Entails a (non) desired system behaviour or con-
figuration AND (ii) lends itself to algorithmic enforce-
ment.

In Scope

(i) The rule points towards architectural elements
that can be clearly identified (e.g., modules, com-
ponents, connectors, etc) AND (ii) should address
security.

All of these sources elaborate on a set of recommendations (e.g.,
best practices, strategies, and guidelines) that address the security
of microservice architectures. Hence, each source was initially anal-
ysed by one of our team members for the identification of security
recommendations. We focused particularly on prescriptive state-
ments within each source as these can be good candidates for the
later elaboration of security rules.

After having identified a set of initial recommendations, all four
researchers assessed each recommendation independently accord-
ing to the criteria listed in Table 2. Particularly, we looked for
recommendations that are architectural in nature (as opposed, e.g.,
to infrastructure or implementation) and are concrete enough so
that the rule could be checked by either inspection or automated
analysis. In case of disagreement among the individual assessments,
we discussed the diverging opinions until consensus was achieved.
Finally, we grouped the retained recommendations by considering
their thematic area and their similarity. Such a final grouping was
thoroughly discussed among a team of 3 researchers.

4 RESULTS
A total of 150 recommendations were identified within the exam-
ined sources: 27 from S1, 54 from S2, and 69 from S3. After applying
the criteria of Table 2, 57 of these recommendations were retained:
20 from S1, 21 from S2, and 16 from S3 (as shown in Table 1). We
grouped these retained recommendations into a set of 18 security
rules (Table 3) and 3 technological suggestions (Table 4). From these
18 security rules, 6 correspond to authentication/authorization, 2 to
encryption, 4 to logging, 3 to availability, 2 to service registry, and 1
to secret management:

(i) Rules for Authentication/Authorization (R1-R6) These
rules highlight the importance of introducing API gateways for the
authentication and authorization of external requests. The overall

purpose of such gateways is to prevent external entities from ac-
cessing microservices in a direct way. For this, it is also important
to keep both processes (i.e., authentication and authorization) de-
coupled from the rest of architecture and from each other to allow
their reuse. Moreover, microservices should mutually authenticate
and authorize each other to avoid any request that may have by-
passed the API gateway. On the other hand, the representation
of external entities (i.e., external access tokens) must be mapped
into internal token representations in order to protect their actual
identity. Finally, a limit of login attempts should be established to
prevent credential abuse.

(ii) Rules for Encryption (R7-R8) Communication between
services may entail the exchange of sensitive data or access per-
missions, which no other services in the system should hear. These
rules recommend the use of encryption and secure communica-
tion protocols between external users, entities, and services to
preserve the integrity and confidentiality of the information be-
ing exchanged. Thereby, the application context will be protected
against tampering, and man-in-the-middle attacks.

(iii) Rules for Logging (R9-R12) A central logging subsystem
with a monitoring dashboard should be implemented to detect se-
curity anomalous operations via log analysis. Such a dashboard
could, for instance, display input validation failures and the status
of network segments that would help identifying injection attack
attempts. It is also recommended to implement local logging agents
that are decoupled from the microservice but deployed under the
same host. Such local agents will be responsible for collecting the
log data from microservices, sanitizing such data (e.g., remove PII,
passwords, and API keys) and write it to a local log file. This avoids
the direct exchange of log messages between microservices and
the central logging subsystem and mitigates the chances of data
loss (e.g., in cases of logging service failure due to attacks). Further-
more, a message broker should be in charge of the communication
between the central logging system and the local agents to en-
force their mutual authentication and mitigate spoofing and traffic
injection threats.

(iv) Rules for Availability (R13-R15) To avoid delayed re-
sponses or service crashed due to overload, the API gateway should
perform a load balancing of the system. Additionally, a circuit
breaker should be implemented to avoid cascading failures. Finally,
service mesh deployments should define usage limits for their com-
ponents in order to enhance the resiliency of the system.

(v) Rules for Service Registry (R16-R17) As a general rule,
service registry services should (i) be deployed in dedicated services

https://cheatsheetseries.owasp.org/cheatsheets/Microservices_security.html
https://cheatsheetseries.owasp.org/cheatsheets/Microservices_security.html
https://csrc.nist.gov/publications/detail/sp/800-204/final
https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-architecture
https://cloudsecurityalliance.org/artifacts/best-practices-in-implementing-a-secure-microservices-architecture

ARES 2022, August 23–26, 2022, Vienna, Austria Bambhore Tukaram et al.

