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Abstract—Many API patterns and best practices have been
developed around microservices-based architectures, such as Rate
Limiting and Circuit Breaking, to increase quality properties
such as reliability, availability, scalability, and performance.
Even though estimates on such properties would be beneficial,
especially during the early design of such architectures, the real
impact of the patterns on these properties has not been rigorously
studied yet. This paper focuses on API Rate Limit and its impact
on reliability properties from the perspective of API clients. We
present an analytical model that considers specific workload
configurations and predefined rate limits and then accurately
predicts the success and failure rates of the back-end services.
The model also presents a method for adaptively fine-tuning
rate limits. We performed two extensive data experiments to
validate the model and measured Rate Limiting impacts, firstly
on a private cloud to minimize latency and other biases, and
secondly on the Google Cloud Platform to test our model in a
realistic cloud environment. In both experiments, we observed a
low percentage of prediction errors. Thus, we conclude that our
model can provide distributed system engineers and architects
with insights into an acceptable value for the rate limits to
choose for a given workload. Very few works empirically studied
the impact of Rate Limit or similar API-related patterns on
reliability.

Index Terms—API Rate Limit; Microservices; Cloud; Relia-
bility; Modeling.

I. INTRODUCTION

The increasing adoption of microservices-based architec-
tures has posed many challenges regarding API design, in-
cluding runtime properties such as reliability, availability, and
performance [1]. Many API best practices and patterns have
been identified [2], [3], [4]. A prominent and often applied
practice is API Rate Limit [5]. Rate Limit aims to protect
services from excessive usage and nudge API clients into
becoming paying customers. It is supposed to increase the
reliability of the services from API clients perspective. Many
techniques and solutions exist that are, e.g., deployed in a
Cloud-based architecture [6] or provided as configurable op-
tions of an API Gateway [7]. However, there is little guidance
on which technique to use, how to use them, in which specific
circumstances, and using which configurations.

Our study aims to fill this gap by developing an analytical
model for accurately predicting the reliability impacts of Rate
Limiting in microservice-based applications from API clients
perspective. This model also presents a solid method for

adaptively fine-tuning rate limits. We empirically validated this
model using a set of microservice-based workload scenarios
deployed on a private cloud (to minimize latency and other
biases) and on the Google Cloud Platform (GCP) (to test
our model in a realistic cloud environment). Note that Rate
Limit also substantially impacts overall system performance
and scalability, but this is beyond the scope of this paper.
We simulate real-world API client workloads using different
configurations and settings for empirical validation. Our goal
is to answer the following research questions:
• RQ1 How can we accurately predict API Rate Limit

impacts on reliability properties of a microservices-based
system from API clients perspective?

• RQ2 What are the effects of API Rate Limit on those
reliability properties?

We propose an analytical model to accurately predict the
influence of Rate Limit on reliability properties from API
clients perspective. We model each complete simulation run as
a Bernoulli process composed of a series of Bernoulli trials,
with each of these trials mapping to a predefined rate limit.

To validate our model, we have set up an experiment using
a representative, modern Cloud-based architecture based on
microservices and the Istio service mesh1, testing realistic
workload scenarios (see Section V-A). Then, we ran the
experiment simulating 20 different configurations of API client
workloads and repeated each experiment 50 times on the
private cloud and GCP. The total runtime of the experiments
was more than 2000 hours. We compared the results from the
model with the data generated from each of these configura-
tions. We have found that the error is significantly reduced
with more runs or stays stable and stands at the maximum
values of 17,7% for the private cloud and 16,73% for the
GCP experiment, respectively. Those values are substantially
below the target prediction error of up to 30% for Cloud-based
architectures [8] and explainable with network infrastructure
imperfections such as latency and unforeseen errors. The
predictions are acceptable since they are close to reality and
are sufficient to make broad or early architectural decisions.

The paper is organized as follows. In Section II, we discuss
the related work of our study. Then, we give an overview of

1https://istio.io/docs/concepts/what-is-istio/



existing Rate Limit techniques and the technique we chose
in our study in Section III. In Section IV, we present our
analytical model. After that, we describe the experiment we
have set up to empirically assess the model in Section V.
In Section VI, we compare the results from the model and
the experiments and discuss threats of validity. Finally, we
conclude in Section VII.

II. RELATED WORK

Our work focuses on designing a prediction model to help
software architects select the best Rate Limit strategy for a
specific workload and a particular server configuration. Many
approaches and methods have been presented for performance
and reliability prediction in software architecture, such as
performance model derivation and analysis based on model
transformations [9] and software quality prediction based on
Bayesian Nets [10]. Duzbayev et al. [11] present a runtime pre-
diction model of software architecture QoS specific to queued
systems. Adjepon-Yamoah [12] argues that most approaches
have limitations, especially in unpredictable environments
like Cloud-based architectures. Only a few studies proposed
performance models dedicated to Cloud environments [13],
[14]. Likewise, our approach is based on an analytical model
and empirical data measured in a private cloud and GCP.
It is generally Cloud compatible and can be applied to
any microservice-based system. Since we cannot cover all
microservice technologies and concepts, slight adaptations of
measurements and models might be needed in environments
with other characteristics, such as other public clouds [15].

