
Fine-Grained Complexity Lower Bounds for
Families of Dynamic Graphs
Monika Henzinger !

Department of Computer Science, University of Vienna, Vienna, Austria

Ami Paz !

LISN, CNRS & Paris-Saclay University, France

A. R. Sricharan !

Department of Computer Science, UniVie Doctoral School Computer Science DoCS, University of
Vienna, Vienna, Austria

Abstract
A dynamic graph algorithm is a data structure that answers queries about a property of the current
graph while supporting graph modifications such as edge insertions and deletions. Prior work has
shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise
in practice often exhibit structural properties that the existing lower bound constructions do not
possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs,
power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our
results show that even when restricting our attention to one of these graph classes, any algorithm for
fundamental graph problems such as distance computation or approximation or maximum matching,
cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show
that the same lower bounds as for general graphs hold for maximum matching and (s, t)-distance in
constant-degree graphs, power-law graphs or expanders. Namely, in an m-edge graph, there exists no
dynamic algorithms with both O(m1/2−ε) update time and O(m1−ε) query time, for any small ε > 0.
Note that for (s, t)-distance the trivial dynamic algorithm achieves an almost matching upper bound
of constant update time and O(m) query time. We prove similar bounds for the other graph families
and for other fundamental problems such as densest subgraph detection and perfect matching.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic graph algorithms, Expander graphs, Power-law graphs

Funding Monika Henzinger and A. R. Sricharan: This project has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures
(MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algorithms for a Reactive
Network Layer (ReactNet)”, P 33775-N, with additional funding from the netidee SCIENCE Stiftung,
2020–2024

ar
X

iv
:2

20
8.

07
57

2v
2

 [
cs

.D
S]

 2
7

Ja
n

20
23

mailto:monika.henzinger@univie.ac.at
mailto:ami.paz@lisn.fr
mailto:sricharan.arunapuram@univie.ac.at

2 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

1 Introduction

A dynamic graph algorithm is a data structure that stores a graph and supports update
operations, usually consisting of edge insertions and deletions, as well as query operations that
ask about a specific property of the graph. The introduction of strong conditional lower bounds
based on widely-believed complexity assumptions [1, 16] has had a fundamental influence on
the field, pushing the design of new algorithms towards more specialized algorithms such
as partially-dynamic or even offline-dynamic algorithms or towards approximate solutions.
However, graphs arising in real-world applications often differ significantly from the very
specifically crafted graphs for which the lower bound results are shown. Frequently, real-world
graphs have some special structure, such as having a power-law degree distribution, a constant
degree, or being planar. Expanders, on the other side, have recently been used to design
dynamic algorithms for general graphs. This naturally leads to the question of determining
the complexity of dynamic graph algorithms for these graph classes, and this is exactly the
question investigated in this paper.

While the complexity of dynamic graph algorithms for planar graphs has already been
studied quite extensively [25, 18, 22, 20, 3, 2, 1, 19, 8], the question is still widely open for
other families of graphs, including power-law graphs, constant-degree graphs, and expanders.
Certain problems become easier for these graph classes: As an N -node1 constant-degree
graph has O(N) edges, computing all-pairs shortest paths (APSP) takes only time Õ(N2),
while the popular APSP conjecture postulates that for general graphs, there exists a small
constant c > 0 such that any algorithm in the word RAM model with O(logN)-bit words
requires N3−o(1) expected time to compute APSP. Moreover, some problems become trivial
in these graph classes, e.g., computing shortest paths with logarithmic additive error on
expander graphs is trivial, due to their low diameter.

In this paper we will concentrate on graph problems that have real-world applications
such as shortest-paths (which has applications in online navigation), matching (which has
applications in reconfigurable datacenters), and densest subgraphs (which has applications in
network analysis), yet we believe that our general approach can be applied to further graph
problems. For these three problems, the known conditional lower bounds construct graphs
that are far from being in the classes we consider: They have maximum degree Ω(N) and
small cuts, and their degree distribution is unknown as it depends on the instance that is
postulated to be hard.

Constant-degree graphs. Various dynamic graph problems that admit strong lower bounds
in general graphs have very efficient algorithms on constant-degree graphs. Let ∆ be the
maximum degree in the graph. For local problems, where the solution at a node v can be
computed by simply analyzing information stored at the neighbors of v such as maintaining
a maximal matching, a maximal independent set, or a (∆ + 1)-vertex coloring, there exist
simple dynamic algorithms with O(∆) update time and constant query time. Additionally,
for various problems that count or detect certain fixed subgraphs with c nodes (such as
triangle counting for c = 3) there exists dynamic algorithms with O(∆c−1) update time and
constant query time, even though they have polynomial conditional lower bounds in general
graphs (see Table 1). These efficient algorithms for local problems rule out the possibility of

1 To avoid confusion with the parameter n and matrix M used in the online-matrix-vector multiplication
conjecture, we use N to denote the number of vertices and m the number of edges in the dynamic
graphs.

M. Henzinger, A. Paz, and A. R. Sricharan 3

Problems
Lower bounds Upper bounds

General graphs [16] Erdős-Rényi avg-case [17] constant ∆ (trivial)
u(m,N) q(m,N) p(m,N) u(m,N) q(m,N) u(m,N) q(m,N)

Triangle

m1/2−ε m1−ε
N3−ε m1/2−ε m1−ε

∆ 1
counting

C4 subgraph
∆3 1

counting
5-length

N2−ε Nω−2−ε 1 ∆4 1
(s, t)-path count
Table 1 Counting problems which admit polynomial conditional lower bounds on general graphs

(amortized) and on Erdős-Rényi graphs (average case), but have algorithms with constant update and
query times in constant-degree graphs. For the lower bounds above, there is no dynamic algorithm
with pre-processing time p(m,N), update time u(m,N), and query time q(m,N) unless the OMv
conjecture is false. When p(m,N) is unspecified, poly(N) pre-processing time is allowed.

any non-trivial lower bound in the constant-degree setting.
Furthermore, even for the non-local problem of maintaining a maximum matching Gupta

and Peng [15] designed a (1 + δ)-approximation algorithm for any small δ > 0 that runs in
O
(

min
{

m
|M(t)| , |M(t)|

}
δ−2
)
amortized time per update, where M(t) denotes the maximum

cardinality matching after the t-th update operation. As in a graph with maximum degree
∆ it holds that |M(t)| ≥ m/(2∆), their algorithm achieves an amortized update time of
O(∆ δ−2), which is O(δ−2) in constant-degree graphs. This raises the question of how
efficiently other non-local dynamic graph problems such exact maximum matching, shortest
paths, and densest subgraph can be solved in dynamic constant-degree graphs and whether
it is possible to show (conditional) lower bounds for them.

Expanders. Expander decompositions are increasingly becoming a central tool for designing
dynamic graph algorithms with improved running time bounds for various graph problems
such as connectivity, minimum spanning tree, shortest paths, conductance, edge-connectivity,
maximum flows, and minimum cuts [21, 13, 10, 9]. One of the central subproblems that these
algorithms have to handle is to solve a graph problem on a dynamically changing expander.
To understand the limitations of this approach it is crucial to understand which problems
can be solved efficiently on expanders, and which cannot. We present novel lower bounds for
dynamic problems on expanders, more specifically on constant-degree expanders.

Note that these results also have an interesting connection to the average-case hardness
of dynamic graph algorithms. Recently, lower bounds on the average-case hardness were
shown for various subgraph counting problems in dynamic Erdős-Rényi graphs (see Table 1
for some of them) [17]. As random graphs are usually expanders, giving lower bounds for a
problem on dynamic expanders gives an indication that this problem might also be hard in
the average case and can motivate further work in this direction.

Power-law graphs. Graphs are called power-law graphs if the fraction of nodes with degree
d is proportional to 1/dc for some constant c > 0. Static and dynamic power-law graphs
arise surprisingly often in real-world networks, such as the Internet, the world-wide web, and
citation graphs, as well as in physics, linguistics, and economics. Even though the existence
of large dynamic power-law graphs was already pointed out in 2004 [14], no efficient dynamic
algorithms have been developed specifically for this class of graphs. This leads to the question

4 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

of whether sub-polynomial time dynamic algorithms are even possible for power-law graphs
or not. In fact, dynamic power-law graphs were not only never studied, they were not even
defined—removing even a single edge from a power-law graph changes the degree distribution
and thus violates the power-law distribution. Hence, we first present several definitions of
dynamic power-law graphs, where some slackness in the degree-distribution is allowed. Then
we prove lower bounds that hold for all of these dynamic power-law graph definitions.

1.1 Our Results

Throughout the paper we use the standard assumption that queries output one value, such
as the size, length or weight of the solution. Note that this makes it only more challenging
to prove lower bounds. All our results are conditioned on the popular OMv conjecture [16],
defined in Section 2, but to simplify the terminology we usually drop the word “conditional”.
Our results are also summarized in Table 2.
1. Main results. We study the hardness of dynamic algorithms for (i) constant-degree

graphs, (ii) expanders, and (iii) power-law graphs, for the following graph problems:
Determining (a) the size of a maximum matching, (b) the length of the (s, t) shortest-path
(i.e. (s, t)-distance), and (c) the density of the densest subgraph. Specifically, we show
the following tradeoff between the update time u and the query time q in an m-edge
graph for maximum matching and (s, t)-distance: There is no dynamic algorithm which
achieves both u = O(m1/2−ε) and q = O(m1−ε) for any small ε > 0. Note that these
bounds match the bounds given for general graphs in [16] and that the lower bound for
(s, t)-distance is almost tight as the simple algorithm that only records the edge change
at update time and computes the solution from scratch at query time achieves u = O(1)
and q = O(m). For densest subgraph we show that there is no dynamic algorithm which
achieves both u = O(N1/4−ε) and q = O(N1/2−ε) for any small ε > 0, which is weaker
than the lower bound on general graphs (of u = O(N1/2−ε) and q = O(N1−ε)).
The only relevant prior work are conditional lower bounds for planar graphs [1], which
have constant degree: In unweighted graphs they show for all-pairs-shortest paths a
weaker tradeoff between update time u and query time q than we do, namely they prove
max(u2 · q, u · q2) = Ω(m1−o(1)). In weighted graphs they show for (s, t)-distance a
tradeoff of max(u, q) = Ω(m1/2−o(1)). Note that our result is stronger as it shows that in
unweighted graphs no algorithm with u = Ω(m49/100) and q = Ω(m99/100) is possible.

2. Degree–lower bound trade-off. While the constant-degree lower bounds are equal to the
lower bounds for general graphs in terms of m, they are naturally quadratically lower
in terms of the number of nodes N . To understand the behaviour of the bounds also
with respect to N , we extend our constant-degree lower bounds for maximum matching,
perfect matching, and (s, t)-distance to graphs with maximum degree O(N t), for any
0 ≤ t ≤ 1. We show the following result: There is no dynamic algorithm which achieves
both u = O(N (1+t)/2−ε) and q = O(N1+t−ε) in a graph with maximum degree O(N t)
for any ε > 0. These results hold even in bipartite graphs. Note that for t = 1 these
results match exactly the bounds for general graphs in [16], and for t = 0, they match
the aforementioned results for constant-degree graphs.

3. Approximation results. In constant-degree graphs we extend the lower bound to the
problem of approximating the (s, t)-distance within a factor of 3 − δ, for any small
constant δ. This naturally extends the (3− δ)-approximation lower bounds on general
graphs to the constant-degree case. In planar graphs, the (s, t)-distance lower bound
holds only for exact answers.

M. Henzinger, A. Paz, and A. R. Sricharan 5

Note that a similar extension to approximation algorithms is not possible for maximum
cardinality matching and for densest subgraph: (a) For maximum matching, for any
small δ > 0 the above-mentioned (1 + δ)-approximation algorithm [15] achieves an
amortized update time of O(δ−2), which is constant for a constant δ, thereby precluding
any non-trivial lower bounds for approximate maximum matching in the constant-degree
setting. Stated differently, our work shows an interesting dichotomy for dynamic matching
matching in constant-degree graphs: For the exact setting there is no dynamic algorithm
which achieves both u = O(m1/2−ε) and q = O(m1−ε) for any small ε > 0, while a
(1 + δ)-approximation can be achieved in constant time, for any small δ > 0. (b) The
same dichotomy arises for densest subgraph: For any small δ > 0 there exists a (1− δ)-
approximation algorithm with polylogarithmic time per operation [24], while we show a
polynomial lower bound for the exact value.

4. Partially dynamic algorithms. We extend the constant-degree reductions for maximum
matching and (s, t)-distance also to the insertions-only and the deletions-only setting,
achieving the same lower bound as in the fully dynamic setting.

5. Perfect matching. A special case of maximum cardinality matching is determining whether
a perfect matching exists in a bipartite graph. For constant-degree graphs and expander
graphs we show the following lower bound: There is no dynamic algorithm which achieves
both u = O(m1/2−ε) and q = O(m1−ε) for any small ε > 0. This can also be extended to
the varying-degree setting.

To summarize, our paper opens up the research field of dynamic graph algorithms for
more specific, practical graph classes, in contrast with previous work that concentrated on
general or planar graphs. We believe that our techniques can be extended to further classes of
dynamic graphs or even in other domains of theoretical computer science, such as distributed
graph algorithms or streaming algorithms. One further interesting implication of our work is
presenting the limitations of dynamic graph algorithms on expanders, thus complementing
recent algorithmic results that use expander decompositions in dynamic graphs.

1.2 Our Techniques
We prove lower bounds by reductions from the online matrix vector (OMv) conjecture [16].
In these reductions, the input of an online problem, which is an n × n matrix M and a
sequence of n pairs (u, v) of n-vectors, is translated into a dynamic graph. The reduction is
built so that there exists a pair (u, v) satisfying uMv = 1 if and only if the dynamic graph
has some desired property at some point of time. While we follow the general framework
of OMv lower bounds, the details are delicate, as the dynamic graphs we construct should
fall into specific graph classes at all times, while still maintaining the graph property under
consideration. We give a high-level overview of our reductions below.

One way to turn known OMv-to-dynamic graphs reductions into reductions that produce
bounded-degree graphs is by replacing high-degree nodes by bounded-degree trees. This
technique has a rather clear and straightforward effect on the distances in the graph, so it
is applicable when considering distance-related problems. This, however, is far from being
the case when considering other problems, such as maximum matchings. Here, replacing a
high-degree node with a gadget could adversely affect the desired matching size, since the
gadget might create several augmenting paths that would not have existed when it was a
single high-degree node. To overcome this, we limit the possible maximum matching sizes,
by designing a reduction graph with bounded-degree gadgets composed of paths, where the
maximum matching is always either a perfect matching, or a near-perfect matching, i.e., the

6 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Problem Class Section u(m,N) q(m,N)

Maximum Matching

∆ ≤ 3 Section 3.1

m1/2−ε m1−ε
constant degree & expansion Section 3.3

power-law graphs Section 3.4
∆ ≤ 3, partially dynamic Appendix B.2

∆ ≤ N t Section 3.2 N (1+t)/2−ε N1+t−ε

(s, t)-distance

∆ ≤ 3 Section 4.1

m1/2−ε m1−ε

(3− δ)-approx, ∆ ≤ 3 Section 4.2
constant degree & expansion Section 4.4

power-law graphs Section 4.5
∆ ≤ 3, partially dynamic Appendix B.1

∆ ≤ N t Section 4.3 N (1+t)/2−ε N1+t−ε

Densest Subgraph
∆ ≤ 5 Section 5.1

N1/4−ε N1/2−εconstant degree & expansion Section 5.2
power-law graphs Section 5.3

Table 2 Our results for graphs on N nodes with m edges. For every u and q stated above,
there is no algorithm for the corresponding problem with amortized O(u(m,N)) update time and
O(q(m,N)) query time simultaneously unless the OMv conjecture is false. The first three rows hold
also for perfect matching. All the lower bounds in the table except for densest subgraph match the
general OMv lower bounds2.

matching size is either N/2 or N/2− 1. This reduction thus involves a large matching and
a small gap between the uMv = 0 and uMv = 1 cases, and hence cannot be extended to
achieve a lower bound for the approximation of the maximum matching size. While this
might seem as a limitation of our construction, recall that this is actually not the case: As
described above, for any small δ > 0 there is a constant time (1 + δ)-approximation dynamic
algorithm for the problem, and, thus, such a lower bound cannot exist.

