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SUMMARY
The brains and minds of our human ancestors remain inaccessible for experimental exploration. Therefore,
we reconstructed human cognitive evolution by projecting nonsynonymous/synonymous rate ratios (u
values) in mammalian phylogeny onto the anatomically modern human (AMH) brain. This atlas retraces hu-
man neurogenetic selection and allows imputation of ancestral evolution in task-related functional networks
(FNs). Adaptive evolution (high u values) is associated with excitatory neurons and synaptic function. It
shifted from FNs for motor control in anthropoid ancestry (60–41 mya) to attention in ancient hominoids
(26–19 mya) and hominids (19–7.4 mya). Selection in FNs for language emerged with an early hominin
ancestor (7.4–1.7 mya) and was later accompanied by adaptive evolution in FNs for strategic thinking during
recent (0.8 mya–present) speciation of AMHs. This pattern mirrors increasingly complex cognitive demands
and suggests that co-selection for language alongside strategic thinking may have separated AMHs from
their archaic Denisovan and Neanderthal relatives.
INTRODUCTION

There is a genuine interest in exploring the emergence of human

cognitive traits from our primate and hominin ancestors. Humans

have evolved a unique set of advanced cognitive functions

related to emotionality, sociality, abstraction, and language.

While these functions are also present in primates, they are not

as developed (Lieberman, 2016; MacLean, 2016; Parr et al.,

2005; Roth and Dicke, 2005). To date, our understanding of the

anatomically modern human (AMH) cognitive past primarily

came from archaeological records and indicated particular dy-

namics in social group size, cooperative behavior, tool use,

and altruism in early Homo sapiens (Hill et al., 2009). Compara-

tively, archeological artifacts and the fossil record of Neander-

thals, one of our closest relatives, do not show the same degree

of cognitive flexibility or symbolic activities (Marean, 2015). To

reconstruct the evolutionary history of cognitive traits more

comprehensively, we must travel back further into our distal

ancestral lineage, where archaeological records become scarce.

To fill this gap in our archaeological history, comparative

functional neuroanatomy retraced cognitive evolution based on

incremental neuroanatomical changes along the mammalian
This is an open access article und
lineage (Bauernfeind et al., 2015; He et al., 2017; Herculano-

Houzel, 2012; MacLean, 2016; Sherwood et al., 2008; Sousa

et al., 2017). This provided insights into the evolution of the

size, shape (Navarrete et al., 2011; Du et al., 2018; González-

Forero and Gardner, 2018; Hofman, 2014; Neubauer et al.,

2018), and function (Leah, 2009; Roth, 2015) of the AMH brain.

Quantitative neuroanatomical measures, such as increases in

regional volumes, gene-expression boundaries, or cell (type)

numbers, serve as proxies to infer evolutionary selection

(Table S1). These changes in structural organization and con-

nectivity point to complex patterns in neurocognitive evolution

(Balezeau et al., 2020; Mantini et al., 2013). However, albeit

extremely informative, most comparative anatomical ap-

proaches are limited to extrapolating ancestral states from

experimentally accessible species that can be mapped with

high anatomical resolution. This is particularly difficult for tracing

evolutionary history throughout periods where only endocasts of

skulls remain (e.g., Neanderthals), thereby limiting insights to in-

ferences from the brain surface.

Evolutionary genetics, on the other hand, allows us to analyze

archaic material and infer ancestral differences in cognitive traits

from genetic mutations (Pääbo, 2014). This can identify and
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hallmark events in AMH brain evolution (Enard et al., 2002; Florio

et al., 2015; Nuttle et al., 2016). However, the underlying muta-

tions are typically interpreted in isolation, making it difficult to

capture potentially synergistic effects of multigenic co-evolution

distributed across functionally coupled brain-wide networks.

Indeed, the evolution of complex cognitive traits, particularly lan-

guage, are thought to be dominated by the compound effect of

many genes (DeSalle and Tattersall, 2018) and across distrib-

uted brain networks.

Here, we build upon these foundations by fusing neuroana-

tomical and genetic methods to benefit from the strengths of

each approach. Genetic analysis allows the extrapolation of

ancestral states, while neuroanatomy provides network context

for identifying multigenic effects. By retracing our cognitive past,

we are ultimately interested in identifying traits under evolu-

tionary selection, that is, those that have resulted in adaptive

phenotypes. Evolutionary pressures leave robust, distinct signa-

tures that are measurable within the genome (Miyata and

Yasunaga, 1980; Nei and Gojobori, 1986). Genetic information

contains genome-wide (preserved) signatures of evolutionary

adaptations that can be mapped along phylogenies (including

ancestral lines), even where the species themselves are extinct.

Highly parallel sequencing techniques have generated whole

genomes of both extant (Zerbino et al., 2018) and extinct species

(Green et al., 2010; Meyer et al., 2012; Pr€ufer et al., 2014), which

can resolve the evolutionary relationships between AMHs and

their recent relatives. Additionally, gene expression correlates

with themesoscale functional organization of brain networks (Ri-

chiardi et al., 2015; Ganglberger et al., 2018), in which mRNA of

genes associated with a specific cognitive function accumulates

in the specific brain networks supporting that function. There-

fore, using genetic (Hawrylycz et al., 2012), connectomic (Ding

et al., 2016), and behavioral or psychiatric (Van Essen et al.,

2013) brain-data initiatives, we can attribute these genetic fea-

tures directly to functional brain networks and behavioral traits

(Ganglberger et al., 2018; Hawrylycz et al., 2015; Richiardi

et al., 2015; Wang et al., 2015).

In this study, we reasoned that these approaches may be

adapted to project evolutionary genetic attributes onto brain

functional networks. We combined the strengths of evolutionary

genetics and computational neuroanatomy into a brain-wide

evolutionary atlas. This allows us to retrace evolutionary selec-

tion within the framework of the human brain to reconstruct

cognitive evolution in AMH ancestry for which skulls and brains

remain out of reach.

RESULTS

Reconstructing traces of evolutionary selection in AMH
phylogeny
Evolutionary forces favor various types of genetic changes. In

addition to protein-coding mutations, changes to noncoding

mRNA, regulatory sequences, insertions or deletions (indels),

species-specific genes/duplications, and copy-number varia-

tions contribute to functional adaptations (Halligan et al.,

2013) but underlie the same macroscopic selective forces at

the organismic level (Haygood et al., 2007; Fu and Akey,

2013; Doan et al., 2016). Therefore, mutations in homologous
2 Cell Reports 40, 111287, August 30, 2022
brain-expressed protein-coding genes may serve as a robust

proxy to model overall organismic adaptive evolution of cogni-

tive function in the AMH brain (Ganglberger et al., 2018;

Richiardi et al., 2015).

To derive the evolutionary history of protein-coding brain-ex-

pressed genes, we collected corresponding one-to-one ortho-

logs for 9,497 genes among major mammalian species that

comprise the ancestral lineage leading to AMHs, namely mouse

(rodents), bush baby (prosimians), marmoset (New World mon-

keys), macaque (Old World monkeys), gibbon (lesser apes),

gorilla and chimpanzee (great apes), extinct hominins Denisovan

and Neanderthal, and AMH (see STAR Methods, data collec-

tion). For each gene, we deduced its gene tree using maximum

likelihood estimation (see STAR Methods, phylogenetic anal-

ysis). Gene treesmay differ from species trees due to incomplete

lineage sorting (ILS), which is particularly strong among recently

and quickly diverged species (Avise et al., 1983; Pamilo and Nei,

1988). Evolutionary relationships among nonhominid species on

most gene trees agreed with the accepted species tree (see

STAR Methods, phylogenetic analysis, and Figure S12). Howev-

er, ILS was severe within the gorilla-chimpanzee-AMH triplet

(Ebersberger et al., 2007) and the Denisovan-Neanderthal-

AMH triplet (Meyer et al., 2014; Reich et al., 2010), resulting in

nine alternative gene trees, hereafter referred to as ILS trees.

The most frequently inferred gene tree (referred to as tree 1;

see Figure 1A) aligns with the commonly accepted species rela-

tionship between gorilla, chimpanzee, and AMH and supports

the mitochondrial (mt)DNA relationship between archaic and

modern humans (Meyer et al., 2014). To control for ILS among

our sample of gene trees, we focused on genes that follow one

of the nine ILS trees, reflecting the major paths of genetic evolu-

tion leading to humans. This allowed for a less biased estimation

of evolutionary parameters rather than estimating from the spe-

cies tree alone.

We estimated the ratios of nonsynonymous to synonymous

nucleotide substitutions (u or dN/dS) using the branch ‘‘free-

rate’’ model for all branches in all gene trees (Yang, 1998;

Yang and Nielsen, 1998) (see STAR Methods, u calculation,

and Table S2). u measures the selection pressure (and its

changes) on genes over the course of evolutionary history and

is sensitive to underlying evolutionary adaptation (Boddy et al.,

2017; Wang et al., 2013). Unlike other means of detecting selec-

tion (McDonald and Kreitman, 1991; Sabeti et al., 2002; Tang

et al., 2007; Zhong et al., 2010), u does not require population

data (e.g., polymorphism, effective population size), which are

largely unavailable for extinct species. This approach has been

widely used to elucidate genomic diversification among pri-

mates (Duret and Mouchiroud, 2000; Gibbs et al., 2007; Van

Der Lee et al., 2017; Marini�c and Lynch, 2020; Miyata et al.,

1994) as well as in the context of brain evolution (Dorus et al.,

2004; Tuller et al., 2008).