(or as part of a service mesh architecture), and (ii) implement vali-
dation checks to legitimate services. This is mainly to ensure that
only legitimate services perform registrations, refresh operations,
and database queries to identify microservices.

(vi) Rules for Secret Management (R18) Secrets such as API
tokens, SSH keys, and passwords should be managed centrally
following a Secret as Service principle. Particularly, database cre-
dentials for each application must be (i) created on-demand and
(ii) revoked after a certain leasing time, in order to control their
permissions.

Table 4 summarizes the technological suggestions we found in
the analysed sources. Overall, these suggestions refer to secure
communication/encryption (e.g., SSL/TLS, HTTP), authorization
(e.g., mTLS, OAuth), and authentication (OpenID, API Keys). Both,
the curated set of rules and the identified suggestions, should not
be seen as final but as a first attempt towards the elaboration of a
benchmark for the architectural design of microservice applications.
Moreover, for the sake of replication and knowledge sharing, we
provide the information gathered throughout this work as a sup-
plementary material5. This includes a spreadsheet containing the
assessments of each recommendation (i.e., according to the criteria
defined in Table 2) and the provenance of each security rule added
to the final set.

5 TOWARDS AN AUTOMATED SECURITY
BENCHMARK

To answer RQ2, we conducted a preliminary assessment of state-
of-the-art approaches for automatic security analysis. We have
narrowed-down such an assessment to a set of 11 tool-supported
methods that we have identified through an opportunistic screen-
ing of academic sources. Thereby, we elaborate suggestions for
an automated benchmark of the security rules identified in the
previous section.

5.1 Tools for automated benchmark
To identify the tool-supported approaches that could be used to
check architecture-level security rules in microservice-based sys-
tems, we focused on the academic literature. We opted not to con-
sider commercial tools as architectural security analysis is not yet
at a maturity level that could suggest a widespread implementation
of commercial solutions. Initially, we compiled a list of approaches
based on our own experience as active members of the research
community in this field. Next we performed a sanity check by con-
ducting an opportunistic search on Google Scholar for academic
sources referring to architectural security analysis and selected
the most promising ones. Certainly, this strategy is not systematic
and hence does not yield an exhaustive set of suitable approaches.
Nonetheless, we believe that there are not major gaps in the identi-
fied literature, thus offering a good starting point for a preliminary
analysis.

A list of eleven security analysis approaches was analysed re-
garding their ability to support the automatic checking of the rules
presented in Section 4. Table 5 describes each of them in terms of
the type of analysis they perform, whether they are tool-supported,
their generated output, and modelling approach. We can observe
5https://tinyurl.com/microservice-security-rules

that, in terms of modelling language, these methods often employ
either a Unified Modelling Language (UML) representation of the
system under analysis (A1, A2, A3), a Data Flow Diagram (DFD)
(A4, A5, A6, A7), or an Architectural Description Language (ADL)
specification of such system (A8 and A9). Except for A6, A9, and
A10, all approaches are tool-supported and most of them employ
either static analysis techniques (A1, A3, A4, A5, A6) or a combina-
tion of static and dynamic ones (A2, A10. A11). Conversely, only
a few approaches (A8 and A9) rely on purely dynamic methods
for security analysis. Regarding the generated output, five of these
methods manage to localize security threat(s) (i.e., in code), three of
them are capable to modify an architectural model (A2, A4 and A11),
and two of providing suitable countermeasures (A7 and A11). Over-
all, this list offers a good overview of the different state-of-the-art
techniques for the automatic analysis of microservice security, and
can be used as a starting point for a rule-coverage assessment. That
is, for identifying suitable methods that could check these rules and
to identify areas of microservice security that may require further
support in terms of automatic architectural analysis.

5.2 Preliminary assessment
When evaluating the approaches listed in Table 5 against the rules
in Table 3, we consider the following cases:

• Rule supported. Here, we consider the cases where the rule
can be checked by the approach either (i) out of the box,
provided that the design model contains the appropriate
annotations, or (ii) the approach provides the user with a
language that allows the appropriate customization of the
tool.

• Support missing. Here, either (iii) the approach is not
amenable at all for this type of analysis or (iv) the approach
contains enough semantics in the model that a checker could
be written, but the tool would require a significant extension.

At this stage, we have not performed a full evaluation of the
approaches listed in Table 5. However, we have gathered some
initial remarks and observations on the analysed tools. First, we
emphasise that no approach seems to support all the rules we have
identified. Moreover, combining multiple tools for the benchmark
(hence achieving a larger coverage of the rules) is not attainable, as
each tool requires the user to prepare a specific model according to
different notations.