Empirical assessments of software architecture reliability
have also been the subject of many research papers. Katerina
et al. [16] discuss the issue that most software reliability
models research papers do not present empirical evaluation
and assessment of those models. A simulation tool called
Palladio Component Model (PCM) was extended by Brosch
et al. [17] to close the gap between (UML-based) modeling
of a system and its empirical evaluation. Another simulation
tool is Cloudsim [18] which is sometimes applied for service
simulations but generally more low-level, i.e., with a focus on
cloud resources rather than architectural components. Chaos
engineering [19] has been introduced as a discipline-specific
to large-scale microservice-based systems for performing re-
liability testing in real-time. Our proposed reliability model
is a novel parametric approach assessed using a widely-
used service mesh deployable at a considerable scale. None
of these approaches have been applied with an API-centric
perspective or focused on specific API patterns to the best
of our knowledge. Thus the research question of what the
introduction of Rate Limit means for the results achieved with
such approaches has not yet been answered, and our study
aims to close this gap.

Rate Limit and similar techniques have been introduced as
best practices or patterns [2], [3], [4], [5], [20] and in the
context of Service-Level Agreements [21], [22]. However, the
effects of Rate Limit have not yet been studied empirically
in the scientific literature. This is interesting because Rate

Limit is a major API practice, and it has a substantial influence
not only on reliability and availability properties but also on
other critical properties such as security and performance.
Thus, measuring the impact of Rate Limit and related patterns
is crucial to unveil their impacts on those properties and
tradeoffs for decision making. We believe it is necessary to
study and integrate the effects of such major practices that
might influence every single distributed call between clients
and servers in a system to improve the results of existing
simulators and prediction models.

III. BACKGROUND ON RATE LIMITING

Nowadays, service providers usually expose their APIs
through API Gateways [23] to provide a central access point
and ensure the security and availability of the services. Rate
Limit [5], [2], [4] is one of the significant patterns that are
used to ensure that the API provider is not overwhelmed
by excessive requests of API clients, either intentional in
API abuse or Denial of Service attacks or unintentional,
e.g., as a result of system or user errors. Rate Limit also
solves scalability (and thus overall system performance) and
system reliability issues as it can help cope with situations
where an API provider unexpectedly receives a burst of client
requests. In some cases, this practice might be linked to extra
functionalities like limiting access to a specific API clients
from a specific device (e.g., mobile device) at a particular
period. It can also detect API clients with shallow frequency
access and who intentionally aim to keep connections open
for a long time.

Rate Limit is usually linked to a Rate Plan [24], which
enforces a billing strategy on API usage. Combining those
patterns solves most of the problems described lately, as it
provides an efficient way to control the behavior of API
clients. However, this produces an additional computation
and resource consumption overhead for authenticating and
authorizing API clients and keeping track of their usage,
especially when the usage-based pricing is selected as the
base billing policy. Usually, a request is sent by an API client
along with an API Key [25] or information for some other
authorization mechanism to verify the legitimate use of the
requested API resource.

There exist two types of Rate Limit: First, backend rate
limiting is enforced by the backends’ physical capacity and
measured as Transaction Per Second (TPS). Second, appli-
cation rate-limiting enforces limited requests per period or
a quantity of data per user [26]. Our study focuses on the
second rate-limiting type by enforcing limited user requests
per minute.

Several techniques can enforce rate limiting, such as the
token bucket, leaky bucket, or fixed and sliding window
practices [6]. When using the token bucket technique, each
request is considered a set of operations, and each of these
operations consumes one token until reaching the maximum
bucket capacity. The leaky bucket technique is similar to the
first one, but the rate limit is applied directly to the requests,



and any request that exceeds the capacity of the bucket is
leaked. Our study covers all these rate-limiting techniques.

IV. ANALYTICAL MODEL

In this section, we present our analytical model for the relia-
bility of services with Rate Limit from API clients perspective,
modeled as a Bernoulli process. The Bernoulli process repre-
sents an experiment during time T , where each time interval
t represents a Bernoulli trial. We define nt as the number of
times we measure the success and failure rates of the system
where:

nt∑
t = T with nt =

T

t
(1)

We model user profiles based on different usage levels from
low to high. On client-side, let SUi denote the share of users
with level i of usage, where i ranges from 0 to ∞. Further, to
precisely define each of these user groups, let RPMi denote
the number of requests per minute the users in SUi send. Let
TU denote the total number of users that send these requests.
The total client requests TRT in the time interval T can then
be calculated as:

TRT = T · TU ·
∞∑
i=0

SUi ·RPMi · LFi (2)

Such that,
∞∑
i=0

SUi = 100%

And LFi is the load frequency occurrence corresponding to
SUi. It represents the proportion of time T where the workload
is being executed and is calculated using the formula:

LFi =

LOADi
RPMi

LOADi
RPMi

+ SLEEPi

(3)

Where LOADi is the number of concurrent requests sent
by users in SUi during time T and SLEEPi is the idle or no
execution time corresponding to the users in SUi during time
T .

On the server-side, let TRT
ratelimit denote the total number

of requests that failed due to rate limiting, and let TRT
failure

indicate the total number of requests that failed for other
reasons than rate-limiting during the time interval T . Then
TRT

success, the total number of succeeded requests, assuming
that the reliability of the network infrastructure is very high,
can be calculated as:

TRT
success = TRT − (TRT

failure + TRT
ratelimit) (4)

Additionally, let FRt
failure and FRt

ratelimit denote the
failure rates, during the time interval t, corresponding to
TRT

failure and TRT
ratelimit, respectively. SRt

success denotes
the success rate, during the time interval t. The respec-
tive number of failed requests TRt

failure, succeeded re-
quests TRt

success, and failed requests due to rate limiting
TRt

ratelimit, during the time interval t can be written as:

TRt
failure = t · FRt

failure (5)

TRt
success = t · SRt

success (6)

TRt
ratelimit = t · FRt

ratelimit (7)