Unreliable u estimates, owing to little or no sequence diver-

gence and/or short sequence length, were excluded from further

analysis to diminish potential computational artifacts (Kryazhim-

skiy and Plotkin, 2008) (see STAR Methods, u calculation, and

Table S2). As expected, most excluded estimates occurred

among the closely related hominids (Figure S14; Table S10).

For each branch in the nine ILS trees, at least 93% of genes
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Figure 1. Reconstructing genomic selection in the AMH lineage

(A) Themajor (most frequently occurring) phylogenetic gene-tree topology (tree 1) of keymammalian species in the ancestral lineage leading to humans, including

extinct hominins (Denisovan and Neanderthal). Inset shows the proportion of genes matching the nine alternative ILS gene-tree topologies (Figure S1).

Approximate phylogenetic times from mtDNA (Figure S15).

(B) Hierarchical clustering of u values of 8,978 AMH brain genes in the ancestral mammalian phylogeny (tree 1) and alternative hominid branches (8–11) in ILS

topologies. Top, after filtering, the u values were rank normalized in columns for each branch. Color codes indicate normalized rank. The alternative hominid

branches (8–11) are visualized in Figure S1, and the sparsity of ranked genes in these cases emerged from less frequent tree topologies (fewer genes were

available). Genetically proximal species (e.g., Neanderthal, AMH) naturally resulted in fewer geneswith availableu values between these species and fewer genes

(i.e., fewer substitutions) with reliable u estimates Note that these lower gene branches (columns 8, 9, and 11) and phylogenies (Figure S1) were below the

significance cutoff in the atlas (Figure S2; Data S2) and network biclustering. Bottom, the distribution of absolute u values at individual branches. Shaded areas

indicate purifying selection (u = 0) versus close to neutral (u = 0.5–1) and positive selection (u > 1). Boxplots depict the median with 0.25 and 0.75 percentiles and

whiskers at 0.1 and 0.9 percentiles.

Article
ll

OPEN ACCESS
were under purifying selection, corroborating previous findings

(Gibbs et al., 2007; Mikkelsen et al., 2005), except for the Deni-

sovan branch, where only 87% of genes were u <1.

Then, we rank normalized u values for each branch (consid-

ering all gene trees; see STAR Methods, genetic data prepara-

tion, and Table S3) to further reduce the influence of outliers

that had not yet been filtered out. These ranked data revealed

distinct clusters of co-evolving genes, which shared similar

evolutionary patterns of high- and low-ranked u (Figure 1B).

The underlying absolute u values (Figure 1B, bottom panel)

reflect adaptive evolution by close to neutral (u = 0.5–1) and pos-

itive selection (u > 1) as well as strong purifying selection (u = 0)

across the ancestral evolution of the AMH brain. The overall

median increase in u among protein coding suggests that
brain-expressed genes (whose u could be reliably estimated)

may have been under less purifying selection in hominids (i.e.,

branch 4 and later).

An evolutionary atlas of neurogenetic selection in the
human lineage
In the brain, evolutionary forces associated with a given gene

typically function through its neuroanatomical gene-expression

profile (i.e., the sites where the gene is expressed). Therefore,

we used the local aggregate of evolutionary attributes (e.g., u

values) of all the genes expressed at a given site to estimate

the overall selection acting on this brain region.

We weighted the high-resolution local gene-expression data

of 3,702 biopsy sites in the AMH reference brain (Ding et al.,
Cell Reports 40, 111287, August 30, 2022 3
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2016; Hawrylycz et al., 2012) with branch-wise, rank-ordered u

values (Tables S2 and S3; see STAR Methods, generating

u-weighted maps). The biopsy-site-level information reflects

the aggregated ranked u-weighted gene expression (i.e., each

gene’s expression value multiplied by its ranked u, averaged

over all genes) for all branches, including alternative hominid

branches (8–11 in ILS trees; Figure 1B) in the ancestral

phylogeny.

For structural-functional assessment, we down-sampled this

high-resolution data to regional level maps (see Data S2 for

brain-wide maps, anatomically annotated as present in https://

human.brain-map.org/; see Figure S2A for representative sec-

tions). For statistical evaluation, aggregate values were

compared with aggregate products in which ranked u values

were shuffled (see STAR Methods, generating u-weighted

maps). These data reveal hotspots with higher-than-expected

u ranks, under neutral or positive selection (as opposed to low

u ranks indicating strong purifying selection). Such neutral or

positive selection in part reflects relaxation from strong purifying

selection and can drive variation in phenotypic differentiation

leading to evolutionary innovations (Hunt et al., 2011; Ohno,

1970; Lahti et al., 2009; Lynch and Conery, 2000; Snell-Rood

et al., 2010) and speciation (Templeton, 2008). To illustrate the

emerging phylogenetic pattern, we combined these data into

maps of highly ranked u (see STAR Methods, generating

u-weighted maps) along the most frequent gene-tree topology

(tree 1; Figure 1A). This generated lineage-wide maps of neuro-

genetic selection in the AMH brain (Table S4 and Data S2 for a

brain-wide maps). We note that these maps are entirely geneti-

cally driven and are independent of homology among brain areas

of different species. Therefore, they reflect traces of major adap-

tive selection (neutral or positive selection in part reflecting a

relaxation of constraints) through the evolutionary history of suc-

cessive ancestral mammalian divergences, mapped directly

onto the AMH brain. Although the full dataset (Table S2; Data

S2) can serve as a resource for further in-depth exploration,

here we inspected the consequent maps of representative sec-

tions (Figure S2) for a broad neuroanatomical interpretation.

Overall, the evolutionary maps (Figure S2A) reveal a complex

pattern of selection across many subcortical (e.g., branches

1–3: midbrain, hypothalamus, basal forebrain) and cortical

(e.g., branch 6–AMH: occipital-temporal gyrus, somatosensory

association cortex, superior frontal gyrus) regions. To visualize

the temporal distribution more directly, individual maps (Fig-

ure S2A) were combined into a 3,702 biopsy-site-level tem-

poro-spatial atlas, where each brain region is color coded by

the branch with the smallest p value (u peak) (see Figure 2 for

representative sections and Data S3 for a brain-wide atlas).

Ranked u peaks from early primate ancestors (Figure 2; branch

1; medulla, hippocampal formation, and claustrum) may reflect

the evolution of basic cognitive traits, such as autonomic regula-

tion, spatial memory, attention, and consciousness (claustrum;

Smith et al., 2019; Crick and Koch, 2003; see Table S11). In

contrast, ranked u peaks from hominin branches expanded to

higher, cortical areas (branches 6, 7, and AMH; Figure 2). These

later traces in prefrontal and temporal cortical areas may reflect

higher cognitive evolution (Mattson, 2014). For instance, the su-

perior temporal gyrus (STG), which includes Wernicke’s area
4 Cell Reports 40, 111287, August 30, 2022
involved in language perception, and the inferior frontal gyrus

(IFG) opercularis and triangular subdivisions, which largely over-

lap with Broca’s area and are linked to speech production, both

accumulated significant u weight in branch 6 (Figure S2; Data

S2), with a temporal trend from language understanding in

branch 6 (STG; Figure 2; Data S3) to language production (trian-

gular part of IFG [trIFG]; Figure 2; Data S3). Collectively, this atlas

provides a resource for mining traces of ancestral neurogenetic

evolution in the AMH brain, complementing comparative neuro-

anatomical data and previous inferences about cognitive evolu-

tion in our archaic ancestry (Table S1).

Co-evolution networks in the AMH brain
To visualize patterns of co-evolving brain regions contained

within the temporo-spatial atlas (Data S3; Figure 2), we hierar-

chically clustered (Ward’s D2 criterion) brain areas by their cor-

relation of mean-ranked, u-weighted gene-expression p values

(Data S2; Figure S2). This yielded eight clusters (additional clus-

ters did not reveal higher variance), which delineated brain-wide

co-evolution networks with a similar history of selection (see Fig-

ure 3A for representative sections and Data S4 for brain-wide

maps).

Plotting the mean-ranked, u-weighted gene-expression p

values for each branch against its evolutionary divergence time

(see STAR Methods, phylogenetic timeline) corroborated the

pattern observed in the visual interpretation (results, an evolu-

tionary atlas of neurogenetic selection in the human lineage).

High u ranks shifted from subcortical regions in earlier primate

ancestry to increasingly more cortical regions at later time points

during hominid and hominin evolution (Figure 3B, bottom;

subcortical [clusters 1 and 3] and cortical [clusters 5 and 6] aver-

ages). These data yielded notable subpatterns. Clusters 1 and 3

decreased from approximately 19 mya to the present, indicating

a shift toward purifying selection in the more ‘‘ancient’’ brain re-

gions (e.g., pons, medulla, thalamus, hypothalamus, and

midbrain), which became fixed with the divergence of greater

apes from lesser apes (Figure 3B; branch 4). In contrast, a subset

of cortical (dorsomedial prefrontal cortex in cognitive process-

ing) and limbic structures (amygdala involved in affective pro-

cessing; cluster 4) followed the inverse pattern, indicating func-

tional rearrangements with the emergence of hominids,

particularly among hominins (Figure 3B) in cingulate (cluster 7)

and temporal cortices (cluster 8). The high-ranked u of mixed

clusters (clusters 2 and 4 and their average; see Figure 2B) sug-

gests that evolutionarily, most flexible adaptations engage net-

works that span brain hierarchies.