An even more delicate reduction we present is for proving a lower bound on the densest-
subgraph problem. A straightforward reduction would change O(n) graph-edges for every
bit of the input, which will allow us to make sure that the density of the densest subgraph
changes by a significant amount when uMv = 0 versus when uMv = 1. However, this
would involve O(n2) updates for each (u, v) input pair, and the reduction would fail to
yield any non-trivial lower bound. Thus, we are forced to change very few edges for each
input bit, which renders an almost negligible effect on the density, making it difficult to
control the exact density of the densest subgraph. Our reduction balances these two factors,
using a construction where each gadget is a sufficiently dense regular graph, while having
each bit of the input translate into the existence or nonexistence of merely two edges inside
specific gadgets. As in the case of matchings, our lower bounds cannot be extended to
approximations, as for any δ > 0 there exists a fast algorithm with polylogarithmic update
time for computing (1− δ)-approximations to the densest subgraph.

We then extend these reductions from bounded-degree graphs to constant-degree constant-
expansion graphs. First, the standard lower bound reductions contain sparse cuts if the inputs
M,u or v are sparse, making a standard reduction graph far from being an expander. Thus,
we have to augment the graph with many more edges to make sure that it has no sparse cuts
regardless of M,u and v. We do this augmentation “inside a layer” to prevent the additional
edges from creating undesired short paths between s and t, or spurious augmenting paths in
the case of matchings. Sparse cuts also exist in parts of the graph that do not depend onM,u

or v, and to handle these, we add edges of a constant-degree expander between a well-chosen

M. Henzinger, A. Paz, and A. R. Sricharan 7

set of nodes, thus guaranteeing the expansion without changing the required graph property.
Finally, in the case of distance-related problems, we note that expander graphs can have at
most logarithmic diameter, but the substitution of nodes by trees described above increases
the diameter to be at least logarithmic, leaving only a very small slack for our construction.

When studying densest subgraphs on expanders, adding edges in order to avoid sparse
cuts might change the location and structure of the densest subgraph in an undesired way.
In order to guarantee the expansion in this case, we add a copy of all the graph nodes, build
a constant-degree expander on the copies of the nodes, and then connect each node to its
copy by a matching.

In dynamic power-law graphs where the node degrees may depend on the inputs u,M, v

and change over time, we have to guarantee that the degree changes incurred by the processing
of different inputs do not cause a violation of the power-law distribution of degrees. As before,
all the changes must also be done without changing the graph property under consideration,
and without performing too many update operations. We address this problem by inserting
or deleting edges in an online fashion in other parts of the reduction graph, to compensate
for the changes incurred by processing the input vector pairs.

Organisation Section 2 has notation and definitions. Section 3 presents the dynamic
maximum matching lower bounds, Section 4 presents the dynamic (s, t)-distance lower
bounds, and Section 5 presents the dynamic densest subgraph lower bounds. The lower
bounds for the partially dynamic setting are deferred to the appendix.

2 Preliminaries

Throughout the paper, we consider vectors and matrices that are boolean, and so a vector-
matrix-vector multiplication outputs a single bit. Henzinger et al. [16] define the Online
Matrix Vector (OMv) and the Online Vector Matrix Vector (OuMv) multiplication problems.

I Definition 1 (Online Matrix Vector Multiplication). Let M be a boolean n × n matrix.
Preprocessing the matrix is allowed. Then, n vectors v1, v2, . . . , vn arrive one at a time, and
the task is to output the product Mvi before the next vector is revealed.

I Definition 2 (Online Vector Matrix Vector Multiplication). Let M be a boolean n×n matrix.
Preprocessing the matrix is allowed. Then, n vector pairs (u1, v1), (u2, v2), . . . , (un, vn) arrive
one at a time, and the task is to output the bit uiMvi before the next vector pair is revealed.

In their paper, they show that the OuMv problem can be reduced to the OMv problem, and
conjecture that there is no truly subcubic time algorithm for OMv.

I Conjecture 3 (OMv). There is no algorithm for the OMv (and hence the OuMv) problem
running in time O(n3−ε) for any constant ε > 0.

We work with the OuMv problem for all the reductions in our paper. We denote the
length of our input vectors ui, vi by n, and thus the matrix M is of dimension n× n. We
use upper indices to indicate the vector’s location in the stream, but usually focus on one
pair (u, v) omitting these indices. We use lower indices for a location in the vector or matrix,
e.g., ui and Mij . We use N to denote the number of nodes in our reduction graph.

I Definition 4 (Expansion). The expansion parameter of a graph G = (V,E) is defined as

h = min
{
|E(S, S)|
|S|

∣∣∣∣ ∅ 6= S ⊆ V, |S| ≤ |V |/2
}

8 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

where E(S, S) is the number of edges from S to V \ S. We call a graph with expansion h a
h-expander. Works on dynamic algorithms use a different definition of expansion parameter
h′, called volume expansion. However, when considering constant-degree graphs with constant
expansion (as we do in this paper), both parameters are within a ∆ factor of each other, so
we only consider the expansion parameter h in our proofs.

We study power-law graphs as introduced in [4], and only consider the setting where
β > 2. In the following definition, if the number of nodes N in the graph is fixed, then we
get that α is roughly lnN .

I Definition 5 (Power Law). A graph is said to follow an (α, β)-power law distribution if the
number Nd of nodes with degree d is inversely proportional to dβ for some constant β > 0.
That is,

Nd =
⌊
eα

dβ

⌋
≈
⌊

1
ζ(β) ·

N

dβ

⌋
,

where ζ(β) =
∑∞
i=1 1/iβ is the Riemann Zeta function.

Since dynamic graphs allow edge insertions and deletions, it is impossible to maintain
an exact degree distribution at all times. Hence, we introduce the notion of approximate
power-law distributions to afford some slack for dynamic changes. One natural relaxation is
to allow β to vary within an interval.

I Definition 6 (β-Varying Power Law). A graph is said to follow an (α, β1, β2)-varying power
law distribution if the number Nd of nodes with degree d satisfies

min
{⌊

1
ζ(β1) ·

N

dβ1

⌋
,

⌊
1

ζ(β2) ·
N

dβ2

⌋}
≤ Nd ≤ max

{⌊
1

ζ(β1) ·
N

dβ1

⌋
,

⌊
1

ζ(β2) ·
N

dβ2

⌋}
,

This relaxation of an exact power law, while being natural, is a global relaxation rather
than a local one. Thus we also define two locally approximate definitions below that allow
similar slack for all degrees.

I Definition 7 (Additively Approximate Power Law). A graph is said to follow an (α, β, c)-
additively approximate power law distribution if the number Nd of nodes of degree d for a
realisable degree d satisfies⌊

1
ζ(β) ·

N

dβ

⌋
− c ≤ Nd ≤

⌊
1

ζ(β) ·
N

dβ

⌋
+ c

where we say that d is a realisable degree if there is a node of degree d in an (α, β)-power law
graph.

I Definition 8 (Multiplicatively Approximate Power Law). A graph is said to follow an (α, β, ε)-
multiplicatively approximate power law distribution if the number Nd of nodes of degree d
satisfies

1
(1 + ε) ·

⌊
1

ζ(β) ·
N

dβ

⌋
≤ Nd ≤ (1 + ε) ·

⌊
1

ζ(β) ·
N

dβ

⌋
Our lower bounds contain at most four nodes that are one degree away from an exact

power-law distribution, and thus hold in all the models discussed above with any reasonable
parameter regime. We note a couple of properties of power-law graphs that we use in our
lower bounds.

M. Henzinger, A. Paz, and A. R. Sricharan 9

The maximum realizable degree in a power law graph is
⌈
eα/β

⌉
, since

Nd ≥ 1 ⇐⇒
⌊
eα

dβ

⌋
≥ 1 ⇐⇒ d ≤

⌈
eα/β

⌉
.

In terms of N , the maximum degree in a power-law graph is ∆ =
⌈
(N/ζ(β))1/β

⌉
<
√
N .

We work in the setting where β > 2. Note that in this setting, the number of edges in
the graph is given by

|E| = 1
2 ·

ζ(β − 1)
ζ(β) ·N,

which is linear in the number of nodes for a fixed β.

3 Lower Bounds for Dynamic Maximum Matching

In this section, we present our lower bound results for the maximum cardinality matching
problem. The previous matching lower bounds on general graphs [16, 11] use reduction
graphs that contain nodes with degree Ω(N). Towards showing a lower bound on expanders,
we first sparsify the original reduction.

In Section 3.1, we give a lower bound for maximum matching on graphs with maximum
degree 3. In Section 3.2, we show that the distinction between the unbounded and constant-
degree reductions is not discrete, by giving a lower bound reduction parameterized on the
maximum degree allowed in the graph. In Section 3.3, we give a reduction graph that has
constant expansion. Finally, we show our lower bounds for power-law graphs in Section 3.4.

3.1 Constant-Degree Graph
We first perform a simple reduction that shows that
maintaining maximum matchings is hard even on
graphs where the maximum degree is 3. We use
the following gadget composed of paths to main-
tain matching properties in our reduction graph
during sparsification—see Figure 1. Our gadget
construction starts by replacing each node of a
dense reduction by a path; we refer to each path
as a ‘subgadget’. Connecting every node of this
new subgadget with nodes outside the subgadget
might create unwanted matchings of larger sizes,
so instead we carefully choose a subset of the path
nodes to connect outside the subgadget.

Figure 1 Odd and even sized paths
used in the maximum matching lower
bounds. The canonical matchings are
marked in red.

Figure 1 shows odd and even paths (“odd” and “even” describe the number of nodes)
with a “canonical” matching for each of them marked in red. Next, we detail the connections
outside the subgadgets.

Consider an odd path on 2n+ 1 vertices, and a bipartition of the vertices into (X ′, X)
with |X ′| ≤ |X|. Indexing the vertices as X[0] and X ′[i], X[i] for 1 ≤ i ≤ n, our canonical
matching matches X[i] with X ′[i], and leaves X[0] unmatched. We connect only the vertices
{X[i] | 1 ≤ i ≤ n} outside the subgadget, while vertices in X ′ and X[0] only have edges
inside the subgadget. For an even path on 2n+ 2 vertices indexed as above, our canonical

10 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

matching is perfect, and matches X[i] to X ′[i]. Only vertex X ′[0] and all the vertices in
X are connected outside the subgadget, and all vertices X ′[i], 1 ≤ i ≤ n, only have edges
within the subgadget.

I Definition 9 (Reduction gadget). A reduction gadget with x subgadgets of size y is a
bipartite graph composed of x subgraphs, each of which is a path on y nodes.

Reduction Graph

The reduction graph is composed of two odd-sized reduction gadgets, and two even-sized
reduction gadgets as follows.

A reduction gadget with one subgadget of size 2n+ 1, on a set L1 ∪ L2. The nodes are
labelled L1[i] for 1 ≤ i ≤ n, and L2[i] for 0 ≤ i ≤ n, and the path is from L2[0] to L2[n].
A reduction gadget with n subgadgets of size 2n+2 each, on a set L3∪L4. The subgadgets
are labelled LG[i] for 1 ≤ i ≤ n, and the nodes of subgadget LG[i] are labelled L3[i, j] or
L4[i, j] for 0 ≤ j ≤ n depending on whether the node is in L3 or L4. The path in each
subgadget goes from L3[i, 0] to L4[i, n].
A copy of the above structure, with node sets markedR1, R2, R3, R4 instead of L1, L2, L3, L4,
respectively.
For the matrix M , add the edge (L4[i, j], R4[j, i]) if Mij = 1.
Given an input vector u, for each i ∈ [n], add the edge (L2[i], L3[i]) if ui = 1.
Given an input vector v, for each j ∈ [n], add the edge (R2[j], R3[j]) if vj = 1.

The total number of nodes in the reduction graph is N = 4n2 + 8n+ 2 = Θ(n2). Note
that our reduction graph is bipartite, and thus our lower bounds in this section hold for
maintaining an exact maximum matching even on bipartite graphs.

Matchings in the Graph

We start by defining a base matching B on the graph, which is made up of the canonical
matchings on each of the gadgets. On the left side, B matches L3[i, j] to L4[i, j], and L1[i]
to L2[i] for all i, j. The matching on the right side is similar. Note that this matching always
exists regardless of the input, and only L2[0] and R2[0] are unmatched in the entire graph.
Thus |B| = N

2 − 1. We claim that this graph has a perfect matching if and only if uMv = 1.
Let C denote the maximum cardinality matching.

I Lemma 10. If uMv = 1, then |C| = N
2 , and otherwise |C| = N

2 − 1.

Proof. Since B is always a matching of size N
2 − 1 regardless of the input, the claim is

equivalent to showing that uMv = 1 if and only if there is an augmenting path with respect
to the matching B.

(=⇒) Suppose that uMv = 1, with ui = Mij = vj = 1. Consider the path P composed
of the following subpaths, of which all except P4 start with an unmatched edge and end with
a matched edge, while P4 both starts and ends with an unmatched edge.

P1 = L2[0], L1[1], L2[1], . . . , L2[i]
P2 = L2[i], L3[i, 0], L4[i, 0], . . . , L4[i, j]
P3 = L4[i, j], R4[j, i], R3[j, i], . . . , R3[j, 0]
P4 = R3[j, 0], R2[j], R1[j], . . . , R2[0]

Thus, P is an augmenting path to the base matching B, which gives us that the maximum
matching C has to have size > N

2 − 1, implying that the maximum matching C is a perfect
matching.

M. Henzinger, A. Paz, and A. R. Sricharan 11

(⇐=) Suppose now that there exists an augmenting path P to the base matching B
that starts at s = L2[0] and ends at t = R2[0].

Since (∪iLi,∪jRj) is an (s, t)-cut, there is at least one crossing edge, say (L4[i, j], R4[j, i]),
in P . Thus Mij = 1.
Since P leaves the subgadget LG[i] using (L4[i, j], R4[j, i]), it should have entered the
subgadget at some previous instance. Since (L4[i, j], R4[j, i]) is an unmatched edge and
all the matching edges in LG[i] are within the subgadget, P should have entered the
subgadget using an unmatched edge. As all the matching edges in LG[i] are between L3
and L4, P cannot both enter and exit the subgadget through L4. Thus P enters LG[i]
through L3. However, the only possible unmatched edge from L3 leaving the subgadget
is the edge (L3[i, 0], L2[i]). Thus P uses the edge (L3[i, 0], L2[i]) to enter the subgadget
LG[i], and so ui = 1.
The path P now enters the subgadget RG[j] through the unmatched edge (L4[i, j], R4[j, i]).
As before, all the matched edges in RG[j] are between R4 and R3, and so P has to exit the
subgadget using an unmatched edge from R3. However, the only possible unmatched edge
from R3 leaving the subgadget is the edge (R3[j, 0], R2[j]). Thus the edge (R3[j, 0], R2[j])
is used by P , giving us that vj = 1.

This gives us that uMv = 1 as required. J

Complexity of the Reduction

We are now ready to prove the theorem.

