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Abstract—Exceptions in process execution occur frequently
and require appropriate handling strategies in order to avoid
undesired consequences. For quality control in manufacturing
processes, for example, when a blade gets missing, the set of
affected instances is put on hold until the blade is found. As
it can be seen from this example, the exception affects multiple
instances and is hence denoted as instance spanning exception.
Exceptions leave footprints in the process execution logs of
the affected instances. Hence, process execution logs provide a
valuable data source for discovering and analyzing exceptions.
However, the discovery of instance spanning exceptions is still
an open challenge. Thus, this paper proposes i) a classification
of instance spanning exceptions based on literature and a set
of real-world examples, followed by ii) a description of how
instance spanning exceptions manifest in process execution logs
along with an elicitation of minimal requirements for enabling
their discovery, and iii) five instance spanning exception discovery
algorithms, one for each class. The discovery algorithms are
implemented and evaluated on a set of synthetic process execution
logs reflecting real-world instance spanning exceptions and on
a real-world process execution log from the public transport
domain demonstrating the feasibility as well as applicability of
the presented algorithms.

Index Terms—Instance Spanning Exceptions, Exception Dis-
covery and Handling, Process Analysis and Improvement, Process
Aware Information Systems

I. INTRODUCTION

Exceptions during process execution occur frequently and
require appropriate handling strategies in order to avoid
undesired consequences [11], [20]. [6], for example, show
that especially unexpected exceptions cause longer throughput
times and suggest to invest into the analysis of exceptions.
Exceptions might also affect multiple instances of one or
several process types and are particularly critical due their
inherent effects on multiple process instances. We refer to
these exceptions as instance spanning exceptions. Consider,
e.g., a manufacturing process in the food industry where the
regular maintenance encounters issues in the production line
such as a missing blade. In this case all instances produced
since the last maintenance must be searched for the blade
and running instances can, e.g., be set on hold during that
search process. Discovering such instance spanning exception
behavior based on process execution logs hence becomes
crucial in order to understand and avoid consequences such as
tremendous costs caused by production downtimes. Discovery

of instance spanning exceptions comprises the discovery of the
exception trigger, e.g., in which machine the blade got lost,
as well as the exception handling part, e.g., setting running
instances on hold and searching for the blade in previously
produced instances. As instance spanning exceptions can be
spawned based on instance spanning constraints, the discov-
ery of instance spanning exception is closely related to the
discovery of instance spanning constraints [24], [25] as well.
Moreover, the detection of batch processing activities [15]
and concept drifts [14], [21] are also related research areas.
Yet, discovery of instance spanning exceptions from process
execution logs has not been comprehensively investigated so
far. This paper aims at bridging this gap via addressing the
following research questions.
RQ1 How do instance spanning exceptions manifest in pro-

cess execution logs?
RQ2 How to discover instance spanning exception triggers

and handling from process execution logs?
Based on literature and real-world examples, five distinct

instance spanning exception classes wait, cancel, redo, change

and rework are elicited as well as minimal requirements on
process execution logs enabling their discovery (�→ RQ1,
Sect. II). Five discovery algorithms, one for each instance
spanning exception class are presented (�→ RQ2, Sect. III).
Each algorithm discovers exception triggers and their handling
which contributes to enhancing explainability of discovered
exceptions as well as enabling support of future exception
prevention actions. The algorithms are prototypically imple-
mented and evaluated based on synthetic data sets for each
of the exception classes as well as on a real-world data set
from the public transport domain. The evaluation, cf. Sect. IV,
demonstrates the feasibility and applicability of the presented
algorithms. Afterwards, a brief discussion (cf. Sect. V) as well
as related work (cf. Sect. VI) is presented before the paper
concludes in Sect. VII. To sum up, this paper provides the basis
for systematically analyzing exceptions in process behavior for
application scenarios with multiple process instances and their
interdependencies spanning one or several process types.