We consider each time interval t as a Bernoulli trial. Let
P t
failure denote the probability of request failure, P t

ratelimit

the probability of request failure due to rate limiting, and
P t
success the probability of a succeeded request. The cor-

responding expected numbers of failed requests ET
failure,

requests failed because of rate limiting ET
ratelimit, and suc-

ceeded requests ET
success, during the time interval T , can be

written as:

ET
failure = nt · P t

failure (8)

ET
ratelimit = nt · P t

ratelimit (9)

ET
success = nt · P t

success (10)

where:

P t
success = 1− (P t

failure + P t
ratelimit) (11)

Thus, the total number of failures TRT
failure, failures due to

rate limiting TRT
ratelimit, and succeeded requests TRT

success

can be expressed as:

TRT
failure =

nt∑
ET

failure · TRt
failure (12)

TRT
ratelimit =

nt∑
ET

ratelimit · TRt
ratelimit (13)

TRT
success =

nt∑
ET

success · TRt
success (14)

which can be rewritten using equations (1), (5), (6), (7), (8),
(9) and (10) as follows:

TRT
failure = T ·

nt∑
P t
failure · FRt

failure (15)

TRT
ratelimit = T ·

nt∑
P t
ratelimit · FRt

ratelimit (16)

TRT
success = T ·

nt∑
P t
success · SRt

success (17)

Using equations (2), (3), (4), (15), (16) and (17), the
resulting formula including both client-side and server-side
parameters is the following:

non−rate−limiting failure rate︷ ︸︸ ︷
nt∑ P t

failure

TU
· FR

t
failure =

workload

{ ∑∞
i=0 SUi · RPMi ·

LOADi
RPMi

LOADi
RPMi

+SLEEPi

−
nt∑ P t

success

TU
· SR

t
success︸ ︷︷ ︸

success rate

−
nt∑ P t

ratelimit

TU
· FR

t
ratelimit︸ ︷︷ ︸

rate−limiting failure rate

(18)

Such that:



TABLE I: Definition of Parameters

Independent
variable Description

SUi
Percentage of the user group with usage level i
in the total users share.

RPMi
Number of requests per minute the users in the share
of users of level i usage send.

LOADi
Number of concurrent requests executed by
level i usage users during time T .

SLEEPi Idle or no execution time for level i usage users during time T .
TU Total number of users in the experiment.
T Total duration of the experiment in minutes.
t Trial duration in minutes.

Dependent
variable Description

NRL FR
Per-minute number of requests failed
for other reasons than rate limiting.

RL FR Per-minute number of requests failed due to rate limiting.
SR Per-minute number of requests succeeded.

NRL FR =
∑nt

P t
failure

TU
· FRt

failure

SR =
∑nt P t

success
TU

· SRt
success

RL FR =
∑nt P t

ratelimit
TU

· FRt
ratelimit

(19)

The resulting equation shows that the non-rate-limiting
failure rate NRL FR might decrease if both the success rate
SR and rate-limiting failure rate RL FR increase. Indeed,
Rate Limit can considerably decrease NRL FR. However,
if not configured well, it can also lead to the decrease of SR
and thus increase NRL FR. Table I summarizes the variables
used in our model.

V. EMPIRICAL EVALUATION

We have followed the eight methodological principles for
reproducible Cloud performance evaluation [27]. Principle 1
emphasizes repeating the experiments many times and quan-
tifying the results. Indeed, we repeated the experiments 50
times until we reached a reasonably low prediction error. As
per Principle 2, each of these experiments has to run a different
configuration, which is the case in our work, since we have
run 50 different configurations (10 workload configurations ×
five rate limit configurations) using a private cloud and 50
additional configurations using GCP. Section V-C describes
in detail the hardware and software configurations used in
the experiments, which is required for fulfilling Principle 3.
To satisfy Principle 4 and enable the reproducibility of our
study, we published all artifacts as open-access2. In Section
V-E, we analyze the results using box plots as recommended
for Principle 5. Then, we evaluate the data’s accuracy by
comparing the experiments’ results to our model, as described
in Section VI, and required as Principle 6. As per Principle 7,
all the measurement units are explicitly displayed. Principle
8 is about reporting cloud costs which we do for the GCP
experiment in Table II (not applicable for the private cloud
experiment).

2To enable reproducibility of our study, all artifacts used in the experiment,
including code and data, are published as an open-access artifact on Zenodo:
https://doi.org/10.5281/zenodo.6560270.

TABLE II: GCP cost details (in Euros)

Service Cost Discounts Promotions and others Subtotal
Compute Engine 416,56 -3,72 -243,22 169,62
Cloud Logging 74,2 0 -13,65 60,55

Kubernetes Engine 94,99 -94,99 0 0

Total 585,75 -98,71 -256,87 230,17

A. Benchmark workload scenarios

Existing benchmarks for studying application-level mi-
croservices, such as TeaStore [28], are based on examples
implemented by researchers. We essentially followed the same
approach, but to design realistic workload scenarios, we de-
cided to perform our experiments using workload scenarios
derived from typical kinds of interactions observed in a
prior empirical study of open-source microservice architec-
tures realized by practitioners [29] (e.g., we tried to model
similar call chains length, number of database interactions,
processing steps, etc.). In this context, we observed that typical
E-commerce or business interactions such as authentication,
product selection, basket interactions, and payment occur
relatively often in open-source systems. Thus, we used such
interactions for our workload scenarios. We plan to extend our
study to other benchmarks and applications in the future.