I Theorem 11. For any constant ε > 0, there is no dynamic algorithm maintaining a
maximum matching or determining the existence of a perfect matching, on all N -node graphs
with maximum degree ∆ ≤ 3, with amortized O(N1/2−ε) update time and O(N1−ε) query
time, unless the OMv conjecture is false.

Proof. Consider the reduction graph above. It consists of N = 4n2 + 8n+ 2 = Θ(n2) nodes.
Every time we get a new (u, v) input vector pair, we delete all the edges between L2 × L3
and R2 ×R3 and insert edges according to the new input vectors. This takes O(n) updates
in total. After that, we query once for the size of the maximum matching in this new graph,
and return 1 if and only if |C| = N

2 .
Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,

checking n pairs takes us O(n2) updates and O(n) query. If there were an algorithm for
maximum matching on constant-degree graphs with update time O(N1/2−ε) (i.e., O(n1−2ε))
and query time O(N1−ε) (i.e., O(n2−2ε)), then we can decide if uMv = 1 for all n pairs in
O(n3−2ε) time, contradicting the OMv conjecture. J

3.2 Varying Degree Graph
We present a reduction that gives a lower bound parameterized on the maximum degree of
the graph. Note that setting t = 1 and t = 0 in the following theorem give us the unbounded
degree lower bound of [16] and Theorem 11 respectively.

I Theorem 12. For any 0 ≤ t ≤ 1 and any constant ε > 0, there is no dynamic algorithm
maintaining a maximum matching or determining the existence of a perfect matching, on all
N-node graphs with maximum degree ∆ = O(N t), with amortized O(N 1+t

2 −ε) update time
and O(N1+t−ε) query time, unless the OMv conjecture is false.

12 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Given 0 ≤ t ≤ 1, we construct a reduction graph that has maximum degree O(N t).
L1, L2, R1, R2 and the edges for u and v are the same as in the previous construction. We
now detail the changes for L3, L4, R3, R4 and the edges that depend on M .

LG is now an even reduction gadget with n subgadgets of size 2n
1−t
1+t + 2 each. The path

in each subgadget goes from L3[i, 0] to L4[i, n
1−t
1+t], and similarly for R3 and R4.

For the matrix M , if Mij = 1, let i′ =
⌈
i · n−2t/(t+1)⌉ and j′ =

⌈
j · n−2t/(t+1)⌉ and add

the edge (L4[i, j′], R4[i′, j]) to the graph.

Note that the augmenting paths in this reduction graph are the same as in the constant-
degree reduction graph by a similar proof as in Lemma 14. By construction, each node in L4
is connected to at most n2t/(t+1) nodes in R4, and each node in R4 is connected to at most
n2t/(t+1) nodes in L4. The proof of the theorem is similar to the proof of Theorem 11.

Proof. The number of nodes in the reduction graph described in Section 3.2 is dominated by
the number of nodes in L4 and R4. Thus the total number of nodes in the reduction graph is
N = Θ(n2/(t+1)) nodes. Each node in L4 and R4 has at most n2t/(t+1) edges of M incident
on it by a similar argument as in the proof of Theorem 33. Thus the maximum degree in the
graph is O(n2t/(t+1)) = O(N t) as required. The rest is similar to Theorem 11.

Every time we get a new (u, v) input vector pair, we delete all the edges between L2×L3
and R2 × R3 and insert edges according to the new input. Thus, for each pair of input
vectors, we perform O(n) updates and O(1) queries. In total, checking n pairs takes us O(n2)
updates and O(n) queries. If there were an algorithm for maximum matching on graphs with
maximum degree bounded by N t with update time O(N 1+t

2 −ε) (i.e., O(n1−2ε)) and query
time O(N1+t−ε) (i.e., O(n2−2ε)), then we can decide if uMv = 1 for all n pairs in O(n3−2ε)
time, contradicting the OMv conjecture. J

3.3 Expander Graph
The previous matching lower bounds on general graphs [16, 11] use reduction graphs that
contain nodes with degree Ω(N). In this section, we construct a constant-degree reduction
graph with constant expansion.

Reduction gadgets

While the reduction gadgets in Section 3.1 suffice for sparsification, we need additional
constructions in order to guarantee constant expansion. In particular, it turns out that
adding edges inside a subgadget does not suffice for constant expansion, and we are forced
to add edges between subgadgets. Our construction adds edges on the same side of the
bipartition across subgadgets, and our proof implicitly shows that if the newly added edges
take part in any augmenting path, then there also exists an augmenting path in the subgraph
devoid of any newly inserted edge.

The reduction graph consists of a left subgraph (L) and a right subgraph (R), connected
together by edges corresponding to the matrix M . Note that for constant expansion, we need
the number of edges of M to be a constant fraction of the sizes of L and R. While it would
be possible to construct a reduction graph with |L| and |R| that depend on the input matrix
M , we instead choose to augment the input matrix and vectors as it simplifies notation. We
thus augment the input beforehand to ensure that there are Ω(n2) edges crossing from L to
R. To this end, we work with the vectors û = (u 0) and v̂ = (v 0) of dimension 2n, and the
matrix M̂ = (M 1

1 1) of dimension 2n× 2n. It is easy to see that uMv = 1 ⇐⇒ ûM̂ v̂ = 1.

M. Henzinger, A. Paz, and A. R. Sricharan 13

I Definition 13 (Reinforced gadget). A reinforced gadget with x subgadgets of size y consists
of x subgraphs, each of which is a path on y nodes. The nodes are bipartitioned into sets
(X ′, X) with the larger side of the partition labelled as X in each subgadget. Thus |X ′| ≤ |X|.
It is then augmented with the following edge-set: Consider a degree-d expander graph on
x ·
⌈
y
2
⌉
nodes, choose an arbitrary bijection between the expander nodes and X, and add the

expander edges to these nodes accordingly. The resulting graph is the reinforced gadget.

Note that reinforced gadgets are not bipartite. Thus, while the constant-degree lower
bounds hold for bipartite matching, the expander result is for maximum matching on general
graphs. In what follows, we drop the hats from û, M̂ and v̂ for simplicity, but continue our
analysis with their dimensions as 2n, 2n× 2n, 2n respectively.

Reduction Graph

We use the following reduction graph, composed of two odd-sized reinforced gadgets and two
even-sized reinforced gadgets.

A reinforced gadget with one subgadget of size 4n+ 1, on a set L1 ∪ L2. The nodes are
labelled L1[i] for 1 ≤ i ≤ 2n, and L2[i] for 0 ≤ i ≤ 2n. The path is from L2[0] to L2[2n],
and the expander is on L2.
A reinforced gadget with 2n subgadgets of size 4n+ 2, on a set L3 ∪ L4. The subgadgets
are labelled LG[i] for 1 ≤ i ≤ 2n, and the nodes of subgadget LG[i] are labelled L3[i, j]
or L4[i, j] for 0 ≤ j ≤ 2n depending on whether the node is in L3 or L4. The path in
each subgadget goes from L3[i, 0] to L4[i, 2n], and the expander is on L4.
A copy of the above structure, with node sets marked Ri instead of Li, respectively.
For the matrix M , add the edge (L4[i, j], R4[j, i]) if Mij = 1.
Given an input vector u, for each i ∈ [2n], add the edge (L2[i], L3[i, 0]) if ui = 1, and
(L2[i], L4[i, 0]) otherwise.
Given an input vector v, for each j ∈ [2n], add the edge (R2[j], R3[j, 0]) if vj = 1, and
add the edge (R2[j], R4[j, 0]) otherwise.

The total number of nodes in the reduction graph is N = 16n2 + 16n+ 2 = Θ(n2).

Matchings in the Graph

Our base matching B is similar to the constant-degree case, and is made up of the canonical
matchings on each of the gadgets. On the left side, B matches L3[i, j] to L4[i, j], and L1[i]
to L2[i] for all i, j. The matching on the right side is similar. Note that this matching always
exists regardless of the input, and only L2[0] and R2[0] are unmatched in the entire graph.
Thus |B| = N

2 − 1. We claim that this graph has a perfect matching if and only if uMv = 1.
Let C denote the maximum cardinality matching.

I Lemma 14. If uMv = 1, then |C| = N
2 , and otherwise |C| = N

2 − 1.

The proof of Lemma 10 without any modifications shows Lemma 14 even with the
additional edges present.

Complexity of the Reduction

On the arrival of a new vector pair, we first add all the edges corresponding to the new input
(if they do not already exist), and then remove the previous vector pair’s edges, as opposed
to the usual convention of first deleting the previous edges and inserting the new ones. This

14 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Figure 2 The expander reduction graph for maximum matching. The red lines denote the
canonical matching, the blue lines denote the paths in each subgadget, the grey lines denote the
expander edges, and the green lines denote the input-dependent edges.

ensures that the graph remains an expander at all steps. Assuming that we have proved the
expansion properties required, since number of edges in a constant-degree graph is O(N), we
get the following theorem for expanders.

I Theorem 15. For any constant ε > 0, there is no dynamic algorithm maintaining a
maximum matching or determining the existence of a perfect matching, on all N -node graphs
with constant degree and constant expansion, with amortized O(N1/2−ε) update time and
O(N1−ε) query time, unless the OMv conjecture is false.

Proof. Consider the reduction graph above. It consists of N = 16n2 + 16n + 2 = Θ(n2)
nodes. Every time we get a new (u, v) input vector pair, we update L2 × L3 and R2 ×R3 as
detailed above. This takes O(n) updates in total. After that, we query once for the size of
the maximum matching in this new graph, and return 1 if and only if |C| = N

2 .
Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,

checking n vector pairs takes us O(n2) updates and O(n) query. If there were an algorithm for
maximum matching on constant-degree graphs with update time O(N1/2−ε) (i.e., O(n1−2ε))
and query time O(N1−ε) (i.e., O(n2−2ε)), then we can decide if uMv = 1 for all n pairs in
O(n3−2ε) time, contradicting the OMv conjecture. J

Let us now show that the graph described is indeed an h1-expander graph, for some
constant h1 > 0.

I Lemma 16. The reduction graph has constant expansion.

Throughout the rest of this section, let S be an arbitrary subset of vertices in the reduction
graph, with |S| < N/2 = 8n2 + 8n+ 1. To simplify our proofs, we consider the reduction
graphs with n > 90, since then 8n2 + 8n+ 1 < 8.1n2. We use “S expands” as a shorthand
for |E(S, S̄)| ≥ c · |S| for some constant c > 0.

M. Henzinger, A. Paz, and A. R. Sricharan 15

Sizes Proof ideas Proof
SL4 > 3.9n2 ∧ SR4 > 3.9n2 Use the perfect matching on L3 ∪ L4 Lemma 18

0.1n2 ≤ SL4 ≤ 3.9n2 Use the expander on L4 Lemma 19
SL4 > 3.9n2 ∧ SR4 < 0.1n2 Use the edges of matrix M Lemma 20

Table 3 Ideas for the proof of expansion in the matching reduction graph when either S ∩ L4 or
S ∩ R4 is large. we use SL4 as shorthand for |S ∩ L4|. The cases when 0.1n2 ≤ SR4 ≤ 3.9n2 and
SR4 > 3.9n2 ∧ SL4 < 0.1n2 are symmetric to the ones presented in the table.

Note that the node sets in the graph have the following sizes: |L1| = 2n; |L2| = 2n+ 1;
|L3| = |L4| = 4n2 + 2n, and |Ri| = |Li|. We divide the expansion proof into two sections
based on whether its intersection with the middle layers (L4 or R4) is large or small.

We first deal with the case when the intersection is large.

I Lemma 17. If |S ∩ L4| ≥ 0.1n2 or |S ∩R4| ≥ 0.1n2, then S expands.

We encapsulate the proof ideas for this lemma in Table 3, and split the proof into three
lemmas for convenience. First, we show that if its intersection with both the middle layers is
very large, then S expands. Our proof uses the canonical matching on L3 ∪ L4.

I Lemma 18. If |S ∩ L4| > 3.9n2 and |S ∩R4| > 3.9n2, then S expands.

Proof. The two conditions together imply that |S ∩ L3| ≤ 0.4n2. Thus

|E(S, S̄)| ≥ |E(S ∩ L4, S̄ ∩ L3)|
= |E(S ∩ L4, L3)| − |E(S ∩ L4, S ∩ L3)|
≥ 3.9n2 − |E(S ∩ L4, S ∩ L3)| (by the canonical matching)
≥ 3.9n2 − 1.2n2 (since deg(v) ≤ 3 for all v ∈ L3)
≥ (2.7/8.1) · |S| (by upper bound on |S|)

which proves our claim. J

Next, we show that if the intersection with one of the middle layers is of medium size,
then S expands. We prove this by using the fact that there is an h0-expander on the middle
layers.

I Lemma 19. If 0.1n2 ≤ |S ∩ L4| ≤ 3.9n2, then S expands.

Proof. Let T be the smaller of the two sets S ∩ L4 and S̄ ∩ L4, then |T | ≤ |L4|/2. Thus

|E(S, S̄)| ≥ |E(S ∩ L4, S̄ ∩ L4)|
= |E(T, L4 \ T)| (by definition of T)
≥ h0 · |T | (by expansion)
≥ h0 · 0.1 · n2 (by constraint on |S ∩ L4|)
≥ h0 · (0.1/8.1) · |S| (by upper bound on |S|)

which proves our claim. J

The above observation also holds when the size of S ∩R4 is in the same range, using the
expander on R4. Finally, we show that if one of the intersections is large and the other is
small, then S expands. We use the edges of the matrix M to do this.

16 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Sizes Proof ideas Proof
SL3 > 2SL4 ∧ SL3 > 0.2n Use the perfect matching on L3 ∪ L4 Lemma 22
SL3 ≤ 2SL4 ∧ SL4 > 0.1n Use the expander on L4 Lemma 23

Table 4 Ideas for the first part of the proof of expansion in the left side of the matching reduction
graph when S ∩ L4 is small (< 0.1n2). Here we deal with the case when either SL4 > 0.1n or
SL3 > 0.2n.

I Lemma 20. If |S ∩ L4| > 3.9n2 and |S ∩R4| < 0.1n2, then S expands.

Proof. Recall that our reduction graph has ≥ 3n2 edges crossing from L4 to R4. Thus

|E(S, S̄)| ≥ |E(S ∩ L4, S̄ ∩R4)|
= |E(S ∩ L4, R4)| − |E(S ∩ L4, S ∩R4)|
≥ |E(S ∩ L4, R4)| − 0.1n2 (by constraint on |S ∩R4|)
= |E(L4, R4)| − |E(S̄ ∩ L4, R4)| − 0.1n2

≥ 3n2 − |E(S̄ ∩ L4, R4)| − 0.1n2 (by construction)
≥ 3n2 − 0.2n2 − 0.1n2 (by constraint on |S ∩ L4|)
≥ (2.7/8.1) · |S| (by upper bound on |S|)

which proves our claim. J

A symmetric argument works by swapping L4 and R4 in the above proof. Lemmas 18,
19, and 20 together prove Lemma 17. We are left with the case when the intersection of S
with both the middle layers is small.

I Lemma 21. If |S ∩ L4| < 0.1n2 and |S ∩R4| < 0.1n2, then S expands.

In this case, we show that the intersection of S with the left side (L = ∪iLi) and the
right side (R = ∪iRi) of the graph expand within their respective sides. This then proves
expansion of S, since

|E(S, S̄)| ≥ |E(S ∩ L.S̄ ∩ L)|+ |E(S ∩R.S̄ ∩R)|
≥ h1 · |S ∩ L|+ h1 · |S ∩R| (by expansion within each side)
≥ h1 · |S|

We now concentrate on proving the expansion of S∩L in L, since the right side expansion
follows by similar arguments.