II. CLASSIFICATION OF INSTANCE SPANNING EXCEPTIONS

To address RQ1, a classification of instance spanning excep-
tions is provided, based on which, the manifestation of each

©IEEE, published here http://doi.ieeecomputersociety.org/10.1109/CBI54897.2022.10048



class in process execution logs is determined. Afterwards, min-
imal requirements enabling the discovery of instance spanning
exception triggers and handling are determined.

A. Classification Based on Exception Handling

In order to discover instance spanning exceptions, we
need to identify the trigger of the exception as well as
the handling strategy. The handling strategy, in turn, is
based on the exception type. In order to identify instance
spanning exception types, we rely on i) literature, i.e., [7],
[13] propose several exception handling strategies: ignoring,
warning, retry, suspend/stop/resume, workflow recovery oper-
ations (e.g., backward recovery, forward recovery, alternative
tasks, etc.), workflow modifications and evolution and ii)
an extensive set of real-world instance spanning exception
examples. In the following, we outline to which extent these
strategies are reflected for the instance spanning setting based
on [25] which presents a categorization of instance spanning
constraints based on 114 real-world examples [19]. Around
14.1% of these examples deal with exception handling, i.e.,
these examples refer to instance spanning exceptions. From
these examples, five distinct classes of instance spanning ex-
ception handling strategies can be identified: wait, cancel, redo,

change and rework. This is inline with the exception handling
strategies from literature as wait reflects ignoring, warning
or suspend, cancel reflects stop, redo reflects retry, change

reflects workflow modifications and partly workflow recovery
operations and rework also the latter. Table I summarizes the
exception classes denoted along their exception handling and
characteristics in relation to the process execution behavior. A
distinction is made between whether additional instances are
spawned during exception handling, how instances subsequent
to the triggering instance, i.e., the instance that caused the
exception, are affected, whether new tasks, i.e., tasks that were
not observed in the process execution log until the trigger, can
show up, and whether data attributes could change, i.e., do not
have the value expected based on previous observations. For
illustration, real-world examples from [19] for each instance
spanning exception class including their trigger and handling
part are provided.

class additional instances subsequent instances new tasks data

wait no delay no no
cancel no sudden end no no
redo no iteration no no
change no concept/data drift yes yes
rework yes not defined yes yes

TABLE I
CLASSIFICATION OF INSTANCE SPANNING EXCEPTION HANDLING

Wait does not require to spawn new instances for handling
the exception and instances subsequent to the trigger can have
a delay in terms of time. Tasks that were not seen before and
a change in data attributes cannot be involved in the trigger
or handling part.

Example (wait) “Several planes are in the landing process. A plane

that had a problem during the landing can affect the landing of the
other planes.”
Trigger one plane had a problem during the landing
Handling subsequent planes have to wait

Cancel reflects a cancellation procedure across multiple in-
stances. No additional instances need to be spawned, but
subsequent instances can show a sudden end. No new tasks
and no changes in data elements are observable.

Example (cancel) “Several diagnosis for a car are running at the
same time. If the problem is identified in one of the diagnosis, the
others are cancelled.”
Trigger problem identified in one of the diagnosis
Handling all other instances referring to the same car are cancelled
immediately, i.e., a sudden end of instances related to the same car

Redo does not require additional instances to be spawned.
Instances subsequent to the trigger contain iterations for one
or multiple tasks. Neither any new tasks nor changes in data
attributes can be observed.

Example (redo) “When one student (instance) has not understood a
concept, the concept is taught to every student in class again.”
Trigger one student has not understood a concept
Handling teach concept again, i.e., repeat tasks at least once for a
batch of instances

Change does not require to spawn additional instances. Subse-
quent instances are affected resulting in either a concept drift,
therefore new tasks can be observed, or a data drift, i.e., a
change in one or multiple data attributes. The latter happens
in the example (data element airport changes). Additionally,
depending on the granularity of the process execution log, a
concept drift might also be observable.