Ancient traces from motor control to language and
strategic thinking in the AMH brain
Building upon these temporo-spatial dynamics, we explored

cognitive functions embedded in co-evolution networks (Fig-

ure S3) explicitly by fusing the spatially registered temporal

evolutionary genetic data contained within our atlas directly

with spatially registered functional networks (FNs) in the

AMH brain. To this end, a total of 22 FNs were assembled from

task-evoked functional magnetic resonance imaging (MRI)

from the Human Connectome Project (HCP; 11 FNs, Fig-

ure S4; Table S12; Van Essen et al., 2013) and functional

https://human.brain-map.org/
https://human.brain-map.org/
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neuroanatomical literature (11 FNs; Figure S4; Table S13). These

22 FNswere selected a priori to cover the human-relevant cogni-

tive spectrum across emotionality, sociality, abstraction, and

language. This enabled temporo-spatial pattern mining by

generalized biclustering (Curry, 2014) for FNs co-evolving with

highly ranked u gene sets (i.e., FNs with traces of positive or

neutral [versus purifying] selection; see Figure 4A). Specifically,

we biclustered 8,974 brain genes based on their ranked u and

their 3,702 site-level resolution gene-expression correlation to

FNs (STAR Methods, subspace pattern mining for network evo-

lution via biclustering; Table S7). Custom criteria were fitted to

identify the most diverse biclusters of co-evolving genes

(R0.90 ranked u for the given branches) with high specificity

for FNs (high spatial correlation for the same networks from

Tables S12 and S6).

We applied this workflow to the collective gene-tree topol-

ogies spanning 61 my of neurocognitive evolution from prosim-

ians to hominin ancestry (branches 1–11 and AMH) (Figures 1A

and S1; STAR Methods, phylogenetic analysis), yielding statisti-
cally stable biclusters (Table S5) for distinct branches. These

clusters retrace signatures of adaptive selection (i.e., high u) in

FNs of the AMH brain, highlighting cognitive traits under the

most prominent evolution along AMH ancestry. Notably, the

average absolute u of these high-ranked u biclusters indicates

that these potential neurocognitive adaptations were, at least

in part, driven by positive selection (u > 1; Figure S6).

To visualize the data, we generated a 2-dimensional (2D)

evolutionary landscape of the most prominent FNs networks

(Figure 4C) for each of the biclusters, along with their functional

domains (Tables S12 and S13) and co-evolving genes associ-

ated with behavioral/neuronal/psychiatric symptom domains

(OpenTargets database: https://platform.opentargets.org/ ) (Car-

valho-Silva et al., 2019; Ghoussaini et al., 2021) (Figure 4D).

In biclusters appearing in the earliest branches of the

human lineage (branches 1–3), the top-ranked u values were

enriched in networks for motor control (motor-feet, motor-

hands FNs), working memory (working memory FN), social

interaction (theory of mind FN), impulse/emotion control
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(prefrontal-accumbens/prefrontal-amygdala FNs), active atten-

tion (dorsal attention FN), and action planning (fronto-parietal

FN). This functional evolution is mirrored by genetic associations

with the biclusters (e.g.,SNCAwith Parkinson andmotor control,

affective processing, ATF4with neuronal plasticity and behavior;

Green et al., 2008) (Figure 4C; Data S1).

In branch 4, biclusters shifted toward networks for affective

attention (salience FN), which are genetically associated with hy-

pocretin neuropeptide precursor (HCRT) and wakefulness

(Thannickal et al., 2000) (Data S1).

Interestingly, the next prominent bicluster emerged in branch

6, a key hominin ancestor that evolved prior to the divergence

of AMH, Denisovan, and Neanderthal, in the central executive

FN (CEN). This finding suggests evolutionary selection for

cognitive processing during that period (Figures 4B and 4C). At

the genetic level, the bicluster included NCEH1, which is linked

to cholesterol metabolism and cognition (Schreurs, 2010),

IGSF11, which is associated with intelligence (Data S1), and

FOXP2, associated with a broad range of co-evolving higher
6 Cell Reports 40, 111287, August 30, 2022
cognitive functions (e.g., mathematical skills; Data S1; for its as-

sociation with language, see below).

In contrast, branch 9, representing a gene set with a common

gorilla and chimpanzee ancestry, biclustered with visuospatial

processing (visuospatial FN) and was genetically associated

with cholinergic receptor CHRNA2, a modulator of visual atten-

tion (Lawrence et al., 2002) (Data S1).

Finally, recent hominin evolution in direct AMH ancestry (i.e.,

branches 7 and 10) left selection traces in networks for intro-

spection (default mode FN), emotion recognition/affective

processing (emotional faces/cortico-limbic FNs), sensorimotor

integration/motor control (sensorimotor/motor-hands FNs), lan-

guage/abstract thinking (language/relational processing FNs),

and passive attention (ventral attention FN). Genetically, this is

reflected by associations with affective and higher cognitive

function (ARHGEF11, CHL1, FREM1) (Lee et al., 2018; Mizuki

et al., 2014, 2017) (Data S1).

During AMH speciation from archaic hominins (i.e., the

AMH branch), highly ranked u biclusters were linked to working
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memory (working memory and working memory-face FNs), stra-

tegic thinking (gambling and gambling-reward FNs), and, most

notably, language (language FN). Although these clusters

partially overlap at the level of FNs (e.g., language, motor-hands,

and emotional faces FNs) with branch 10, the genetic compo-

nents are notably different but remain associated with higher

cognitive functions. MCPH1 controls cortex size and adult

neuronal function and is under positive selection in humans

(Shi et al., 2019; Jackson et al., 2002). PCLO is associated with

synaptic function and cortical connectivity (Lee et al., 2017),

and ASTN1 is linked to mathematical and emotional abilities.

SPAG5 impacts neuronal development (Asami et al., 2011),

mental abilities, and potentially language (Murphy and Benı́tez-

Burraco, 2016) (Data S1). This shift in the genetic basis for these

cognitive functions may reflect the evolution of diverging molec-

ular mechanisms for functional tuning of language and strategic

thinking in AMH (compared with branches 6 and 10).

Diverging neurocognitive evolution separates archaic
and modern humans
After retracing �61 my along the distant ancestral line to AMH

(Figures 2A and 4A), we next explored proximate archaic evolu-

tion more closely: branches 5–11 and AMH, plus the speciation

of our closest hominid [chimpanzee] and archaic [Denisovan,

Neanderthal] relatives (Brawand et al., 2011; Khaitovich et al.,

2005; Romero et al., 2012) (Figure 5A).

Indeed, in addition to AMH archaic ancestors (branches 6, 10,

and AMH) discussed above, here the corresponding evolu-

tionary maps revealed significant traces of high u ranks also in

the speciation of extinct hominin relatives (i.e., Denisovan, Nean-

derthal; Figure S2B; Data S2).

Based on these findings, we reiterated our biclustering work-

flow (Figure 4A) solely using the proximate branches (Figure 5A).

As expected, within the AMH branch, the algorithm recaptured

similar biclusters similar to the full lineage setting (see previous

section; Figures 4B and 4C, with largely overlapping character-

istic networks and gene sets).

Specifically, speciation to chimp clustered with social interac-

tion (theory of mind FN) and was genetically associated with in-

telligence (PRKAG1) (Figures 5B and 5C). Notably, the theory of

mind FN was also positively selected in branch 3 in the overall

analysis (Figures 4C, 4D, and S6), reflecting overall primate so-

cial evolution (Table S1). In contrast, traces of early hominin evo-

lution (branch 6) shift toward the CEN (Figures 4B, 4C, 5B, and
Figure 4. Evolutionary-functional neurogenetic clusters reconstruct tr

(A) Computational strategy (schematics). Left: mining brain functional evolution b

and AMH) and functional networks (FNs; gene-wise network correlation in brain

organized along gross phylogenic history in 2D space (right).

(B) Biclustering of FNs (Tables S12 and S6) and highest ranked u values (with a

(C) High-ranked u (with a 0.90 rank cutoff) biclusters were embedded into a 2D ev

the combined genetic and functional/temporal overlapped as a distance measure

(OpenTargets; Data S1) and the neurocognitive categories of the corresponding

cluster size.

(D) Functional annotations of the clusters in (B) and visualization of the top-ranked

and highlighting the highest spatial gene expression correlations of highly rank

anatomical regions in the left hemisphere and are color coded according tomain n

of the respective networks. Note that for visibility, the data are shown on a regio

network components are shown in each case (only those with the highest correl

8 Cell Reports 40, 111287, August 30, 2022
5C), whichmay reflect a need for attention and complex problem

solving in a common hominin ancestor. Interestingly, when

analyzing a more restricted set of the hominin branches alone

(branches 6, 7, 10, 11, and AMH), the biggest cluster of 102

genes originated in the ancestor of all hominins (branch 6) and

correlated with the language FN (language FN; Table S5; Fig-

ure S5). This language cluster contained the FOXP2 gene, re-

flecting its role as the canonical language-associated gene in hu-

mans, which acquired its latest point mutation around that time

(Enard et al., 2002), and ARHGAP32, previously discussed in hu-

man cognitive evolution (Lombard and Högberg, 2021). We

believe that these data represent one of the earliest neurogenetic

traces of language, which coevolved with cognitive processing

(CEN) (Figures 4L, 5B, and 5C) in early hominins. Importantly,

language continued to be highly selected during AMH speciation

compared with that in Denisovan and Neanderthal, which both

lack a language bicluster. Traces of later hominin evolution

(branch 10) reveal evolutionary selection of emotion recognition

(emotional face FN). The AMH branch is characterized by biclus-

ters of working memory (working memory FN), motor control

(motor-hands FN), language (language FN), and a notable

emphasis on strategic thinking (gambling-reward FN). The corre-

sponding genes (Figure 5C) largely overlap with those described

previously (Figure 4B) and are linked to higher cognitive function.

