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Abstract. Data transfer and exchange of information through APIs are
essential for each microservice architecture. Since these transfers often
include private or sensitive data, potential data leaks, either acciden-
tally or through malicious attacks, provide a high-security risk. While
there are different techniques, like using data encryption or authenti-
cation protocols to secure the data exchange, only a few strategies are
known to reduce the damage when an actual data breach happens. Our
work presents a novel approach to identifying the optimal amount of data
attributes that need to be exchanged between APIs and minimizes the
damage in case of a potential breach. Our method relies only on static
source code analysis and easy-to-calculate architectural metrics, making
it well suited to be used in continuous integration and deployment pro-
cesses. We further verified and validated the feasibility of our approach
by conducting two case studies on open-source microservice systems.

Keywords: Microservice API · security · data exposure · metrics ·
source code detectors.

1 Introduction

Despite their main principles like autonomy and isolation, microservices often
have to cooperate and interchange data to fulfill their tasks [1]. These inter-
service communications mainly consist of domain-specific information required
to execute particular tasks that might include user-related or other sensitive
data [2]. While business-related information can be of high interest for malicious
competitors, it is especially the sensitive data that presents a lucrative target for
external attackers intent on either stealing or compromising the information [3].
It is therefore not surprising that the exposure of sensitive data is considered an
essential security challenge in microservices architectures [4].

Data exchange happens also in monolithic architecture, but here, the attack
surface for data-related attacks is much smaller since a large part of the com-
munication takes place inside the process boundaries and is therefore not as
easily accessible from the outside [5]. In contrast, microservices communicate
via different data transfer technologies [6] by using a variety of data formats [7],
and their endpoints are often accessible through the public cloud, making data
attacks much more likely and rewarding [3, 5].
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To protect the data transfer against leaks or breaches, different security mech-
anisms have been proposed, such as authentication, authorization, traffic con-
trol, and encryption [3, 5, 8]. However, all these measures come with the price
of having a considerable negative impact on other quality properties, such as
the system’s performance. Yarygina and Bagge [9], for instance, could show that
their security framework affects the overall system performance by 11%. In addi-
tion, excessive data transfer between services can cause unintended concurrency
issues, making it even harder to reason about a system’s security aspects [6].

Since data autonomy and isolation are key characteristics of a microservice
architecture [10], exchanging data between services is essential and avoiding data
transfer at all is not an option for obvious reasons. Dias and Siriwardena [5] refer
to data transfer that goes beyond what is strictly necessary, as excessive data
exposure and further suggest that each API should only provide precisely that
part of the information required by its consumers.

Unfortunately, identifying the amount of data mistakenly interchanged be-
tween services is not a trivial task: Many APIs were not designed with data par-
simony as a primary goal, instead the focus during design is usually on quality
goals such as improving maintainability and reducing complexity, resulting in a
coarser-grained API structure than sometimes necessary [11]. Beside that, APIs
based on underdeveloped or anemic domain models carry the risk of exposing
too much and often domain data unrelated to specific use cases [12]. Finally, the
polyglot and diverse nature of microservice systems [9] needs to be considered,
making optimizing for data parsimony an even more challenging task.

Our work provides a novel approach for tracking the data transferred be-
tween microservice APIs and aims to identify any excessive data exposure that
happens as part of this transfer1. To achieve this, we use our source code detector
approach from our previous research [13] to derive a communication and data
flow model from the underlying system’s code artifacts. Based on this model,
we define a set of architectural metrics for guiding architectural design decisions
targeting the reduction of excessive data exposure. In this context, we are aiming
at answering the following research questions:

RQ1 How can a communication model for identifying excessive data exposure
be derived from a microservice system? Our goal is to reconstruct such a
model only through static code analysis, making our approach exceedingly
feasible for continuous development cycles.

RQ2 How well can the level of data exposure caused by API calls be quantified?
Based on our formal model, we will identify a set of architectural metrics
to measure and identify the grade of data exposure through an API.

RQ3 How can software architects be guided through the process of redesigning
microservice APIs to reduce excessive data exposure? We will investigate
how our metrics can help by restructuring critical architecture elements
to reduce the amount of data exposed.