Example (change) “If weather conditions change, a transport plane
might land at another airport leading to rebundling of cargo.”
Trigger weather conditions change
Handling airport change and rebundling, i.e., instances contain
unexpected value in data element reflecting the airport, new tasks
reflecting the bundling can be observed

Rework requires to spawn additional instances and the behav-
ior of subsequent instances is undefined.

Example (rework) “During maintenance the loss of a blade is
detected. All instances produced since the last maintenance have to
be searched until the blade is found.”
Trigger a blade got lost
Handling spawning of search process for already finished instances;
implicit wait/cancel for instances of the production process

B. Manifestation of Exceptions in Process Execution Logs

Table II summarizes requirements on process execution
logs for discovering instance spanning exceptions along the
classification presented in Tab. I (�→ RQ1 ). Each of these
requirements is part of the XES standard [23]. In particu-
lar, we require the concept and time extensions as well as
lifecycle transitions, i.e., start, complete, pi_abort,
and reassign. Lifecycle transition pi_abort indicates
whether or not the execution is aborted for this case and
reassign indicates an assignment after a withdrawal. More-
over, the BPAF lifecycle transactional model [16] is re-
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Fig. 1. Wait: A process reflecting a flight. A delay causing the exception
occured in the second trace. A full circle reflects the trigger, a dashed circle
the handling.

quired, since it distinguishes if a completed task has been
executed successfully (Completed.Success) or failed
(Completed.Failed).

class concept name instance uid timestamp lifecycle transition

wait + + + −
cancel + + − pi_abort, complete

redo + + − Completed.Failed,
Completed.Success

change + + − reassign, start
rework + + − pi_abort

TABLE II
REQUIREMENTS ON PROCESS EXECUTION LOGS (+NECESSARY, −NOT

NECESSARY)

General requirements. For every exception class, the process
execution logs must contain a concept name and, in the case
of process spanning settings, a unique identifier in order to
be able to link related instances. How to identify and merge
corresponding traces stemming from multiple process types is
described in detail in Sect. III.

Wait. The duration of each task is analyzed. A task with a
longer than expected duration can block an important resource,
which is involved in other instances as well. In the example,
several planes are using the same airport entry point. Hence,
if one airplane takes longer to land, the following planes, i.e.,
other instances or processes, are affected and their landing
takes longer than expected as well. Since delays in terms of
time need to be discovered a process execution log must have
timestamps whereas lifecycles do not play a crucial role, see
Figure 1.

Cancel. The complete execution of a task is analyzed. To
speed up a process, multiple sub-processes can be spawned,
where the first sub-process that succeeds, cancels the others.
In the example, several diagnostic processes are spawned to
identify the problem of a car. When a diagnostic process

completes successfully, the other diagnostic processes are
canceled immediately. To discover cancel events, timestamps
are not necessary, but a process execution log needs to have
lifecycle transitions pi_abort and complete, see Figure 2.
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Fig. 2. Cancel: A process for diagnosing a car. Three instances are started,
after the first diagnose process is successfully finished, the others are aborted.
A full circle reflects the trigger, a dashed circle the handling.

Redo. The number of iterations of a task is analyzed. A
requirement for the complete success of a process could
be the successful completion of all related (sub)-processes
or tasks. In the example, a course or seminar for students
is only completed successfully if all participating students
understood the concept of the course and passed it, but if
at least one student fails the course, all students have to take
the course again. For discovering iterations, we consequently
require lifecycle transitions Completed.Failed as well as
Completed.Success, see Figure 3.
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Fig. 3. Redo: A process for studying in class. Several instances are started,
if one student fails the course, all others have to also repeat that course. A
full circle reflects the trigger, a dashed circle the handling.

Change. We analyze the process tasks that occurred after
the exception. If a resource that is shared between different
processes and instances breaks down, future instances cannot
use this shared resource and another one has to be used. In the
example, due to weather conditions, an airplane cannot land
at its destination, therefore another airport is selected. This
can affect subsequent airplanes, until the airport, the original
resource, is available again and can lead to rebundling of
cargo. For discovering instance spanning exceptions of this
class lifecycles reassign and start are necessary, see
Figure 4.
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Fig. 5. Rework: A process for production of goods. A full circle reflects the
trigger, a dashed circle the handling.