Many open-source systems showcase specific technologies,
such as specific tracing or deployment technologies, or mi-
croservice concepts, such as event sourcing. To avoid the
substantial bias by those specific technologies or concepts
in the implementations, we decided not to experiment based
on one of those open-source systems. Instead, we created
a benchmark based on those workload scenarios to model
typical interactions in microservice-based business applica-
tions. In particular, we (1) modeled eight typical interactions
in four services covering authentication, product, basket, and
payment functionality as benchmark scenarios based on the
steps repeatedly occurring in the open-source systems, and (2)
implemented those scenarios from scratch as plain RESTful
HTTP services. Based on the mentioned empirical study [29],
we believe those scenarios to be representative of typical
interactions in many business systems. We developed our
RESTful microservices by using the widely used Java/Spring
Boot3 technology. Each microservice exposes a set of REST
API endpoints that execute the corresponding operations on
its dedicated Mongo4 database instance.

A typical workload scenario in our experiments starts with
the number – predefined earlier during workload initiation (see
Tables III and IV) – of API clients of type customer sending
POST login API calls to the authentication microservice.
For instance, then, each of these customers views the list of
available products using the provided GET API endpoint in
the product microservice and adds his reserved product (for
the reason described earlier) to the basket by calling POST
API Endpoint in the basket microservice. After that, each cus-
tomer proceeds to payment and checkout by sending a POST
request to the payment microservice. The latter sends DELETE

3https://spring.io/projects/spring-boot
4https://www.mongodb.com



requests to both basket and product microservices to remove
the purchased product from the customer’s basket and from the
list of available products to purchase, respectively. Numerous
executions of such scenarios can be executed concurrently
during our experiment runs.

B. Architecture overview
Service meshes have been studied as an infrastructure layer

that manages communication in microservice architectures and
performs numerous Proxy Tasks including API rate-limiting
(see [30]). It has also been pointed out that service meshes
provide numerous Central Services like collecting telemetry,
traces, and metrics, which considerably reduce the complexity
of data collection and analysis. We have chosen to use the Istio
service mesh as a representative modern microservice platform
in our current study. To handle Ingress Communication, we
have decided to use a Front Proxy as an API Gateway [23],
as we intend to assess rate limiting on the traffic coming from
outside the service mesh. We have also selected the Multi-
Cluster Support option for our private cloud, as it is simple
and easy to administrate.

We have deployed our benchmark workload scenarios on
the Istio service mesh. We aim to provide a realistic setup
for a modern microservice deployment configuration. Istio
is installed using its multi-cluster option with one shared
control plane5. Each cluster represents a Minikube6 instance
running a Kubernetes engine7 under a preconfigured Virtual
Machine (VM). The benchmark workload scenarios run on
four Java-based microservices: authentication, product, basket,
and payment. Each microservice is a Docker8 image deployed
on a single cluster along with a dedicated Mongo database
Docker image and exposes REST API endpoints accessible
via the HTTP Protocol. The internal communication between
these microservices is established through Sidecars [30] over
a private network.

We have integrated the Kong API Gateway [31] into Istio
to intercept incoming client communication. The reason for
choosing this API Gateway is that it is open source and can
be seamlessly integrated with Istio. Also, it natively supports
rate limiting, which reduces its implementation complexity
considerably. In addition, this way, we can avoid the threat to
validity that – by implementing our rate limiting solution – we
could have introduced some unrealistic implementation variant
or other bias into the used rate limiting solution. Finally, the
Kong API Gateway already provides API metrics [32], using
the time series kong http status, that can be directly collected
and visualized using tools like Prometheus9 or Grafana10.

In GCP, we used the same setup described previously but
without the Multi-Cluster Support option. Instead, we used
only one Google Kubernetes Cluster (GKE11) composed of

5https://archive.istio.io/v1.4/docs/setup/install/multicluster/shared-vpn/
6https://minikube.sigs.k8s.io/docs/
7https://kubernetes.io
8https://hub.docker.com
9https://prometheus.io
10https://grafana.com
11https://cloud.google.com/kubernetes-engine

four nodes pool.

C. Configuration details

We have run the experiments on a private cloud, composed
of 4 Ubuntu12 18.04.4 LTS Virtual Machines (VMs) running
on vSphere13 6.7 environment. Each of these VMs runs a
Minikube instance (version ranging from 1.8.2 to 1.9.2) with
eight dedicated CPU cores Intel Xeon(R)TMCPU E5-2650 v4
@ 2.20GHz and 20 GB of system memory. Each Minikube
instance runs Kubernetes engine version 1.14.2 and Istio
version 1.4.3.

The central Minikube instance hosts the central Control
Plane, Kong Ingress Controller14 version 0.8.0, the authen-
tication microservice built using Java version 8 and its ded-
icated Mongo database (latest version used). The Ingress
Controller accesses the 3 remaining microservices through
YAML-defined Kubernetes endpoints15 and Ingress Rules [33].
The data are collected using Prometheus version 11.0.3 and
visualized using Grafana version 5.0.8.

On the client-side, nine physical desktop clients and six
virtual desktop clients are used to sending HTTP requests
to the private cloud. All desktop clients run Ubuntu 18.04.4
LTS, and eight physical desktops have 4 CPU cores Intel
CoreTM2122 i3-2120T CPU @ 2.60GHz with 8 GB of system
memory. The remaining physical desktop client has 4 CPU
cores Intel CoreTM2122 i5-4670S CPU @ 3.10GHz, and 30
GB of system memory. All virtual desktop clients have 2 CPU
cores Intel R© Xeon(R) CPU E5-2650 0 @ 2.00GHz with 8
GB of system memory. An experiment involves three desktop
clients, each dedicated to a specific category of users in terms
of the number of requests per minute sent and a specific
percentage share as described in Table I.

