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Deep learning from phylogenies to uncover the
epidemiological dynamics of outbreaks
J. Voznica1,2,3✉, A. Zhukova1,4,5,6✉, V. Boskova7, E. Saulnier1, F. Lemoine 1,4, M. Moslonka-Lefebvre1 &

O. Gascuel 1,8✉

Widely applicable, accurate and fast inference methods in phylodynamics are needed to fully

profit from the richness of genetic data in uncovering the dynamics of epidemics. Standard

methods, including maximum-likelihood and Bayesian approaches, generally rely on complex

mathematical formulae and approximations, and do not scale with dataset size. We develop a

likelihood-free, simulation-based approach, which combines deep learning with (1) a large set

of summary statistics measured on phylogenies or (2) a complete and compact repre-

sentation of trees, which avoids potential limitations of summary statistics and applies to any

phylodynamics model. Our method enables both model selection and estimation of epide-

miological parameters from very large phylogenies. We demonstrate its speed and accuracy

on simulated data, where it performs better than the state-of-the-art methods. To illustrate

its applicability, we assess the dynamics induced by superspreading individuals in an HIV

dataset of men-having-sex-with-men in Zurich. Our tool PhyloDeep is available on github.

com/evolbioinfo/phylodeep.
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Pathogen phylodynamics is a field combining phylogenetics
and epidemiology1. Viral or bacterial samples from patients
are sequenced and used to infer a phylogeny, which describes

the pathogen’s spread among patients. The tips of such phylogenies
represent sampled pathogens, and the internal nodes transmission
events. Moreover, transmission events can be dated and thereby
provide hints on transmission patterns. Such information is
extracted by phylodynamic methods to estimate epidemiological
and population dynamic parameters2–4, assess the impact of
population structure2,5, and reveal the origins of epidemics6.

Birth-death models7 incorporate easily interpretable para-
meters common to standard infectious-disease epidemiology,
such as basic reproduction number R0, infectious period, etc. In
contrast to the standard epidemiological models, the birth-death
models can be applied to estimate parameters from phylogenetic
trees8. In these models, births represent transmission events,
while deaths represent removal events for example due to treat-
ment or recovery. Upon a patient’s removal, their pathogens can
be sampled, producing tips in the tree.

Here we focus on three specific, well-established birth-death
models (Fig. 1): birth-death model (BD)8,9, birth-death model
with exposed and infectious classes (BDEI)5,10,11, and birth-death
model with superspreading (BDSS)5,12. These models were
deployed using BEAST212,13 to study the phylodynamics of such
diverse pathogens as Ebola virus10, Influenza virus12, Human

Immunodeficiency Virus (HIV)5, Zika14 or SARS-CoV-215.
Using these models, we will demonstrate the reliability of our
deep learning-based approach.

While a great effort has been invested in the development of
new epidemiological models in phylodynamics, the field has been
slowed down by the mathematical complexity inherent to these
models. BD, the simplest model, has a closed-form solution for
the likelihood formula of a tree for a given set of parameters8,10,
but more complex models (e.g., BDEI and BDSS) rely on a set of
ordinary differential equations (ODEs) that cannot be solved
analytically. To estimate parameter values through maximum-
likelihood and Bayesian approaches, these ODEs must be
approximated numerically for each tree node5,10–12. These cal-
culations become difficult as the tree size increases, resulting in
numerical instability and inaccuracy12, as we will see below.

Inference issues with complex models are typically overcome
by approximate Bayesian computation (ABC)16,17. ABC is a
simulation-based technique relying on a rejection algorithm18,
where from a set of simulated phylogenies within a given prior
(values assumed for the parameter values), those closest to the
analysed phylogeny are retained and give the posterior distribu-
tion of the parameters. This scheme relies on the definition of a
set of summary statistics aimed at representing a phylogeny and
on a distance measure between trees. The ABC approach is thus
sensitive to the choice of the summary statistics and distance
function (e.g., Euclidean distance). To address this issue Saulnier
et al.19 developed a large set of summary statistics. In addition,
they used a regression step to select the most relevant statistics
and to correct for the discrepancy between the simulations
retained in the rejection step and the analysed phylogeny. They
observed that the sensitivity to the rejection parameters were
greatly attenuated thanks to regression (see also Blum et al.20).

Our work is a continuation of regression-based ABC, and aims
at overcoming its main limitations. Using the approximation
power of currently available neural network architectures, we
propose a likelihood-free method relying on deep learning from
millions of trees of varying size simulated within a broad range of
parameter values. By doing so, we bypass the rejection step, which
is both time-consuming with large simulation sets, and sensitive
to the choice of the distance function and summary statistics. To
describe simulated trees and use them as input for the deep
learner, we develop two tree representations: (1) a large set of
summary statistics mostly based on Saulnier et al.19, and (2) a
complete and compact vectorial representation of phylogenies,
including both the tree topology and branch lengths. The sum-
mary statistics are derived from our understanding and knowl-
edge of the epidemiological processes. However, they can be
incomplete and thus miss some important aspects of the studied
phylogenies, which can potentially result in low accuracy during
inference. Moreover, it is expected that new phylodynamic
models will require design of new summary statistics, as con-
firmed by our results with BDSS. In contrast, our vectorial
representation is a raw data representation that preserves all
information contained in the phylogeny and thus should be
accurate and deployable on any new model, provided the model
parameters are identifiable. Our vectorial representation naturally
fits with deep learning methods, especially the convolutional
architectures, which have already proven their ability to extract
relevant features from raw representations, for example in image
analysis21,22 or weather prediction23.

In the following, we introduce our vectorial tree representation
and the new summary statistics designed for BDSS. We then
present the deep learning architectures trained on these repre-
sentations and evaluate their accuracy on simulated datasets in
terms of both parameter estimation and model selection. We
show that our approach applies not only to trees of the same size
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Fig. 1 Birth-death models. a Birth-death model (BD)8,9, b birth-death
model with Exposed-Infectious individuals (BDEI)5,10,11 and c birth-death
model with SuperSpreading (BDSS)5,12. BD is the simplest generative
model, used to estimate R0 and the infectious period (1/γ)8,9. BDEI and
BDSS are extended version of BD. BDEI enables to estimate latency period
(1/ε) during which individuals of exposed class E are infected, but not
infectious5,10,11. BDSS includes two populations with heterogeneous
infectiousness: the so-called superspreading individuals (S) and normal
spreaders (N). Superspreading individuals are present only at a low fraction
in the population (fss) and may transmit the disease at a rate that is
multiple times higher than that of normal spreaders (rate ratio= Xss)5,12.
Superspreading can have various complex causes, such as the
heterogeneity of immune response, disease progression, co-infection with
other diseases, social contact patterns or risk behaviour, etc. Infectious
individuals I (superspreading infectious individuals IS and normal spreaders
IN for BDSS), transmit the disease at rate β (βX,Y for an individual of type X
transmitting to an individual of type Y for BDSS), giving rise to a newly
infected individual. The newly infected individual is either infectious right
away in BD and BDSS or goes through an exposed state before becoming
infectious at rate ε in BDEI. Infectious individuals are removed at rate γ.
Upon removal, they can be sampled with probability s, becoming of
removed sampled class R. If not sampled upon removal, they move to non-
infectious unsampled class U.
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as the training instances, but also to very large trees with thou-
sands of tips through the analysis of their subtrees. The results are
compared to those of the gold standard method, BEAST212,13.
Lastly, we showcase our methods on an HIV dataset24,25 from the
men-having-sex-with-men (MSM) community from Zurich. All
technical details are provided in ‘Methods’ and Supplementary
Information. Our methods and tools are implemented in the
PhyloDeep software, which is available on GitHub (github.com/
evolbioinfo/phylodeep), PyPi (pypi.org/project/phylodeep) and
Docker Hub (hub.docker.com/r/evolbioinfo/phylodeep).