Rework. Tasks before an exception occurred are analyzed. If
an error occurs in a process instance with an object or resource
that is shared with different instances, the process instance
with the error is stopped, the object or resource is repaired
and previously executed instances from this batch have to be
checked, see Figure 5.

III. DISCOVERY ALGORITHMS FOR INSTANCE SPANNING
EXCEPTIONS

Based on the classification provided in Tab I and respecting
the requirements set out in Tab. II, five algorithms for discov-
ering instance spanning exceptions are provided in this section
(�→ RQ2 ). Each algorithm takes as input a set of process
execution logs reflecting different process types. Consider a
patient undergoing different treatments for which separate
processes exist. As outlined in [25] in order to identify related
instances, i.e., in the example those referring to the same
patient, a data attribute which is ideally a unique identifier
like a patient ID is required. This is reflected by function

merge traces(). This function is always called at the beginning
of each algorithm. Based on a unique data attribute, related
traces are merged into a single trace. As outlined in [25], if
no unique attribute is available the merging can be carried out
by more sophisticated techniques such as, e.g., [3]. The output
for each algorithm consist of a list of trigger combined with
handling events for each instance spanning exception that was
discovered within the process execution log.
Wait. The exception trigger is identified by Alg. 1 based on
events taking longer than expected. The handling part is repre-
sented by instances directly following the instances containing
the trigger event, that also take longer than expected.

Algorithm 1 Wait Discovery Algorithm
Input: logs = Log of different processes, th = Threshold for outlier detection

Output: result = List of potential trigger and handling events for Wait
1: traces = merge traces(logs)
2: calculate temporal information(traces)
3: t res = list()
4: for trace in traces do
5: for event in trace.events do
6: if outlier(event) then
7: trigger << event
8: next
9: end if

10: if trigger and outlier(th,event) then
11: handling << event
12: end if
13: if trigger and not outlier(th,event) then
14: if handling then
15: t res << [trigger,handling]
16: end if
17: trigger.clear
18: handling.clear
19: end if
20: end for
21: if trigger then
22: t res << [trigger,handling]
23: results << t res
24: trigger.clear
25: handling.clear
26: t res.clear
27: end if

28: end for

In addition to the set of process execution logs, this algo-
rithm takes as further input a threshold, th ∈ [0;∞[ for the
time-related outlier detection. We use the well-established z-
score [4] for outlier detection and if it is above th the event
is marked as outlier. For applying the z-score the temporal
information (mean duration and standard standard deviation
of a task) for all events is calculated in line 2. For each
merged trace the algorithm starts with an empty list of trigger
and handling events. The first event, that is classified as an
outlier, is saved as a potential trigger event, lines 6-8. If the
following event is still an outlier, it is saved as an exception
handling event, lines 10-11. When the first event that is not
classified as outlier is discovered, the trigger and handling
events that are already discovered, are saved, lists are cleared,
and the search for a new trigger event continues, lines 13-
18. If there is only a potential trigger, without corresponding
handling events, the potential trigger list is cleared, i.e., no
wait exception is discovered.
Cancel. The trigger discovered by Alg. 2 is the task that
reports completes successfully, i.e., contains the complete



lifecycle transition, while the tasks that are cancelled are
classified as the handling for this exception.

Algorithm 2 Cancel Discovery Algorithm
Input: logs = Log of different processes

Output: result = List of potential trigger and handling for Cancel
1: traces = merge traces(logs)
2: for trace in traces do
3: for event in trace.events do
4: if event.lifecycle == ”pi abort” then
5: for potential in collect events(event.name) do
6: if potential.lifecycle == ”complete” then
7: trigger << potential.name
8: else
9: if potential.lifecycle == ”pi abort” then

10: handling << potential.name
11: end if
12: end if
13: end for
14: if trigger and handling then
15: result << [trigger,handling]
16: end if
17: end if
18: end for