I Lemma 22. If |S ∩ L3| > 2|S ∩ L4| and |S ∩ L3| > 0.2n, then S expands.

Proof. First, we lower bound the number of crossing edges by c · |S ∩ L3|.

|E(S ∩ L, S̄ ∩ L)| ≥ |E(S ∩ L3, S̄ ∩ L4)|
≥ |S ∩ L3| − |S ∩ L4| (by the canonical matching)
≥ 0.5 · |S ∩ L3| (by constraint on |S ∩ L4|)

M. Henzinger, A. Paz, and A. R. Sricharan 17

Sizes Proof ideas Proof
SL2 ≥ 0.7n Use the edges of u Lemma 24

SL2 < 0.7n ∧ SL1 ≥ 1.3n Use the canonical matching on L1 ∪ L2 Lemma 25
SL2 < 0.7n ∧ SL1 < 1.3n Use the gadget expansion Lemma 27

Table 5 Ideas for the second part of the proof of expansion in the left side of the matching
reduction graph when S ∩L4 is small. Here we deal with the case when SL4 < 0.1n and SL3 < 0.2n.

Then we lower bound 22 · |S ∩ L3| by |S ∩ L|, which proves our claim. The final inequality
uses the constraint that |S ∩ L3| > 0.2n.

22 · |S ∩ L3| = |S ∩ L3|+ |S ∩ L3|+ 20 · |S ∩ L3|
≥ |S ∩ L3|+ |S ∩ L4|+ 20 · |S ∩ L3| (by constraint on |S ∩ L4|)
≥ |S ∩ L3|+ |S ∩ L4|+ |S ∩ (L1 ∪ L2)| (using |L1 ∪ L2| = 4n+ 1)

as required. J

I Lemma 23. If |S ∩ L3| ≤ 2|S ∩ L4| and |S ∩ L4| > 0.1n, then S expands.

Proof. Recall that we are working in the case when |S ∩ L4| < 0.1n2 < |L4|/2.

|E(S ∩ L, S̄ ∩ L)| ≥ |E(S ∩ L4, S̄ ∩ L4)|
≥ h0 · |S ∩ L4| (by expansion)

Lower bounding |S ∩ L4| by c · |S ∩ L| similar to Lemma 22 gives us the claim. J

Now we are only left with the case when |S ∩ L4| < 0.1n and |S ∩ L3| < 0.2n. In what
follows, we use the bound below on |S ∩ L|.

|S ∩ L| = |S ∩ (L1 ∪ L2)|+ |S ∩ (L3 ∪ L4)|
≤ 5n+ |S ∩ (L3 ∪ L4)| (by bound on |L1 ∪ L2|)
≤ 5.3n (by constraint on |S ∩ (L3 ∪ L4)|)

I Lemma 24. If |S ∩ L2| > 0.7n, then S expands.

Proof. We use the fact that there is an edge from L2 to L3 ∪ L4 regardless of the value of u.

|E(S ∩ L, S̄ ∩ L)| ≥ |E(S ∩ L2, S̄ ∩ (L3 ∪ L4))|
= |E(S ∩ L2, L3 ∪ L4)| − |E(S ∩ L2, S ∩ (L3 ∪ L4))|
≥ 0.7n− |E(S ∩ L2, S ∩ (L3 ∪ L4))| (by edges of u)
≥ 0.4n (by constraint on S ∩ (L3 ∪ L4))
≥ (0.4/5.3) · |S ∩ L| (by constraint on S ∩ L)

which proves our claim. J

I Lemma 25. If |S ∩ L2| < 0.7n and |S ∩ L1| ≥ 1.3n, then S expands.

18 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Proof. We use the matching on L1 ∪ L2, as follows

|E(S ∩ L, S̄ ∩ L)| ≥ |E(S ∩ L1, S̄ ∩ L2)|
≥ |S ∩ L1| − |S ∩ L2| (by the canonical matching on L1 ∪ L2)
≥ 0.6n (by constraint on L1 and L2)
≥ (0.6/5.3) · |S ∩ L| (by constraint on S ∩ L)

which proves our claim. J

For the final case, we will need the following lemma about each reinforced gadget being
an expander.

I Lemma 26. A reinforced gadget has constant expansion.

We use this lemma as follows.

I Lemma 27. If |S ∩ L2| < 0.7n and |S ∩ L1| < 1.3n, then S expands.

Proof. In this case, we reason about L1 ∪ L2 and L3 ∪ L4 separately. Since the intersection
of S with each reinforced gadget covers less than half the nodes, i.e.,

|S ∩ (L1 ∪ L2)| < 2n < |L1 ∪ L2|/2,
|S ∩ (L3 ∪ L4)| < 0.3n < |L3 ∪ L4|/2,

we use the expansion of each reduction gadget from Lemma 26 to get

|E(S ∩ (L1 ∪ L2), S̄ ∩ (L1 ∪ L2))| ≥ c · |S ∩ (L1 ∪ L2)|,
|E(S ∩ (L3 ∪ L4), S̄ ∩ (L3 ∪ L4))| ≥ c · |S ∩ (L3 ∪ L4)|,

giving the expansion of S ∩ L as required. J

Lemmas 22–27 together prove Lemma 21. Lemmas 17 and 21 together show Lemma 16.
All that is left is to prove Lemma 26, which we do below.

I Lemma 26. A reinforced gadget has constant expansion.

Proof. Let X ′ ∪X be a reinforced gadget, with the h0-expander on X. Let S be a subset of
nodes of size < |V |/2. The proof of expansion follows in similar lines as before.

If the intersection with X is large, then we use the matching edges (similar to Lemma 18).
Concretely, if |S ∩ X| > 0.9|X|, then since |X ′| ≤ |X| and |S| < |V |/2, we get that
|S ∩X ′| < (1/9) · |S ∩X|. Thus

|E(S, S̄)| ≥ |S ∩X| − |S ∩X ′| (by the matching on X ′ ∪X)
≥ (8/9) · |S ∩X| (by constraint on |S ∩X ′|)
≥ (8/9) · (9/10) · |X| (by constraint on |S ∩X|)
≥ (4/5) · |S| (since |X| ≥ |V |/2 and |S| ≤ |V |/2)

If the intersection with X is of medium size, then we use the expander on X (similar to
Lemma 19). Concretely, if 0.1|X| ≤ |S ∩X| ≤ 0.9|X|, then let T be the smaller of the two
sets S ∩X and S̄ ∩X. Then

|E(S, S̄)| ≥ |E(S ∩X, S̄ ∩X)|
= |E(T,X \ T)| (by definition of T)
≥ h0 · |T | (by expansion)
≥ h0 · 0.1 · |X| (by constraint on |S ∩X|)
≥ h0 · 0.1 · |S| (since |S| ≤ |X|)

M. Henzinger, A. Paz, and A. R. Sricharan 19

Layer Deg 1 Deg 2 Deg 3
L1 0 n 0
L2 1 n 0
L3 2n 2n2 0
L4 0 2n 2n2

Table 6 Degree distribution of the nodes on the left side of the reduction graph.

We are left with the case when the intersection with X is small, namely, |S ∩X| < 0.1|X|. If
|S ∩X ′| > 2|S ∩X|, then we use the matching edges again.

|E(S, S̄)| ≥ |S ∩X ′| − |S ∩X| (by the matching on X ′ ∪X)
= (1/3) · (2|S ∩X ′| − 4|S ∩X|+ |S ∩X ′|+ |S ∩X|)
≥ (1/3) · (|S ∩X ′|+ |S ∩X|) (by constraint on |S ∩X ′|)

which leaves us with the final case when |S ∩X ′| ≤ 2|S ∩X|. Here, we use the expander on
X

|E(S, S̄)| ≥ |E(S ∩X, S̄ ∩X)|
≥ h0 · |S ∩X| (by expansion)
≥ (1/3) · h0 · (|S ∩X|+ |S ∩X ′|) (by constraint on |S ∩X ′|)

which shows that the reinforced gadget has constant expansion. J

3.4 Power-law Graph
We first make the reduction graph robust with respect to degree changes. We use the
following static graph in our reduction.

A reduction gadget with one subgadget of size 2n+ 1, on a set L1 ∪ L2 as earlier.
A reduction gadget with 2n subgadgets of size 2n+ 2, on a set L3 ∪ L4. The subgadgets
are labelled LG[i] for 1 ≤ i ≤ 2n, and the nodes of subgadget LG[i] are labelled L3[i, j]
or L4[i, j] for 0 ≤ j ≤ n depending on whether the node is in L3 or L4. The path in each
subgadget goes from L3[i, 0] to L4[i, n].
A copy of the above structure, with node sets marked Ri instead of Li.
If Mij = 1, then add the edges (L4[i, j], R4[j, i]) and (L4[n+ i, n+ j], R4[n+ j, n+ i]).
If Mij = 0, then add the edges (L4[i, j], R4[n+ j, n+ i]) and (L4[n+ i, n+ j], R4[j, i]).
The edges for an input pair of vectors (u, v) will be detailed later.

The degree distribution for each layer on the left side of the reduction gadget in the
current instance, before adding any edges for (u, v), is given in Table 6. For ease of notation,
let us use (d,Nd) to denote that there are Nd nodes of degree d in the graph. Thus the degree
distribution in the entire reduction graph is as follows: (1, 4n + 2), (2, 4n2 + 8n), (3, 4n2).
Some of the nodes will change their degree when we add edges for the input vector pair
(u, v), and we take care of these changes later.

Let β > 2 be the exponent for which we want to show our lower bound, and N be the
number of nodes we need in our reduction graph. First, choose N such that

N > ζ(β) ·max{(2N1 + 2n), (2N2 + 2n) · 2β , (2N3 + 2n) · 3β},

20 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

and pick any power-law graph G on N nodes. If N ′d is the number of nodes of degree d in G,
then by construction we get that N ′d > 2Nd + 2n.

We would like to essentially embed our reduction graph into this power-law graph. For
this, we would like to reduce N ′d by exactly Nd for d ∈ {1, 2, 3}, which would allow us to
embed our graph into G. In what follows, we use the fact that N1 < N3. We “make space”
for our nodes as follows.

Do the following N1 times: Pick a node u ∈ G of degree 1. Let w be its neighbour. Since
deg(w) <

√
N and there are ≥ N ′3 −N3 > n2 nodes of degree 3 in G, there exists a node

v ∈ G of degree 3 such that v has a neighbour x ∈ N(v) with (x,w) 6∈ G. Delete the
edges (u,w), (v, x) and add the edge (x,w). This gives us a node u which we can assign
degree 1 to, in our reduction graph. We have also converted a degree 3 node to a degree
2 node, which we take care of in the next step.
Do the following N2 + N1 times: Pick a node u ∈ G of degree 2. Let u1, u2 be its
neighbours. Since deg(u1) + deg(u2) < 2

√
N , and there are ≥ N ′2 −N2 nodes of degree 2

left in G, there exists a node v ∈ G of degree 2 that has neighbours v1, v2, with ui 6= vj .
Remove the edges (u, ui), (v, vi), and add the edge (ui, vi). This gives us two nodes u, v
which we can assign degree 1 to, in our reduction graph.
Similarly, free up N3 −N1 nodes of degree 3 for our reduction graph.

Note that we will have at most one extra node of each degree which we can leave unused
because of the slack allowed in approximate power-law graphs.

We can now embed our reduction graph into a power-law graph with at most two nodes
having different degrees, since there are an even number of nodes of degree 2 in our reduction
graph by parity, and we requisitioned degree 1 nodes one-by-one and not in pairs. Thus, in
particular, we are at most one degree 2 node and one degree 3 node away from a perfect
power law graph.

We now come to the question of the input vectors (u, v). If ui = 1, then we add the edge
(L2[i], L3[i, 0]). Note that this changes the degree distribution in the following way: One
degree 2 node increases to degree 3, and a degree 1 node increases to degree 2. We need
to adjust for this in the power law graph, while making sure that the size of the maximum
matching in the remaining graph is still known. We do this as follows:

During preprocessing, pick 2n disjoint pairs of nodes (ai, bi) in the graph G such that
deg(ai) = 2 and deg(bi) = 3, such that ∃ ci ∈ N(ai), di ∈ N(bi) with (ci, di) 6∈ G. G0 is the
graph G. Let Gj be the graph with the edges (ai, ci), (bi, di) deleted and the edges (ci, di)
added for all 1 ≤ i ≤ j. Since poly(n) preprocessing is allowed in the OMv conjecture, we
can afford to find the sizes of the maximum matchings in all the graphs Gj before we receive
any input. Denote the sizes of these matchings as mj , 0 ≤ j ≤ 2n.

On input (u, v), we do the following:
If ui = 1, then add the edge (L2[i], L3[i, 0]).
If vi = 1, then add the edge (R2[i], R3[i, 0]).
Let k = supp(u) + supp(v). Delete the edges (ai, ci), (bi, di) and add the edges (ci, di) for
all 1 ≤ i ≤ k.

Now we ask for the size of the maximum matching in this graph. Let G be the subgraph
of G which is the reduction graph, and let N be the number of nodes in G. Note that we
already know the size of the maximum matching in G \G to be mk. uMv = 1 if and only if
a maximum matching restricted to G is perfect, and since G is disjoint from G \G, if and
only if the maximum matching on G is of size mk + N

2 . We then roll back the graph to its
previous state and process the new input vector pair.

M. Henzinger, A. Paz, and A. R. Sricharan 21

We make O(n) updates and 1 queries for each input pair, and the graph consists of Θ(n2)
nodes, which gives us the same lower bounds as in the constant-degree reduction.

4 Lower Bounds for Dynamic (s, t)-Shortest Path

In this section, we present our lower bound results for the dynamic (s, t)-shortest path
problem. In Section 4.1, we give a lower bound for dynamic (s, t)-distance on graphs with
maximum degree 3. We extend this lower bound to (3− δ)-approximations in Section 4.2.
In Section 4.3, we show that the distinction between the unbounded and constant-degree
reductions is not discrete, by giving a lower bound reduction parameterized on the maximum
degree allowed in the graph. In Section 4.4, we show that the lower bound on constant-degree
graphs holds even on expanders, by constructing a more involved reduction graph. Finally,
we prove the power-law graph lower bounds in Section 4.5.

4.1 Constant-Degree Graph
Consider the OuMv problem on vectors of length n and an n× n matrix. We first perform a
simple reduction that shows that maintaining (s, t)-distance is hard even on graphs where
the maximum degree is 3.

I Theorem 28. For any constant ε > 0, there is no dynamic algorithm maintaining (s, t)-
distance, SSSP or APSP, on all N -node bipartite graphs with maximum degree ∆ ≤ 3, with
amortized O(N1/2−ε) update time and O(N1−ε) query time, unless the OMv conjecture is
false.

Since the original reduction [16] could possibly have unbounded degree, we use binary
forests to sparsify our reduction graph.

I Definition 29 (Binary Forest). A binary forest of x trees of height y is a graph composed
of x disjoint binary trees, each of height y.

We naturally split the nodes of a binary forest between internal nodes and leaves.
Intuitively, we would like to replace a high degree node of the original reduction with a
binary forest to moderate the maximum allowed degree. Note that a binary forest has x · 2y
leaves in total.