Denisovan hominin speciation biclustered with networks for

motor control (sensorimotor, motor-hands, and motor-feet

FNs), affective attention/introspection (salience/default mode

FNs), affective processing/impulse/emotion control (cortico-

limbic, prefrontal-accumbens/amygdala FNs), active/passive

attention (dorsal/ventral attention), and action planning (fronto-

parietal FNs) networks (Figures 5B and 5C). Among the co-

evolving genes was HTR2C, which is connected to a broad

spectrum of higher cognitive function (Data S1). Overall, these

data suggest broad rearrangements that continued from early

(branch 6) hominin evolution. Interestingly, highly ranked u

biclusters in Neanderthal, who split from the common ancestor

with AMH later than Denisovan, now correlated with both stra-

tegic thinking (gambling FN) and working memory (working

memory FN) (Figures 5B and 5C). This bicluster also involves

MMP17, a neuronal metalloproteinase associated with mathe-

matical skills (Data S1). The evolution of strategic thinking in

both Neanderthal and AMHs indicates that this is an important

trait in recent hominin environments. However, AMHs evolved

a stronger propensity for strategic thinking (gambling and
aces of cognitive evolution in the AMH brain

y biclustering of evolutionary selection (gene-wise u ranks for branches 1–11

space). Biclusters (colored blocks) represent co-evolving FNs and gene sets

0.90 rank cutoff) among major and alternative gene-tree topologies.

olutionary space via t-distributed stochastic neighbor embedding (t-SNE) with

. Individual biclusters (1–21) with highlighted neurocognitive-associated genes

FNs (Tables S12 and S6) in evolutionary history. Circle size corresponds to

functional brain network, generated via BrainTrawler (Ganglberger et al., 2019)

ed u (0.9 percentile) corresponding to associated FNs. The nodes represent

euroanatomical units from ABA. The edges show gene-expression correlations

nal level, although they are computed on a 3,702 biopsy-site level, and not all

ation).
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Figure 5. Imputing shared and divergent cognitive traits along AMH archaic ancestry

(A) Biclustering of FNs as in Figure 4 was performed solely on the hominid branch (branches 5–11, chimp, Denisovan, Neanderthal, and AMH).

(B) Highest-rankedu values (at a 0.90 rank cutoff) among hominid branches (branches 5–11, chimp, Denisovan, Neanderthal, and AMH). Visualization of the top-

ranked functional brain network, generated via BrainTrawler (Ganglberger et al., 2019) and highlighting the highest spatial gene-expression correlations of highly

ranked u (0.9 percentile) genes corresponding to the associated FNs. The nodes represent anatomical regions in the left hemisphere and are color coded ac-

cording to the main ABA neuroanatomical structures. The edges show gene-expression correlations of the respective networks. Note that for visibility, the data

are shown at a regional level, although the analysis was computed at the dense 3,702 biopsy-site level, and not all network components are shown in each case

(only those with the highest correlation).

(C) High-ranked u (at 0.90 rank cut-off) biclusters were embedded into 2D evolutionary space via t-SNE with the combined genetic and functional/temporal
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gambling-reward FNs with the highest average u in AMHs; Fig-

ure S6). Together with the prominent traces for language, these

data suggest that the co-evolution of strategic thinking and lan-

guage were particularly dominant traits in the evolution of AMH.

Taken together, our approach traced evolutionary adaptions

from strong purifying selection throughout �61 my of primate

evolution (Figures S6, left, bicluster averages of u > 0.5, and

S11). The identified cognitive traits associated with these devia-

tions arose from complex processes that exploited evolutionary

freedoms in brain FNs, various cellular networks, diverse molec-

ular functional interactions, and single gene effects, with hot-

spots at each of these levels (Figure S11).

Moreover, along mammalian phylogenies, periods of molecu-

lar and organismic divergence alternate with periods of strong

purifying selection (u= 0), when functions are relatively fixed (Ko-

siol et al., 2008). Therefore, we contrast our findings associated

with highly ranked u to patterns of purifying selection by

repeating biclustering with low ranked u (Figure S6, right). The

occurrence of the sameFN (Figure S6), brain cell type (Figure S7),

Ingenuity Pathway Analysis (IPA) functional category (Figure S8),

or neurocognitive association (Figure S9) in both high- and low-

ranked u biclusters (but for different branches in the phylogeny)

indicate shifts from purifying to relaxation of constraint and pos-

itive selection. We speculate that these cases associated with

significant high- and low-ranked u and switches between them

point toward important evolutionary hotspots along the phylog-

eny. The occurrence of both processes in the same branch is

not contradictory in this regard; rather, it may suggest high pos-

itive and purifying selection on the same FN, cell type, IPA, or ge-

netic association, which notably emerges from a set of different

genes. Overall, this can be generally reflected by the row count

across both high and low u biclusters for differing biological

levels (Figures S6–S9 and S11).

DISCUSSION

This study exploited several recent big data initiatives on geno-

mics and brain function to explore evolutionary events that

shaped the brain and behavior of AMH along its ancestral line-

age. Due to the absence of brain tissue specimens from ances-

tral hominid species, we aimed to reconstruct the ancestral evo-

lution of cognitive functions by mining for traces of selection

pressure on the AMH brain itself. We note that the extrapolation

of intermediate ancestral reference brains from extant hominid

and primate species can refine this approach, in principle. How-

ever, it remains unclear whether these results would be funda-

mentally different. Therefore, we contend that tracing these

changes directly in the AMH brain is the most straightforward

and informative way to study human ancestral neurocognitive

evolution within the direct AMH ancestral lineage (Figure 4A)

and the speciation of archaic hominins (Figure 5A).

This computational strategy explores compound neuroge-

netic effects on brain networks, which are untraceable when

studied in isolation on a gene-by-gene basis. From the genetic

perspective, the evolution of functional traits is inherently multi-

genic. Therefore, single-gene studies in transgenic mouse or

organoid models, although mechanistically powerful (Florio

et al., 2015; Di Lullo and Kriegstein, 2017; Trujillo et al.,
10 Cell Reports 40, 111287, August 30, 2022
2021), cannot easily assess genetic synergies underlying spe-

cific cognitive traits from brain-wide FNs. This study aims to

complement these functional approaches by (1) holistically

mapping evolutionary selection across different traits along

ancestral lines and (2) identifying candidate gene sets that facil-

itating these adaptations. In turn, the functional exploration of

our data in suitable experimental systems may reveal the un-

derlying mechanistic detail.

We showcase an approach for reconstructing the evolu-

tionary history of functional selection using the genetic remains

of long-extinct species by projecting compound evolutionary

rates of changes onto a functional anatomy reference frame-

work. This strategy can be useful to functionally explore biolog-

ical systems that are unavailable for traditional experimental

studies. Our straightforward evolutionary genetic analysis could

be expanded to include hominin-specific genes and population

data of AMHs and archaic hominins when they become avail-

able. As it stands, the rank-order approach used in this study

(Figure 1B, top) has extracted meaningful results (Figures 2,

3, 4, and 5), even within closely related species. The absolute

u estimates corresponding to these ranks (Figure 1B, bottom)

allow for a secondary interpretation of these processes

(Figures S6–S9): u estimates greater than 1 indicate positive

selection, low u purifying selection, and changes from smaller

to higher u relaxation of selective constraints, which may

play an important role in phenotypic differentiation (Hughes,

2012; Hunt et al., 2011; Lahti et al., 2009; Lynch and Conery,

2000; Ohno, 1970; Snell-Rood et al., 2010; Templeton, 2008).

Therefore, focusing on genes with high u should be particularly

sensitive for tracing newly—at the respective time—evolving

phenotypes. In line with the argument that high u gene sets

may reflect (or even drive) neurocognitive evolution, there are

significant neurogenetic associations across nearly all biclus-

ters with neuronal signaling, cognitive function, and psychiatric

symptom domains (Figure S8). In most of these biclusters, we

find genes under positive selection (Figure S6), indicating adap-

tive processes in these neurocognitive domains.

The genetic data add to the long-held notion that overall,

cortical genes are more conserved than those of the subcortex

(Tuller et al., 2008). In this study, we found that high u ranks

and subsequent signatures of adaptive selection are predomi-

nantly subcortical early in primate evolution while cortically

accumulating within the recent human ancestry (Figure 3). These

findings retraced complex mechanisms across biological levels

(i.e., molecular, single-gene associations, multigenic molecular

functions, cellular, and FNs) during evolutionary history. Indeed,

the evolutionary dynamics within genetic, cellular, and FNs

largely segregate (data not shown), suggesting complex evolu-

tionary motifs that shape neurocognitive evolution within and be-

tween these levels of functional organization within the brain.