We also noticed that some rules are completely unsupported by
all the approaches. One example is rule R4, which requires the API
gateway to transform external identity representations (tokens) to
an internally used one. This rule is quite unique to microservices
and refers to a specific microservice pattern. As the approaches
in Table 5 are not designed with microservices in mind, it is quite
natural that rules like this are not supported.

Finally, we noticed that the support for checking security rules
on DFDs is noticeably inferior with respect to UML, where, for
instance, approaches A1 and A2 already provide some coverage.
Considering ADLs, approach A10 seems promising but a more
thorough evaluation is necessary, also from a usability perspective.

In a more precise evaluation round, we plan to select a common
case study and model it according to the different approaches. This

https://tinyurl.com/microservice-security-rules

Towards a Security Benchmark for the Architectural Design of Microservice Applications ARES 2022, August 23–26, 2022, Vienna, Austria

Table 3: Security rules from the recommendations of OWASP, NIST and CSA.

ID Security Rule
Authentication / Authorization

R1 An API Gateway or similar facade should exist as a single entry point to the system and perform authorization
and authentication of external requests to avoid external entities directly accessing services.

R2 Services should mutually authenticate and authorize requests from other services.
R3 Authorization and authentication processes should be decoupled from other services and should be implemented

at platform level to enable reuse by different services.
R4 All the external entity identity representations should be transformed into an extendable internal identity

representation. The internal identity representations should be secured with signatures and propagated but
not exposed outside. They should be used for authentication and authorization at all levels.

R5 Authentication tokens should be validated.
R6 A limit for the maximum number of login attempts before preventive measures are taken should exist.

Encryption
R7 All communication traffic from external users and entities should be encrypted using secure communication

protocols.
R8 All communication between the services should be encrypted using secure communication protocols.

Logging
R9 A central logging subsystem which includes a monitoring dashboard should exist.
R10 For all microservices, there should exist a local logging agent decoupled from the microservice but deployed

on the same host. Log data from microservices should not be send to the central logging system directly, but
collected by the logging agent, written to a local file, and eventually send to the central system by it.

R11 The local logging agent should sanitize the log data and remove any PII, passwords, API keys, etc.
R12 A message broker should be used to realize the communication between local logging agent and central logging

system. These two should use mutual authentication and encrypt all transmitted data and availability should
be ensured by providing periodic health and status data.
Availability

R13 A circuit breaker should be used at the proxy.
R14 The API gateway should perform load balancing.
R15 Service mesh deployments should have configuration capabilities to specify resource usage limits for its

components.
Service Registry

R16 Service registry services should be deployed on dedicated servers or as part of a service mesh architecture.
R17 Service registry services should have validation checks to ensure that only legitimate services are performing

the registration, refresh operations, and database queries to discover services.
Secret Management

R18 Secrets should be managed centrally following the Secret as a Service principle.

Table 4: Security technologies that are recommended in support of the rules.

ID Technology Suggestions
TS1 Secure communication / encryption: standard encryption protocols like SSL/TLS or HTTPS.
TS2 Authorization: mTLS, OAuth JWTs, OAuth 2.0, OIDC Tokens, API Tokens, TLS/SSL, Federation and authoriza-

tion based on certificates and least privilege- RBAC.
Identity propagation: Label-based identity, token-based identity, Oauth 2.0, OpenID Connect.

TS3 Authentication: mTLS/Mutual Authentication, Token based authentication, OpenID, SSL- or SASL-based
authentication, API Keys, TLS/SSL, STS, Reverse STS.

will give us a more concrete basis to assess the fitness of each ap-
proach to the goal of adding the necessary annotations to the model
and performing the security checks. This would also allow us to
assess the intuitiveness and user-friendliness of each tool/method.

6 THREATS TO VALIDITY
Selection of sources (docs, approaches) is opportunistic, but this is
exploratory work. Future work could be more systematic. We are
very well aware of a possible selection bias, as only those sources
were selected which are repeatedly referenced by the majority of

ARES 2022, August 23–26, 2022, Vienna, Austria Bambhore Tukaram et al.

Table 5: Automated security analysis: approaches and tools.