Results
Neural networks are trained on numerical vectors from which
they can learn regression and classification tasks. We trained such
networks on phylogenetic trees to estimate epidemiological
parameters (regression) and select phylodynamic models (classi-
fication). We undertook two strategies for representing phyloge-
netic trees as numerical vectors, which we describe first, before
showing the results with simulated and real data.

Summary statistics (SS) representation. We used a set of 83 SS
developed by Saulnier et al.19: 26 measures of branch lengths,
such as median of both internal and tip branch lengths; 8 mea-
sures of tree topology, such as tree imbalance; 9 measures on the
number of lineages through time, such as time and height of its
maximum; and 40 coordinates representing the lineage-through-
time (LTT) plot. To capture more information on the phylogenies
generated by the BDSS model, we further enriched these SS with
14 new statistics on transmission chains describing the distribu-
tion of the duration between consecutive transmissions (internal
tree nodes). Our SS are diverse, complementary and somewhat
redundant. We used feed-forward neural networks (FFNN) with
several hidden layers (Fig. 2b (i)) that select and combine relevant
information from the input features. In addition to SS, we provide
both the tree size (i.e., number of tips) and the sampling prob-
ability used to generate the tree, as input to our FFNN (Fig. 2a
(vi)). We will refer to this method as FFNN-SS.

Compact vectorial tree representation. While converting raw
information in the form of a phylogenetic tree into a set of SS,
information loss is unavoidable. This means not only that the tree
cannot be fully reconstructed from its SS, but also that depending
on how much useful and relevant information is contained in the
SS, the neural network may fail to solve the problem at hand. As
an alternative strategy to SS, and to prevent information loss in
the tree representation, we developed a representation called
‘Compact Bijective Ladderized Vector’ (CBLV).

Several vectorial representations of trees based either on
polynomial26,27, Laplacian spectrum28 or F matrices29 have been
developed previously. However, they represent the tree shape but
not the branch lengths26 or may lose information on trees28. In
addition, some of these representations require vectors or
matrices of quadratic size with respect to the number of tips29,
or are based on complex coordinate systems of exponential size27.

Inspired by these approaches, we designed our concise, easily
computable, compact, and bijective (i.e. 1-to-1) tree representa-
tion that applies to trees of variable size and is appropriate as
machine learning input. To obtain this representation, we first
ladderize the tree, that is, for each internal node, the descending
subtree containing the most recently sampled tip is rotated to the
left, Fig. 2a (ii). This ladderization step does not change the tree
but facilitates learning by standardizing the input data. Moreover,
it is consistent with trees observed in real epidemiological
datasets, for example Influenza, where ladder-like trees reflect
selection and are observed for several pathogens1. Then, we

perform an inorder traversal30 of the ladderized tree, during
which we collect in a vector for each visited internal node its
distance to the root and for each tip its distance to the previously
visited internal node. In particular, the first vector entry
corresponds to the tree height. This transformation of a tree into
a vector is bijective, in the sense that we can unambiguously
reconstruct any given tree from its vector representation
(Supplementary Fig. 1). The vector is as compact as possible,
and its size grows linearly with the number of tips. We complete
this vector with zeros to reach the representation length of the
largest tree contained in our simulation set, and we add the
sampling probability used to generate the tree (or an estimate of it
when analysing real data; Fig. 2a (v), b (i)).

Bijectivity combined with ladderization facilitates the training
of neural networks, which do not need to learn that different
representations correspond to the same tree. However, unlike our
SS, this full representation does not have any high-level features.
In CBLV identical subtrees will have the same representation in
the vector whenever the roots of these subtrees have the same
height, while the vector representation of the tips in such subtrees
will be the same no matter the height of the subtree’s root. Similar
subtrees will thus result in repeated patterns along the
representation vector. We opted for convolutional neural net-
works (CNN), which are designed to extract information on
patterns in raw data. Our CNN architecture (Fig. 2b (ii)) includes
several convolutional layers that perform feature extraction, as
well as maximum and average pooling layers that select relevant
features and keep feature maps of reasonable dimensions. The
output of the CNN is then fed into a FFNN that combines the
patterns found in the input to perform predictions. In the rest of
the manuscript, we refer to this method as CNN-CBLV.

Simulated datasets. For each phylodynamic model (BD, BDEI,
BDSS), we simulated 4 million trees, covering a large range of
values for each parameter of epidemiological interest (R0, infec-
tious period: 1/γ, incubation period: 1/ε, the fraction at equili-
brium of superspreading individuals: fSS, and the superspreading
transmission ratio: XSS). Of the 4 million trees, 3.99 million were
used as a training set, and 10,000 as a validation set for early
stopping in the training phase31. In addition, we simulated
another 10,000 trees, which we used as a testing set, out of which
100 were also evaluated with the gold standard methods, BEAST2
and TreePar, which are more time-consuming. Another 1 million
trees were used to define confidence intervals for estimated
parameters. For BD and BDEI we considered two settings: one
with small trees (50 to 199 tips, in Supplementary Fig. 2) and a
second with large trees (200 to 500 tips, Fig. 3). For BDSS, we
considered only the setting with large trees, as the superspreading
individuals are at a low fraction and cannot be detected in small
trees. Lastly, we investigated the applicability of our approach to
very large datasets, which are increasingly common with viral
pathogens. To this goal, we generated for each model 10,000
‘huge’ trees, with 5000 to 10,000 tips each and with the same
parameter ranges as used with the small and large trees. To
estimate the parameter values of a huge tree, we extracted a nearly
complete coverage of this tree by disjoint subtrees with 50 to 500
leaves. Then, we predicted the parameter values for every subtree
using our NNs, and averaged subtree predictions to obtain
parameter estimates for the huge tree.

