An adapted deep convolutional RNN model for spatio-temporal prediction of wind speed extremes in the short-to-medium range for wind energy applications

An adapted deep convolutional RNN model for spatio-temporal prediction of wind speed extremes in the short-to-medium range for wind energy applications

Abstract

The amount of wind farms and wind power production in Europe, both on- and off-shore, has increased rapidly in the past years. To ensure grid stability, on-time (re)scheduling of maintenance tasks and mitigate fees in energy trading, accurate predictions of wind speed and wind power are needed. It has become particularly important to improve wind speed predictions in the short range of one to six hours as wind speed variability in this range has been found to pose the largest operational challenges. Furthermore, accurate predictions of extreme wind events are of high importance to wind farm operators as timely knowledge of these can both prevent damages and offer economic preparedness. In this work we propose a deep convolutional recurrent neural network (RNN) based regression model, for the spatio-temporal prediction of extreme wind speed events over Europe in the short-to-medium range (12 hour lead-time in one hour intervals). This is achieved by training a multi-layered convolutional long short-term memory (ConvLSTM) network with so-called imbalanced regression loss. To this end we investigate three different loss functions: the inversely weighted mean absolute error (W-MAE) loss, the inversely weighted mean squared error (W-MSE) loss and the squared error-relevance area (SERA) loss. We investigate forecast performance for various high-threshold extreme events and for various numbers of network layers, and compare the imbalanced regression loss functions to the commonly used mean squared error (MSE) and mean absolute error (MAE) loss. The results indicate superior performance of an ensemble of networks trained with either W-MAE, W-MSE or SERA loss, showing substantial improvements on high intensity extreme events. We conclude that the ConvLSTM trained with imbalanced regression loss provides an effective way to adapt deep learning to the task of imbalanced spatio-temporal regression and its application to the forecasting of extreme wind events in the short-to-medium range, and may be best utilised as an ensemble. This work was performed as a part of the MEDEA project, which is funded by the Austrian Climate Research Program to further research on renewable energy and meteorologically induced extreme events.

Grafik Top
Authors
  • Scheepens, Daan
  • Schicker, Irene
  • Hlavackova-Schindler, Katerina
  • Plant, Claudia
Grafik Top
Shortfacts
Category
Technical Report (Technical Report)
Divisions
Data Mining and Machine Learning
Date
12 July 2022
Export
Grafik Top