ID Approach Tool support Analysis Output Modelling
Approach

A1 • Automated Software Architecture Security Risk Anal-
ysis using Formalized Signatures [1] Yes static threat localization UML

A2
• UMLSec [11]
• Model-based privacy and security analysis with
CARiSMA [3]

Yes static +
dynamic modified model UML

A3
• SecureUML: A UML-Based Modeling Language for
Model-Driven Security [12]

• Automated analysis of security-design models [4]
Yes static UML

A4 • Flaws in Flows: Unveiling Design Flaws via Informa-
tion Flow Analysis [20] Yes static modified model DFD

A5 • SPARTA: Security and Privacy Architecture through
Risk-driven Threat Assessment [18] Yes static threat localization DFD

A6 • Analyzing Security Architectures [2] No DFD

A7

• The Architectural Security Tool Suite — ARCHSEC
[7]

• Automatically Extracting Threats from Extended
Data Flow Diagrams [6]

Yes static
threat localization

and
countermeasures

DFD

A8 • Data-Driven Software Architecture for Analyzing
Confidentiality [17] Yes dynamic threat localization ADL (Palladio)

+ DFD

A9 • A Secure Software Architecture Description Lan-
guage [15] No dynamic ADL (xADL)

A10 • Enforcing Architectural Security Decisions [10] No static +
dynamic threat localization ADL

A11 • Architecture Modeling and Analysis of Security in
Android Systems [16] Yes static +

dynamic

modified model,
threat localization,

and
countermeasures

ADL

academic and practitioners publications. A crucial selection cri-
teria is the concrete applicability. While this maximizes external
validity, abstract recommendations lacking actionable information
were excluded. As these abstract recommendations contain valu-
able information for the synthesis of future security rules, these
recommendations will serve as a basis for future work.

There might be a possible data extraction bias. i) The choices of
variables to be extracted from these sources, ii) the quality assess-
ment subjectivity and iii) data extraction inaccuracies were con-
tinuously discussed among the authors. All authors of this study
were also involved in extraction and synthesis of security rules to
overcome this bias.

It is noteworthy that the author team is well balanced. Soft-
ware security researchers and software architecture researchers
contribute broad knowledge and multiple perspectives to this study.

7 CONCLUSIONS AND FUTUREWORK
A benchmark for the architectural design of microservice applica-
tions should consist of rules that are unambiguously decidable and,
preferably, automatically checkable. We have analyzed several ref-
erential documents that provide advise with respect to the design of
this type of applications. Accordingly, we have observed that there
are many overlaps and even contradictions across these documents,

and no single source could be considered as complete. Further, the
documents often contain a mix of recommendations that go well
beyond the scope of architectural design and include rules that are
already covered elsewhere (e.g., the CIS benchmarks). This might
result in a frustrating experience for practitioners. Hopefully, this
study helps in getting an abridged overview of the relevant security
rules and provides a starting point for future research. In our own
future work, we plan on providing a more precise description of
the rules and on assessing the approaches more thoroughly.

ACKNOWLEDGMENTS
This work was partly funded by the European Union’s Horizon
2020 programme under grant agreement No. 952647 (AssureMOSS).

REFERENCES
[1] Mohamed Abdelrazek, John Grundy, and Amani Ibrahim. 2013. Automated

Software Architecture Security Risk Analysis Using Formalized Signatures. Pro-
ceedings - International Conference on Software Engineering. https://doi.org/10.
1109/ICSE.2013.6606612

[2] Marwan Abi-Antoun and Jeffrey M. Barnes. 2010. Analyzing Security Architec-
tures (ASE ’10). Association for Computing Machinery, New York, NY, USA, 3–12.
https://doi.org/10.1145/1858996.1859001

[3] Amir Shayan Ahmadian, Sven Peldszus, Qusai Ramadan, and Jan Jürjens. 2017.
Model-Based Privacy and Security Analysis with CARiSMA (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 989–993. https:
//doi.org/10.1145/3106237.3122823

https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1109/ICSE.2013.6606612
https://doi.org/10.1145/1858996.1859001
https://doi.org/10.1145/3106237.3122823
https://doi.org/10.1145/3106237.3122823

Towards a Security Benchmark for the Architectural Design of Microservice Applications ARES 2022, August 23–26, 2022, Vienna, Austria

[4] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. 2009. Automated
Analysis of Security-Design Models. 51, 5 (may 2009), 815–831. https://doi.org/
10.1016/j.infsof.2008.05.011

[5] Davide Berardi, Saverio Giallorenzo, Jacopo Mauro, Andrea Melis, Fabrizio Mon-
tesi, and Marco Prandini. 2022. Microservice security: a systematic literature
review. PeerJ Computer Science (2022).