1 For supporting reproducability, we offer the whole source code and data of our study
in a data set published on the long term archive Zenodo:
https://zenodo.org/record/6700021#.YrRJYHVByA0.
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This paper is structured as follows: Section 2 gives a short overview of ex-
isting research in this area. Section 3 presents some background information
regarding the data management in microservice APIs and how it could lead to
excessive data exposure. Section 4 describes our communication model and how
we constructed it by using our source code detectors. Section 5 introduces the
metrics we designed to measure potential data exposure, and in Section 6, we
assess our metrics on two open-source case studies. The paper concludes with
a discussion of our results (Section 7), together with an overview of possible
threats to validity and a selection of future work tasks (Section 8 and 9).

2 Related Work

Microservice security, especially data exposure, is an important research field
that has attracted much attention in recent years. Yu et al. [3] investigate secu-
rity issues in microservice-based fog applications. Similar to our research, they
consider inter-service communication a critical security aspect. A more data-
centric security approach is pursued by Miller et al. [2], where the authors argue
that leaking data can pose an enormous financial risk for companies and accord-
ingly present a security architecture to prevent these data exposures while still
enforcing the required business workflows. Shu et al. [14] introduce a method
to detect sensitive data exposure in microservice systems by preserving data
privacy. For more research in this area, see also Hannousse and Yahiouche [4].

Another essential data security concept is the so-called taint analysis that
examines how untrusted data – e.g., from user input – can affect the security
of a system, be it a web [15] or mobile application [16]. While similar to our
approach, taint analysis is a vast research field that focuses on how untrusted
data could potentially harm a system. In contrast, our approach is more specific
as it aims to minimize the amount of data exposed through microservice APIs.

When it comes to gathering data from microservices through mining source
code or other artifacts, Soldani et al. [17] present an approach in which they
reconstruct a communication model by parsing Kubernetes configuration files.
While their model is similar to ours, they do not analyze the source code di-
rectly and therefore have limitations regarding the actual data usage by an API.
Fowkes and Sutton [18] introduce an approach for mining API call patterns
by creating abstract syntax trees (AST) out of Java programs to reconstruct
method invocations. In contrast, our code detector approach is more lightweight
and not specific to a particular language.

Studies about architectural metrics related to microservice can be found
in [19] and [20]. Although their metrics are not specific for measuring data ex-
posure, they provide meaningful insights we also used to define our metrics.

3 Excessive Data Exposure in Microservice APIs

To fulfill their tasks, microservices have to manage and process a large amount
of data and information, provided by external sources like databases or com-
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puted or generated during runtime. A typical pattern here is to provide each
microservice with its own database [6], placed inside the internal perimeter of
the service boundary. Because of their central role in data-driven architectures,
we assume that for each database a data provenance protection exists and they
are secured against data breaches [3]. Otherwise, an attacker could target the
database directly instead of focusing on the communication channels.

In addition, a microservice API itself can act as a data provider, either by
computing derived data from incoming parameters [21] or by transferring data
directly from one API to another. To decide whether an API connected to a data
source requests its data legitimately, we have to investigate the following cases:

1. The API processes the incoming data directly. This would be the case if the
API either stores its input in its data store or uses it to derive new infor-
mation. Consider e.g. an online shop system API that calculates a discount
factor based on the customer’s shopping history it receives. Since the in-
coming data is no longer required after being processed, we say the API
consumes the input data.

2. The API sends incoming data to another target without modification. Besides
directly consuming incoming information, an API can also leave the input
untouched and transfer it directly to another API, acting itself as a data
source for its caller. We consider this behavior as routing.

If any incoming data is not handled by one of these two mechanisms, we can as-
sume that the API’s input is obviously not required and can safely – at least from
a security point of view – be omitted. This leads us to the following definition:

Definition 1. All incoming data received by an API that is neither directly con-
sumed nor routed to another API can be considered excessively exposed.

Figure 1 illustrates this definition: An external client communicates with a
microservice system consisting of three APIs, requesting order information by
calling the /order/collect-data operation. The API itself gathers the required
data by calling two other endpoints, /customer and /product. Both APIs re-
turn complex objects containing the required data attributes and additional
information not relevant for the current use case (marked with red color). While
/order/collect-data returns only the required information to the client, it has no
use for the remaining data attributes movementHistory, description and image,
which, while not used by any endpoints, are still exposed to the network. If the
API communication had been compromised by an attacker, they would get ac-
cess to much more data than one would actually expect based on the underlying
use case, making the data breach even more severe.