Here, such evolutionary motifs of molecular, cellular, and

network clusters become apparent. For example, key events in

AMH FN evolution (Figure S11) were correlated with the domi-

nant selection of distinct sets of mostly excitatory SFG neurons,

molecular pathways related to synaptic function, and genes that

are generally associated with intelligence andmathematical abil-

ity. These cross-level motifs, spanning the molecular control of

synaptic function in specific sets of excitatory cells, may be
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evolutionary hotspots driving computational power in the

respective FNs.

In early hominoid evolution, these findings delineate a critical

neurogenetic framework for archaic cognitive abilities and align

with key events including the backdating of theory of mind FN

(Kano et al., 2019; Krupenye et al., 2016) and ancient art (Hoff-

mann et al., 2018; Jaubert et al., 2016) to hominoid ancestry

(Figure S6). Our computational neuroarchaeological data also

suggest that archaic ancestors (branches 6 and 10) and AMH

lineages evolved networks for language as the dominant trait.

Interestingly, there is temporal shift in selection from Wer-

nicke-to Broca-related areas (Figure 2; Data S3). This sequence

is consistent with a long-standing hypothesis that more rudi-

mentary vocal understanding may have evolved prior to the

advanced ability for speech production (Jarvis, 2019). The se-

lection of genes expressed in language networks had already

occurred by the time archaic Homo species evolved. Therefore,

it is plausible that evolutionary pressure for verbal communica-

tion had already evolved in Homo erectus in Africa (branch 6)

with traces of positive selection (Figure S6) long before this

species migrated to Eurasia and gave rise to Neanderthals

and Denisovans. This notion places the time frame for the evo-

lution of language prior to the earliest divergence among the

studied hominid species, between approximately 6 mya to

500 kya. Further, this identifies language as a dominant multi-

genic trait across the neurocognitive spectrum in the evolution

of Homo erectus. In turn, this supports broader inferences that

have emerged from archaeology (Wynn, 1998) and single genes

(i.e., FOXP2) (Enard et al., 2002) and together suggests the crit-

ical evolution of language during this period. Interestingly, in

later branches, archaic hominin traces of the evolutionary se-

lection of language skills peak during AMH speciation but not

within other hominins. This pattern adds insight to the long-

standing interest about the timing and origin of human lan-

guage (Dediu and Levinson, 2018; Lieberman, 2015), which

attribute language capabilities across archaic hominins, poten-

tially inherited from H. erectus, whereas further refinement of

language skills is specific to AMH. Finally, in addition to the lan-

guage network in AMH ancestry (branch 6), we find traces of

evolution in gambling networks as a possible emerging feature

of recent hominin evolution in Neanderthals (one bicluster un-

der relaxation of constraint), which becomes even more domi-

nant in AMH (two biclusters under positive selection). It is

tempting to speculate that these divergent neurogenetic adap-

tations in strategic thinking and further selection of language

and verbal communication may have contributed to the separa-

tion of AMH from its closest relatives and, ultimately, its evolu-

tionary success.

In summary, we fused multimodal publicly available data into

a holistic exploration of human cognitive history from genetic

traces of its past. As with any neuroarchaeological method,

we only suggest probable and plausible scenarios rather than

settle ultimate truths. Along these lines, our predictions can

be easily extended and can improve as more ancient genomes

and brain data become available. We believe that such ap-

proaches serve as a valuable complement to existing evolu-

tionary genetics and functional genetics in humanized models

(organoids, transgenic animals). Here, our workflow unraveled
neurogenetic selection for complex neurocognitive traits in

archaic primate brains, like emotional face recognition, motor

control, and working memory, along with strategic thinking (Fig-

ures 4, 5, and S5) (Mattson, 2014).

Limitations of the study
Genetically, u values are valid proxies for genome-wide selec-

tion under the assumption that different types of genetic

changes (i.e., noncoding mRNA regulatory sequences, indels,

and species-specific genes/duplications and losses) likely un-

derlie the same macroscopic selective forces at the organismic

level. However, these different changes may add additional

layers of functional evolution that exceed the limit of our data,

but these factors should be explored in future studies. Moreover,

as there are no sufficient population data across the (extinct)

species set to identify polymorphic sites, we ignored polymor-

phisms in our analyses. Polymorphisms may lead to smaller u

values (Kryazhimskiy and Plotkin, 2008), thereby underestimat-

ing positive selection within some genes. Consequently,

although high u ranks reliably map phenotypic adaptation within

brain networks, the corresponding absolute u value may be

underestimated at times.

Neuroanatomically, the brain space in this study was based

on maps with biopsy site resolution and with an a priori

defined set of FNs. As such, future studies may use a finer

resolved atlas and a wider spectrum of FNs, which would

lead to more nuanced differentiation. Notably, we use adult

expression data to report phenotypic selection of cognitive

traits. That said, developmental programs also contribute

significantly to the adaptive evolution of brain function. As

some patterning (Kirsch and Chechik, 2016) and wiring (Falk-

ner et al., 2016) programs are also functional in adults, we

partially capture such developmental patterning and wiring ef-

fects indirectly (e.g., neocortical expansion; Figure S8, ‘‘brain

size’’ functional annotation). Therefore, despite not mining

developmental brain evolution per se, our adult dataset seems

to be a reasonable approximation for dissociating the evolu-

tion of adult cognitive traits for the purposes of our study.

However, it is worth applying the same workflow to develop-

mental atlases to specifically contrast developmental and

adult functional evolution.

Taken together, our study provides a current snapshot of

evolutionary patterns based on the data available. By iterating

these workflows with more detailed/different future genomic,

proteomic, single-cell, and FN network data, we will refine the in-

terpretations of these findings and create opportunities for

further insight.
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Adams, D.J., and Keightley, P.D. (2013). Contributions of protein-coding and

regulatory change to adaptive molecular evolution in murid rodents. PLoS

Genet. 9, e1003995. https://doi.org/10.1371/journal.pgen.1003995.

Hanks, T.D., and Summerfield, C. (2017). Perceptual decision making in ro-

dents, monkeys, and humans. Neuron 93, 15–31. https://doi.org/10.1016/j.

neuron.2016.12.003.

Hawrylycz, M., Miller, J.A., Menon, V., Feng, D., Dolbeare, T., Guillozet-Bon-

gaarts, A.L., Jegga, A.G., Aronow, B.J., Lee, C.K., Bernard, A., et al. (2015).

Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18,

1832–1844. https://doi.org/10.1038/nn.4171.

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L.,

Miller, J.A., van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., et al.

(2012). An anatomically comprehensive atlas of the adult human brain tran-

scriptome. Nature 489, 391–399. https://doi.org/10.1038/nature11405.

Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K.D., andWray, G.A. (2007).

Promoter regions of many neural- and nutrition-related genes have experi-

enced positive selection during human evolution. Nat. Genet. 39, 1140–

1144. https://doi.org/10.1038/npre.2007.69.1.

He, Z., Han, D., Efimova, O., Guijarro, P., Yu, Q., Oleksiak, A., Jiang, S.,

Anokhin, K., Velichkovsky, B., Gr€unewald, S., et al. (2017). Comprehensive

transcriptome analysis of neocortical layers in humans, chimpanzees, andma-

caques. Nat. Neurosci. 20, 886–895. https://doi.org/10.1038/nn.4548.

Hecht, E.E., Murphy, L.E., Gutman, D.A., Votaw, J.R., Schuster, D.M., Preuss,

T.M., Orban, G.A., Stout, D., and Parr, L.A. (2013). Differences in neural activa-

tion for object-directed grasping in chimpanzees and humans. J. Neurosci. 33,

14117–14134. https://doi.org/10.1523/JNEUROSCI.2172-13.2013.

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human

brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad.

Sci. USA 109, 10661–10668. https://doi.org/10.1073/pnas.1201895109.

Herculano-Houzel, S., Collins, C.E., Wong, P., and Kaas, J.H. (2007). Cellular

scaling rules for primate brains. Proc. Natl. Acad. Sci. USA 104, 3562–3567.

https://doi.org/10.1073/pnas.0611396104.

Herrmann, E., Call, J., Hernández-Lloreda, M.V., Hare, B., and Tomasello, M.

(2007). Humans have evolved specialized skills of social cognition: the cultural

intelligence hypothesis. Science 317, 1360–1366. https://doi.org/10.1126/sci-

ence.1146282.

Hill, K., Barton, M., and Hurtado, A.M. (2009). The emergence of human

uniqueness: characters underlying behavioral modernity. Evol. Anthropol. Is-

sues News Rev. 18, 187–200. https://doi.org/10.1002/evan.20224.

Hoffecker, J.F. (2018). The complexity of neanderthal technology. Proc. Natl.

Acad. Sci. USA 115, 1959–1961. https://doi.org/10.1073/pnas.1800461115.