To increase the generality of our approach and avoid the
arbitrary choice of the time scale (one unit can be a day, a week,
or a year), we rescaled all trees and corresponding epidemiolo-
gical parameters, such that the average branch length in a tree was
equal to 1. After inference, we rescaled the estimated parameter
values back to the original time scale.
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Fig. 2 Pipeline for training neural networks on phylogenies. Tree representations: a (i), simulated binary trees. Under each model from Fig. 1, we simulate
many trees of variable size (50 to 200 tips for ‘small trees’ and 200 to 500 tips for ‘large trees’). For illustration, we have here a tree with 5 tips. We
encode the simulations into two representations, either a (ii–v), in a complete and compact tree representation called ‘Compact Bijective Ladderized
Vector’ abbreviated as CBLV or a (vi) with summary statistics (SS). CBLV is obtained through a (ii) ladderization or sorting of internal nodes so that the
branch supporting the most recent leaf is always on the left and a (iii) an inorder tree traversal, during which we append to a real-valued vector for each
visited internal node its distance to the root and for each visited tip its distance to the previously visited internal node. We reshape this representation into
a (iv), an input matrix in which the information on internal nodes and leaves is separated into two rows. Finally, a (v), we complete this matrix with zeros so
that the matrices for all simulations have the size of largest simulation matrices. For illustration purpose, we here consider that the maximum tree size
covered by simulations is 10, and the representation is thus completed with 0 s accordingly. SS consists of a (vi), a set of 98 statistics: 83 published in
Saulnier et al.19, 14 on transmission chains and 1 on tree size. The information on sampling probability is added to both representations. b Neural networks
are trained on these representations to estimate parameter values or to select the underlying model. For SS, we use, b (i), a deep feed-forward neural
network (FFNN) of funnel shape (we show the number of neurons above each layer). For the CBLV representation we train, b (ii), convolutional neural
networks (CNN). The CNN is added on top of the FFNN. The CNN combines convolutional, maximum pooling and global average pooling layers, as
described in detail in ‘Methods’ and Supplementary Information.
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Neural networks yield more accurate parameter estimates than
gold standard methods. We compared accuracy of parameter
estimates yielded by our deep learning methods and those
yielded by two state-of-the-art phylodynamics inference tools,
BEAST212,13 and TreePar5. The comparison shows that our deep
learning methods trained with SS and CBLV are either compar-
able (BD) or more accurate (BDEI and BDSS) than the state-of-
the-art inference methods (Fig. 3, Supplementary Table 1). The
simple BD model has a closed-form solution for the likelihood
function, and thus BEAST2 results are optimal in theory8,9. Our
results with BD are similar to those obtained with BEAST2, and
thus nearly optimal as well. For BDEI and BDSS our results
are more accurate than BEAST2, which is likely explained
by numerical approximations of likelihood calculations in
BEAST25,10,11 for these models. These approximations can lead
BEAST2 to a lack of convergence (2% cases for BDEI and 15%

cases for BDSS) or a convergence to local optima. We suspect
BEAST2 of converging to local optima when it converged to
values with high relative error (>1.0; 8% cases for BDEI and 11%
cases for BDSS, Fig. 3b, c). Furthermore, our deep learning
approaches showed a lower bias in parameter estimation than
BEAST2 (Supplementary Table 2). As expected, both approaches,
FFNN-SS and CNN-CBLV, get more accurate with larger trees
(Supplementary Fig. 3).

We tried to perform maximum-likelihood estimation (MLE)
implemented in the TreePar package5 on the same trees as well.
While MLE under BD model on simulations yielded as accurate
results as BEAST2, for more complex models it showed overflow
and underflow issues (i.e., reaching infinite values of likelihood)
and yielded inaccurate results, such as more complex models
(BDEI, BDSS) having lower likelihood than a simpler, nested one
(BD) for a part of simulations. These issues were more prominent
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Fig. 3 Assessment of deep learning accuracy. Comparison of inference accuracy by BEAST2 (in blue), deep neural network trained on SS (in orange) and
convolutional neural network trained on the CBLV representation (in green) on 100 test trees. The size of training and testing trees was uniformly sampled
between 200 and 500 tips. We show the relative error for each test tree. The error is measured as the normalized distance between the median a
posteriori estimate by BEAST2 or point estimates by neural networks and the target value for each parameter. We highlight simulations for which BEAST2
did not converge and whose values were thus set to median of the parameter subspace used for simulations, by depicting them as red squares. We further
highlight the analyses with a high relative error (>1.00) for one of the estimates, as black diamonds. We compare the relative errors for a BD-simulated,
b BDEI-simulated and c BDSS-simulated trees. Average relative error is displayed for each parameter and method in corresponding colour below each
figure. The average error of a FFNN trained on summary statistics but with randomly permuted target is displayed as black dashed line and its value is
shown in bold black below the x-axis. The accuracy of each method is compared by two-sided paired z-test; P < 0.05 is shown as thick full line; non-
significant is not shown.
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for larger trees. TreePar developers confirmed these limitations
and suggested using the latest version of BEAST2 instead.

To further explain the performance of our NNs, we computed
the likelihood value of their parameter estimates. This was easy
with the BD model since we have a closed-form solution for the
likelihood function. The results with this model (Supplementary
Table 3, using TreePar) showed that the likelihoods of both
FFNN-SS and CNN-CBLV estimates are similar to BEAST2’s,
which explains the similar accuracy of the three methods (Fig. 3).
We also computed the likelihood of the ‘true’ parameter values
used to simulate the trees, in order to have an independent and
solid assessment. If a given method tends to produce higher
likelihood than that of the true parameter values, then it performs
well in terms of likelihood optimization, as optimizing further
should not result in higher accuracy. The results (Supplementary
Table 3) were again quite positive, as BEAST2 and our NNs
achieved a higher likelihood than the true parameter values for
~70% of the trees, with a significant mean difference. With BDEI
and BDSS, applying the same approach proved difficult due to
convergence and numerical issues, with both BEAST2 and
TreePar (see above). For the partial results we obtained, the
overall pattern seems to be similar to that with BD: the NNs
obtain highly likely solutions, with similar likelihood as BEAST2’s
(when it converges and produces reasonable estimates), and
significantly higher likelihood than that of the true parameter
values. All these results are remarkable, as the NNs do not
explicitly optimize the likelihood function associated to the
models, but use a radically different learning approach, based on
simulation.

Neural networks are fast inference methods. We compared the
computing time required by each of our inference methods. All
computing times were estimated for a single thread of our cluster,
except for the training of neural architectures where we used our
GPU farm. Neural networks require heavy computing time in the
learning phase; for example, with BDSS (the most complex
model), simulating 4M large trees requires ~800 CPU hours,
while training FFNN-SS and CNN-CBLV requires ~5 and ~150 h,
respectively. However, with NNs, inference is almost instanta-
neous and takes ~0.2 CPU seconds per tree on average, including
encoding the tree in SS or CBLV, which is the longest part. For
comparison, BEAST2 inference under the BD model with 5
million MCMC steps takes on average ~0.2 CPU hours per tree,
while inference under BDEI and BDSS with 10 million MCMC
steps takes ~55 CPU hours and ~80 CPU hours per tree,
respectively. In fact, the convergence time of BEAST2 is usually
faster (~6 CPU hours with BDEI and BDSS), but can be very long
in some cases, to the point that convergence is not observed after
10 million steps (see above).

Neural networks have high generalization capabilities and
apply to very large datasets. In statistical learning theory31,
generalization relates to the ability to predict new samples drawn
from the same distribution as the training instances. General-
ization is opposed to rote learning and overfitting, where the
learned classifier or regressor predicts the training instances
accurately, but new instances extracted from the same distribu-
tion or population poorly. The generalization capabilities of our
NNs were demonstrated, as we used independent testing sets in
all our experiments (Fig. 3). However, we expect poor results with
trees that depart from the training distribution, for example
showing very high R0, while our NNs have been trained with R0

in the range1,5. If, for a new study, larger or different parameter
ranges are required, we must retrain the NNs with ad hoc
simulated trees. However, a strength of NNs is that thanks to

their flexibility and approximation power, very large parameter
ranges can be envisaged, to avoid repeating training sessions
too often.

Another sensible issue is that of the size of the trees. Our NNs
have been trained with trees of 50-to-199 tips (small) and 200-
to-500 tips (large), that is, trees of moderate size (but already
highly time-consuming in a Bayesian setting, for the largest
ones). Thus, we tested the ability to predict the parameters of
small trees using NNs trained on large trees, and vice versa, the
ability to predict large trees with NNs trained on small trees. The
results (Supplementary Fig. 4) are surprisingly good, especially
with summary statistics (FFNN-SS) which are little impacted by
these changes of scale as they largely rely on means (e.g., of
branch lengths19). This shows unexpected generalization
capabilities of the approach regarding tree size. Most impor-
tantly, the approach can accurately predict huge trees (Fig. 4)
using their subtrees and the means of the corresponding
parameter estimates, in ~1 CPU minute. This extends the
applicability of the approach to datasets that cannot be analysed
today, unless using similar tree decomposition and very long
calculations to analyse all subtrees.