How could we avoid this unnecessary and excessive exposure of data? First,
we have to determine the original source of the data by following the path back
from our current API to the one that initially returned the data attributes.
Secondly, after investigating our two origin APIs, we recognize that they are not
tailored for a specific use case but instead simply return whole data entities, thus
exposing too many details [12].
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Fig. 1: Example of Excessive Data Exposure: Two APIs are exposing more data than actually required
for the use case.

A naive solution would split up the api/customer and api/product opera-
tions into separate APIs for each single data attribute, allowing clients a more
fine-grained access to choose each data attribute individually. While this would
minimize the risk of a potential data leak, the solution comes with many dis-
advantages: A single API endpoint per data attribute increases the size of the
service interface significantly and also the efforts necessary to implement and
maintain the service [19]. Also, a client in need of more than one data attribute
at once has to make several network calls to gather all required information,
resulting in increased network traffic and poorer system performance.

Somewhere between these two extremes – one endpoint per atomic data
attribute vs. one endpoint per domain entity – lies the optimal solution from a
data security point of view: Designing the APIs per use case and ensuring that
each request receives only the data relevant for the case it implements. In our
example, we could design one API api/customer/order-information returning
the name and the address attributes and another one returning only the name of
the product (see Figure 2 for an illustration of these three options).

However, even such an optimized solution has drawbacks, as systems with
a large number of different use cases would require a corresponding amount of
API endpoints, resulting again in increased implementation and maintenance
efforts. Furthermore, providing one API per use case creates a strong coupling
between the both, reducing the maintainability even further [12]. Choosing the
right granularity for a service interface is, therefore, often a decision that depends
on many different individual factors [11]. Unfortunately, architects are often left
alone in this process and have to rely on their experience or personal preferences
to find the optimal API granularity. Our approach presented in the next section
closes this gap and supports experts by providing them with additional guidance
when redesigning their architectures towards more data security.
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Fig. 2: Different types of API granularity depending on the amount of data exposed per API.

4 Communication Model

4.1 Formal Model Description

The communication model we extract from the underlying microservice artifacts
is derived from our previous work [13]. We express inter-service calls within
the system as a directed graph G = (V,E,DA,F ), where V represents the
set of architectural elements essential for the communication flow – like APIs
(V API ∈ V ) – and E ⊆ V × V is the set of invocations (each represented by
a tuple), both synchronous and asynchronous. We further define DA as the set
of all data attributes interchanged and processed by the APIs v ∈ V API of a
Graph G. The last part of our definition specifies F as a set of data-related
functions with F = {in, out, consume} and in : V API → P(DA) (same for out
and consume). Each of these functions returns the subset of data attributes
P(DA) an API either receives as input or processes.

4.2 Source Code Mining

Code artifacts of a microservice system are often written in various languages
and use a large number of different communication and database technologies [6].
Strategies for mining these artifacts with native language parsers would require
considerable configuration and maintenance work and are therefore not always
practical, or often limited to specific languages (see, for instance [18] or [22]).

Instead, we used a different mining approach adapted from our previous
works [13, 23]. for mining code artifacts: To identify significant architectural
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hotspots within a system, it is often sufficient to look only for specific patterns
in code that describe a particular communication model or API technology and
ignore all other parts that are not relevant in this context. Taking advantage of
this fact allows us to implement much more lightweight parsers – we call them
detectors – that focus only for detecting specific patterns [23].