In GCP, we used one Cluster composed of 4 identical e2-
medium VMs with eight dedicated Intel Broadwell vCPUs
and 16 GB of system memory. The Cluster runs these newer
Kubernetes engine 2.6, Istio 1.6.14, and Kong Gateway 2.5.
We also used three virtual desktop clients identical to the ones
described above.

D. Experimental setup

Each experiment starts by launching a workload script on
three selected desktop clients, each corresponding to a specific
category of users as described previously. These workloads
execute the necessary setup requirements on the server-side,
creating passwords and a product database by calling the corre-
sponding microservices using their appropriate API endpoints.
Tables III and IV list the different workload configurations
(C1 . . . C10) used in the experiments. Note that the following
description of the values used in those workload configura-
tions is specific to the current application and cloud settings
and cannot be generalized to other experimentation settings
without further adjustments. The value of SUi≤10, reflecting

12https://releases.ubuntu.com/18.04/
13https://www.vmware.com/products/vsphere.html
14https://github.com/Kong/kubernetes-ingress-controller
15https://kubernetes.io/docs/concepts/services-networking/service



TABLE III: Workload configurations for experiments using the private cloud

Client parameter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
TU 100 150 100 150 100 150 100 150 100 150

SUi≤10 50 % 46 % 50 % 50 % 48 % 50 % 50 % 47 % 54 % 53 %
RPMi≤10 5 3,12 5 2 4 10 4 5 4 7
SUi>10 40 % 46 % 30 % 35 % 35 % 30 % 45 % 46 % 40 % 42 %

RPMi>10 16,17 13 22 11 12 11 24 10,78 24,8 11
SUi≥50 10 % 8 % 20 % 15 % 17 % 20 % 5 % 7 % 6 % 5 %

RPMi≥50 80 100 140 62 85 150 260 70 180 150

TABLE IV: Workload configurations for experiments using GCP

Client parameter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
TU 100 150 100 150 100 150 100 150 100 150

SUi≤10 50% 50% 55% 55% 50% 45% 50% 47% 55% 50%
RPMi≤10 3,12 3,01 3,08 2,97 3,11 3,02 3,13 3 3,17 2,99
SUi>10 40% 40% 35% 35% 35% 35% 45% 42% 40% 30%

RPMi>10 28,01 35,09 27,54 24,43 35 33,24 25,68 33,15 30,75 34,29
SUi≥50 10% 10% 10% 10% 15% 20% 5% 11% 5% 20%

RPMi≥50 303,49 450 295,61 400 430 500 342,88 420 745,18 380

the most common type of users that never overloads the system
and has API freemium subscriptions only, is generally set as
the greatest percentage of at least 46% of total users. The
corresponding values of RPMi≤10 are usually less than ten
requests per minute. Then, the value of SUi>10, representing
a lower proportion of users that might overload the system
and possesses API premium subscriptions, fluctuates between
30% and 46%, without exceeding the value of SUi≤10. The
respective values of RPMi>10 are estimated at least ten
requests per minute. Finally, the value of SUi≥50, reflecting
the undesired set of users that usually creates bursts, crashes
the system, and don’t possess any valid API subscription,
fluctuates between 5% and 20%, without exceeding the value
of SUi>10. These users can generate at least 50 requests per
minute. On server-side, a configuration script is launched with
the predefined variables T and t described in Table I. The
script executes mainly two tasks:
• Enabling (and disabling) rate-limiting with a predefined

value in the following: 5, 25, 75, 150, Infinite (for
disabled rate limiting).

• Collecting data by querying the Prometheus database and
storing them in JSON16 format.

E. Results analysis: Experiments using the private cloud

To cover a wide range of possible workload configura-
tions, the workload-related independent variables described
in Table I are varied by respecting the constraints detailed
in Section V-D. These workload configurations are listed in
Table III.

The results of the experiments are collected and displayed
as boxplots in Figures 1, 2 and 3. From these plots, we
can gather a few general conclusions, such as: These plots
show that as the rate limit increases for all experiments, both
SR and NRL FR generally increase. In contrast, RL FR
naturally decreases. However, we observe a slight decrease of
SR for C4, C6, C7, and C10, and a considerable reduction of
NRL FR for C5 and C9 when we disable rate limiting. Then,
a rate limit value of approximately 75 requests per minute

16https://www.json.org/json-en.html

should be selected for C4 and C6, where NRL FR starts
decreasing with a negative impact on RL FR, especially for
C4. However, for C7 and C10, it is more appropriate to apply
a more significant rate limit value of around 150 requests per
minute, where NRL FR starts decreasing and RL FR only
slightly increases. On the other hand, for C5 and C9, rate-
limiting only makes sense when applying a value of fewer than
25 requests per minute. However, in this case, the RL FR
increase is too high, and SR dramatically decreases, especially
for C5. Applying rate-limiting for C1 and C3 is an obvious
choice for a value of around 150 requests per minute, with a bit
of impact on SR and a very slight increase in RL FR for C3.
Finally, disabling rate limiting is best for C2; unfortunately,
we cannot make any visual decision regarding C8.

To evaluate the accuracy of our model, we compare the
data collected from the experiments with the data calculated
using the model. To have an approximation of the probabilities
P t
success, P t

failure and P t
ratelimit, we have run each experi-

ment many times and selected the probabilities that best fit
our model. We plan to improve our proposed model and omit
the last step in future work. The resulting data are shown in
Table V. First of all, we notice that P t

failure is highest (more
than 83%) when rate limiting is disabled. Also, P t

success is
highest when rate limiting is enabled, except for C9, where its
variation is hardly noticeable. This shows that Rate Limit plays
an essential role in increasing system reliability properties, but
it may also degrade these properties if not correctly configured.