Neural networks are accurate methods for model selection. We
trained CNN-CBLV and FFNN-SS on simulated trees to pre-
dict the birth-death model under which they were simulated
(BD or BDEI for small trees; BD, BDEI or BDSS for large trees).
Note that for parameters shared between multiple models, we
used identical parameter value ranges across all these models
(Supplementary Table 4). Then, we assessed the accuracy of
both of our approaches on 100 simulations obtained with each
model and compared it with the model selection under
BEAST2 based on Akaike information criterion through Mar-
kov Chain Monte Carlo (AICM)32,33. The AICM, similar to
deviance information criterion (DIC) by Gelman et al.32, does
not add computational load and is based on the average and
variance of posterior log-likelihoods along the Markov Chain
Monte Carlo (MCMC).

FFNN-SS and CNN-CBLV have similar accuracy (Supplemen-
tary Table 5), namely 92% for large trees (BD vs BDEI vs BDSS),
and accuracy of 91% and 90%, respectively, for small trees (BD vs
BDEI). BEAST2 yielded an accuracy of 91% for large trees and
87% for small trees. The non-converging simulations were not
considered for any of these methods (i.e., 5% simulations for
small trees and 24% for large trees).

The process of model selection with a neural network is as fast
as the parameter inference (~0.2 CPU seconds per tree). This
represents a practical, fast and accurate way to perform model
selection in phylodynamics.

Neural networks are well suited to learn complex models. To
assess the complexity of learned models, we explored other
inference methods, namely: (1) linear regression as a baseline
model trained on summary statistics (LR-SS); (2) FFNN trained
directly on CBLV (FFNN-CBLV); (3) CNN trained on Compact
Random Vector (CNN-CRV), for which the trees were randomly
rotated, instead of being ladderized as in Fig. 2 (ii); and (4) two
“null models”.

LR-SS yielded inaccurate results even for the BD model
(Supplementary Table 1), which seems to contrast with previous
findings19, where LR approach combined with ABC performed
only slightly worse than BEAST2. This can be explained by the
lack of rejection step in LR-SS, which enables to locally reduce
the complexity of the relation between the representation and the
inferred values to a linear one18. However, the rejection step
requires a metric (e.g., the Euclidean distance), which may or may
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not be appropriate depending on the model and the summary
statistics. Moreover, rejection has a high computational cost with
large simulation sets.

Neural networks circumvent these problems with rejection and
allow for more complex, non-linear relationships between the tree
representation and the inferred values to be captured. This is also
reflected in our results with FFNN-CBLV and CNN-CRV, which
both proved to be generally more accurate than LR-SS. However,
FFNN-CBLV was substantially less accurate than CNN-CBLV
(Supplementary Table 1, Supplementary Fig. 5). This indicates
the presence of repeated patterns that may appear all along the
vectorial representation of trees, such as subtrees of any size,
which are better extracted by CNN than by FFNN. In its turn,
CNN-CRV required larger training sets to reach an accuracy

comparable to CNN-CBLV (Supplementary Table 1, Supplemen-
tary Fig. 5), showing that the ladderization and bijectivity of the
CBLV helped the training.

To assess how much information is actually learned, we also
measured the accuracy of two “null models”: FFNN trained to
predict randomly permuted target values; and a random
predictor, where parameter values were sampled from prior
distributions. Results show that the neural networks extract a
considerable amount of information for most of the estimated
parameters (Supplementary Table 1). The most difficult para-
meter to estimate was the fraction of superspreading individuals
in BDSS model, with accuracy close to random predictions with
small trees, but better performance as the tree size increases
(Fig. 4, Supplementary Fig. 3).

Fig. 4 Deep learning accuracy with ‘huge’ trees. Comparison of inference accuracy by neural networks trained on large trees in predicting large trees
(CNN-CBLV, in grey, same as in Fig. 3) and huge trees (FFNN-SS, in orange, and CBLV-NN, in pink) on 100 large and 100 huge test trees. The training and
testing large trees are the same as in Fig. 3 (between 200 and 500 tips each). The huge testing trees were generated for the same parameters as the large
training and testing trees, but their size varied between 5000 and 10,000 tips. We show the relative error for each test tree. The error is measured as the
normalized distance between the point estimates by neural networks and the target values for each parameter. We compare the relative errors for a BD-
simulated, b BDEI-simulated and c BDSS-simulated trees. Average relative error is displayed for each parameter and method in corresponding colour below
each plot.
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SS is simpler, but CBLV has high potential for application to
new models. FFNN-SS and CNN-CBLV show similar accuracy
across all settings (Fig. 3, Supplementary Tables 1, 2), including
when predicting huge trees from their subtrees (Fig. 4). The only
exception is the prediction of large trees using NNs trained with
small trees (Supplementary Fig. 4), where FFNN-SS is superior to
CNN-CBLV, but this goes beyond the recommended use of the
approach, as only a part of the (large) query tree is given to the
(small) CNN-CBLV.

However, the use of the two representations is clearly different,
and it is likely that with new models and scenarios their accuracy
will differ. SS requires a simpler architecture (FFNN) and is
trained faster (e.g., 5 h with large BDSS trees), with less training
instances (Supplementary Fig. 6). However, this simplicity is
obtained at the cost of a long preliminary work to design
appropriate summary statistics for each new model, as was
confirmed in our analyses of BDSS simulations. To estimate the
parameters of this model, we added summary statistics on
transmission chains on top of the SS taken from Saulnier et al.19.
This improved the accuracy of superspreading fraction estimates
of the FFNN-SS, so that it was comparable to the CNN-CBLV,
while the accuracy for the other parameters remained similar
(Supplementary Fig. 7). The advantage of the CBLV is its
generality, meaning there is no loss of information between the
tree and its representation in CBLV regardless of which model
the tree was generated under. However, CBLV requires more
complex architectures (CNN), more computing time in the
learning phase (150 h with large BDSS trees) and more training
instances (Supplementary Fig. 6). Such an outcome is expected.
With raw CBLV representation, the convolutional architecture is
used to “discover” relevant summary statistics (or features, in
machine learning terminology), which has a computational cost.

In fact, the two representations should not be opposed. An
interesting direction for further research would be to combine
them (e.g. during the FFNN phase), to possibly obtain even better
results. Moreover, SS are still informative and useful (and quickly
computed), in particular to perform sanity checks, both a priori
and a posteriori (Fig. 5, Supplementary Fig. 8), or to quickly
evaluate the predictability of new models and scenarios.

Showcase study of HIV in MSM subpopulation in Zurich. The
Swiss HIV Cohort is densely sampled, including more than
16,000 infected individuals24. Datasets extracted from this cohort
have often been studied in phylodynamics8,25. We analysed a
dataset of an MSM subpopulation from Zurich, which corre-
sponds to a cluster of 200 sequences studied previously by Ras-
mussen et al.25, who focused on the degree of connectivity and its
impact on transmission between infected individuals. Using
coalescent approaches, they detected the presence of highly
connected individuals at the beginning of the epidemic and
estimated R0 to be between 1.0 and 2.5. We used their tree as
input for neural networks and BEAST2.