In this paper, we substantially extended our detector concept, to enable a
more reusable and lightweight detection approach. In particular, we reduced the
size of each detector by splitting up responsibilities further through introducing
the concept of Collectors: While a Detector is responsible for identifying an
architectural hotspot based on characteristics it finds in an artifact, a Collector’s
job is to extract relevant information – like an API endpoint or a REST method
parameter – from the previously identified artifact. This approach resulted in
a multi-phase parsing strategy, where first relevant code artifacts are localized
by detectors, and then different collectors run over the artifacts to extract all
relevant information.

showstringspacesshowstringspaces

showstringspacesshowstringspaces showstringspaces@RestController

showstringspacesshowstringspaces showstringspacespublic class CustomerController {

showstringspacesshowstringspaces showstringspaces
showstringspacesshowstringspaces showstringspaces@Autowired
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showstringspacesshowstringspaces showstringspaces
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showstringspacesshowstringspaces showstringspaces...

showstringspacesshowstringspaces showstringspacesrepository.getById(...) ;

showstringspacesshowstringspaces showstringspaces...
showstringspacesshowstringspaces showstringspaces}
showstringspacesshowstringspaces showstringspaces
showstringspacesshowstringspaces showstringspaces...

showstringspacesshowstringspaces showstringspacesprivate void broadcastNotifications() {

showstringspacesshowstringspaces showstringspacesmsgTemplate. convertAndSend ( ...);

showstringspacesshowstringspaces showstringspaces}
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SpringRestDetector

JavaClassNameCollector

LocalInvocationCollector

HTTPMethodCollector

JavaMethodCollector

LocalInvocationCollector

JavaMethodCollector

MessageTemplateDetector

Fig. 3: Source Code Mining through Detectors and Collectors: Detectors (Green) identify relevant
architectural hotspots. Language-specific Collectors (Red) extract semantic information depending
on the language used. Other Collectors (Blue) search for specific technology-related patterns.

Figure 3 illustrates the roles of some example Detectors and Collectors during
processing of a source code file artifact. As seen, a single hotspot can have more
than one architectural role. Here, the class CustomerController provides different
synchronous API endpoints, but also propagates asynchronous messages.

After collecting all hotspots, our algorithm creates the communication model
by following local and inter-service invocations and storing the incoming and
outgoing API parameters for later processing.
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5 Metrics

According to our definition from Section 3, an API v ∈ V API exposes data ex-
cessively if not all incoming data attributes are either consumed by or routed to
the API’s output. On the basis of this observation, we define our main metric
EDEAPI : V API → P(DA) (Excessive Data Exposure) as the relative comple-
ment of the sets of incoming data attributes in(v) versus the set of all processed
data attributes (out(v) and consume(v)):

EDEAPI(v) = in(v) \
(
out(v) ∪ consume(v)

)
with v ∈ V

API
(1)

Since this metric returns a set of data attributes, a more convenient way for
using it in production environments, such as CI pipelines or quality dashboards,
would be to have a single indicator isEDEAPI : V API → Boolean instead:

isEDEAPI(v) =

{
true, if EDEAPI(v) 6= ∅ with v ∈ V API

false, otherwise
(2)

While all types of excessive data exposure can have adverse effects on a system’s
performance because of an increased message payload, not all of them necessarily
impact the security of a system in the same way. But the more sensitive the data
is, the more severe the damage is in case of a potential data leak. To provide a way
of measuring the severity of such a leak, we introduce an ordinal scale with three
risk categories that are relatively common among various public organizations2.
The three categories are:

– Low: Data of this category is publicly available, such as a person’s contact
information or other data shared through a public profile.

– Moderate: This category covers data that is not publicly available or might
fall under the GDPR privacy regulations.

– High: This information is considered the most sensitive and includes all
kinds of private data, especially IDs such as social or credit card numbers
and health or financial records.

Of course, whether a data record is considered sensitive or not tends to be a
highly subjective decision, as the privacy of a data attribute often depends on
the use case and whether the data-leaking systems are publicly accessible [24].
Since even a single high-risk data leak is a critical incident, a metric to measure
the severity of an API’s data exposure has to take this into account. To define
our Excessive Data Exposure Severity EDESAPI : V API → SL metric, we,
therefore, take the data attribute with the highest severity level to determine
the overall severity:

EDESAPI(v) = max
(
{s ∈ SL : s = severity(d) ∧ d ∈ EDEAPI(v)}

)
(3)

With SL = {Low,Moderate,High} being a set of severity levels and
severity(d) : DA → SL a function assigning each data attribute one of the
three severity values. This mapping has to be done upfront by a domain expert.