4.1.1 Static Graph
We use the following static graph as the base for our reduction:

A (logn)-depth binary forest with a single tree. The set of n− 1 internal nodes is marked
L1 (L for left) and the n leaves L2; the root of the tree is the source node s, and the n
nodes of L2 are marked as L2[i] for 1 ≤ i ≤ n.
A (logn)-depth binary forest with n trees. The n(n− 1) internal nodes are marked L3
and the n2 leaves L4. The roots of each of the n trees are marked as L3[i], for 1 ≤ i ≤ n,
and the leaves of the tree with root L3[i] are marked L4[i, j], for 1 ≤ j ≤ n.
A copy of the above structure, with node sets markedR1, R2, R3, R4 instead of L1, L2, L3, L4,
respectively. The root of the single tree of R1 is the target node t.
Edges from L4 to R4 by the matrix M , as detailed next.
For an input pair of vectors (u, v), edges between L2 and L3 by u, and between R2 and
R3 by v, as detailed next.

The total number of nodes in the reduction graph is N = 4n2 + 2n− 2 = Θ(n2).

22 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

4.1.2 Input-Dependent Edges
We add the following edges depending on the input matrix M and vectors u, v:

For the matrix M , add the edge (L4[i, j], R4[j, i]) if Mij = 1.
Given an input vector u, for each i ∈ [n], add the edge (L2[i], L3[i]) if ui = 1.
Given an input vector v, for each j ∈ [n], add the edge (R2[j], R3[j]) if vj = 1.

4.1.3 Distances in the Graph
We now show the correctness of the reduction, by considering the (s, t) distance in different
scenarios.

I Lemma 30. [constant-degree reduction] uMv = 1 if and only if dist(s, t) ≤ 4 logn + 3.
Moreover, the graph is bipartite.

Proof. We first show that any path from s to t has to be of length at least 4 logn+ 3, by
partitioning the node set into layers. We maintain the property that a node at level ` can
have neighbours only in levels `− 1, `, or `+ 1. The layering is as follows: The layer of a
node in L1 ∪ L2 is its distance from s; in L3 ∪ L4 is its distance from its closest root, plus
logn+ 1; in R3 ∪ R4 is its distance from its closest leaf, plus 2 logn+ 2; in R1 ∪ R2 is its
distance from its closest leaf, plus 3 logn+ 3. Specifically, the layer of node t is 4 logn+ 3.
Thus dist(s, t) ≥ 4 logn+ 3, regardless of u, M , and v. Moreover, the the fact that edges
only connects consecutive layers implies that the graph is bipartite.

(=⇒) If uMv = 1, then there exists indices i, j such that ui = Mij = vj = 1. Then
consider the path P composed of the following sub-paths:

P1 is the shortest path from s to L3[i], which follows the tree L1 ∪ L2 and then the
(L2[i], L3[i]) edge (logn+ 1 edges).
P2 is the shortest path from L3[i] to R4[j, i], which follows the ith tree rooted at L3[i]
and then the (L4[i, j], R4[j, i]) edge (logn+ 1 edges).
P3 is the shortest path from R4[j, i] to R2[j], which follows the jth tree rooted at R3[j]
and then the (R3[j], R2[j]) edge (logn+ 1 edges).
P4 is the shortest path from R2[j] to t, which follows the tree R1 ∪R2 (logn edges).

P is then a path of length 4 logn+ 3 from s to t.
(⇐=) Assume that there is a path of length 4 logn + 3 from s to t. By the layering,

each edge in the path must connect a layer ` node and a layer (` + 1) node, and there is
exactly one such edge in the path for each ` ∈ [4 logn + 2]. Next, we use these two facts
(sometimes implicitly) to show that the path must have the form of the above described path,
and conclude that uMv = 1.

The path must contain an edge from L2 to L3. The only such edges are of the form
(L2[i], L3[i]) for some i ∈ [n], implying ui = 1. From there, the path must continue to
some leaf LU [i, j] of the tree rooted at LU [i]. Since the only edge from L4[i, j] that strictly
increases in level is the edge (L4[i, j], R4[i, j]), the path must contain such an edge, implying
Mij = 1 for some j ∈ [n]. From R4[j, i], the path must continue to the root R3[j], and then
to R2[j] over an edge (R3[j], R2[j]), implying vj = 1. The path ends trivially by going from
R2[j] to the root t. Thus uMv = 1. J

4.1.4 Complexity of the Reduction
We are now ready to prove the theorem.

M. Henzinger, A. Paz, and A. R. Sricharan 23

I Theorem 28. For any constant ε > 0, there is no dynamic algorithm maintaining (s, t)-
distance, SSSP or APSP, on all N -node bipartite graphs with maximum degree ∆ ≤ 3, with
amortized O(N1/2−ε) update time and O(N1−ε) query time, unless the OMv conjecture is
false.

Proof. Consider the reduction graph above, which is bipartite by Lemma 30. It consists of
N = 4n2 + 2n−2 = Θ(n2) nodes. Every time we get a new (u, v) input vector pair, we delete
all the edges between L2 × L3 and R2 × R3 and insert edges according to the new input
vectors. This takes O(n) updates in total. After that, we query once for the (s, t)-distance
in this new graph, and return 1 if and only if dist(s, t) = 4 logn+ 3.

Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,
checking n pairs takes us O(n2) updates and O(n) query. If there were an algorithm for
(s, t)-distance on constant-degree graphs with update time O(N1/2−ε) (i.e., O(n1−2ε)) and
query time O(N1−ε) (i.e., O(n2−2ε)), then we can decide if uMv = 1 for all n pairs in
O(n3−2ε) time, contradicting the OMv conjecture. J

4.2 (3− δ)-Approximation Lower Bound for Constant-Degree Graphs
We show that the above lower bounds on (s, t)-distances also holds for (3− δ)-approx (s, t)-
distances by minimally modifying the reduction graph to exploit the following observation:
If uMv = 0, then every path from s to t in the simple reduction graph needs to take at least
three edges corresponding to the matrix M , as opposed to just one such edge when uMv = 1.

We use the same reduction graph as before, but with one important difference: Earlier,
we added a single edge (L4[i, j], R4[j, i]) if Mij = 1. Now, we add a path with Θ(logn) new
nodes between L4[i, j] and R4[j, i]. Note that since we only do this for M and not for every
new input vector pair, we can do this in just polynomial pre-processing time, which is allowed
for in the OMv conjecture.

Formally, let α =
⌈ 12
δ − 4

⌉
. Add n2 · α logn new nodes to the reduction graph, with

the nodes labelled vij [k] for 1 ≤ k ≤ α logn and 1 ≤ i, j ≤ n. If Mij = 1, add the path
L4[i, j], vij [1], . . . , vij [α logn], R4[i, j] to the reduction graph, while otherwise all the nodes
vij [k] remain disconnected.

The following lemma is an analogue of Lemma 30, and the proof follows from the proof
of Lemma 30 and the above observation.

I Lemma 31. If uMv = 1, then dist(s, t) = (4 + α) logn + 2, and otherwise dist(s, t) ≥
(4 + 3α) logn+ 2. Moreover, the graph is bipartite.

I Corollary 32. For any constant ε > 0, there is no dynamic algorithm maintaining (3− δ)-
approximate (s, t)-distance, SSSP or APSP, on all N -node bipartite graphs with maximum
degree ∆ ≤ 3, with amortized O(N1/2−ε) update time and O(N1−ε) query time, unless the
OMv conjecture is false.

Proof. From Lemma 31, we get that any approximate reported distance d where (4+α) logn+
2 ≤ d < (4 + 3α) logn+ 2 would imply that uMv = 1. Note that

(4 + 3α) logn+ 2
(4 + α) logn+ 2 = 3− 8 logn+ 4

(4 + α) logn+ 2

≥ 3− 12 logn
(4 + α) logn (1)

≥ 3− δ (2)

24 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

where Inequality (1) follows from the fact that 4 logn ≥ 4, and Inequality (2) follows from
the definition of α. Thus any (3− δ)-approx algorithm would be able to distinguish between
uMv = 1 and uMv = 0.

The number of nodes in the reduction graph is N = Θ(n2 logn) = O(n2+ε). Thus for
each pair of input vectors, we perform O(n) updates and O(1) queries. In total, checking n
pairs takes us O(n2) updates and O(n) queries. If there were an algorithm for (3− δ)-approx
(s, t)-distance on constant-degree graphs with update time O(N1/2−ε) = O(n1−3ε/2−ε2) and
query time O(N1−ε) = O(n2−ε−ε2), then we can decide if uMv = 1 for all n pairs in O(n3−c)
time for some constant c, contradicting the OMv conjecture. J

4.3 Varying-Degree Graph
We present a reduction that gives a lower bound parameterized on the maximum degree in
the graph.

I Theorem 33. For any 0 ≤ t ≤ 1 and any constant ε > 0, there is no dynamic algorithm
maintaining (s, t)-distance, SSSP or APSP, on all N -node bipartite graphs with maximum
degree ∆ = O(N t), with amortized O(N 1+t

2 −ε) update time and O(N1+t−ε) query time, unless
the OMv conjecture is false.

The reduction graph

For a value 0 ≤ t ≤ 1 (that may depend on N), we construct a reduction graph on N nodes
that has maximum degree Θ(N t). The node sets L1, L2, R1, R2 and the edges that depend
on u and v are the same as in the previous construction in Section 4.1. We detail the changes
for L3, L4, R3, R4 and M below.

A
(

1−t
1+t · logn

)
-depth binary forest with n trees. The n ·

(
n

1−t
1+t − 1

)
internal nodes are

marked L3 and the n · n
1−t
1+t leaves are marked L4. The roots of each of the n trees are

marked as L3[i], for 1 ≤ i ≤ n, and the leaves of the tree with root L3[i] are marked
L4[i, j], for 1 ≤ j ≤ n

1−t
1+t , and similarly for R3 and R4.

For the matrix M , if Mij = 1, let i′ =
⌈
i · n−2t/(t+1)⌉ and j′ =

⌈
j · n−2t/(t+1)⌉. Add the

edge (L4[i, j′], R4[i′, j]) to the graph.

Note that the distances in this reduction graph are the same as in the constant-degree
reduction graph by a similar proof as used to prove Lemma 30. Furthermore, each node in
L4 is connected to at most n2t/(t+1) nodes in R4, and each node in R4 is connected to at
most n2t/(t+1) nodes in L4.

We can now prove Theorem 33.

Proof. The number of nodes in the reduction graph above is dominated by the number of
nodes in L4 andR4. Thus, the total number of nodes in the reduction graph isN = Θ(n2/(t+1))
nodes. Since each node not in L4 or R4 have at most 3 edges adjacent on it, its degree is
trivially O(N t). Every node in L4 and R4 has one tree edge incident on it, and at most
n2t/(t+1) edges of M incident on it by construction. Thus the maximum degree in the graph
is O(n2t/(t+1)) = O(N t) as claimed. The rest is similar to Theorem 28. Every time we get
a new (u, v) input vector pair, we delete all the edges between L2 × L3 and R2 × R3 and
insert edges according to the new input vectors.

For each pair of input vectors, we thus perform O(n) updates and O(1) queries. In
total, checking n pairs takes O(n2) updates and O(n) queries. If there was an algorithm for

M. Henzinger, A. Paz, and A. R. Sricharan 25

Figure 3 The reduction graph. The input-dependent edges are dotted.

(s, t)-distance on graphs with maximum degree bounded by N t with update time O(N 1+t
2 −ε)

(i.e., O(n1−2ε)) and query time O(N1+t−ε) (i.e., O(n2−2ε)), then we can decide if uMv = 1
for all n pairs in O(n3−2ε) time, contradicting the OMv conjecture. J

4.4 Expander Graph
For our expander lower bound, we use the following gadgets, called reinforced forests.

I Definition 34 (Reinforced forest). A reinforced forest of x trees of height
y is a graph composed of x disjoint binary trees, each of them of height
y > 0. These trees have x2y leaves in total; consider a degree-d expander
graph on x2y nodes, choose an arbitrary bijection between the expander
nodes and the forest’s leaves, and add the expander edges to the leaves
accordingly. Finally, in order to guarantee that the graph is bipartite, on
each edge added from the expander, we add a dummy node. The resulting
graph is the reinforced forest.

We naturally split the nodes of a reinforced forest between internal nodes and leaves.

Reduction Graph

We use the following graph as the base for our reduction (see Figure 3).
A (logn)-depth reinforced forest with a single tree. The set of n − 1 internal nodes is
marked L1 and the n leaves L2; the root of the tree is the source node s, and the n nodes
of L2 are marked as L2[i] for 1 ≤ i ≤ n.
A (logn)-depth reinforced forest with 3n trees. The 3n(n− 1) internal nodes are marked
L3 and the 3n2 leaves L4. We split this reinforced forest into sets of n trees each, and
label them LU,LM,LL (upper, middle, and lower). The roots of each of the n trees are
marked as LX[i], for 1 ≤ i ≤ n, X ∈ {U,M,L}, and the leaves of the tree with root
LX[i] are marked LX[i, j], for 1 ≤ j ≤ n.

26 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

A copy of the above structure, with node sets marked Ri instead of Li, respectively. The
root of the single tree of R1 is the target node t.
For the matrix M , add the edge (LM [i, j], RM [j, i]) if Mij = 1, and add the edges
(LM [i, j], RL[j, i]) and (LL[i, j], RM [j, i]) otherwise.
Given an input vector u, for each i ∈ [n], add the edge (L2[i], LM [i]) if ui = 1, and
(L2[i], LU [i]) otherwise.
Given an input vector v, for each j ∈ [n], add the edge (R2[j], RM [j]) if vj = 1, and
(R2[j], RU [j]) otherwise.

The following lemma characterizes (s, t)-distance in the expander reduction graph based
on the value of uMv. We split the graph nodes into layers (indicated at the bottom of
Figure 3) and use the fact that edges can only connect consecutive layers in order to prove
this lemma in Section 4.4.1.

I Lemma 35. uMv = 1 if and only if dist(s, t) ≤ 4 logn + 3. Moreover, the graph is
bipartite.

The number of nodes in the reduction graph is dominated by the nodes in L4∪R4, yielding
the same asymptotic lower bounds as in the constant-degree case (Section 4.1). When a
vector pair arrives, we first add all the potential edges and then remove the unnecessary
ones, in a similar fashion as before, to preserve expansion. We defer the proof of expansion
to Section 4.4.2. Thus, we get the following theorem for expander graphs.

I Theorem 36. For any constant ε > 0, there is no dynamic algorithm maintaining (s, t)-
distance, SSSP or APSP, on all N-node constant-degree bipartite graphs with constant
expansion, with amortized O(N1/2−ε) update time and O(N1−ε) query time, unless the OMv
conjecture is false.

4.4.1 Distances in the expander graph
We prove the following lemma for the expander reduction graph described in Section 4.4.
This is basically the graph described in Section 4.1, with expander edges added in carefully
chosen places, and one dummy node added on each such edge. Note that adding the dummy
nodes does not change the expansion by more than a constant factor, does not not affect
the asymptotic number of nodes, and the shortest paths never use the expander edges and
thus the also stay unaffected by the dummy nodes addition. To simplify the writing, we thus
ignore the dummy nodes in the following.

I Lemma 35. uMv = 1 if and only if dist(s, t) ≤ 4 logn + 3. Moreover, the graph is
bipartite.

Proof. The proof uses the same ideas and layering as in the proof of Lemma 30. We include
the dummy nodes of L2 and L4 in one layer before their (non-dummy) neighbors, and the
other dummy nodes in one layer after their neighbors. This already shows that the graph is
bipartite.

(=⇒) This direction of the proof is the same as in the proof of Lemma 30, since we only
add edges, and the same path as earlier still exists in the graph.

(⇐=) We still make use of the layering argument for this direction, but the argument
is slightly more nuanced than the one for the constant-degree case. Assume that there is a
path of length 4 logn+ 3 from s to t. By the layering, each edge in the path must connect a
layer ` node and a layer (`+ 1) node, and there is exactly one such edge in the path for each
` ∈ [4 logn+ 2]. Next, we use these two facts (sometimes implicitly) to show that the path
must have the form of the above described path, and conclude that uMv = 1.