To perform analyses, one needs an estimate of the sampling
probability. We considered that: (1) the cohort is expected to
include around 45% of Swiss individuals infected with HIV24; and
(2) the sequences were collected from around 56% of individuals
enroled in this cohort34. We used these percentages to obtain an
approximation of sampling probability of 0.45*0.56 ~ 0.25 and
used this value to analyse the MSM cluster. To check the
robustness of our estimates, we also used sampling probabilities
of 0.2 and 0.3 in our estimation procedures.

First, we performed a quick sanity check considering the
resemblance of HIV phylogeny with simulations obtained with
each model. Two approaches were used, both based on SS
(Supplementary Fig. 8). Using principal component analysis

(PCA), all three considered birth-death models passed the check.
However, when looking at the 98 SS values in detail, namely
checking whether the observed tree SS were within the [min,
max] range of the corresponding simulated values, the BD and
BDEI models were rejected for some of the SS (5 for both models,
all related to branch lengths). Then, we performed model
selection (BD vs BDEI vs BDSS) and parameter estimation using
our two methods and BEAST2 (Fig. 5a, b). Finally, we checked
the model adequacy with a second sanity check, derived from the
inferred values and SS (Fig. 5c, Supplementary Fig. 8).

Model selection with CNN-CBLV and FFNN-SS resulted in the
acceptance of BDSS (probability of 1.00 versus 0.00 for BD and
BDEI), and the same result was obtained with BEAST2 and
AICM. These results are consistent with our detailed sanity check,
and with what is known about HIV epidemiology, namely,
the presence of superspreading individuals in the infected
subpopulation35 and the absence of incubation period without
infectiousness such as is emulated in BDEI36.

We then inferred parameter values under the selected BDSS
model (Fig. 5a, b). The values obtained with FFNN-SS and CNN-
CBLV are close to each other, and the 95% CI are nearly identical.
We inferred an R0 of 1.6 and 1.7, and an infectious period of 10.2
and 9.8 years, with FFNN-SS and CNN-CBLV, respectively.
Transmission by superspreading individuals was estimated to be
around 9 times higher than by normal spreaders and super-
spreading individuals were estimated to account for around 7–8%
of the population. Our R0 estimates are consistent with the results
of a previous study8 performed on data from the Swiss cohort,
and the results of Rasmussen et al.25 with this dataset. The
infectious period we inferred is a bit longer than that reported by
Stadler et al., who estimated it to be 7.74 [95% CI 4.39–10.99]
years8. The infectious period is a multifactorial parameter
depending on treatment efficacy and adherence, the times from
infection to detection and to the start of treatment, etc. In
contrast to the study by Stadler et al., whose data were sampled in
the period between 1998 and 2008, our dataset covers also the
period between 2008 and 2014, during which life expectancy of
patients with HIV was further extended37. This may explain why
we found a longer infectious period (with compatible CIs). Lastly,
our findings regarding superspreading are in accordance with
those of Rassmussen et al.25, and with a similar study in Latvia5

based on 40 MSM sequences analysed using a likelihood
approach. Although the results of the latter study may not be
very accurate due to the small dataset size, they still agree with
ours, giving an estimate of a superspreading transmission ratio of
9, and 5.6% of superspreading individuals. Our estimates were
quite robust to the choice of sampling probability (e.g., R0= 1.54,
1.60 and 1.66, with FFNN-SS and a sampling probability of 0.20,
0.25 and 0.30, respectively, Fig. 5b).

Compared to BEAST2, the estimates of the infectious period
and R0 were similar for both approaches, but BEAST2 estimates
were higher for the transmission ratio (14.5) and the super-
spreading fraction (10.6%). These values are in accordance with
the positive bias of BEAST2 estimates that we observed in our
simulation study for these two parameters, while our estimates
were nearly unbiased (Supplementary Table 2).

Finally, we checked the adequacy of BDSS model by
resemblance of HIV phylogeny to simulations. Using inferred
95% CI, we simulated 10,000 trees and performed PCA on SS, to
which we projected the SS of our HIV phylogeny. This was close
to simulations, specifically close to the densest swarm of
simulations, supporting the adequacy of both the inferred values
and the selected model (Fig. 5c). When looking at the 98 SS in
detail, some of the observed values where not in the [min, max]
range of the 10,000 simulated values. However, these discordant
SS were all related to the lineage-through-time plot (LTT; e.g.,
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x and y coordinates of this plot; Supplementary Fig. 8), consistent
with the fact that the probabilistic, sampling component of the
BDSS model is an oversimplification of actual sampling schemes,
which depend on contact tracing, sampling campaigns and
policies, etc.

Discussion
In this manuscript, we presented new methods for parameter
inference and model selection in phylodynamics based on
deep learning from phylogenies. Through extensive simula-
tions, we established that these methods are at least as accurate
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as state-of-the-art methods and capable of predicting very large
trees in minutes, which cannot be achieved today by any other
existing method. We also applied our deep learning methods to
the Swiss HIV dataset from MSM and obtained results con-
sistent with current knowledge of HIV epidemiology.

Using BEAST2, we obtained inaccurate results for some of the
BDEI and BDSS simulations. While BEAST2 has been success-
fully deployed on many models and tasks, it clearly suffers from
approximations in likelihood computation with these two models.
However, these will likely improve in near future. In fact, we
already witnessed substantial improvements done by BEAST2
developers to the BDSS model, while carrying out this research.

Both of our neural network approaches circumvent likelihood
computation and thereby represent a new way of using molecular
data in epidemiology, without the need to solve large systems of
differential equations. This opens the door to novel phylody-
namics models, which would make it possible to answer questions
previously too complex to ask. This is especially true for CBLV
representation, which does not require the design of new sum-
mary statistics, when applied to trees generated by new mathe-
matical models. A direction for further research would be
to explore such models, for example based on structured
coalescent38,39, or to extend the approach to macroevolution and
species diversification models40, which are closely related to
epidemiological models. Other fields related to phylodynamics,
such as population genetics, have been developing likelihood-free
methods41, for which our approach might serve as a source of
inspiration.

A key issue in both phylodynamics and machine learning
applications is scalability. Our results show that very large phy-
logenies can be analysed very efficiently (~1 min for 10,000 tips),
with resulting estimates more accurate than with smaller trees
(Fig. 4), as predicted by learning theory. Again, as expected, more
complex models require more training instances, especially BDSS
using CBLV (Supplementary Fig. 3), but the ratio remains rea-
sonable, and it is likely that complex (but identifiable) models will
be handled efficiently with manageable training sets. Surprisingly,
we did not observe a substantial drop of accuracy with lower
sampling probabilities. To analyse very large trees, we used a
decomposition into smaller, disjoint subtrees. In fact, all our NNs
were trained with trees of moderate size (<500 tips). Another
approach would be to learn directly from large trees. This is an
interesting direction for further research, but this poses several
difficulties. The first is that we need to simulate these very large
trees, and a large number of them (millions or more). Then, SS is
the easiest representation to learn, but at the risk of losing
essential information, which means that new summary statistics
will likely be needed for sufficiently complete representation of
very large phylogenies. Similarly, with CBLV more complex NN
architectures (e.g., with additional and larger kernels in the
convolutional layers) will likely be needed, imposing larger
training sets. Combining both representations (e.g., during the

FFNN phase) is certainly an interesting direction for further
research. Note, however, that the predictions of both approaches
for the three models we studied are highly correlated (Pearson
coefficient nearly equal to 1 for most parameters), which means
that there is likely little room for improvement (at least with these
models).