F. Results analysis: Experiments using GCP

To generalize the results of our experiment on the private
cloud, we have run it on GCP as well. This is to avoid any
bias that might affect the results from using a private cloud,
test our model on a realistic public cloud environment, and
open the door to experimentation in other public clouds and
environments. We used the workload configurations described
in Table IV and compared the data collected from the exper-
iments with the data calculated using the model in Table VI.
We have used the workload configurations in the private cloud
with few adjustments.

From Table VI we conclude that for C6, enabling rate limit-
ing does not make sense since it drastically decreases SR and
increases RL FR, with only a slight decrease in NRL FR.
However, we notice a significant decline of NRL FR when
applying a rate limit of 150 requests per minute for all
remaining configurations, although the increase in RL FR
and decrease in SR are still very high. Unlike when using
the private cloud, both P t

success and P t
failure have the highest

values when rate limiting is disabled, which confirms the latter
conclusions. This is mainly due to the GCP’s high reliability
against the selected workload configurations. Notice that box
plots corresponding to experiments using GCP are not shown
here for space reasons and are included in the replication
package17.

17https://doi.org/10.5281/zenodo.6560270
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VI. PREDICTION ERROR AND THREATS TO VALIDITY

To evaluate the accuracy of our model, we calculate its
prediction error using the Mean Absolute Percentage Error
(MAPE) [34]. Then, we discuss the threats to validity.

A. Mean Absolute Percentage Error

We have run each experiment, using the workload configu-
rations described in Tables III and IV, more than 50 times to

C1 C2

C3 C4

C5 C6

C7 C8

C9 C10

Fig. 2: NRL FR results from all the experiments (50 runs)

show that the prediction error gets smaller with the increase of
the number of runs and then stays relatively stable. A single
run of an experiment takes about 2.5 hours without considering
the intermittent crashes and recovery times. Let nconfig be
the number of configurations in our experiments, equal to 50
using the private cloud and 30 using GCP. Also, let rateimodel

and rateiexperiment denote the model and experiment values
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Fig. 3: RL FR results from all the experiments (50 runs)

respectively, corresponding to SR, NRL FR and RL FR
for each configuration i. Then, we have:

MAPE =
100%

nconfig
·
nconfig∑

i=1

∣∣∣∣∣rateimodel − rateiexperiment

rateiexperiment

∣∣∣∣∣
As seen in Table VII, the overall prediction errors decrease

with the increasing number of runs for the experiment on

TABLE V: Results from the model and the experiments using the private cloud (50 runs)

Config RL Probability % Model Experiment
P t

successP
t
failureP

t
ratelimit SR NRL FRRL FR SR NRL FRRL FR

C1

5 16,61 66,85 16,54 2,96 0,05 4,91 7,01 0,05 8,66
25 16,65 67,03 16,32 6,16 0,05 1,72 7,64 0,04 1,65
75 16,59 68,61 14,8 7,73 0,05 0,14 7,74 0,05 0,22
150 16,56 83,44 0 7,87 0,05 0 7,73 0,05 0
∞ 16,52 83,48 0 7,85 0,07 0 7,73 0,07 0

C2

5 16,62 66,77 16,61 2,64 0,02 4,77 5,8 0,02 9,68
25 16,634 66,776 16,59 5,48 0,019 1,58 6,63 0,02 2,22
75 16,648 67,252 16,1 6,9 0,026 0,51 6,89 0,03 0,53
150 16,58 83,42 0 7,4 0,04 0 6,92 0,04 0
∞ 16,61 83,39 0 7,41 0,02 0 6,97 0,03 0

C3

5 16,61 66,709 16,681 3,71 0,005 9,22 8,33 0,005 13,79
25 16,6 66,68 16,72 8,36 0,02 4,56 9,72 0,02 6,75
75 16,56 66,63 16,81 10,3 0,04 2,59 10,36 0,04 3,35
150 16,56 83,44 0 12,85 0,08 0 10,99 0,08 0
∞ 16,55 83,45 0 12,84 0,09 0 11,01 0,09 0

C4

5 16,591 66,717 16,692 2,33 0,003 5,11 5,78 0,003 11,85
25 16,543 66,607 16,85 5,16 0,01 2,27 6,77 0,01 4,36
75 16,59 83,41 0 7,41 0,034 0 7,4 0,036 0
150 16,585 83,415 0 7,41 0,04 0 7,45 0,04 0
∞ 16,581 83,419 0 7,4 0,04 0 7,37 0,04 0

C5

5 13,63 69,59 16,81 2,98 0,61 6,16 6,78 0,61 9,61
25 14,92 68,98 16,1 6,25 0,83 2,67 8,03 0,83 2,65
75 15,1 68,1 16,8 8,42 0,87 0,47 8,41 0,88 1,46
150 14,5 85,5 0 8,49 1,27 0 8,22 1,25 0
∞ 15 85 0 8,78 0,98 0 8,5 0,96 0

C6

5 19,84 63,468 16,692 3,53 0,008 7,07 6,9 0,008 13,47
25 16,47 66,63 16,9 6,6 0,02 3,99 7,02 0,02 6,67
75 16,1 65,6 18,3 7,97 0,05 2,59 7,74 0,05 2,65
150 16,52 83,48 0 10,52 0,09 0 8,1 0,09 0
∞ 16,52 83,48 0 10,51 0,09 0 7,94 0,09 0