The easiest way to reduce data exposure would be to remove all excessively
exposed data attributes from the system, but this is only possible if the specific

2
https://uit.stanford.edu/guide/riskclassifications#risk-classifications
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data attribute is not used in another part of the implementation. To identify
such ‘orphaned’ data, we can use the following Usage Exposure Ratio metric
UERdata : DA→ R for a given data attribute d ∈ DA:

UERdata(d) =
|{v ∈ V API : d ∈ consume(v)}|
|{v ∈ V API : d ∈ EDEAPI(v)}|

(4)

Values larger than 0 indicate that at least one API is consuming a data
attribute, and therefore removing the attribute from the system is not easily
possible. A value between 0 and 1 implies that more APIs receive the attribute
unnecessarily than consume it, while a value larger than 1 expresses the opposite
situation. Especially the latter can be an indicator that the data attribute plays
an essential role in the system. Splitting up its parent data structure – and the
APIs returning it – could help reduce the data exposure. It should be noted that
calculating this metric makes only sense for exposed data attributes. Hence, we
assume that the denominator should never be zero.

6 Case Studies

To validate the explanatory power of our metrics, we evaluated our approach
by conducting case studies of two open-source microservice reference implemen-
tations. Both projects were chosen because they provide a well-documented ar-
chitecture and use many current technological standards and best practices.
Despite not being real production systems, their maturity makes them a good
alternative, also frequently used in other research studies [25–27].

6.1 Case Study 1: Lakeside Mutual

For our first study, we analyzed the excessive data exposure of the service com-
munication within the 2020 Spring-Term edition of the Lakeside Mutual3 project,
a mainly Java Spring-based microservice system of a fictional insurance company.
While the system consists of seven services, we focused only on the API-exposing
functional services, resulting in a subset of five service implementations relevant
to our research. Four used a Spring-based Java implementation, with the fifth
one written in JavaScript. We also focused on concrete business use cases and
ignored simple data reading and manipulation CRUD API operations [28] when
possible, as they do not provide many insights from an architectural point of
view. From a total of 31 analyzed APIs, our approach was able to identify five
APIs with a positive isEDE value, meaning these APIs expose at least one data
attribute unnecessarily. Table 1 summarizes our findings:

The first API in the list, CustomerCore/changeAddress can be considered as
an edge case, as it calls the DB for changing a customer’s address but, in return,
receives a complete customer entity as a result. While one could interpret this as
an excessive exposure of data from a technical point of view – the API requests
more data than it needs – we would not consider this call as a serious problem

3
https://github.com/Microservice-API-Patterns/LakesideMutual/tree/spring-term-2020
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Service API EDE(v) EDES(v)

CustomerCore /changeAddress

firstName, last-
Name, birthday,
email, phoneNum-
ber

moderate/high
(but not relevant)

Policy
Management
Backend

/getPolicy name low

/getPolicies id, name low

/getInsuranceQuoteRequest name low

Risk
Management
Server

/handleClientRequest

firstname, last-
name, streetAd-
dress, city, email,
phoneNumber,
additional policy
data

moderate/high

Table 1: Data attributes excessively exposed by Lakeside Mutual APIs

from a security perspective, since it does not happen between two microservice
APIs but instead between a service and its underlying database, which we as-
sume is a secure call within the service boundaries (see Section 3). Although
reducing the exposure here could positively impact performance because of re-
duced message payload, we would not rate this exposure as security-critical.

The exposure detected in the following three APIs (from the PolicyMan-
agementBackend) service originates mainly from data conversions between
different API calls. In these specific cases, the composed PolicyType of a
PolicyAggregateRoot is converted into a flat string representation for simplifying
the data transfer. Our algorithm is not yet able to track all of these conversions,
thus resulting in a false positive notification here.

DataManagerReportGenerator

handleMessagehandleClientRequest

store
retrieve

call

gRPC PolicyEvent

name
email
street
zipCode
age

name
email
street
zipCode
age

name
email
street
zipCode
age

zipCode
age

12

Fig. 4: Data exposure through API calls in the Lakeside Mutual Project. Not all of the incoming
data attributes are eventually consumed, resulting in an excessive and unnecessarily exposure of
customer information.