A key advantage of the deep learning approaches is that they
yield close to immediate estimates and apply to trees of varying
size. Collection of pathogen genetic data became standard in
many countries, resulting in densely sampled infected popula-
tions. Examples of such datasets include HIV in Switzerland and
UK24,42, 2013 Ebola epidemics6, several Influenza epidemics
and the 2019 SARS-Cov-2 pandemic (www.gisaid.org)43. For
many such pathogens, trees can be efficiently and accurately
inferred44–46 and dated47–49 using standard approaches. When
applied to such dated trees, our methods can perform model
selection and provide accurate phylodynamic parameter estimates
within a fraction of a second. Such properties are desirable for
phylogeny-based real-time outbreak surveillance methods, which
must be able to cope with the daily influx of new samples, and
thus increasing size of phylogenies, as the epidemic unfolds, in
order to study local outbreaks and clusters, and assess and
compare the efficiency of healthcare policies deployed in parallel.
Moreover, thanks to the subtree picking and averaging strategy, it
is now possible to analyse very large phylogenies, and the
approach could be used to track the evolution of parameters (e.g.,
R0) in different regions (sub-trees) of a global tree, as a function
of dates (as in Bayesian skyline models4), geographical areas, viral
variants etc.

Methods
Here we describe the main methodological steps. For algorithms, technical details,
software programs used and their options, and additional comments, an extended
version is available in Supplementary Information.

Tree representation using summary statistics (SS). We use 98 summary sta-
tistics (SS), to which we add the sampling probability, summing to a vector of 99
values. We use the 83 SS proposed by Saulnier et al.19:

● 8 SS on tree topology.
● 26 SS on branch lengths.
● 9 SS on lineage-through-time (LTT) plot.
● 40 SS providing the coordinates of the LTT plot.

In addition, we designed 14 SS on transmission chains to capture information
on the superspreading population. A superspreading individual transmits to more
individuals within a given time period than a normal spreader. We thus expect that
with superspreading individuals we would have shorter transmission chains. To
have a proxy for the transmission chain length, we look at the sum of 4 subsequent
shortest times of transmission for each internal node. This gives us a distribution of
time-durations of 4-transmission chains. We assume that information on the
transmission dynamics of superspreading individuals is retained in the lower (i.e.,
left) tail of this distribution, which contains relatively many transmissions with
short time to next transmission, while the information on normal spreaders should
be present in the rest of the distribution. From the observed distribution of 4-
transmission-chain lengths, we compute 14 statistics:

Fig. 5 Parameter inference on HIV data sampled from MSM in Zurich. Using BDSS model with BEAST2 (in blue), FFNN-SS (in orange), and CNN-CBLV
(in green) we infer: a (i) basic reproduction number, a (ii) infectious period (in years), a (iii) superspreading transmission ratio, and a (iv) superspreading
fraction. For FFNN-SS and CNN-CBLV, we show the posterior distributions and the 95% CIs obtained with a fast approximation of the parametric bootstrap
(‘Methods’, Supplementary Information). For BEAST2, the posterior distributions and 95% CI were obtained considering all reported steps (9000 in total)
excluding the 10% burn-in. Arrows show the position of the original point estimates obtained with FFNN-SS and CNN-CBLV and the median a posteriori
estimate obtained with BEAST2. Circles show lower and upper boundaries of 95% CI. b These values are reported in a table, together with point estimates
obtained while considering lower and higher sampling probabilities (0.20 and 0.30). c 95% CI boundaries obtained with FFNN-SS are used to perform an a
posteriori model adequacy check. We simulated 10,000 trees with BDSS while resampling each parameter from a uniform distribution, whose upper and
lower bounds were defined by the 95% CI. We then encoded these trees into SS, performed PCA and projected SS obtained from the HIV MSM phylogeny
(red stars) on these PCA plots. We show here the projection into c (i) first two components of PCA, c (ii) the 3rd and 4th components, together with the
associated percentage of variance displayed in parentheses. Warm colours correspond to high density of simulations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31511-0

10 NATURE COMMUNICATIONS |         (2022) 13:3896 | https://doi.org/10.1038/s41467-022-31511-0 | www.nature.com/naturecommunications

http://www.gisaid.org
www.nature.com/naturecommunications


● Number of 4-transmission chains in the tree.
● 9 deciles of 4-transmission-chain lengths distribution.
● Minimum and maximum values of 4-transmission-chain lengths.
● Mean value of 4-transmission-chain lengths.
● Variance of 4-transmission-chain lengths.

Moreover, we provide the number of tips in the input tree, resulting in
83+ 14+ 1= 98 SS in total.

Complete and compact tree representation (CBLV). The representation of a tree
with n tips is a vector of length 2n−1, where one single real-valued scalar corre-
sponds to one internal node or tip. This representation thus scales linearly with the
tree size. The encoding is achieved in two steps: tree ladderization and tree
traversal.

The tree ladderization consists in ordering the children of each node. Child
nodes are sorted based on the sampling time of the most recently sampled tip in
their subtrees: for each node, the branch supporting the most recently sampled
subtree is rotated to the left, as in Fig. 2a (i–ii).

Once the tree is sorted, we perform an inorder tree traversal30. When visiting a
tip, we add its distance to the previously visited internal node or its distance to the
root, for the tip that is visited first (i.e., the tree height due to ladderization). When
visiting an internal node, we add its distance to the root. Examples of encoding are
shown in Fig. 2a (ii–iii). This gives us the Compact Bijective Ladderized Vector
(CBLV). We then separate information relative to tips and to internal nodes into
two rows (Fig. 2a (iv)) and complete the representation with zeros until reaching
the size of the largest simulated tree for the given simulation set (Fig. 2a (v)).

CBLV has favourable features for deep learning. Ladderization does not actually
change the input tree, but by ordering the subtrees it standardizes the input data
and facilitates the learning phase, as observed with random subtree order
(Supplementary Fig. 5, Compact Random Vector (CRV) representation,). The
inorder tree traversal procedure is a bijective transformation, as it transforms a tree
into a tree-compatible vector, from which the (ordered) tree can be reconstructed
unambiguously, using a simple path-agglomeration algorithm shown in
Supplementary Fig. 1. CBLV is “as concise as possible”. A rooted tree has 2n−2
branches, and thus 2n−2 entries are needed to represent the branch lengths. In our
2n−1 vectorial encoding of trees, we not only represent the branch lengths, but also
the tree topology using only 1 additional entry.

Tree rescaling. Before encoding, the trees are rescaled so that the average branch
length is 1, that is, each branch length is divided by the average branch length of
the given tree, called rescale factor. The values of the corresponding time-
dependent parameters (i.e., infectious period and incubation period) are divided by
the rescale factor too. The NN is then trained to predict these rescaled values. After
parameter prediction, the predicted parameter values are multiplied by the rescale
factor and thus rescaled back to the original time scale. Rescaling thus makes a pre-
trained NN more generally applicable, for example both to phylogenies of
pathogen-associated with an infectious period on the scale of days (e.g., Ebola
virus) and years (e.g., HIV).

Reduction and centering of summary statistics. Before training our NN and
after having rescaled the trees to unit average branch length (see above), we reduce
and centre every summary statistic by subtracting the mean and scaling to unit
variance. To achieve this, we use the standard scaler from the scikit-learn
package50, which is fitted to the training set. This does not apply to CBLV
representation, to avoid losing the ability to reconstruct the tree.

Parameter and model inference using neural networks. We implemented deep
learning methods in Python 3.6 using Tensorflow 1.5.051, Keras 2.2.452 and scikit-
learn 0.19.150 libraries. For each network, several variants in terms of number of
layers and neurons, activation functions, regularization, loss functions and opti-
mizer, were tested. In the end, we decided for two specific architectures that best fit
our purpose: one deep FFNN trained on SS and one CNN trained on CBLV tree
representation.