C7

5 16,24 66,96 16,8 2,97 0,01 8,41 8,18 0,01 11,05
25 16,32 65,87 17,81 9,37 0,07 1,94 9,59 0,07 2,62
75 16,4 66,6 17 9,8 0,13 1,46 9,75 0,13 1,73
150 16,31 66,79 16,9 10,31 0,21 0,86 9,91 0,21 0,72
∞ 16,2 83,8 0 11,07 0,32 0 9,72 0,32 0

C8

5 15,27 67,41 17,32 2,24 0,02 4,87 5,34 0,02 9,13
25 15,9 65,35 18,75 5,45 0,09 1,59 6,26 0,09 2,4
75 16,24 83,76 0 6,95 0,18 0 6,54 0,18 0
150 16,1 83,9 0 6,89 0,24 0 6,67 0,27 0
∞ 16 84 0 6,85 0,28 0 6,69 0,28 0

C9

5 16,654 66,677 16,669 3,09 0,001 7,63 8,37 0,001 9,95
25 16,653 66,656 16,691 9,23 0,005 1,49 9,47 0,005 2,38
75 16,652 66,648 16,7 9,71 0,006 1,01 9,67 0,006 1,09
150 16,654 66,646 16,7 10,43 0,007 0,29 9,83 0,008 0,27
∞ 16,659 83,341 0 10,72 0,005 0 9,82 0,005 0

C10

5 16,62 66,69 16,69 3,34 0,002 5,06 5,81 0,002 9,33
25 16,54 66,46 17 6,41 0,01 1,99 6,92 0,01 2,03
75 16,55 66,25 17,2 7,19 0,01 1,21 7,08 0,014 1,18
150 16,61 83,39 0 8,38 0,03 0 7,28 0,03 0
∞ 16,6 83,4 0 8,37 0,03 0 7,21 0,03 0

the private cloud and reach stable values relatively early for
the GCP experiment. After 50 runs we reach a prediction
error of 17,7% for SR%, 2% for NRL FR%, and 16,89%
for RL FR% using a private cloud and 16,73% for SR%,
3,69% for NRL FR%, and 16,24% for RL FR% using
GCP. All the errors are below the target prediction error of up
to 30% for Cloud-based architectures [8], and thus explainable
with network infrastructure imperfections such as latency and
unforeseen errors. Thus, the predictions are acceptable since
they are close to reality and are sufficient to make broad
architectural decisions.

B. Threats to validity

In our study, we have simulated workloads from only a lim-
ited number of desktop clients per experiment, simultaneously
generating the workload configurations of users’ requests, as
described in Section V-C. This could be a threat to validity
since, in real-world scenarios, we usually have one desktop



TABLE VI: Results from the model and the experiments using GCP (50 runs)

Config RL Probability % Model Experiment
P t

successP
t
failureP

t
ratelimit SR NRL FRRL FR SR NRL FRRL FR

C1

5 16,62 66,711 16,669 0,27 0 11,22 0,21 5E-5 14,88
25 16,42 66,889 16,691 1,1 0,001 10,39 0,99 0,001 13
75 16,51 66,79 16,7 2,96 0,01 8,52 2,76 0,01 10,92
150 16,61 66,68 16,71 5,76 0,004 5,72 5,26 0,006 7,65
∞ 16,63 83,37 0 11,47 0,025 0 8,83 0,02 0

C2

5 16,62 66,711 16,669 0,15 0 10,67 0,14 0 13,93
25 16,28 67,029 16,691 0,65 0,001 10,13 0,65 0,001 12,57
75 16,378 66,922 16,7 1,89 0,015 8,91 1,83 0,015 11,04
150 16,563 66,727 16,71 3,68 0,004 7,13 3,59 0,004 8,54
∞ 16,647 83,353 0 10,81 0,012 0 6,47 0,012 0

C3

5 16,62 66,711 16,669 0,24 0 10,79 0,21 2E-5 13,76
25 16,473 66,836 16,691 1,14 0 9,89 1,01 0,001 12,31
75 16,51 66,79 16,7 2,97 0,012 8,04 2,81 0,012 9,92
150 16,61 66,68 16,71 5,71 0,005 5,31 5,23 0,005 6,56
∞ 16,63 83,37 0 11,01 0,02 0 8,52 0,02 0

C4

5 16,62 66,711 16,669 0,15 0 9,05 0,14 0 11,86
25 16,34 66,969 16,691 0,68 0,001 8,52 0,66 0,001 10,79
75 16,37 66,93 16,7 1,84 0,018 7,35 1,89 0,018 9,24
150 16,586 66,704 16,71 3,55 0,002 5,65 3,63 0,002 6,4
∞ 16,655 83,345 0 9,2 0,006 0 5,81 0,007 0

C5

5 16,62 66,711 16,669 0,24 0 12,28 0,2 0 12,28
25 16,367 66,942 16,691 0,96 8E-4 11,56 0,97 8E-4 11,56
75 16,45 66,85 16,7 2,45 0,012 10,06 2,69 0,012 10,06
150 16,583 66,707 16,71 4,58 0,002 7,94 5,15 0,002 7,94
∞ 16,656 83,344 0 12,52 0,008 0 8,94 0,008 0

C6

5 16,62 66,711 16,669 0,16 0 11,2 0,14 E-4 15,23
25 16,3 67,009 16,691 0,73 9E-4 10,62 0,66 8E-4 14,21
75 16,39 66,91 16,7 1,88 0,012 9,46 1,88 0,013 12,22
150 16,56 66,73 16,71 3,56 0,002 7,79 3,53 0,002 9,83
∞ 16,662 83,338 0 11,35 0,003 0 6,67 0,003 0