19: end for

After merging related traces, for all events in all traces, the
lifecycle status is checked. The first event containing lifecycle
transition pi_abort, starts the exception handling discovery,
line 4. Since this algorithm is searching for tasks operating
on the same resources, only tasks with such a resource are
merged, while the others are discarded, line 5. Then, every
event related to the first event with pi_abort of this trace
with a complete lifecycle is classified as a trigger, line 6,
while events with pi_abort as a lifecycle are classified
as the handling for this exception, line 9. Other events, not
operating on the same resource, i.e., not the same car, are not
considered. At the end of each trace, the discovered trigger
and handling events are saved into the result, line 14.
Redo. Algorithm 3 discovers the trigger as the task that is
completed, but still failed, while batches of tasks that are
discovered afterwards are classified as handling events. For
the discovery of the trigger and handling events, the algorithm
takes only the events into account that contain the outcome of
a specific task, i.e., if it has been completed successfully or
not. This is done for identifying iterations of a task. If an event
is discovered with a failed execution, identified by the lifecycle
status Completed.Failed, the remaining events are split
into iterations, i.e., one completing event per original process
per iteration, lines 4-6. If only successful events are discovered
in the last iteration, the exception class can be identified and
the iterations after the first one are considered the handling of
this exception, while the first failed execution is saved as the
trigger, lines 7-8. The results are collected in line 11.
Change. Algorithm 4 discovers the exception trigger as the
task that changes its assigned resource to another one, e.g.,
the designed airport is not available anymore, thus another
airport is assigned in an event. The related handling tasks are
the following instances with a task using the new resource in
the beginning instead of the original resource.

If a resource is reassigned to another resource, a potential
trigger is discovered, lines 6-8. For all following events,

Algorithm 3 Redo Discovery Algorithm
Input: logs = Log of different processes

Output: result = List of potential trigger and handling events for Redo
Require: BPAF lifecycle transactional model

1: traces = merge traces(logs)
2: for trace in traces do
3: for event in trace.events do
4: if event.lifecycle == ”Completed.Failed” then
5: trigger = event
6: iterations = collect iterations(trigger)
7: if (set(iterations.last.lifecycles) ==

set(”Completed.Success”) then
8: handling << iterations.events
9: end if

10: if handling then
11: result << [trigger,handling]
12: end if
13: end if
14: end for

15: end for

that potentially use the same original resource, the assigned
resource is checked for events at the start of a task execution. If
it equals the new resource from the potential trigger event, the
event is considered as a handling for this exception, lines 12-
13. If a handling is discovered, the results are saved and
appended in line 17.

Algorithm 4 Change Discovery Algorithm
Input: logs = Log of different processes

Output: result = List of potential trigger and handling events for Change
Require: org:resource for potential trigger

1: traces = merge traces(logs)
2: for trace in traces do
3: for event in trace.events do
4: if event.lifecycle == ”reassign” then
5: o res = event.resource
6: n res =find start resource(event)
7: if o res!=n res then
8: trigger=event
9: next

10: end if
11: end if
12: if trigger == event and event.lifecycle == ”start” and

event.resource==o res then
13: handling << event
14: end if
15: end for
16: if handling.size then
17: result << [trigger, handling]
18: end if

19: end for

Rework. The trigger discovered by Alg. 5 is the task that is
aborted and stops the instance, discovered by the pi_abort
lifecycle transition. In the previously executed instances, addi-
tional tasks can then be discovered, reflecting the handling for
this exception. For discovering this instance spanning excep-
tion class, the lifecycle status of the events is analyzed. If an
event is discovered containing the lifecycle status pi_abort,
a potential trigger event is saved, lines 4-5. Afterwards, the
instances that have been previously executed are analyzed,
line 6. If additional events are discovered in these instances,
the events are saved as handling for this exception, lines 7-8.
The additional events could be discovered using conformance
checking algorithms, but this requires the discovery of a
process model before. Since the order of the additional events



is not important, the number and content of events can be
counted instead. If handling events are discovered, the results
are saved in line 12.