The FFNN for SS consists of one input layer with 99 input nodes (98 SS+ the
sampling probability), 4 sequential hidden layers organized in a funnel shape with
64-32-16-8 neurons and 1 output layer of size 2–4 depending on the number of
parameters to be estimated. The neurons of the last hidden layer have linear
activation, while others have exponential linear activation53.

The CNN for CBLV consists of one input layer (of 400 and 1002 input nodes
for trees with 50–199 and 200–500 tips, respectively). This input is then reshaped
into a matrix of size of 201 × 2 and 501 × 2, for small and large trees, respectively,
with entries corresponding to tips and internal nodes separated into two different
rows (and one extra column with one entry in each row corresponding to the
sampling probability). Then, there are two 1D convolutional layers of 50 kernels
each, of size 3 and 10, respectively, followed by max pooling of size 10 and another
1D convolutional layer of 80 kernels of size 10. After the last convolutional layer,
there is a GlobalPoolingAverage1D layer and a FFNN of funnel shape (64-32-16-8
neurons) with the same architecture and setting as the NN used with SS.

For both NNs, we use the Adam algorithm54 as optimizer and the Mean
Absolute Percentage Error (MAPE) as loss function. The batch size is set to 8000.

To train the network, we split the simulated dataset into 2 groups: (1) proper
training set (3,990,000 examples); (2) validation set (10,000). To prevent overfitting
during training, we use: (1) the early stopping algorithm evaluating MAPE on the
validation set; and (2) dropout that we set to 0.5 in the feedforward part of both
NNs55 (0.4, 0.45, 0.55 and 0.6 values were tried for basic BD model without
improving the accuracy).

For model selection, we use the same architecture for FFNN-SS and CNN-
CBLV as those for parameter inference described above. The only differences are:
(1) the cost function: categorical cross entropy, and (2) the activation function used
for the output layer, that is, softmax function (of size 2 for small trees, selecting
between BD and BDEI model, and of size 3 for large trees, selecting between BD,
BDEI and BDSS). As we use the softmax function, the outputs of prediction are the
estimated probabilities of each model, summing to 1.

Parameter estimation from very large trees using subtree picking and aver-
aging. To estimate parameters from very large trees we designed the ‘Subtree
Picker’ algorithm (see Supplementary Information for details). The goal of Subtree
Picker is to extract subtrees of bounded size representing independent sub-
epidemics within the global epidemic represented by the initial huge tree T, while
covering most of the initial tree branches and tips in T. The sub-epidemics should
follow the same sampling scheme as the global epidemic. This means that we can
stop the sampling earlier than the most recent tip in T, but we cannot omit tips
sampled before the end the sampling period (this would correspond to lower
sampling probability). Each picked subtree corresponds to a sub-epidemic that
starts with its root individual and lasts between its root date Droot and some later
date (Dlast > Droot). The picked subtree corresponds to the top part of the initial
tree’s clade with the same root, while the tips sampled after Dlast are pruned. The
picked subtrees do not intersect with each other and cover most of the initial tree’s
branches: 98.5% (BD), 97.3% (BDEI) and 82.4% (BDSS) of the initial tree branches
on the ‘huge’ tree datasets (5000 to 10,000 tips). For the BDSS model, this per-
centage is lower than for BD and BDEI, because of the narrower subtree size
interval (200-to-500 tips versus 50-to-500 tips) corresponding to current Phylo-
Deep training set settings. Subtree Picker performs a postorder tree traversal (tips-
to-root) and requires O(n2) computing time in the worst case, where n is the
number of tips in T. In practice, Subtree Picker takes on average 0.6 (BD), 0.8
(BDEI) and 0.8 (BDSS) seconds per ‘huge’ tree (5000-to-10,000 tips), meaning that
it could easily be applied to much larger trees. Once subtrees (sub-epidemics) have
been extracted, they are analysed using CNN-CBLV or FFNN-SS, and the para-
meter estimates are averaged with weights proportional to subtree sizes.

Confidence intervals. For all NN-based parameter estimates, we compute 95% CI
using a form of parametric bootstrap. To facilitate the deployment and speed-up
the computation, we perform an approximation using a separate set of
1,000,000 simulations. For each simulation in the CI set, we store the true para-
meter values and the parameter values predicted with both of our methods. This
large dataset of true/predicted values is used to avoid new simulations, as required
with the standard parametric bootstrap. For a given simulated or empirical tree T,
we obtain a set of predicted parameter values, {p}. The CI computation procedure
searches among stored data those that are closest to T in terms of tree size,
sampling probability and predicted values. We first subset:

● 10% of simulations within the CI set, which are closest to T in terms of size
(number of tips).

● Amongst these, 10% of simulations that are closest to T in terms of
sampling probability.

We thus obtain 10,000 CI sets of real/predicted parameter values, similar in size
and sampling probability to T. For each parameter value p predicted from T, we
identify the 1000 nearest neighbouring values amongst the 10,000 true values of the
same parameter available in the CI sets, RCI ¼ fri¼1;1000g, and keep the
corresponding predicted values, PCI ¼ fpi¼1;1000g. We then measure the errors for
these neighbours as ECI ¼ fei ¼ pi � rig. We centre these errors around p using the
median of errors, mðECIÞ, which yields the distribution of errors for given
prediction p: D ¼ fpþ ei �mðECIÞg; from which we extract the 95% CI around p.
Individual points in the obtained distribution that are outside of the parameter
ranges covered through simulations are set to the closest boundary value of the
parameter range. With very large trees and the subtree picking and averaging
procedure, we use a quadratic weighted average of the individual CIs found for
every subtree. To assess this fast implementation of the parametric bootstrap, we
used the coverage of the true parameter values (expected to be of 95%) and the
width (the lower the better) of the CIs. Results and comparisons with BEAST2 are
reported in Supplementary Table 7.

Models. The models we used for tree simulations are represented in the form of
flow diagrams in Fig. 1. We simulated dated binary trees for (1) the training of NNs
and (2) accuracy assessment of parameter estimation and model selection. We used
the following three individual-based phylodynamic models:

● Constant rate birth-death model with incomplete sampling: This model
(BD8,9, Fig. 1a) contains three parameters and three compartments:
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infectious (I), removed with sampling (R) and removed unsampled (U)
individuals. Infection takes place at rate β. Infectious individuals are
removed with rate γ. Upon removal, an individual is sampled with
probability s. For simulations, we re-parameterized the model in terms of:
basic reproduction number, R0; infectious period, 1/γ; sampling prob-
ability, s; and tree size, t. We then sampled the values for each simulation
uniformly at random in the ranges given in Supplementary Table 4.

● Birth-death model with exposed-infectious classes: This model (BDEI10–12,
Fig. 1b) is a BD model extended through the presence of an exposed class.
More specifically, this means that each infected individual starts as non-
infectious (E) and becomes infectious (I) at incubation rate ε. BDEI model
thus has four parameters (β, γ, ε and s) and four compartments (E, I, R and
U). For simulations, we re-parameterized the model similarly as described
for BD and set the ε value via the incubation ratio (=ε/γ). We sampled all
parameters, including ε/γ, from a uniform distribution, just as with BD
(Supplementary Table 4).