C7

5 16,62 66,711 16,669 0,30 0 10,38 0,20 0 13,36
25 16,473 66,836 16,691 1,23 6E-4 9,45 1 6E-4 12,09
75 16,49 66,81 16,7 2,71 0,013 7,96 2,76 0,012 9,51
150 16,61 66,68 16,71 4,94 0,002 5,73 5,29 0,003 5,75
∞ 16,646 83,354 0 10,67 0,01 0 8,96 0,01 0

C8

5 16,62 66,711 16,669 0,15 0 9,82 0,14 0 9,97
25 16,31 66,999 16,691 0,69 0,001 9,28 0,66 0,001 10,79
75 16,37 66,93 16,7 1,87 0,017 8,08 1,89 0,018 9,24
150 16,581 66,709 16,71 3,64 0,002 6,32 3,63 0,002 6,4
∞ 16,655 83,345 0 9,96 0,006 0 5,81 0,007 0

C9

5 16,62 66,711 16,669 0,25 0 9,66 0,21 0 13,2
25 16,436 66,873 16,691 0,99 9E-4 8,93 1 9E-4 12,66
75 16,39 66,91 16,7 1,73 0,01 8,17 2,72 0,01 10,38
150 16,525 66,765 16,71 2,65 0,003 7,26 5,01 0,003 7,08
∞ 16,65 83,35 0 9,91 0,009 0 9,42 0,009 0

C10

5 16,62 66,711 16,669 0,15 0 11,12 0,14 0 15,65
25 16,345 66,964 16,691 0,66 0 10,6 0,66 0,001 14,84
75 16,41 66,89 16,7 1,80 0,009 9,46 1,85 0,009 12,94
150 16,556 66,734 16,71 3,47 0,002 7,79 3,60 0,003 10,68
∞ 16,85 83,42 0 11,21 0,05 0 6,71 0,06 0

TABLE VII: Calculated MAPE for all configurations up to 50 runs

Runs Private Cloud GCP
SR%NRL FR%RL FR%SR%NRL FR%RL FR%

10 21,92 822,73 59,66 17,01 61,69 16,41
20 21,18 94,51 23,45 17,09 16,49 16,41
30 16,85 8,31 16,33 16,38 16,58 17,07
40 20,04 24 17,65 16,29 14,05 16,90
50 17,7 2 16,89 16,73 3,69 16,24

client per user. In our case, the shared network bandwidth
would have reduced the values configured for RPMi≤10,
RPMi>10 and RPMi≥50. We have monitored these values
in real-time and adjusted them accordingly to mitigate this
issue.

The benchmark workload scenarios we used in our study
are based on four homogeneous microservices, where we have
only one service and one database per server. We have not
considered the case where we have a heterogeneous environ-
ment, and we did not replicate the services to increase their
availability, for example. Thus, our model does not consider

server-side details like the number of services and type of
services (such as database services, third-party services, and
so on). Also, our model assumes that computational, and
network resources are continuously available with a low risk
for errors (e.g., issues with locks, authorization/authentication)
and bottlenecks, which is not valid in the real world. To
exclude this threat, server-side configurations and these re-
sources, including potential errors, need to be integrated into
our study. Please note that our model focuses on the API level
only; from an abstract point of view, it does not matter whether
a service is unreliable or slow because of the database or the
service implementation. While this mitigates this threat to a
large extent, it cannot be excluded that specific backend effects
would influence the results on Rate Limit that can be observed
at the API level.

A similar threat is that we used a limited number of E-
commerce or business-related benchmark workload scenarios
that might not represent non-business workflows. There is the
threat that different applications and scenarios would yield
substantially different experimental results. However, we plan
to extend our study to other benchmarks and applications in the
future. Again, we are only interested in the properties observ-
able at the API level. Nonetheless, the model might have to be
extended or changed to be applied for substantially different
kinds of microservice technologies and concepts. However,
as many microservice technologies and concepts exist, it is
virtually impossible to cover them in one experiment. Hence
the study is based on plain (vanilla) RESTful services, and we
have chosen the E-commerce/business domain as enterprise
applications with many users are often rate limited.

VII. CONCLUSION AND FUTURE WORK

Concerning RQ1, we have developed an analytical model
to provide distributed system engineers and architects insights
into which specific value to choose as a rate limit given a
workload situation. We have empirically validated the model
using 50 different configurations in a private cloud and addi-
tional 50 different configurations in GCP with more than 2000
hours of runtime. We found that the prediction error generally
decreases with more runs or stays stable, and stands at 16,89%
for RL FR%, 2% for NRL FR% and 17,7% for SR% using
a private cloud and 16,73% for SR%, 3,69% for NRL FR%,
and 16,24% for RL FR% using GCP, after 50 runs. These
prediction errors are reasonably close to reality, given some
indeterministic effects such as network latency that we have
not included in our model.

Concerning RQ2, we conclude that applying Rate Limiting
may increase the reliability properties of APIs, given a spe-
cific workload situation. However, finding the right balance
between improving the success rate and keeping the failure rate
at a certain minimum level is not trivial. We have provided the
first step towards a solution by providing an empirically tested
analytical model to accurately predict a configuration’s and
workload’s impact on those variables. This model also presents
a solid method for adaptively fine-tuning rate limits. Since we
cannot cover all microservice technologies and concepts, we



provide an approach that can be extended to other technologies
and concepts. Hence, the study is based on plain RESTful
services.

In future work, we aim to improve the analytical model
by varying other parameters like the total duration of the
experiment T and trial duration t and including different server
configurations, workloads, benchmark scenarios, and resource
management. Also, we plan to generalize the model by apply-
ing it to other technologies, applications, and architectures.
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