[6] Bernhard Berger, Karsten Sohr, and Rainer Koschke. 2016. Automatically Ex-
tracting Threats from Extended Data Flow Diagrams, Vol. 9639. 56–71. https:
//doi.org/10.1007/978-3-319-30806-7_4

[7] Bernhard Berger, Karsten Sohr, and Rainer Koschke. 2019. The Architectural
Security Tool Suite — ARCHSEC. 250–255. https://doi.org/10.1109/SCAM.2019.
00035

[8] Priyanka Billawa, Anusha Bambhore Tukaram, Nicolás E. Díaz Ferreyra, Jan-
Philipp Steghöfer, Riccardo Scandariato, and Georg Simhandl. 2022. Security of
Microservice Applications: A Practitioners’ Perspective on Challenges and Best
Practices. arXiv:2202.01612 (2022).

[9] Abdelhakim Hannousse and Salima Yahiouche. 2021. Securing microservices
and microservice architectures: A systematic mapping study. Computer Science
Review 41 (2021), 100415.

[10] Stefanie Jasser. 2020. Enforcing Architectural Security Decisions. In 2020 IEEE
International Conference on Software Architecture (ICSA). 35–45. https://doi.org/
10.1109/ICSA47634.2020.00012

[11] Jan Jürjens. 2010. Secure Systems Development with UML. Springer-Verlag, Berlin,
Heidelberg.

[12] Torsten Lodderstedt, David Basin, and Jürgen Doser. 2002. SecureUML: A UML-
based modeling language for model-driven security. LNCS 2460, 426–441. https:
//doi.org/10.1007/3-540-45800-X_33

[13] Anelis Pereira-Vale, GastónMárquez, HernánAstudillo, and Eduardo B Fernandez.
2019. Security mechanisms used in microservices-based systems: A systematic

mapping. In 2019 XLV Latin American Computing Conference (CLEI). IEEE, 01–10.
[14] Francisco Ponce, Jacopo Soldani, Hernán Astudillo, and Antonio Brogi. 2021.

Smells and Refactorings for Microservices Security: A Multivocal Literature
Review. arXiv:2104.13303 (2021).

[15] Jie Ren and Richard N. Taylor. 2005. A Secure Software Architecture Description
Language. In In Workshop on Software Security Assurance Tools, Techniques, and
Metrics.

[16] Bradley Schmerl, Jeff Gennari, Alireza Sadeghi, Hamid Bagheri, SamMalek, Javier
Cámara, and David Garlan. 2016. Architecture Modeling and Analysis of Security
in Android Systems. 274–290. https://doi.org/10.1007/978-3-319-48992-6_21

[17] Stephan Seifermann, Robert Heinrich, and Ralf Reussner. 2019. Data-driven
software architecture for analyzing confidentiality. In 2019 IEEE International
Conference on Software Architecture (ICSA 2019), Hamburg, 25.-29. März 2019.
Institute of Electrical and Electronics Engineers (IEEE), Art. Nr.: 8703910. https:
//doi.org/10.1109/ICSA.2019.00009

[18] Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter Joosen. 2018.
SPARTA: Security amp; Privacy Architecture Through Risk-Driven Threat Assess-
ment. In 2018 IEEE International Conference on Software Architecture Companion
(ICSA-C). 89–92. https://doi.org/10.1109/ICSA-C.2018.00032

[19] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel.
2018. The pains and gains of microservices: A systematic grey literature review.
Journal of Systems and Software 146 (2018), 215–232.

[20] Katja Tuma, Riccardo Scandariato, and Musard Balliu. 2019. Flaws in Flows:
Unveiling Design Flaws via Information Flow Analysis. In 2019 IEEE International
Conference on Software Architecture (ICSA). 191–200. https://doi.org/10.1109/
ICSA.2019.00028

[21] Tetiana Yarygina and Anya Helene Bagge. 2018. Overcoming security challenges
in microservice architectures. In 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE). IEEE, 11–20.

https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1007/978-3-319-30806-7_4
https://doi.org/10.1109/SCAM.2019.00035
https://doi.org/10.1109/SCAM.2019.00035
https://doi.org/10.1109/ICSA47634.2020.00012
https://doi.org/10.1109/ICSA47634.2020.00012
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/3-540-45800-X_33
https://doi.org/10.1007/978-3-319-48992-6_21
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA.2019.00009
https://doi.org/10.1109/ICSA-C.2018.00032
https://doi.org/10.1109/ICSA.2019.00028
https://doi.org/10.1109/ICSA.2019.00028

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	4 Results
	5 Towards an Automated Security Benchmark
	5.1 Tools for automated benchmark
	5.2 Preliminary assessment

	6 Threats to validity
	7 Conclusions and Future Work
	Acknowledgments
	References