Hoffmann, D.L., Standish, C.D., Garcı́a-Diez, M., Pettitt, P.B., Milton, J.A.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Sequence data

Mus musculus

Otolemur garnetti

Callithrix jacchus

Macaca mulatta

Nomascus leucogenys

Pan troglodytes

Gorilla gorilla

Homo sapiens

OMA orthology database https://omabrowser.org/oma/home/

Sequence data

Homo Denisovan

Max Planck Institute for Evolutionary

Anthropology

http://cdna.eva.mpg.de/denisova/

VCF/hg19_1000g/

Sequence data

Homo neanderthalensis

Max Planck Institute for Evolutionary

Anthropology

http://cdna.eva.mpg.de/denisova/

VCF/hg19_1000g/

Human brain gene expression pattern Allen Human Brain Atlas (ABA) https://human.brain-map.org/

Task-evoked functional brain activity maps (FNs) Human Connectome Project (HCP) www.humanconnectome.org

Functional genetic annotations Ingenuity Pathway Analysis (IPA) https://www.qiagenbioinformatics.

com/products/ingenuitypathway-analysis

Genetic associations OpenTargets database https://platform.opentargets.org/

Software and algorithms

GABi: Genetic Algorithm for Generalized Biclustering Curry, 2014 https://rdrr.io/cran/GABi/man/GABi.html

Predicting functional neuroanatomical maps from

fusing brain networks with genetic information

Ganglberger et al., 2018 https://github.com/NeuroscienceTools/GWCA

BrainTrawler Ganglberger et al., 2019 https://doi.org/10.1016/j.cag.2019.05.032
RESOURCE AVAILABILITY

Lead contact
For further information and resource requests, please contact Wulf Haubensak (wulf.haubensak@meduniwien.ac.at).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Sources associated with published data are listed in the key resources table and referenced in the STARMethods. All data generated

in the preparation of this manuscript are included in Tables S2, S3, S4, S5, S6, S7 and Data S1.

The code used to compute the evolutionary genetic data is described in the STAR Methods and included in Data S5. The code

developed for building the computational neuroanatomy atlas and biclusters is described in the STAR Methods and can be found

in Data S6.

Any additional information required to reanalyze the data reported in this paper will be made available by the lead contact upon

request.

METHOD DETAILS

Phylogenetic analysis and u calculation
Data collection

We selected 20,787 human protein-coding genes together with their brain expression data sourced from oligo microarrays from the

Allen Human Brain Atlas (Hawrylycz et al., 2012). The brain gene expression data comprise 3,702 biopsy sites across the brain.
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According to theOMAorthology database (accessed on 26.03.2019; (Altenhoff et al., 2018)), among the 20,787 protein-coding genes

in humans only 10,030 exhibited 1:1 orthologs in species 1-7 presented in Table S8. We collected the coding sequences for these

10,030 genes in species 1-8 presented in Table S8. If a human gene has several transcripts, only one is used for the identification of

orthologs in the OMA database. Accordingly, we use only one splice variant per gene in our analysis.

Genes that correspond specifically to Denisovan and Neanderthal were reconstructed from the human coding genes as annotated

in GRCh37 substituting the SNPs extracted from VCF files using VCFtools (v0.1.11; (Danecek et al., 2011)). Only high-quality SNPs

(minQ = 30, minDP = 10) were mapped to the human reference genome (hg19/GRCh37) using the Genome Analysis Toolkit (GATK,

v4.1.1.0; (McKenna et al., 2010)). Next, we obtained coding sequences for Denisovan and Neanderthal using bedtools (v2.28.0;

(Quinlan and Hall, 2010)) and exon information (position and orientation) obtained for GRCh37 human genome assembly from

Ensembl project (accessed on 26.03.2019; (Hunt et al., 2018), http://grch37.ensembl.org/index.html).

The 10,030 OMA-orthologs are based on the GRCh38 human genome assembly, whereas Denisovan and Neanderthal coding

sequences were prepared using the GRCh37 assembly. Differences in annotations of the human genome assemblies led to the

exclusion of 533 OMA-orthologs (some transcripts were not annotated in GRCh37, whereas other transcripts had different lengths

of coding sequences reported in GRCh37 and GRCh38).

Among the remaining 9,497 ortholog genes, 4,300 genes had identical sequences in at least two of the ten species (Table S9).

Phylogenetic analysis

Population genetics theory predicts incomplete lineage sorting (ILS) for recently and rapidly diverged species; thus, a gene-tree may

be different from the species-tree (Nei, 1987). ILS is well-known for the gorilla, chimp, and human species-tree, whereas three

different gene-trees are compatible with the species-tree (Ebersberger et al., 2007). This is also observed for the Denisovan, Nean-

derthal, human triple (Meyer et al., 2014; Reich et al., 2010), where three different gene-trees are possible. In summary, this results in

nine different gene-trees, coined ILS-trees (Figure S12, bottom), whereas the sub-trees comprising the five non-hominids agree with

the canonical species-tree (Figure S12, top). According to population genetics theory, 105 gene-trees are compatible with the spe-

cies-tree. However, we show that the ILS-trees are the most frequent and provide a compromise between considering only the spe-

cies-tree or all different gene-trees.

For each gene, a multiple sequence alignment was built with PRANK (v.151120; (Löytynoja, 2014)) with the codon option, which

uses the codon substitution matrix developed by Kosiol et al. (Kosiol et al., 2007). Maximum likelihood gene-trees were inferred using

IQ-TREE (v1.6.10; (Nguyen et al., 2015)) using the best-fit codonmodel identified byModelFinder (Kalyaanamoorthy et al., 2017). For

each gene we performed five independent IQ-TREE runs to avoid getting stuck in local optima. The tree with the highest likelihood

among the five runs is considered the (maximum likelihood) ML-tree.

Of 9,497 ML-trees, 6,256 agreed with one of the nine ILS-trees (Figure S12). Note, that due to short sequences and little phyloge-

netic information provided by multiple sequence alignment, tree reconstruction may be inaccurate. Therefore, we applied the

Approximately Unbiased tree topology test (AU-test, (Shimodaira, 2002)) to the 3,241 ML-trees not compatible with any of the

ILS-trees. The AU-test computes the p-value for each tree from a user-defined collection of (plausible) trees. If the p-value is larger

than 0.05, the corresponding tree is not rejected and is therefore a plausible alternative to the ML-tree, which also appears in the

collection.

Thus, for each genewe run the AU-test (as implemented in IQ-TREE) with ten trees: theML-tree and the ILS-trees. According to the

AU-test for only 519 genes, all ILS-trees performed significantly worse than the ML-tree. For the remaining 2,722 genes, at least one

ILS-tree was not rejected. For each of the 2,722 genes we selected the gene-tree with the highest p-value among the non-rejected

ILS-trees and used it instead of the ML-tree in subsequent analyses. If several trees yielded the same (maximum) p-value, one of the

trees was chosen at random. This process generates a total of 8,978 gene-trees compatible with our current view of the species-tree.

To ensure that the subset of nine chosen ILS-trees (Figure S12) from the 105 possible ILS-trees is a viable alternative to ML-trees

for most genes, we repeated the AU-test by analyzing a set of 106 trees: all possible 105 ILS-trees and the ML-tree. In this second

analysis, at least one of the nine ILS-trees was among the alternatives (i.e., not rejected) for asmany as 2,794 genes (with 2,022 cases

being among the best alternatives, i.e., having the maximum p-value). For 366 genes all 105 ILS-trees were rejected and for only 81

genes all nine ILS-trees from Figure S12 were rejected, whereas some other ILS-trees were not rejected. Since only a fraction of

genes could be better explained by the ILS-trees outside of the nine considered, we carried out the analysis for the aforementioned

8,978 gene-trees.

u calculation

For each of the 8,978 gene-trees, we computed ratios of non-synonymous (dN) to synonymous (dS) nucleotide substitutions rates,u.

For each gene-tree we performed five codeml (implemented in PAML v4.9i, (Yang, 2007)) runs to estimate branch specificu0s (Yang,
1998; Yang and Nielsen, 1998). Specifically, for each gene-tree codeml computed the branch lengths (i.e., the expected numbers of

nucleotide substitutions per codon) andu for each branch in the gene-tree. For subsequent analysis, we used the gene-tree specific

u0s that afforded the highest likelihood for the particular gene-tree among 5 codeml runs.

Due to characteristics of the data (e.g., little sequence divergence, short sequences), we worked with unstable or unreliable esti-

mates of the u0s. We identified an u value as unstable if its estimates varied across 5 runs by more than 10%. Moreover, we labelled

an u as unreliable if the corresponding branch length was < 10� 4.
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For an overview ofu estimates for each branchwe split the values into four categories: (i) filtered out values (unstable and unreliable

estimates); (ii) 0 values (i.e., dN = 0); (iii) values from 0 toN (i.e., dNs0, dSs0); and (iv)N values (i.e., dS = 0). Figures S13 and S14

provide plots for each branch and Table S10 summarizes all data.

In the hominid clades, many u values were either filtered out or were equal to zero or ∟. ,ith the exception of Branch 8 (the Deni-

sovan branch) (see Figures S14, S13 and Table S10 for comparison). This is expected, since in general hominid species sequences

are very similar to one another resulting in limited information/mutations to infer the parameters. Despite the large proportion of 0’s

and filtered out values, there remained many u estimates greater than 0.