The last case is indeed more interesting as it is a two-staged process, il-
lustrated by Figure 4: First, the RiskManagementServer reacts on incoming
messages from the PolicyManagementBackend (1) and stores the received in-
formation in its internal data store. When an incoming gRPC (2) call (from a
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client application not part of our analysis) triggers the handleClientRequest API
in the next step, the service starts with the generation of a report by accessing
its internal data store. However, generating this report requires only a small
subset of the stored data attributes, such as the customer’s age or postal code.
The remaining customer and policy data attributes the first API call received
were stored redundantly and did not serve any purpose. While accessing the
datastore from within the same process is again not problematic, here, the store
itself acts only as a temporal buffer and the actual exposure already happens at
the moment when the first API receives the data through an inter-service call.

Since most of the leaked data represent personal or contact information, we
consider the EDES(v) metric value of this exposure at least as Moderate or even
High (see Section 5), especially regarding the large number of leaked attributes.

Two different strategies have been determined to avoid the exposure in this
concrete case: (1) If other API endpoints do not consume these attributes, they
can safely be removed from the API that initially exposed them. (2) If the
attributes are instead also consumed elsewhere in the system, splitting up the
initial endpoint into several smaller ones – each providing only the data for a
specific use case – would be a better solution.

Calculating the Usage − Exposure − Ratio (UER) for each exposed data
revealed that despite a few exceptions, most of the exposed contact data (like the
customer’s phone number or street address) were not processed by any other API
included in our analysis. However, skipping these potential redundant attributes
from the whole system could be problematic as other client applications, which
are not tracked by our approach, might still consume them.

So we suggest that splitting up these data-providing APIs into several,
more use-case-specific ones would be the better strategy. In the concrete
case, the /getCustomer API could therefore be separated into more fine
grained endpoints, like, for instance, a /getCustomerDataForReporting and a
/getCustomerContactDetails API.

6.2 Case Study 2: eShopOnContainers

As a second case study, we applied our approach to the eShopOnContainers
system, Microsoft’s reference implementation for a domain-driven-design-based
microservice architecture4. The project imitates an online shop system consisting
of several frontend components and a variety of different backend services, with
the backend parts mostly communicating via an asynchronous event bus. For
evaluating our method, we focused on the three backend microservices encap-
sulating the central domain logic and ignored other more infrastructure-related
services like API gateways and authentication components. These three services
provide 43 API operations, with the majority being asynchronous event handlers
reacting on incoming event-bus messages.

4 https://github.com/dotnet-architecture/eShopOnContainers,
commit 59805331cd225fc876b9fc6eef3b0d82fda6bda1
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Regarding the system’s excessive data exposure, our study revealed the result
outlined in Table 2: The first case in the table results from an event-handler that
reacts to a PriceChanged event. Like the exposure we identified in our previous
example, the API retrieves a complete entity from the underlying datastore but
changes only a small subset of its attributes, making the requested remaining
ones redundant. However, since this communication happens only between the
service and its database, we do not consider this data exposure problematic.
The second entry results from a false positive match. Here, incoming data is
converted into a domain message through different conversion routines, and our
detectors could not track the whole conversion process.

Service API EDE(v) EDES(v)

Basket
ProductPriceChanged-
IntegrationEventHandler

BuyerId, Product-
Name, Quantity,
PictureUrl

low
(not relevant)

Ordering
UserCheckoutAccepted-
IntegrationEventHandler

ProductId, Pro-
ductName, Quan-
tity, PictureUrl

low
(not relevant)

Catalog
UpdateProductAsync CatalogItem low

CreateProductAsync

PictureUri, Avail-
ableStock, Re-
stockThreshold,
MaxStockThresh-
old, OnReorder

moderate

Table 2: Data attributes excessively exposed by eShopOnContainers APIs

We again had one false positive match regarding the Catalog Service due to
direct database access from the API operation – instead of reaching out to the
database through a repository. Since we had no detector for this kind of data
access, our algorithm wrongly assumed that the receiving API did not process
any incoming data attributes. The second match, however, indicates an actual
case of excessive exposure: The CreateProductAsync API receives a new data
object but uses only a subset of its attributes to create a new data entity. While
these redundant attributes increase the payload of the data transfer, their impact
on data security seems limited since none of the fields are processed further by
the API. Still, we suggest replacing the current API parameter with a smaller
variant containing only the attributes required for the creation process.