Algorithm 5 Rework Discovery Algorithm
Input: logs = Log of different processes

Output: result = List of potential trigger and handling events for Rework
1: traces = merge traces(logs)
2: for trace in traces do
3: for event in trace.events do
4: if event.lifecycle == ”pi abort” then
5: trigger << event.instance
6: for pi in previous instances(trigger) do
7: if additional events(pi,trigger) then
8: handling << additional events(pi,trigger)
9: end if

10: end for
11: if handling.size then
12: result << [trigger,handling]
13: end if
14: end if
15: end for

16: end for

IV. EVALUATION

Algorithms 1 to 5 have been prototypically implemented
and evaluated on synthetic logs and on a real-world log from
the public transport domain. Data sets and implementation are
available at http://gruppe.wst.univie.ac.at/projects/crisp/data
sets/.

A. Evaluation on Synthetic Data Sets

Each of the synthetic data sets has been generated based on
the corresponding example presented in Sect. II to show the
feasibility of the algorithms.
Wait. For Alg. 1, the data set consists of 10 transportation pro-
cesses for different airplanes using the same landing platform
saved as data element shipment and reflecting the id of the
air strip. Each process consists of 200 traces where at least
one trace of each process shares the landing platform with at
least 9 other traces. For a crisp outlier detection, the duration of
correctly executed instances is set to exactly 20 minutes. After
an outlier happened, i.e., an airplane has been delayed, the
subsequently arriving airplanes are delayed by an ever smaller
margin until the planes fly correctly again. For the outlier
detection we use a threshold th of 2 for the z-score, since the
delay is rather small, but an impact on the following instances
has been discovered. The algorithm discovers a trigger event,
taking 20 minutes longer than expected, yielding a z-score of
3.4. The algorithm discovers the following events as handling
until z-score < 2 holds.
Cancel. For Alg. 2, the data set consists of 4 diagnostic
processes each reflecting different diagnostic systems of a
car. All of them can be executed in parallel. Hence there are
4 traces for one car. The traces for each car, are identified
by the data element car_number. In this data set, all
diagnostic processes for one car stop immediately after one
diagnostic process reports successfully back. There are process
instances for 500 cars, i.e., 2000 process instances in total. The
algorithm discovers a handling event first, by discovering the

abortion of an event. Afterwards the trigger event is discovered
as the only completed event, while the others are considered
handling events.
Redo. For Alg. 3, the data set consists of 5 different processes,
where each process reflects a student taking part in a course.
Students taking the same course can be identified using the
data element course_number. A process instance ends, if
all participating students complete the course successfully. In
this data set the number of failing students varies per iteration
of attending the course, e.g., Student A completes the course
successfully in the first iteration and Student B fails and
the other way round in the second iteration. To discover the
iterations, it is important that the BPAF lifecycle transactional
model is used. Only the end event of a study process is
required for this algorithm, e.g., the event with lifecycle transi-
tion Completed.Success and Completed.Failed to
support the discovery of iterations. The data set consists of
200 instances per process.
Change. For Alg. 4, the data set consists of 10 processes.
Instances of these processes reflect parts of a shipment to
a specific airport. 150 instances of all processes contain no
exceptions. In 50 instances, the airport is not available and the
trigger instance and all following instances of this shipment
are redirected to another airport. The algorithm identifies the
reassignment of the airport resource and discovers the handling
events, until the original resource is used again.
Rework. For Alg. 5, the data set consists of 10 processes, each
process containing 200 traces. All processes are performed
on the same machine. Process instances, combined by the
data element product_number reflect a production batch
on one machine, i.e., one process instance of each process.
The first 150 instances of each process are performed without
any exceptions to collect information on the processes. The
remaining 50 instances of each process contain one instance
reflecting the discovery of a missing blade of the machine.
The machine is then repaired and all instances for this product
that have been executed prior to the trigger instance, contain
additional events, e.g., Retrieve Product.