Archaic andmodern humans are genetically very similar. However, there are insufficient population data for extinct species to iden-

tify polymorphic sites. Moreover, due to polymorphismwithin population data, positive selection can lead to smaller, but not larger,u

estimates (Kryazhimskiy and Plotkin, 2008) than without polymorphism. Therefore, this approach might underestimate positive se-

lection in some genes (i.e., those that are exposed to polymorphism), however we still identified a sufficient number of genes with u

>1 (Figures 1B and S6), a characteristic indicator of positive selection. As such, we speculate that despite high genetic similarity be-

tween the AMH and its archaic relatives, polymorphism does not affect u estimation of all the genes. Genes with high u are the pri-

mary focus of this study. We also applied stringent filtering to the data and included only reliably estimated u values in the analysis.

Additionally, we reasoned that using rankedu (see STARMethods, Computational neuroanatomy) instead of absolute estimatesmit-

igates the effect of potentially biased estimation due to polymorphism. Overall, u estimation is a comparably conservative approach

in the absence of population data to represent extinct species.

Phylogenetic timeline

To determine the general evolutionary relationships among the selected species and reconstruct the timing of evolutionary diver-

gences, we reconstructed a phylogenetic tree from mitochondrial genomes using a Bayesian approach in BEAST 2.5 (Drummond

and Rambaut, 2007). First, the best nucleotide substitution model was determined using JMODELTEST (Posada, 2008). We then im-

plemented this model in BEAST. To account for variable rates of evolution among different primate lineages, we used a relaxed

lognormal prior on the clock rate. We used three independent normally distributed and soft-bounded calibration priors (Perez

et al., 2013) to place a timeframe onto our phylogeny. We used an AMH-chimpanzee mean divergence of 7.8 Mya (SD 1.2 Mya),

and Old-World monkey-ape divergence of 28 Mya (SD 3 Mya) and lastly, we placed a 60 Mya mean (SD 2.8 Mya) time for the coa-

lescence of all primate lineages. This fully parameterized model was run five times, each time for 200 million simulations, logging pa-

rameters every 20,000 steps, and discarding the first 20% as burn-in. MCMC convergence was assessed by viewing MCMC traces

directly and by ESS values in TRACER 1.6 (Rambaut and Drummond, 2007). A maximum clade credibility tree was calculated and

annotated in Figtree 1.4 (Rambaut and Drummond, 2007). The results of the mt-derived phylogeny (Figure S12) support the major

gene tree topology in Figure 1A.

Note that, formally, Denisovans and Neanderthals split after the split from the human ancestor. However, mtDNA derived phylog-

eny and the major gene-tree topology (Figure 1A) places Neanderthal closer to AMH (Meyer et al., 2014) and support a Chimp-to-

Denisovan-Neanderthal-AMH species order.

Computational neuroanatomy
Genetic data preparation

To compute the evolutionary signatures in the mammalian we used 8,978 genes (rows) x 21 branches (columns). The spatial gene

expression data (oligo microarrays) for genes at 3,702 biopsy sites in the brain were downloaded from the Allen Human Brain Atlas

(ABA).

We ranked-normalizedu for each branch (rank/number of genes) and omitted undefinedu (dS = 0) values (Villanueva-Cañas et al.,

2013). u values were transformed with ranked-normalized u0s close to 1 corresponding to the largest u0s for a given branch and a

rank-normalized u0s close to 0, indicating the lowest values (see Table S3) (Figure S16).

Task-evoked functional brain activity

Task-specific brain activity maps were downloaded from the Human Connectome Project (HCP) website (www.humanconnectome.

org). We used data available for seven major domains, whose detailed descriptions can be found in Barch et al. (Barch et al., 2013).

Contrasts selected for comparison with u functional maps were collected and are presented in Table S12. The contrast labels and

behavioral signature descriptions correspond to Tavor et al. (Tavor et al., 2016). To identify significant brain activity, z-scores of the

task fMRI were subjected to thresholds +/� 5 (i.e., a signal within 5 sigmas from the mean was omitted) as indicated by Barch et al.

(Barch et al., 2013). To compare these data with spatial gene expression data, we sampled the task fMRI data at theMNI coordinates

of 3,702 biopsy sites. We visualized the results at a regional level in Figure S4 (top). Note, that this was conducted for the purpose of

readability and visualization. The data are used for subsequent analyses on the original 3,702 site level.

Functional network meta-comparison

Literature-based regional comparisons involved in several functional networks were extracted from fMRI scans and correlated with

functional maps (STAR Methods, Generating u-weighted maps). The networks used in the study are presented in Table S13. To

ensure the data aligned with the task fMRI and the spatial gene expression, we upsampled region-level data to the biopsy site level

labeling present/absent (0/1). The region level results are depicted in Figure S4 (bottom) for readability and visualization purposes.

The data are used for subsequent analysis on the original 3,702 site level.
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Generating u-weighted maps

To visualize the evolutionary landscape throughout brain’s phylogenetic history, we created brain-region level evolutionary maps that

color-code each region by its evolutionary timepoint. Timepoints were encoded by associating each brain region with the branch that

yielded the strongest structural association of genes with high u values.

To predict the association of genes released from strong purifying selection (high u) with functional neuroanatomical maps, we

applied a recently developed methodology (Ganglberger et al., 2018). Specifically, for internal (Branch 1-11) and external branches

leading to chimp, Denisovan, Neanderthal and human we applied the corresponding rank-normalized u to weight the spatial gene

expression of 3,702 biopsy-sites from microarray data of the ABA (Hawrylycz et al., 2012). The multiplication of a gene’s expression

with its u of a branch resulted in 15 (for each branch) different weightings of the input gene set. Spatial gene expression was normal-

ized by robust z-score normalization (median andmedian absolute deviations in lieu ofmeans and standard deviations) to account for

sample and region effects.

To obtain the cumulative characteristic transcriptomic properties of an evolutionary branch at a biopsy-site, we aggregated the

weighted spatial gene expression by computing the trimmed mean. For statistical evaluation, we compared this measure to weight-

ings with randomly shuffled u (n = 10000) using z-tests. The False Discovery Rate of the resulting p-values was adjusted using the

Benjamini-Hochberg method (FDR = 0.1).

Finally, we combined the 15 individual selection maps into a single evolutionary map of selection history. To this end, brain regions

were colored by branch with the most significant regionally-averaged p-value. Figure 2 shows the data on a regional level for read-

ability and visualization purposes, however the data were computed on the 3,702-biopsy site level (labeled and annotated selected

brain slices: Figure S2, all brain slices: Data S2). To analyze the selection pressure on brain regions over time (i.e., how biopsy site

p-values changed for different branches), we performed hierarchical clustering (Ward D2 Criterion). This resulted in 8 clusters of bi-

opsy sites (more clusters did not increase variance) that show similar timelines (Figure 3A visualizes the biopsy level data on a region

level for readability). We visualized the clusters’ timelines in Figure 3B, where we computed rank normalization of the –log10 p-values,

so that values close to 1 indicate high significance (i.e., higher selection pressure), and values close to 0 indicate lower significance

(i.e., lower selection pressure).

Note, that the individual maps only showed themost significant p-value of biopsy sites within a brain region (slices 9, 18, 27, 36, 45,

54, 63, 72, 81, 90, and 99 of the Allen Human Brain Atlas: atlas.brain-map.org/atlas?atlas = 265297125), since the evolutionary map

was computed first at the biopsy site-level (Table S4) and then visualized on a regional level.

Given that the high conservation between closely related species yields only few genetic changes and a low numbers of high u

genes (e.g., Figure 1B, Branches 7, ‘Neanderthal’ and ‘AMH’ in recent hominin evolution), which makes their impact notoriously diffi-

cult to interpret. The workflow above used to generate thesemapswas specifically tuned for use in small to medium size gene sets of

�10-100 functionally-related genes (Ganglberger et al., 2018). In our case, it allowed us to probe for statistically meaningful evolu-

tionary patterns evenwith only a few diverging genes between close species. Consequently, for evolutionarily-grouped gene sets, the

methods yielded robust predictions for these branches, which had sufficient genetic information (Figure 1B, ‘Major tree’). In contrast,

less prominent side branches with too few genes (e.g., Figure 1B, ‘Alt. trees’) consequently did not reach significant accumulation in

any brain region (Figure S2).

Subspace pattern mining for network evolution via biclustering

To identify genes linked to specific tasks or functional networks, we mined co-evolving genes with high spatial correlations to

these networks. Therefore, we retrieved AMH spatial gene expression data from 3,702 biopsy sites in the ABA for each of the

8,978 genes in the u ranked table. We mapped both the task fMRI data of 11 networks (STAR Methods, Task-evoked functional

brain activity) and the literature-based data from another 11 networks (STAR Methods, Functional network meta-comparison) to

the gene expression data of the biopsy sites and computed Spearman rank correlation coefficients over the 3,702 sites between

every gene and network.

First, we rank-normalized the 89783 11 fMRI-to-gene-expression matrix and the 89783 11 literature-to-gene-expression matrix

to allow for comparison across both types of functional data. Functional network specificity for each gene was computed by rank-

normalization (rank/rank/number of networks) for each gene over all networks, so they mapped to a range between 0 and 1, where

networks with the lowest correlations were set to zero and those with the highest correlations were set to a value of 1. We concat-

enated these data with the table of u-ranked genes for each of the 21 evolutionary branches in the main and alternative tree topol-

ogies, resulting in an 89783 43 spatio-temporal network table (Table S7). For this table, we set correlation value for genes with a low

overall correlation with all networks (i.e., < 0.1) to 0.