M. Henzinger, A. Paz, and A. R. Sricharan 27

The path must contain an edge from L2 to L3. Suppose the edge was to a node in LU .
Since no node in LU has an edge to R4, the path does not always connect two nodes of
strictly increasing layers, contradicting the claimed length. Thus the edge is of the form
(L2[i], LM [i]) for some i ∈ [n], implying that ui = 1.
From there, the path must continue to some leaf LM [i, j] of the tree rooted at LM [i].
Suppose the path continues to RL instead of RM . Since there are no edges from RL to
R2, the path would have to connect two of the non-increasing at least once, which cannot
happen on a 4 logn + 3 length path. Thus the path uses the edge (LM [i, j], RM [j, i]),
implying that Mij = 1.
From RM [j, i], the path must continue to the root RM [j], and then to R2[j] by using
the edge (RM [j], R2[j]), implying vj = 1.

We have established that there exist indices i, j ∈ [n] such that ui = Mij = vj = 1, implying
uMv = 1. J

4.4.2 Expansion of the expander graph
Let us now verify that the graph is indeed an h1-expander graph, for some constant h1 > 0.
Recall that the reinforced forests contain h0 expanders, for some constant h0 > 0.

While a similar proof as in the maximum matching expander reduction works for this
setting as well, we take a different approach here. Consider a reinforced forest with a set U
of internal nodes, a set U ′ of leaves, and an h0-expander on the leaves. Let S be a set of
nodes in the forest (we do not bound |S|).

I Observation 37. Let 0 < c < 1/2, that may depend on n. If c|U ′| ≤ |S ∩U ′| ≤ (1− c)|U ′|,
then E(S, S̄)| ≥ ch0|U ′|.

Proof. Consider first the case |S ∩ U ′| ≤ |U ′|/2, in which the expander graph edges on U ′
guarantee |E(S, S̄) ∩ U ′| ≥ h0|S|, implying |E(S, S̄)| ≥ |E(S, S̄) ∩ U ′| ≥ h0|S| ≥ ch0|U ′|.
Otherwise, apply the analogous argument on the set U ′ \ S. C

I Observation 38. |E(S, S̄)| ≥ |U ∩ S| − |U ′ ∩ S|.

Proof. Every node in U ∩ S is a tree node that has two children. In total, these node has
2|U ∩S| edges going to children, of which at most |U ∩S|+ |U ′ ∩S| children are in S. Hence,
|E(S, S̄)| ≥ 2|U ∩ S| − (|U ∩ S|+ |U ′ ∩ S|) = |U ∩ S| − |U ′ ∩ S|. C

I Observation 39. Let 0 < c < 1/2 constant. If |U ∩ S| ≤ c|U ′ ∩ S| then |E(S, S̄)| ≥
(0.5− c)|U ′ ∩ S|.

Proof. If |U ∩ S| ≤ c|U ′ ∩ S|, consider the parent nodes of the leaves in U ′ ∩ S: these have
at least 0.5|U ′ ∩ S| distinct parents, of which at most c|U ′ ∩ S| are in U ∩ S, and the others
are in U ∩ S̄. Hence |E(U ∩ S̄, U ′ ∩ S)| ≥ (0.5− c)|U ′ ∩ S|. C

The proof of the following lemma is similar to that of Lemma 26.

I Lemma 40. A reinforced forest is an expander.

Proof. Fix a set S of nodes in the forest, |S| ≤ (|U ∪U ′|)/2. We consider different ranges of
|U ′ ∩ S|, and show that for each of them, |E(S, S̄)| ≥ h1|S| for some constant h1.
1. If |U ′∩S| > 0.9|U ′|, the inequalities |U | < |U ′| and |S| ≤ |U∪U ′|/2 imply |U∩S| < 0.1|U ′|,

and hence |U ′ ∩ S| > (1/9)|U ∩ S| > 0.1|U ∩ S|. Observation 39 implies |E(S, S̄)| ≥
0.4|U ′ ∩ S| ≥ 0.36|U ′| > 0.18|U ∪ U ′| ≥ 0.36|S|.

28 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

2. If 0.1|U ′| ≤ |U ′∩S| ≤ 0.9|U ′|, then by Observation 37 we have |E(S, S̄)| ≥ 0.1h0|U ′|. Since
|U | < |U ′| and |S| ≤ |U ∪ U ′|/2, the above implies |E(S, S̄)| ≥ 0.05h0|U ∪ U ′| ≥ 0.1h0|S|.

3. If |U ′ ∩ S| < 0.1|U ′|, then
a. If |U ∩ S| > 2|U ′ ∩ S|, add 0.5|U ∩ S| − 1.5|U ′ ∩ S| to both sides of the inequality

and multiply by 2/3 to get |U ∩ S| − |U ′ ∩ S| > 1/3(|U ∩ S|+ |U ′ ∩ S|) = |S|/3. By
Observation 38, |E(S, S̄)| ≥ |U ∩ S| − |U ′ ∩ S| > |S|/3.

b. If |U ∩ S| ≤ 2|U ′ ∩ S| then |S| = |U ∩ S|+ |U ′ ∩ S| ≤ 3|U ′ ∩ S|. The expander edges
on U ′ guarantee that |E(S, S̄)| ≥ h0|U ′ ∩ S| ≥ (h0/3)|S|. J

I Lemma 41. The reduction graph is an expander.

Proof. Consider a set S ⊆ V of |S| ≤ N/2 = 6n2−n−1 nodes. Note that the node sets in the
graph have the following sizes: |L1| = |R1| = n− 1; |L2| = |R2| = n; |L3| = |R3| = 3n2 − 3n;
|L4| = |R4| = 3n2. We show that there exists a constant h1 such that |E(S, S̄)| ≥ h1|S|, by
considering different ranges for the set size |L4 ∩ S| (which ranges in 0, . . . , 3n2). In most
cases, we show that |E(S, S̄)| ≥ cn2 for some constant c, which is enough since |S| < 6n2.
1. If |L4 ∩ S| > 2.9n2, then consider following sub-cases.

a. If |R4 ∩S| > 2.1n2, then since |S| ≤ 6n2− n− 1, we have |L3 ∩S| < n2, which implies
|L4 ∩ S| > 2.9|L3 ∩ S|. By Observation 39, |E(S, S̄)| ≥ 0.15|L4 ∩ S| > 0.4n2.

b. If 0.1n2 ≤ |R4 ∩ S| ≤ 2.1n2, the expander edges on R4 (Observation 37 with c = 0.03)
guarantee E(S, S̄)| ≥ 0.03h0n

2.
c. If |R4∩S| < 0.1n2, note that there are n2 edges in L4×R4, of which at most 0.1n2 are

in (L4 ∩ S̄)× (R4 ∩ S̄) (since L4 ∩ S is large), at most 0.1n2 are in (L4 ∩ S)× (R4 ∩ S)
(since R4 ∩S is small), and the remaining edges, at least 0.8n2 of them, are in E(S, S̄).

2. If 0.1n2 ≤ |L4∩S| ≤ 2.9n2, then as in case 1(b), the expander edges on L4 (Observation 37
with c = 0.03) guarantee E(S, S̄)| ≥ 0.03h0n

2.
3. If |L4 ∩ S| < 0.1n2, consider the following sub-cases.

a. If |R4∩S| > 2.1n2, we are in a case symmetric to case 1(c): of the n2 edges in L4×R4,
at most 0.1n2 are in (L4 ∩ S̄)× (R4 ∩ S̄) (since L4 ∩ S is small), at most 0.1n2 are in
(L4 ∩ S) × (R4 ∩ S) (since R4 ∩ S is large), and the remaining edges, at least 0.8n2

edges, are in E(S, S̄).
b. If 0.1n2 ≤ |R4 ∩ S| ≤ (2.1)n2, again the expander edges on R4 (Observation 37 with

c = 0.03) guarantee E(S, S̄)| ≥ 0.03h0n
2.

c. In the last case, namely |R4 ∩ S| < 0.1n2, we are bound to analyze the subgraphs on
L = L1∪L2∪L3∪L4 and on R = R1∪R2∪R3∪R4 separately. We will show that there
is a constant h2 such that |E(L∩S,L∩S̄)| ≥ h2|L∩S| and |E(R∩S,R∩S̄)| ≥ h2|R∩S|,
which implies |E(S, S̄)| ≥ |E(L∩S,L∩ S̄)|+ |E(R∩S,R∩ S̄)| ≥ h2|L∩S|+h2|R∩S| =
h2|S|, as desired.
We focus on L; the proof for R is analogous.
i. If 0.1n ≤ |L4 ∩ S| < 0.1n2,
A. If |L3 ∩ S| ≥ 2|L4 ∩ S|, then by Observation 38, we have |E(L ∩ S,L ∩ S̄)| ≥
|L3 ∩ S| − |L4 ∩ S|, and we bound this difference from below several times. By
|L3 ∩ S| ≥ 2|L4 ∩ S|, we have |L3 ∩ S| − |L4 ∩ S| ≥ 0.5|L3 ∩ S|. By the same
inequality |L3∩S|−|L4∩S| ≥ |L4∩S|. In addition, |L4∩S| ≥ 0.1n ≥ 0.05|L1∪L2|.
Hence, |E(L∩S,L∩ S̄)| ≥ (0.5|L3∩S|+ |L4∩S|+0.05|L1∪L2|)/3 ≥ 0.01|L∩S|,
and we are done.

B. If |L3 ∩ S| ≤ 2|L4 ∩ S|, then |(L3 ∪ L4) ∩ S| ≤ |(L3 ∪ L4)|/2, and by Lemma 40
we have |E(L ∩ S,L ∩ S̄)| ≥ h1|(L3 ∪ L4) ∩ S|. We also have |(L3 ∪ L4) ∩ S| ≥
|(L4 ∩ S| ≥ 0.1n ≥ 0.05|L1 ∪ L2|. Hence, |E(L ∩ S,L ∩ S̄)| ≥ 0.02h1|L ∩ S| and
we are done.

M. Henzinger, A. Paz, and A. R. Sricharan 29

ii. If |L4 ∩ S| < 0.1n,
A. If |L3 ∩ S| ≥ 0.2n, then again by Observation 38, we have |E(L ∩ S,L ∩ S̄)| ≥
|L3 ∩ S| − |L4 ∩ S| ≥ |L3 ∩ S|/2.
Since |L3 ∩ S|/2 > |L4 ∩ S|/4 and also |L3 ∩ S|/2 ≥ 0.1n > 0.05|L1 ∪ L2|, we
have |E(L ∩ S,L ∩ S̄)| ≥ 0.01|L3 ∩ S|.

B. If |L3 ∩ S| < 0.2n, then again by Lemma 40 we have |E(L ∩ S,L ∩ S̄)| ≥
h1|(L3 ∪ L4) ∩ S|. We treat (L1 ∩ L2) ∩ S separately, considering three cases by
the sizes of L2 ∩ S and L1 ∩ S.

If |L2∩S| ≥ 0.3n, note that each node in L2 is connected by an edge to exactly
one node in L3, and these nodes are distinct. So there are at least 0.3n edges
in (L2 ∩ S) × L3, of which at most 0.2n have their L3 endpoint in |L3 ∩ S|,
hence |E(L ∩ S,L ∩ S̄)| ≥ 0.1n ≥ 0.05|(L1 ∪ L2) ∩ S|.
If |L2 ∩ S| < 0.3n and |L1 ∩ S| < 0.7n, then by Lemma 40 we have |E(L ∩
S,L ∩ S̄)| ≥ h1|(L1 ∪ L2) ∩ S|.
If |L2 ∩ S| < 0.3n and |L1 ∩ S| ≥ 0.7n, then by Observation 38, |E(L ∩ S,L ∩
S̄)| ≥ |L1 ∩ S| − |L2 ∩ S| > 0.4n ≥ 0.2|L1 ∪ L2| ≥ 0.4|(L1 ∪ L2) ∩ S|.

J

4.5 Power-law Graph
As in the case of maximum matching, we first make our reduction graph robust to degree
changes. The following reduction is close in spirit to the expander graph reduction. The
graph is as follows:

A (logn)-depth binary forest with a single tree, labelled L1 ∪ L2 as before, with s as the
root of the tree.
A (logn)-depth binary forest with 3n trees, labelled L3 ∪ L4. We split this binary forest
into sets of n trees each, and label them LU,LM,LL (upper, middle, and lower). The
roots of each of the n trees are marked as LX[i], for 1 ≤ i ≤ n, X ∈ {U,M,L}, and the
leaves of the tree with root LX[i] are marked LX[i, j], for 1 ≤ j ≤ n.
A copy of the above structure, with node sets marked Ri instead of Li, respectively. The
root of the single tree of R1 is the target node t.
For the matrix M , add the edges (LM [i, j], RM [j, i]) and (LL[i, j], RL[j, i]) if Mij = 1,
and add the edges (LM [i, j], RL[j, i]) and (LL[i, j], RM [j, i]) otherwise.
Given an input vector u, for each i ∈ [n], add the edge (L2[i], LM [i]) if ui = 1, and
(L2[i], LU [i]) otherwise.
Given an input vector v, for each j ∈ [n], add the edge (R2[j], RM [j]) if vj = 1, and
(R2[j], RU [j]) otherwise.

Note that this fixes the degree distribution present in the graph regardless of the input
(u,M, v), unlike in the case of maximum matching where we needed to compensate for the
degrees elsewhere in the graph. Table 7 shows the degree distribution on the left side of the
reduction graph, regardless of the input bits.

Thus the degree distribution in the entire reduction graph is as follows: (1, 2n2), (2, 4n2 +
6n+ 2), (3, 6n2 − 8n− 4). As earlier, choose N such that

N > ζ(β) ·max{(2N1 + 2n), (2N2 + 2n) · 2β , (2N3 + 2n) · 3β},

and pick any power-law graph G on N nodes. We reduce the count of degree 1, 2 and 3 nodes
in the graph as earlier, and embed our reduction graph using these nodes. Unlike in the case

30 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Layer Deg 1 Deg 2 Deg 3
L1 0 1 n− 2
L2 0 n 0
L3 0 2n 3n2 − 5n
L4 n2 2n2 0

Table 7 Degree distribution of the nodes on the left side of the (s, t)-distance reduction graph.

of matchings, note that the (s, t)-distance is not affected by the rest of the graph, and thus
uMv = 1 if and only if dist(s, t) ≤ 4 logn+ 3.

5 Lower Bounds for Dynamic Densest Subgraph

For a constant d ≥ 3, we work with (2d)-regular graphs of two different sizes: N -node gadget
for each vector entry, and N2-node gadget for each matrix entry.

I Definition 42 (Vector and Matrix Gadgets). A vector gadget is a 6-edge connected 2d-
regular graph on n nodes. A matrix gadget is a 6-edge connected 2d-regular graph on n2

nodes with one edge removed

A 6-edge connected graph is a graph that does not disconnect after the removal of any 5
edges. Such a (2d)-regular graph is, e.g., a d-dimensional torus, or a union of d edge-disjoint
cycles, each going through all the nodes. Note that the density of a vector gadget is d, and
the density of a matrix gadget is d− 1

n2 . We prove the following theorems for maintaining
densest subgraphs.

I Theorem 43. For any constant ε > 0, there is no dynamic algorithm maintaining an
exact densest subgraph, on all N -node graphs with maximum degree ∆ ≤ 7, with amortized
O(N1/4−ε) update time and O(N1/2−ε) query time, unless the OMv conjecture is false.