6.3 Summary

Our analysis revealed that both architectures are relatively secure regarding the
excessive data exposure through their APIs. In most cases where more data was
requested than eventually required, the transfer happened between the APIs
and their underlying database. Since our research focuses on API-to-API com-
munication, we assume that these connections are sufficiently secured and thus
have not included them in our overall review. However, if such a secure database
connection is not granted, the severity metric should be reevaluated to better
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reflect the security impact of these data exposures. We still identified two cases
where data exposure between APIs happens and where this could indeed lead
to unnecessary exposure of this data in case of a data breach.

7 Discussion

Based on our case studies, we can confirm RQ1 and show for two non-trivial
cases that it is possible to reconstruct a communication model of a microservice
system and identify cases of excessive data exposure only by using static source
code analysis. The upfront implementation effort for reading different language
artifacts was also manageable. However, one limitation we see is that for provid-
ing support for dynamic or weakly typed languages we required some heuristics
to correctly determine the data type of an API parameter. Our study also showed
that our algorithm yielded some false-positive results due to insufficient detec-
tion of data conversion routines. Avoiding this would have required more specific
detector implementation, which would have increased the implementation effort.

Regarding RQ2, we were able to show that our metrics are suitable for
identifying data exposures and tracking the origin of these exposed data back
to the initial data source. While our boolean or numerical metrics could easily
be integrated into a dashboard, the more complex metrics would require a more
sophisticated user interface. We think of a graphical representation where expert
users could mark a specific data attribute and follow the communication call
graph to its origin. As we are not aware at the moment of any visual system like
that, it would certainly represent an interesting option for further research.

Considering RQ3, our case studies demonstrated how our metrics can guide
architects in redesigning a microservice system towards better data security.
Based on the findings our metrics provided, we can identify accidentally exposed
data and reorganize the API structure to minimize these exposures, thus reduc-
ing the damage caused by potential data leaks. However, data security is only
one aspect that affects API granularity, and other factors, like maintainability or
performance, must also be considered, too [19]. Also, microservice architectures
are often based on or interact with older legacy systems, which can constrain
their API structure. Balancing out all these aspects is not a trivial task and re-
quires sophisticated domain knowledge. Therefore, although possible, we would
advise against a fully automated refactoring process and see our approach more
as a supporting tool during the decision process.

8 Threats to Validity

To ensure our case study accounts for potential bias or unintended factors, we
tested our approach against commonly used threats that might influence the
validity of our findings as suggested in [29].

Construct Validity While most of our detectors operate directly on the source
code, we also applied heuristics at some places to simplify their implementation.
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To ensure that our model adequately represents the actual system, we added
several manual verification steps. Nevertheless, the case studies showed that it
is still possible to miss some code artifacts, but we were able to detect and fix
these cases manually.
Internal Validity Although our research focuses on data security, we know
that various other factors strongly impact API (re)design. Thus, we present our
approach as one possible tool to guide the decision-making process, but other
aspects must also be considered for the final decision.
External Validity Since the data transfer heavily depends on the concrete
business domain or use case, finding a reference system across several domains is
extremely difficult. Still, we think the projects we chose for our study provide a
good compromise. They are actively developed and utilize many best-practices
implementations used among other systems. Several authors have also identified
data leaks and breaches as a significant problem in microservice architectures
(see, for instance, [2, 6] or [14]). Therefore, our research provides a significant
contribution to reducing the damage caused by these leaks.

9 Conclusions and Future Work

Our paper presents a novel approach for tracking excessive data exposure be-
tween microservice APIs. Data is excessively exposed whenever an API receives
more data than it actually consumes, causing an unnecessary and avoidable risk
for potential data leaks. To make this amount of exposure measurable, we in-
troduced a technique to reconstruct a communication and data flow model from
underlying source code artifacts. Based on this model, we defined a set of ar-
chitectural metrics to identify and evaluate API calls that unnecessarily expose
data attributes. We verified our solution on two case studies and, based on our
findings, suggested guidance on how the APIs could be restructured to minimize
the amount of data being unnecessarily exposed.