Next, we mined both these data tables in R using GABi (Curry, 2014), a framework that facilitates a genetic algorithm for bicluster-

ing rows and columns of a matrix simultaneously. Compared to other biclustering algorithms, GABi allows for the definition of

customized bicluster properties, such as coherence, consistency, and size. We used these custom criteria, also called the ‘‘fitness

function’’, to identify biclusters of highly selected genes (e.g., genes that have high u ranks over multiple branches) with high spec-

ificity for similar functional networks (e.g., genes with high network correlation ranks for the same networks). Therefore, GABi creates

a set of candidate solutions (i.e., a set of genes) and applies the fitness function to determine the branches and networks that fit the

custom criteria. The algorithm iteratively optimizes the candidate solutions to find the largest bicluster fitting these criteria by means

of evolution-inspired operators such as mutation, crossover, and selection (Curry, 2014). We defined the following custom criteria for

the fitness function to identify the largest bicluster:
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1. with at least one branch and one network, since biclusters without one of these criteria do not represent genes with high u

ranks and high specificity for similar functional networks

2. with branches with an u rankR0.9 for genes in the bicluster. This selects only genes that have branches with an u rank above

or equal to 0.9, putting them in the upper 10th percentile ofu ranks. Therefore, they are considered the top 10 percent of genes

with the highest selection pressure. We applied the criteria also with an u rank %0.1 to obtain biclusters with low selection

pressure (Table S5).

3. with networks with a mean network correlation specificity rank R0.75 for genes in the bicluster. Therefore, only genes with a

network specificity in the top 25% (i.e., the networks with the 1-5th highest correlation with each gene) were present in the

bicluster (Table S5).

If a bicluster has these properties, we defined its fitness as:

fitness = r�
�
c�
uwu + cnetwork

�wnetwork

�

where r is the number of rows, cu the amount of u rank columns. cnetwork is the amount of gene-to-network correlation rank columns

that have not yet been assigned to another bicluster. This ensures that the GABi algorithm looks for the largest biclusters for every

network in subsequent iterations. For more information, see the usage of ‘‘tabu-lists’’ in (Curry, 2014). wu and wnetwork are weighting

factors to account for different amounts of u rank columns (21) and network correlation rank columns (22). Otherwise, it is more

likely to identify biclusters with network correlation rank columns than u rank columns. For u-network biclustering, wu = 1.024

and wnetwork = 0.977 sum up to 43 (21 + 22) again. Therefore, the columns count in total the same as for an unweighted approach,

but individually u rank columns count more than network columns.

To account for the large proportion of filtered out values (category i), 0’s (category ii) and N values (category iv) (see STAR

Methods, u calculation for details), we replaced cu with uvalid, where uvalid is a vector of the relative number of valid values per u

rank column. Otherwise, branches with only a few valid values (i.e., values that do not fall into the defined categories) would be un-

derrepresented in the biclustering since the fitness function would be tailored to find the largest biclusters (=most rows and columns).

We also included 0’s (category ii) to find biclusters with low selection pressure (Figure S6).

Stability tests were performed on random subsets of data to empirically estimate parameters for the genetic algorithm utilized by

GABi. We found that a population size of at least 100 times the ‘chromosome’ length (the number of rows of the data set (Curry, 2014))

with �10000 demes (separate subpopulations) led to stable results, reproducible over multiple runs. This number of demes was

necessary tominimize the chances of locally optimal biclustering solutions since it must converge to solutions that are relatively small

compared to the search space. Identified biclusters accounted for approximately 0.1-1% of the total number of genes.

We carried out biclustering with these parameters 4 times with similar results. All biclusters presented in this paper had at least

90% similar genes, and 90% of the biclusters had 100% similar genes. The statistical evaluation was performed using permutation

tests to verify that the biclusters had significantly higher mean u ranks and gene-to-network correlation ranks compared to random

sets of a similar size. p-values were highly significant (<0.0001), which was expected since the fitness function was specifically de-

signed to pinpoint biclusters with high u ranks (therefore, these data are not shown).

Biclusters are depicted in Figures 4 and 6, and were visualized using BrainTrawler (Ganglberger et al., 2019). Nodes were selected

from the bicluster’s networks (Tables S12, S6, Figure S4), and the edges represented the strongest spatial gene expression corre-

lation of the bicluster’s genes. The networks were created similarly to STARMethods; Subspace patternmining for network evolution

via biclustering. Originally, the edges showed a region-bias (i.e., regions with higher correlations between them compared to others

over the entire network) due to the number of genes within a bicluster (the correlation of gene sets converges to the genome-wide

spatial gene expression correlation with increasing size). We targeted this by generating an empirical distribution for each individual

edge using 1000 random drawn gene sets from the genome (of the same size as the bicluster). These distributions (i.e., their mean

and standard distribution) were used for z-score normalization of the bicluster edges. Summarized biclustering results and statistics

for full lineage and hominids are available in Table S5.

Single-cell gene expression for cortical brain regions

Single-cell gene expression data across 3 brain regions (BA9/superior frontal gyrus – SFG, visual cortex/cuneus - CUN, cerebellar

cortex - CbCx) for 33 cell type clusters were used (from Lake et al., 2018). Not all 33 cell typeswere present in all brain regions, leading

to 61 cell type/brain region combinations. The raw unique molecular identifier (UMI) count matrix (genes x single-cell samples) was

normalized to logCPM (logarithmic counts per million reads). We filtered for biological variability of genes by applying a threshold to

the coefficient of variation over multiple samples (Pandey et al., 2018). Cell-cell variation factors (i.e., the percentage of mtRNA, batch

effect) were regressed out according to the Seurat R package (scaleData function) (Stuart et al., 2019). Wematched the genes of this

data with theu ranked table, generating an 89783 61 gene expressionmatrix. For every columnwe set the gene expressions that are

not in the top 90 percentile to 0 to filter out noise and focus only on a clear signal with highly expressed genes. These data were related

to the individual cluster gene sets using Spearman rank correlation and then normalized across cell types (z-scored) to identify cell

types with the highest representation in each cluster. A cell type was classified as enriched with a critical z-score of Z>1.28.

Genetic annotations

For functional profiling of genes biclustered with brain networks we applied the knowledgebase from Ingenuity Pathway Analysis

(IPA) (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) (Krämer et al., 2014). Each cluster
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from biclustering of the full lineage or hominid branch was analyzed separately. We applied Nervous System filter to avoid non-spe-

cific functional associations. All results are displayed in the Table S6.

Single gene associations in biclusters were taken from OpenTargets database (https://platform.opentargets.org/ ) (Carvalho-Silva

et al., 2019; Ghoussaini et al., 2021). At least 10 genes were sampled from each bicluster of the full lineage and hominid branch

biclusterings (given sufficient bicluster size) and inspected for the presence of genetic associations with behavioral/neuronal/psychi-

atric symptom domains. Aggregate genetic associations were collapsed for each bicluster and compiled into symptom domain cat-

egories, depicted in Figures S11 and S9.

Methodological remarks

Taken together this workflow maps u data onto spatial brain gene expression and correlates it with FNs (Table S7). Both cumulative

correlation and biclustering build upon u-driven spatial correlations of highly selected genes per branch with FNs. Cumulative cor-

relations focus on functional correlations for each PSC top-selected genes, whereas biclustering relates rankedu of all branches and

FNs simultaneously, thereby building clusters of highly selected genes (bound to any branch) that are highly correlated with FNs.

Together, these approaches support one another and reconstruct a congruent ancestral history of the brain’s functional evolution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic analysis and u calculation were performed using IQ-TREE (v1.6.10; (Nguyen et al., 2015)) and ModelFinder (Kalyaana-

moorthy et al., 2017). Approximately Unbiased tree toplology tests (AU-test, (Shimodaira, 2002)) were used to identify plausible trees

(p-value>0.05). u values (Yang, 1998; Yang and Nielsen, 1998) were calculated using codeml (implemented in PAML v4.9i; Yang,

2007). Our approach for managing unstable or unreliable estimates ofu0s is described in the STARMethods section (STARMethods,

u calculation) of this paper.

Computational neuroanatomy (STAR Methods, Computational neuroanatomy) was conducted in R 4.0.3. An R notebook output

(html file) can be found in the Supplementary File ‘Computational neuroanatomy code’. Task-evoked functional brain activity from

the Human Connectome Project (HCP, 11 FNs, Figure S4, Table S12, (Van Essen et al., 2013)) was identified as significant +/� 5

sigmas from the mean as described in Barch et al. (Barch et al., 2013). For generating u-weighted maps, weighted spatial gene

expression was compared to maps with randomly shuffled u0s (n = 10000) using z-tests. The Benjamini-Hochberg method was

applied to adjust the False Discovery Rate of the p-values. Statistical significance for these maps was determined for adjusted

p-values<0.1. Spatial gene expression and u values were mined via biclustering using GABi (Curry, 2014), and descriptive statistics

for each bicluster (mean, standard deviation, and quantiles) are presented in Table S5. Permutation tests were performed to verify

that biclusters showed significantly highermeanu and gene-to-network correlations than random sets of similar size (n = 10000) with

p-values<0.0001. Correlations between bicluster gene sets and brain cell types (single cell gene expression data) was normalized

across cell types (z-scored), and cell type was classified as enriched with a critical z-score of Z>1.28.
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