I Theorem 44. For any constant ε > 0, there is no dynamic algorithm maintaining an exact
densest subgraph, on all N-node graphs with constant degree and constant expansion, with
amortized O(N1/4−ε) update time and O(N1/2−ε) query time, unless the OMv conjecture is
false.

5.1 Constant-Degree Graph

5.1.1 The static graph
The reduction graph is composed of 2n vector gadgets, and n2 matrix gadgets as follows.

2n vector gadgets labelled Ui resp. Vi, for 1 ≤ i ≤ n. The nodes in each gadget are
labelled Ui[j] resp. Vi[j], for 1 ≤ j ≤ n.
n2 matrix gadgets labelled Mij , for 1 ≤ i, j ≤ n. The missing edge in the gadget Mij is
between the two nodes labelled Mij [0] and Mij [1].
An edge from Ui[j] to Mij [0], and an edge from Vj [i] to Mij [1] for all 1 ≤ i, j ≤ n. Note
that this implies that every node of Mij has degree 2d and that the total number of edges
incident to at least one node of Mij is dn2 + 1.

The total number of nodes in the reduction graph is N = n4 + 2n2 = Θ(n4).

M. Henzinger, A. Paz, and A. R. Sricharan 31

5.1.2 Input-dependent edges
The above graph is adapted to the specific input instance as follows.

For the matrix M , remove one arbitrary edge from the matrix gadget Mij if Mij = 0.
Given an input vector u, for each i ∈ [n], remove two arbitrary edges from the vector
gadget Ui if ui = 0.
Given an input vector v, for each j ∈ [n], remove two arbitrary edges from the vector
gadget Vj if vj = 0.

5.1.3 Densest subgraphs in the graph
We use the following simple lemma in our density proof.

I Lemma 45. [16] For all numbers a, b, c, d, and r, we have:
1. If ab ≥ r and c

d ≥ r, then
a+c
b+d ≥ r.

2. If ab ≥ r and c
d ≤ r, then

a−c
b−d ≥ r.

Let ρ be the density of the densest subgraph in the current graph.

I Lemma 46. If uMv = 1, then ρ ≥ d+ 1
n2+2n , and otherwise ρ < d+ 1

n2+2n .

Proof. (=⇒) First assume that uMv = 1. Then there are indices i, j such that ui =
Mij = vj = 1. Consider the subgraph S = Ui ∪Mij ∪ Vj . It consists of n2 + 2n nodes and
d(n2 + 2n) + 1 edges. Thus ρ(S) = d+ 1

n2+2n .
(⇐=) Now assume that uMv = 0, and that there exists some subset S ⊂ V with

ρ(S) ≥ d + 1
n2+2n . We first claim that we can modify S in a particular manner without

loss of generality, and then derive a contradiction. Specifically, first we remove from S all
subgraphs Mij that are not completely contained in S.

B Claim 47. Let T be a subgraph of a matrix gadget Mij that is not the whole gadget.
Then, after removing T from S, it still holds that ρ(S) ≥ d+ 1

n2+2n .

Proof. Recall that every node in Mij has degree at most 2d. Let q = |T | < n2. It follows
that there are at most qd edges incident to a node of T in G[S]: If neither Mij [0] nor Mij [1]
belong to T then there are most qd− 1 edges incident to at least on node of T in G[S] (all
being edges between nodes of T), as at least one node of T must have an edge to a node to
the rest of Mij that does not belong to S. If either Mij [0] or Mij [1], but not both belong
to T then there are at most qd− 1 edges incident to two nodes of T and there is one edge
between T and the rest of S. If both Mij [0] and Mij [1] belong to T then there are at most
qd− 2 edges incident to two nodes of T (as there is no edge between Mij [0] and Mij [1]) and
there are two edges between T and the rest of S.

Thus the removal of T from S removes at most qd edges and q nodes and, hence by Part 2
of Lemma 45, S \ T has density ≥ d+ 1

n2+2n . C

Next we remove all subgraphs Mij such that Mij = 0.

B Claim 48. For all i, j, if the bit Mij = 0 and Mij is fully contained in S, then after
removing the corresponding subgraph from S, we still have ρ(S) ≥ d+ 1

n2+2n .

Proof. As Mij = 0, there are dn2 edges incident to at least one node of Mij . Thus, removing
Mij from S removes n2 nodes and at most dn2 edges from G[S], i.e., a subgraph of density
at most d. By Part 2 of Lemma 45, S \Mij has density ≥ d+ 1

n2+2n . C

Finally we add to S every vector subgraph that is partially contained in S.

32 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

B Claim 49. For all i, j, after we add any partially contained subgraph Ui or Vj to S it still
holds that ρ(S) ≥ d+ 1

n2+2n .

Proof. We only prove our claim for the gadget Ui, since the proof for the gadget Vj is
analogous. Suppose some subset U ⊂ Ui is contained in S with |U | = q < n. We will show
that adding A := Ui \U to S adds at least d(n− q) + 1 edges. As d(n−q)+1

n−q > d+ 1
n2+2n , the

claim follows from Part 1 of Lemma 45.
We are left with showing that adding A to S adds at least d(n− q) + 1 edges. Recall that

Ui is a 2d-regular 6-edge connected graph with n nodes from which 2 edges where removed if
ui = 0 and no edges where removed if ui = 1. We consider the following cases:

Case 1: ui = 1 or no removed edge is incident to a node in A. In this case every node
in A has degree 2d in G[Ui]. Let a be the number of edges between U and A, and note
that a ≥ 6 since Ui is 6-edge connected. Thus, the sum of the degrees of the nodes in A is
G[A] = 2d(n−q)−a. It follows that there are d(n−q)−a/2 edges between nodes of A. Thus,
the total number of edges incident to nodes of A in G[Ui] is d(n− q) + a/2 ≥ d(n− q) + 3
and this is a lower bound of the number of edges that are added to S when A is added.

Case 2: ui = 0 and b removed edges belong to (A,U) and c removed edges have both
endpoints in A with b + c ≥ 1. As only 2 edges are removed, b + c ≤ 2. As Ui is 6-edge
connected, let a ≥ 6− b be the number of edges between U and A. In this case the sum of
the degrees of the nodes of A in G[A] is 2d(n− q)− (a+ b)− 2c. Thus, the total number of
edges incident to nodes of A in G[A] is d(n− q)− (a+ b)/2− c. Hence, the total number of
edges incident to nodes of A in G[Ui] is d(n− q)− (a+ b)/2− c+a = d(n− q) + (a− b)/2− c.
As a ≥ 6 − b this is at least d(n − q) + 3 − b − c. Since b + c ≤ 2, it follows that at least
d(n− q) + 1 edges are added to S when A is added. C

Thus S has the following structure: It has some matrix gadgets of set bits Mij with all
the nodes and both outgoing edges present, and it has some vector gadgets of set or unset
bits with all nodes present as well. Let x denote the number of matrix gadgets of set bits
contained in S, y denote the number of vector gadgets of set bits in S, and z denote the
number of vector gadgets of unset bits in S. We now consider two cases:

Case 1: y+ z = 0. Then S consists only of x matrix gadgets and no vector gadgets. Thus
ρ(S) = x·(dn2−1)

n2x < d, which is a contradiction
Case 2: y + z > 0. Then the density of S is given by

ρ(S) = x · (dn2 + 1) + y · dn+ z · (dn− 2)
n2x+ ny + nz

We claimed that ρ(S) ≥ d+ 1
n2+2n , which is the same

2nx ≥ ny + (2n2 + 5n) · z

Since uMv = 0, for every matrix gadget Mij of a set bit, either the corresponding Ui or Vj
must be unset. Thus we assign at most n matrix gadgets to each unset vector gadget, giving
us that x ≤ nz, giving

2n2z ≥ 2nx ≥ ny + (2n2 + 5n) · z,

which is a contradiction as desired since y + z > 0. J

5.1.4 Complexity of the reduction
We are now ready to prove the theorem.

M. Henzinger, A. Paz, and A. R. Sricharan 33

I Theorem 43. For any constant ε > 0, there is no dynamic algorithm maintaining an
exact densest subgraph, on all N -node graphs with maximum degree ∆ ≤ 7, with amortized
O(N1/4−ε) update time and O(N1/2−ε) query time, unless the OMv conjecture is false.

Proof. Consider the reduction graph above with d = 3. It consists of N = n4 + 2n2 = Θ(n4)
nodes. Every time we get a new (u, v) input vector pair, we reinsert all the removed edges in
the vector gadgets Ui, Vi, for all 1 ≤ i ≤ n, and then delete edges according to the new input
vectors. This takes O(n) updates in total. After that, we query once for the density of the
densest subgraph in this new graph, and return 1 if and only if ρ ≥ 3 + 1

n2+2n .
Thus for each pair of input vectors, we perform O(n) updates and O(1) query. In total,

checking n pairs takes us O(n2) updates and O(n) query. If there were an algorithm for
maintaining the density of the densest subgraph on constant-degree graphs with update time
O(N1/4−ε) (i.e., O(n1−4ε)) and query time O(N1/2−ε) (i.e., O(n2−4ε)), then we can decide
if uMv = 1 for all n pairs in O(n3−4ε) time, contradicting the OMv conjecture. J

5.2 Expander Graph
The extension required to make the reduction hold even for expanders for the densest
subgraph problem is simpler than the corresponding extensions for the previous problems.
Pick d such that there is a d′-regular expander for some d′ ≤ d − 2. The static graph is
constructed as follows.

The reduction graph G0 from Section 5.1.1 as a subgraph together with the input-
dependent edges from Section 5.1.2.
A (d′)-regular expander graph G1 on n4 + 2n2 nodes, for some d′ ≤ d− 2, with constant
expansion h0, together with a bijection π from the nodes of G0 to the G1.
An edge between every node v of G0 and the node π(v) of G1, giving a perfect matching
connecting the nodes of G0 with these of G1.

The total number of nodes in the reduction graph is N = 2n4 + 4n2 = Θ(n4).
The density arguments in this reduction graph are similar to the one in the constant-

degree case, as in Lemma 46. The proof follows from the following fact: for any subset T
with density > d, removing all of the nodes of G1 from T cannot decrease the density of T ,
since each node in G1 has degree at most d− 1 in G[T]. Thus, in the proof of Lemma 46 in
the setting where uMv = 0, we add a first step removing all the nodes of G1 from the subset
S and then proceed as before. This leads to the same lower bounds as in the constant-degree
case. We have the following theorem for expander graphs:

I Theorem 44. For any constant ε > 0, there is no dynamic algorithm maintaining an exact
densest subgraph, on all N-node graphs with constant degree and constant expansion, with
amortized O(N1/4−ε) update time and O(N1/2−ε) query time, unless the OMv conjecture is
false.

To verify that the graph is indeed an h1-expander graph for some constant h1 > 0, we
follow a similar pattern as in the proof of expansion for maximum matching in Section 3.3.
Consider a reduction graph with V = U ∪ U ′, where U ′ is the node set of the expander G1.
Let S be some set of nodes (we do not bound |S|). We have the following observations.

I Observation 50. Let 0 < c < 1/2, that may depend on n. If c|U ′| ≤ |S ∩U ′| ≤ (1− c)|U ′|,
then E(S, S̄)| ≥ ch0|U ′|.

Proof. Consider first the case |S ∩ U ′| ≤ |U ′|/2, in which the expander graph edges on U ′
guarantee |E(S, S̄) ∩ U ′| ≥ h0|S|, implying |E(S, S̄)| ≥ |E(S, S̄) ∩ U ′| ≥ h0|S| ≥ ch0|U ′|.
Otherwise, apply the analogous argument on the set U ′ \ S. C

34 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

I Observation 51. |E(S, S̄)| ≥ |U ∩ S| − |U ′ ∩ S|.

Proof. Every node in U ∩ S has a matching partner (by the bijection used to map the nodes
of U to U ′) in U ′. In total, each of these nodes has |U ∩ S| edges going to their matching
partners, of which at most |U ′ ∩ S| partners are in S. Hence, |E(S, S̄)| ≥ |U ∩ S| − |U ′ ∩ S|.

C

I Observation 52. Let 0 < c < 1/2 constant. If |U ∩ S| ≤ c|U ′ ∩ S| then |E(S, S̄)| ≥
(1− c)|U ′ ∩ S|.

Proof. If |U ∩ S| ≤ c|U ′ ∩ S|, consider the matching partners of the nodes in U ′ ∩ S: there
are at least |U ′ ∩ S| such partners in U , of which at most c|U ∩ S| are in S, and the others
are in U ∩ S̄. Hence |E(U ∩ S̄, U ′ ∩ S)| ≥ (1− c)|U ′ ∩ S|. C

I Lemma 53. The reduction graph is an expander.

Proof. Now fix a set S ⊆ V of nodes, with |S| ≤ n4 + 2n2 = (|U ∪ U ′|)/2. We consider
different ranges of |U ′ ∩ S|, and show that for each of them, |E(S, S̄)| ≥ h1|S| for some
constant h1.
1. If |U ′∩S| > 0.9|U ′|, the inequalities |U | ≤ |U ′| and |S| ≤ |U∪U ′|/2 imply |U∩S| ≤ 0.1|U ′|,

and hence |U ′ ∩ S| > (1/9)|U ∩ S| > 0.1|U ∩ S|. Observation 52 implies |E(S, S̄)| ≥
0.9|U ′ ∩ S| ≥ 0.81|U ′| > 0.4|U ∪ U ′| ≥ 0.8|S|.

2. If 0.1|U ′| ≤ |U ′∩S| ≤ 0.9|U ′|, then by Observation 50 we have |E(S, S̄)| ≥ 0.1h0|U ′|. Since
|U | ≤ |U ′| and |S| ≤ |U ∪ U ′|/2, the above implies |E(S, S̄)| ≥ 0.05h0|U ∪ U ′| ≥ 0.1h0|S|.

3. If |U ′ ∩ S| < 0.1|U ′|, then
a. If |U ∩ S| > 2|U ′ ∩ S|, add 0.5|U ∩ S| − 1.5|U ′ ∩ S| to both sides of the inequality

and multiply by 2/3 to get |U ∩ S| − |U ′ ∩ S| > 1/3(|U ∩ S|+ |U ′ ∩ S|) = |S|/3. By
Observation 51, |E(S, S̄)| ≥ |U ∩ S| − |U ′ ∩ S| > |S|/3.

b. If |U ∩ S| ≤ 2|U ′ ∩ S| then |S| = |U ∩ S|+ |U ′ ∩ S| ≤ 3|U ′ ∩ S|. The expander edges
on U ′ guarantee that |E(S, S̄)| ≥ h0|U ′ ∩ S| ≥ (h0/3)|S|. J

5.3 Power-law Graph
Let d = 3. We show our densest subgraph lower bounds for β > 2.74. We use a reduction
graph similar to the one in the constant-degree case for our reduction. Our reduction graph
consists of the vector and matrix gadgets as before, along with new nodes we introduce to
moderate the degree. We add a cycle Cui on four new nodes for each vector gadget, and a
cycle Cij on four new nodes for each matrix gadget.

2n vector gadgets labelled Ui resp. Vi, for 1 ≤ i ≤ n. The nodes in each gadget are
labelled Ui[j] resp. Vi[j], for 1 ≤ j ≤ n.
2n cycles Cui and Cvj on 4 nodes each, with the nodes labelled Cwi [x] for w ∈ {u, v},
x ∈ {a, b, c, d}
n2 matrix gadgets labelled Mij , for 1 ≤ i, j ≤ n. The missing edge in the gadget Mij is
between the two nodes labelled Mij [0] and Mij [1].
n2 cycles Cij on four nodes Cij [x] for x ∈ {a, b, c, d} each.
An edge from Ui[j] to Mij [0], and an edge from Vj [i] to Mij [1] for all 1 ≤ i, j ≤ n.
If Mij = 0, remove two arbitrary edges, say, (Mij [a],Mij [b]), (Mij [c],Mij [d]), and the
edges (Cij [a], Cij [b]), (Cij [c], Cij [d]), and add the edges (Mij [x], Cij [x]) for x ∈ {a, b, c, d}
to the graph.