● Birth-death model with superspreading: This model (BDSS5,10,11, Fig. 1c)
accounts for heterogeneous infectious classes. Infected individuals belong to
one of two infectious classes (IS for superspreading and IN for normal
spreading) and can transmit the disease by giving birth to individuals of
either class, with rates βS,S and βS,N for IS transmitting to IS and to IN,
respectively, and βN,S and βN,N for IN transmitting to IS and IN, respectively.
However, there is a restriction on parameter values: βS;S ´ βN;N ¼ βS;N ´ βN;S.
There are thus superspreading transmission rates βS., and normal
transmission rates βN., that are XSS ¼ βS;S=βN;S ¼ βS;N=βN;N times higher
for superspreading. At transmission, the probability of the recipient to be
superspreading is f SS ¼ βS;S=ðβS;S þ βS;NÞ, the fraction of superspreading
individuals at equilibrium. We consider that both IS and IN populations are
otherwise indistinguishable, that is, both populations share the same
infectious period (1/γ)5,10,11. The model thus has six parameters, but only
five need to be estimated to fully define the model5,10. For simulations, we
chose parameters of epidemiological interest for re-parameterization: basic
reproduction number R0, infectious period 1/γ, fSS, XSS and sampling
probability s. In our simulations, we used uniform distributions for these five
parameters, just as with BD and BDEI (Supplementary Table 4).

Parameter inference with BEAST2. To assess the accuracy of our methods, we
compared it with a well-established Bayesian method, as implemented in BEAST2
(version 2.6.2). We used the BDSKY package4 (version 1.4.5) to estimate the
parameter values of BD simulations and the package bdmm12,13 (version 1.0) to
infer the parameter values of BDEI and BDSS. Furthermore, for the inference on
BDSS simulations, instead of BEAST 2.6.2 we used the BEAST2 code up to the
commit nr2311ba7, which includes important fixes to operators critical for our
analyses. We set the Markov Chain Monte Carlo (MCMC) length to 5 million steps
for the BD model, and to 10 million steps for the BDEI and BDSS models.

The sampling probability was fixed during the estimation. Since the BD, BDEI
and BDSS models implemented in BEAST2 do not use the same parametrizations
as our methods, we needed to apply parameter conversions for setting the priors
for BEAST2 inference (Supplementary Table 6), and for translating the BEAST2
results back to parameterizations used in our methods, in order to enable proper
comparison of the results (see Supplementary Information for details).

After we obtained the parameters of interest from the original parameters
estimated by BEAST2, we evaluated the Effective Sample Size (ESS) on all
parameters. We reported the absolute percentage error of the median of a
posteriori values (more stable and accurate than the maximum a posteriori),
corresponding to all reported steps (spaced by 1000 actual MCMC steps) past the
10% burn-in. For simulations for which BEAST2 did not converge, we considered
the median of the parameter distribution used for simulations (Fig. 3,
Supplementary Tables 1, 2, Supplementary Fig. 2) or excluded them from the
comparison (Supplementary Tables 1, 2, values reported in brackets,
Supplementary Table 5).

For the HIV application, the prior of infectious period was set to [0.1, 30] years
(uniform). All the other parameters had the same prior distributions as used in
simulations and shown in Supplementary Tables 4, 6.

Accuracy of parameter estimation. To compare the accuracy of the different
methods, we used 100 simulated trees per model. For each simulated tree, we
computed the relative error and its mean over the 100 trees (Figs. 3–4, Supple-
mentary Table 1, Supplementary Figs. 2–4):

MRE ¼ 1
100

∑
100

i¼1

predictedi � targeti
�
�

�
�

targeti
:

The mean relative bias (Supplementary Table 2) was measured in a similar
manner as:

MRB ¼ 1
100

∑
100

i¼1

predictedi � targeti
� �

targeti
:

Comparison of time efficiency. For FFNN-SS and CNN-CBLV, we reported the
average CPU time of encoding a tree (average over 10,000 trees), as reported by
NextFlow56. The inference time itself was negligible.

For BEAST2, we reported the CPU time averaged over 100 analyses with
BEAST2 as reported by NextFlow. For the analyses with BDEI and BDSS models,
we reported the CPU time to process 10 million MCMC steps, and for the analyses
with BD, we reported the CPU time to process 5 million MCMC steps. To account
for convergence, we re-calculated the average CPU time considering only those
analyses for which the chain converged and an ESS of 200 was reached for all
inferred parameters.

The calculations were performed on a computational cluster with CentOS
machines and Slurm workload manager. The machines had the following
characteristics: 28 cores, 2.4 GHz, 128 GB of RAM. Each of our jobs (simulation of
one tree, tree encoding, BEAST2 run, etc.) was performed requesting one CPU
core. The neural network training was performed on a GPU cluster with Nvidia
Titan X GPUs.

HIV dataset. We used the original phylogenetic tree reconstructed by Rasmussen
et al.25 from 200 sequences corresponding to the largest cluster of HIV-infected men-
having-sex-with-men (MSM) subpopulation in Zurich, collected as a part of the Swiss
Cohort Study24. For details on tree reconstruction, please refer to their article.

PhyloDeep software. FFNN-SS and CNN-CBLV parameter inference, model
selection, 95% CI computation and a priori checks are implemented in the PhyloDeep
software, which is available on GitHub (github.com/evolbioinfo/phylodeep), PyPi
(pypi.org/project/phylodeep) and Docker Hub (hub.docker.com/r/evolbioinfo/phylo-
deep). It can be run as a command-line programme, Python3 package and a Docker
container. PhyloDeep covers the parameter subspace as described in Supplementary
Table 4. The input is a dated phylogenetic tree with at least 50 tips and presumed
sampling probability. The output is a PCA plot for a priori check, a csv file with all SS,
and a csv file with probabilities of each model (for model selection) and point esti-
mates and 95% CI values (for parameter inference with selected model). The instal-
lation details and usage examples are available as well on GitHub.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study (simulated trees, BEAST2 logs, and the results of
BEAST2 and PhyloDeep runs), as well as the HIV phylogenetic tree for Zurich epidemic
(a showcase application) are provided on GitHub (github.com/evolbioinfo/phylodeep,
version 0.3) and have been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.6646668. The simulated trees were obtained with our
simulator (see Code availability), the HIV tree was previously published by Rasmussen
et al.25 and is available on their GitHub: github.com/davidrasm/PairTree (all confidential
information has been removed).

Code availability
The PhyloDeep package (version 0.3) is under the GPL v3.0 license and uses Python (3.6)
and Python libraries: ete3 (version 3.1.2 under GNU general licence); pandas (version
1.1.5); numpy (version 1.19.5); scipy (version 1.1.0); scikit-learn (version 0.19.1);
tensorflow (version 1.13.1); joblib (version 0.13.2); h5py (version 2.10.0); Keras (version
2.4.3 under Apache 2.0 license); matplotlib (version 3.1.3 under PSF license). We provide
(i) the source code of PhyloDeep, (ii) the code of the tree simulators used to train the
deep learners and (iii) the log files obtained with BEAST2 on GitHub (github.com/
evolbioinfo/phylodeep). The code has been deposited in Zenodo57. We used the version
2.6.2 of BEAST2 for BD and BDEI inferences and BEAST2 compiled up to the commit
nr2311ba7 for BDSS inferences, and version 3.3 of TreePar. For BEAST2 inferences, we
used BEAST2 libraries bdmm (version 1.0) and BDSKY (version 1.4.5). We used
Snakemake (version 5.10.0) and Nextflow (version 21.04.3.5560) pipeline managers for
simulations and analyses of simulated data.
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