B. Real-world Data Set – Public Transport Domain

Data Collection and Preparation. A real-world data set based
on the Vienna open data platform was gathered by monitoring
the public transportation by the Wiener Linien1 between 8th
of May and 10th of May 2021. The data gathering focused
on the Tram lines 37, 38, 40, 41 and 42 since these have
several stations in common, e.g., “Schottentor” which is their
start as well as end point. The shared station of different lines
should increase the chance of detecting an exception class.
The collected data consists of two types of JSON response
files and a request is sent every 60 seconds.

The first JSON response file contains general traffic
infos on the selected lines (37,38,40,41,42), i.e., if an
interruption occurs this is logged within a JSON file.

1https://www.data.gv.at/katalog/dataset/wiener-linien-echtzeitdaten-via-
datendrehscheibe-wien



Within the responses there are several relevant fields: i)
trafficInfos.time.start containing the start time of
the interruption, ii) trafficInfos.time.resume con-
taining the resume of the transport during an interruption, iii)
trafficInfos.time.end containing the end time of the
interruption, iv) trafficInfos.title and
trafficInfos.description containing a (detailed) de-
scription of the interruption, e.g., a track damage.

The second type of JSON response files contains data
on real time monitoring of specific stations. The data set
contains information on the planned departure time and the
real departure time of vehicles from a tram line from a station.
This data set can be transformed into a suitable data set in two
ways. The first one, compares the departure times with the
planned departure times to recreate the route different vehicles
have taken and view each vehicle as a process instance. The
second way, interprets dispatching vehicles from a station as
an activity and creates a process instance for each departure
with the next station as a data element attached to it. The
latter option is chosen, since unfortunately some lines are
stopping at specific stations multiple times during one round
and without a vehicle id, it cannot be guaranteed that the
vehicles are transformed correctly all the time. Since the line
number is available for each departure, the second option for
the transformation yields a suitable data set.

Results. This data set is not using the BPAF lifecycle trans-
actional model and no departures are performed as long as
all departures complete successfully based on the setting, thus
the redo exception handling class is very unlikely. Vehicles
in a tram line are not stopping if other vehicles reach their
destination earlier, hence, the exception class cancel is not
available in this data set. Traffic jams or other obstructions
on the track are typically affecting subsequent departures of
vehicles and not previous departures. Thus the exception class
rework is unlikely, but change should be detectable. A late
vehicle or a delay in a departure in one station, can affect the
departure of later vehicles from the the same of different lines,
thus the exception class wait seems likely.

The destination of a dispatched vehicle is transformed to
the resource of a dispatching event to detect reassignments
of the target station. Data entries from the first data set,
containing the keyword “umgeleitet” have been transformed
to a reassignment of a resource to the lines mentioned in the
data entry. This allowed us, to discover a change exception
for line 40. The trigger event is discovered on the 9th of May
at 13:32, a reassignment to “Michelbeuern U AKH”, a stop
not planned in this line. The following instance is using the
same resource, at 13:42, therefore discovered as the handling
for this exception. Instances following this, are already using
the original resource again.

Since a time plan for a public transportation route does not
have the same intervals during the whole day, we have opted
to use the planned departure time as the starting point of the
dispatching task and the real departure time as the end point.
Thus the algorithm for discovering the wait class can easily be

applied without any adjustments, as well. The used data sets
are process instances of the station “Schwarzspanierstraße”,
where 5 different lines are stopping and consists of 3098
dispatched vehicles. With a threshold of 3 standard deviations
of the mean dispatch time, a trigger event is discovered for
Line 41 at 15:20 on the 9th of May, with a delay in the
following vehicle as a handling event to this trigger, as well
for Line 41 at 15:21. By lowering the threshold th to 1.5 for
the z-score, additional wait class exceptions are discovered for
line 38.

To sum up, Algorithms 1 to 5 correctly discover the ex-
ception trigger and handling events based on the synthetic log
files. The real-world data set provided process logs where two
out of five exception classes were present and also discovered.