While our approach can identify many of the most common matters where
data is exposed, some edge cases were not within our scope, e.g., the amount of
data leaked through service error handling [5]. Despite data security, other as-
pects exist that influence the granularity of APIs. Incorporating all these aspects
into a more holistic decision model for API granularities would undoubtedly be
a promising field for further research.

Acknowledgments: This work was supported by: FWF (Austrian Science Fund)
projects API-ACE: I 4268 and IAC2: I 4731-N. Our work has received funding
from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 952647 (AssureMOSS project).

Bibliography

[1] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly Media,
Inc.”, 2016.



Avoiding Extensive Data Exposure through Microservice APIs 15

[2] L. Miller, P. Mérindol, A. Gallais, and C. Pelsser, “Towards secure and
leak-free workflows using microservice isolation,” in 2021 IEEE 22nd Inter-
national Conference on High Performance Switching and Routing (HPSR).
IEEE, 2021, pp. 1–5.

[3] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey on security issues in
services communication of Microservices-enabled fog applications,” Con-
currency and Computation: Practice and Experience, vol. 31, no. 22, Nov.
2019.

[4] A. Hannousse and S. Yahiouche, “Securing microservices and microservice
architectures: A systematic mapping study,” Computer Science Review,
vol. 41, p. 100415, 2021.

[5] W. K. A. N. Dias and P. Siriwardena, Microservices Security in Action.
Simon and Schuster, 2020.

[6] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data
management in microservices: State of the practice, challenges, and research
directions,” arXiv preprint arXiv:2103.00170, 2021.

[7] A. Sill, “The design and architecture of microservices,” IEEE Cloud Com-
puting, vol. 3, no. 5, pp. 76–80, 2016.

[8] S. Newman, Building microservices. ” O’Reilly Media, Inc.”, 2021.
[9] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Mi-

croservice Architectures,” in 2018 IEEE Symposium on Service-Oriented
System Engineering (SOSE). Bamberg: IEEE, Mar. 2018, pp. 11–20.

[10] E. Ntentos, U. Zdun, K. Plakidas, D. Schall, F. Li, and S. Meixner, “Sup-
porting architectural decision making on data management in microservice
architectures,” in European Conference on Software Architecture. Springer,
2019, pp. 20–36.

[11] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Microservices in
industry: insights into technologies, characteristics, and software quality,”
in 2019 IEEE international conference on software architecture companion
(ICSA-C). IEEE, 2019, pp. 187–195.

[12] A. Singjai, U. Zdun, O. Zimmermann, and C. Pautasso, “Patterns on de-
riving apis and their endpoints from domain models,” in 26th European
Conference on Pattern Languages of Programs, 2021, pp. 1–15.

[13] P. Genfer and U. Zdun, “Identifying domain-based cyclic dependencies in
microservice apis using source code detectors,” in European Conference on
Software Architecture. Springer, 2021, pp. 207–222.

[14] X. Shu, D. Yao, and E. Bertino, “Privacy-preserving detection of sensitive
data exposure,” IEEE transactions on information forensics and security,
vol. 10, no. 5, pp. 1092–1103, 2015.

[15] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” ACM Sigplan Notices, vol. 44,
no. 6, pp. 87–97, 2009.

[16] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” Acm Sigplan
Notices, vol. 49, no. 6, pp. 259–269, 2014.



16 P. Genfer and U. Zdun

[17] J. Soldani, G. Muntoni, D. Neri, and A. Brogi, “The µtosca toolchain: Min-
ing, analyzing, and refactoring microservice-based architectures,” Software:
Practice and Experience, 2021.

[18] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining across
github,” in Proceedings of the 2016 24th ACM SIGSOFT international sym-
posium on foundations of software engineering, 2016, pp. 254–265.

[19] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the
maintainability of service-and microservice-based systems: a literature re-
view,” in Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Prod-
uct Measurement, 2017, pp. 107–115.

[20] I. Saidani, A. Ouni, M. W. Mkaouer, and A. Saied, “Towards automated
microservices extraction using muti-objective evolutionary search,” in In-
ternational Conference on Service-Oriented Computing. Springer, 2019,
pp. 58–63.
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