M. Henzinger, A. Paz, and A. R. Sricharan 35

Given an input vector u, for each i ∈ [n], do the following if ui = 0. Remove two arbitrary
edges from the vector gadget Ui, say (Ui[a], Ui[b]), (Ui[c], Ui[d]), and also remove the edges
(Cui [a], Cui [b]), (Cui [c], Cui [d]). Add the edges (Ui[x], Cui [x]) for x ∈ {a, b, c, d}. Similarly
for an input vector v.

Note that each node in a vector gadget always has degree 2d + 1, and each node in a
matrix gadget has degree 2d, regardless of input. Further, the degrees of the nodes in all
the cycles are exactly 2 for all inputs. The degree distribution of the reduction graph is
(2, 4n2 + 8n), (2d, n4), (2d+ 1, 2n2). Choose N such that

N > ζ(β) ·max{(4n2 + 8n) · 2β , (n4) · (2d)β , (2n2) · (2d+ 1)β}

In a power-law graph withN nodes, the sum of degrees of all nodes is given by ζ(β−1)·N/ζ(β),
while the number of nodes of degree 1 is N/ζ(β). Thus for all β such that ζ(β − 1) < 2,
more than half the total degree comes from nodes of degree 1, since

N ′1 = N

ζ(β) >
ζ(β − 1)

2 · N

ζ(β) =
∑
v∈V deg(v)

2 (3)

This is true in particular for all β > 2.74. Thus now we first construct the reduction graph as
above on n4 + 6n2 + 8n nodes, and this does not exceed N ′d for any d because of the definition
of N . Now for every other degree that needs to be satisfied of degree d′ > 1, we simply add
a new node and create a star with d′ nodes of degree 1 attached to it. Note that we can do
this for all the remaining nodes because of Equation (3). If there are any remaining degree 1
requirements to be satisfied, we simply add a perfect matching on that many nodes.

None of the stars or the perfect matchings can be part of a subgraph of density > d, since
they all have density < 1. Thus any subgraph of density > d must be from our reduction
graph. Further, note that the cycle gadgets can be removed from any subgraph of density
> d, since they have degree exactly 2. Thus ρ ≥ d+ 1

n2+2n if and only if uMv = 1, which
proves our claim.

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In FOCS, pages 477–486. IEEE Computer Society, 2016.
2 Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.

On dynamic approximate shortest paths for planar graphs with worst-case costs. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 740–753.
SIAM, 2016. doi:10.1137/1.9781611974331.ch53.

3 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles
for planar graphs via forbidden-set distance labels. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, page 1199–1218, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2213977.2214084.

4 William Aiello, Fan Chung Graham, and Linyuan Lu. A random graph model for power law
graphs. Exp. Math., 10(1):53–66, 2001. doi:10.1080/10586458.2001.10504428.

5 Bertie Ancona. Conditional Lower Bounds for Graph Sensitivity Problems. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2019.

6 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and hardness for diameter in dynamic graphs. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,

https://doi.org/10.1137/1.9781611974331.ch53
https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1080/10586458.2001.10504428

36 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

volume 132 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.13.

7 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1836–1855.
SIAM, 2021. doi:10.1137/1.9781611976465.110.

8 Panagiotis Charalampopoulos and Adam Karczmarz. Single-source shortest paths and strong
connectivity in dynamic planar graphs. In ESA, volume 173 of LIPIcs, pages 31:1–31:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

9 Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 626–639.
ACM, 2021. doi:10.1145/3406325.3451025.

10 Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decremental shortest
paths via layered core decomposition. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 2478–2496. SIAM, 2021. doi:10.1137/1.9781611976465.147.

11 Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. CoRR, abs/1602.06705, 2016. URL: http://arxiv.org/abs/1602.06705, arXiv:
1602.06705.

12 Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic effective resistances and
approximate schur complement on separable graphs. In Yossi Azar, Hannah Bast, and
Grzegorz Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018,
August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 40:1–40:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.40.

13 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Dániel Marx, editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,
January 10 - 13, 2021, pages 2212–2228. SIAM, 2021. doi:10.1137/1.9781611976465.132.

14 Fan Chung Graham. Large dynamic graphs: What can researchers learn from them? SIAM
News, 37(3), 2004.

15 Manoj Gupta and Richard Peng. Fully dynamic (1+ ε)-approximate matchings. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 548–557, 2013.
doi:10.1109/FOCS.2013.65.

16 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30. ACM, 2015.

17 Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic
subgraph counting. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 459–498. SIAM, 2022.

18 Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997. doi:
10.1006/jcss.1997.1493.

19 Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1108–1121. ACM,
2017. doi:10.1145/3055399.3055480.

20 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In Lance Fortnow and
Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,

https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1137/1.9781611976465.147
http://arxiv.org/abs/1602.06705
http://arxiv.org/abs/1602.06705
http://arxiv.org/abs/1602.06705
https://doi.org/10.4230/LIPIcs.ESA.2018.40
https://doi.org/10.1137/1.9781611976465.132
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1145/3055399.3055480

M. Henzinger, A. Paz, and A. R. Sricharan 37

STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 313–322. ACM, 2011. doi:10.1145/
1993636.1993679.

21 Wenyu Jin and Xiaorui Sun. Fully dynamic c-edge connectivity in subpolynomial time. CoRR,
abs/2004.07650, 2020. URL: https://arxiv.org/abs/2004.07650, arXiv:2004.07650.

22 P. N. Klein and S. Subramanian. A fully dynamic approximation scheme for shortest paths in
planar graphs. Algorithmica, 22(3):235–249, Nov 1998. doi:10.1007/PL00009223.

23 David Peleg and Shay Solomon. Dynamic (1+ε)-approximate matchings: A density-sensitive
approach. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 712–729. SIAM, 2016.

24 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, page 181–193, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3357713.3384327.

25 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Thomas Lengauer, editor, Algorithms - ESA ’93, First Annual European Symposium, Bad
Honnef, Germany, September 30 - October 2, 1993, Proceedings, volume 726 of Lecture Notes
in Computer Science, pages 372–383. Springer, 1993. doi:10.1007/3-540-57273-2_72.

https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/1993636.1993679
https://arxiv.org/abs/2004.07650
http://arxiv.org/abs/2004.07650
https://doi.org/10.1007/PL00009223
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1007/3-540-57273-2_72

38 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Problem Ref. Assuming LBs
APSP weighted [1] APSP conjecture u · q = Ω(N1−o(1))

APSP unit weight [1] OMv conjecture max{u2 · q, q2 · u} = Ω(N1−o(1))
(s, t)-distance, girth, diameter [1] OMv conjecture max{u, q} = Ω(N1/2−ε)
Table 8 Lower bounds for fully dynamic shortest-paths algorithms in planar graphs, where u

denotes the time per update and q the time per query.

Problem Ref. Update Query
undirected 1 + ε-approx. (s, t)-distance [22] Õ(n2/3) Õ(n2/3)
undirected 1 + ε-approx. (s, t)-distance [3] Õ(n1/2) Õ(n1/2)

undirected (s, t)-distance with treewidth k [2] O(k3 logn) O(k2 logn log(k logn))
SSSP on weighted digraphs [8] Õ(n4/5) O(log2 n)

Table 9 Upper bounds for fully dynamic shortest-path algorithms in planar graphs

A Related Work

We describe further related work in this section.

Planar graphs. Prior work for fully dynamic shortest paths in planar graphs is summarized
in Table 8 and Table 9. There is one further lower bound result in dynamic planar graphs,
namely for bipartite maximum weigthed matching, showing a tradeoff of max{u, q} =
Ω(N1/2−ε), where u denotes the update time and q the query time [1]. The planar graphs
used in these lower bound constructions all have constant degree.

There exists also further work on upper bounds in planar graphs. Italiano et al. [20]
designed a fully dynamic algorithm for maximum flow and minimum cut with Õ(N2/3)
update time in planar graphs. In the deletions-only setting in directed graphs Italiano et
al. [19] gave an algorithm with Õ(1) time per operation.

Other graph classes. In
√
N -separable graphs Goranci et al. [12] give almost tight upper

and lower bounds for maintaining (1 + ε)-approximations of the all-pairs effective resistances.

In graphs with constant arboricity Peleg and Salomon [23] gave (1 + ε)-approximate
matching algorithm in constant time.

Insertions-only and deletions-only lower bounds. In general graphs Dahlgaard [11] presen-
ted lower bounds of Ω(N1−o(1)) for incremental or decremental maximum cardinality bi-
partite matching, of Ω(m1−o(1)) for incremental or decremental maximum flow in directed
and weighted sparse graphs, and Ω(N1/2−o(1)) for incremental or decremental (4/3 − δ)-
approximating the diameter of an unweighted graph for any small constant δ > 0. These
lower bounds for diameter were later improved in [6]. Results for dynamic near-additive
spanners were given in [7].

Sensitivity model. Ancona [5] studied diameter approximation and related problems in
dynamic constant-degree graphs. She focused on a different model than ours, called the
sensitivity model, and similarly to us, proved conditional lower bounds using reductions to
the OMv conjecture.

M. Henzinger, A. Paz, and A. R. Sricharan 39

B Partially Dynamic Lower Bounds

B.1 Dynamic (s, t)-Distance
We show that our dynamic (s, t)-distance lower bound for constant-degree graphs also holds
for partially dynamic algorithms using the following reduction graph.

A (logn)-depth binary forest with a single tree. The internal nodes are marked L1 and
the leaves L2; the root of the tree is the source node s, and the nodes of L2 are marked
as L2[i] for 1 ≤ i ≤ n.
A (logn)-depth binary forest with n trees. The internal nodes are marked L3 and the
leaves L4. The roots of each of the n trees are marked as L3[i], for 1 ≤ i ≤ n, and the
leaves of the tree with root L3[i] are marked L4[i, j], for 1 ≤ j ≤ n.
An edge from L2[i] to L3[i] for 1 ≤ i ≤ n.
n paths P [i] on n nodes. The nodes of the path P [i] are marked P [i, n+ 1− j], 1 ≤ j ≤ n.
Edges from L4[i, j] to P [i, j] for all 1 ≤ i, j ≤ n.
A (logn)-depth binary forest with n trees. The internal nodes are marked L5 and the
leaves L6. The roots of each of the n trees are marked as L5[i], for 1 ≤ i ≤ n, and the
leaves of the tree with root L5[i] are marked L6[i, j], for 1 ≤ j ≤ n.
An edge from P [i, 1] to L5[i] for all 1 ≤ i ≤ n.
A copy of the above structure, with node sets marked Ri and Q[i] instead of Li and P [i].
The root of the single tree of R1 is the target node t.
For the matrix M , add the edge (L6[i, j], R6[j, i]) if Mij = 1.
Deletion of edges for each input pair (uj , vj) as detailed next.

We perform the following deletions upon the arrival of the jth input vectors (uj , vj)
Given the jth input vector uj , for each i ∈ [n], delete the edge (L4[i, j], P [i, j]) if uji = 0.
Given the jth input vector vj , for each i ∈ [n], delete the edge (R4[i, j], Q[i, j]) if vji = 0.

Before the (j + 1)th input vector arrives, delete all (L4[i, j], P [i, j]) and (R4[i, j], Q[i, j])
edges for all 1 ≤ i ≤ n. It is easy to see that there is a path of length 6 logn+ 5 + 2j if and
only if ujMvj = 1.

Since the reduction graph consists of Θ(n2) nodes and we make O(n) updates and 1 query
for each input pair, we get the same lower bounds as in the fully-dynamic setting. Note that
this lower bound can be made to work for the insertions only setting as well by reversing the
path P and Q.

B.2 Dynamic Maximum Matching
We use the following reduction graph to make our fully dynamic maximum matching lower
bounds hold for the partially dynamic setting as well.

A reduction gadget with n subgadgets of size 2n+ 2, on a set L1 ∪ L2. The subgadgets
are labelled LE[j] for 1 ≤ j ≤ n, and the nodes of subgadget LE[j] are labelled L1[j, i]
or L2[j, i] for 0 ≤ i ≤ n. The path in each subgadget goes from L1[j, 0] to L2[j, n].
A reduction gadget with n subgadgets of size 2n+ 2, on a set L3 ∪ L4. The subgadgets
are labelled LF [i] for 1 ≤ i ≤ n, and the nodes of subgadget LF [i] are labelled L3[i, j] or
L4[i, j] for 0 ≤ j ≤ n. The path in each subgadget goes from L3[i, 0] to L3[i, n].
Edges from L2[j, i] to L3[i, j] for all 1 ≤ i, j ≤ n.

40 Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

A reduction gadget with n subgadgets of size 2n+ 2, on a set L5 ∪ L6. The subgadgets
are labelled LG[i] for 1 ≤ i ≤ n, and the nodes of subgadget LG[i] are labelled L5[i, j] or
L6[i, j] for 0 ≤ j ≤ n. The path in each subgadget goes from L5[i, 0] to L6[i, n].
An edge from L4[i, n] to L5[i, 0] for all 1 ≤ i ≤ n.
A copy of the above structure, with node sets marked Ri instead of Li.
For the matrix M , add the edge (L6[i, j], R6[j, i]) if Mij = 1.
Deletion of edges for each input pair (uj , vj) as detailed next.

We perform the following deletions upon the arrival of the jth input vectors (uj , vj):

Delete the edge (L1[j, 0], L2[j, 0]).
Given the jth input vector uj , for each i ∈ [n], delete the edge (L2[j, i], L3[i, j]) if uji = 0.
Given the jth input vector vj , for each i ∈ [n], delete the edge (R2[j, i], R3[i, j]) if vji = 0.

Before the (j+1)th input vector arrives, delete the edges (L2[j, 0], L1[j, 1]), (R2[j, 0], R1[j, 1]),
(L2[j, i], L3[i, j]), and (R2[j, i], L3[i, j]) for all 1 ≤ i ≤ n. It is easy to see that there is a
matching with only 4j − 2 nodes unmatched if and only if ujMvj = 1.

Since the reduction graph consists of Θ(n2) nodes and we make O(n) updates and 1
query for each input pair, we get the same lower bounds as in the fully-dynamic setting.
This reduction can be made to work for the insertions only setting by reversing the above
construction.

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Lower Bounds for Dynamic Maximum Matching
	3.1 Constant-Degree Graph
	3.2 Varying Degree Graph
	3.3 Expander Graph
	3.4 Power-law Graph

	4 Lower Bounds for Dynamic (s,t)-Shortest Path
	4.1 Constant-Degree Graph
	4.1.1 Static Graph
	4.1.2 Input-Dependent Edges
	4.1.3 Distances in the Graph
	4.1.4 Complexity of the Reduction

	4.2 (3-d)-Approximation Lower Bound for Constant-Degree Graphs
	4.3 Varying-Degree Graph
	4.4 Expander Graph
	4.4.1 Distances in the expander graph
	4.4.2 Expansion of the expander graph

	4.5 Power-law Graph

	5 Lower Bounds for Dynamic Densest Subgraph
	5.1 Constant-Degree Graph
	5.1.1 The static graph
	5.1.2 Input-dependent edges
	5.1.3 Densest subgraphs in the graph
	5.1.4 Complexity of the reduction

	5.2 Expander Graph
	5.3 Power-law Graph

	A Related Work
	B Partially Dynamic Lower Bounds
	B.1 Dynamic (s,t)-Distance
	B.2 Dynamic Maximum Matching