V. DISCUSSION

The evaluation demonstrated the feasibility and applicability
of Algorithms 1 to 5 for instance spanning exception discovery
as presented in Sect. III. The algorithms require neither any
additional information on process models nor domain knowl-
edge, only that the data set fulfills the requirements set out in
Sect. II-B. These data set requirements concern the existence
of certain lifecycle transition events which correspond to defi-
nitions from the XES standard [23] combined with the BPAF
lifecycle transaction model. Note that the BPAF lifecycle is
only required for the redo exception class.

However, the requirements can be altered if sufficient do-
main knowledge is present, e.g., in a production process a
task taking only a few milliseconds instead of hours, can
be identified as faulty execution reflecting an abortion of a
process, even though the lifecycle status data elements are not
reflecting this. For Alg. 3 for example, a simple data element
providing the result of a course can be used as well instead
of the BPAF lifecycle transactional model. In future work, an
adaption of the requirements for each algorithm by exploiting
domain knowledge will be investigated in more detail. The
goal is to analyze options for relaxing the requirements on
process execution logs.

VI. RELATED WORK

In a broader sense, this work can be positioned in the
area of process exception handling and process flexibility
[17]. “Instance-specific changes are often applied in an ad-
hoc manner and become necessary in conjunction with real-
world exceptions” [18]. This means, that process changes are
an instrument to deal with unexpected exceptions [1], i.e.,
exceptions that occur during runtime and were not foreseen
when designing the process. Expected exceptions, in turn,
can be treated in the process model by possibly infrequent
paths of an alternative branch (decision) [5] or by a pre-
defined exception handling pattern [1], [20]. The work at hand
abstracts from the distinction into expected or unexpected
exceptions by looking at the process execution log, i.e., at what
has actually happened, in an ex post way. Cleary, if exception
handling classes change and possibly also rework are detected,
one can conclude that an unexpected exception has occurred



where classes wait, cancel, and redo might hint towards an
expected exception. We will investigate this in future work,
but at this point it becomes already clear that the detection
of the instance-spanning exceptions supports the definition of
handling strategies for previously unexpected exceptions.

In the following, we discuss related approaches in more
detail. In [20] a framework for exception handling based
on workflow patterns is presented and five types of excep-
tions work item failure, deadline expiry, resource unavailabil-

ity, external trigger and constraint violation were identified.
However, their aim is not at defining or discovering ISC
exceptions from process execution logs as it is outlined in this
paper. Approaches on exception and deviation mining, e.g.,
[9], [22] have not considered instance spanning exceptions
yet. Anomalies and concept drifts can be caused by exceptions
and detected from logs, but this requires root cause analysis
which is rarely provided. Anomaly detection, e.g., [2], [8],
and concept drift detection [14], [21] does moreover not
include a distinction in trigger and handling part none of those
approaches explicitly considers instance spanning anomalies
and drifts. Approaches such as [10], [12] support class cancel,
but the instance spanning behavior is still not covered. Instance
spanning behavior in process mining has been considered by
discovering constraints [25] and batch processing behavior
[15] from process execution logs. Yet, none of these works
provides full support for the detection of instance spanning
exceptions.

VII. CONCLUSION

Exceptions in process execution can occur frequently and
exceptions spanning multiple instances are of particular con-
cern. Within this paper we presented a classification of in-
stance spanning exceptions based on literature as well as
an extensive set of real-world instance spanning exception
examples resulting in five distinct instance spanning exception
classes, wait, cancel, redo, change and rework. For each class
we captured how it manifests in process execution logs and
elicited minimal requirements enabling their detection from
process execution logs. Based on these findings one algorithm
per class was developed and evaluated on synthetic as well
as real-world data sets. Evaluation results on synthetic log
files demonstrated the feasibility and the real-world data set
from the public transport domain the applicability of each
algorithm. As future work, an adaption of the requirements on
log files in order to extend the algorithms to process execution
logs containing less information on lifecycles is investigated.
Moreover, the exploitation of domain knowledge to relax the
requirements will be investigated.
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