
Accuracy vs. Cost in Parallel Fixed-Precision
Low-Rank Approximations of Sparse Matrices

Robert Ernstbrunner
University of Vienna

Faculty of Computer Science
Vienna, Austria

robert.ernstbrunner@univie.ac.at

Viktoria Mayer
University of Vienna

Faculty of Computer Science
Vienna, Austria

viktoria.mayer@univie.ac.at

Wilfried Gansterer
University of Vienna

Faculty of Computer Science
Vienna, Austria

wilfried.gansterer@univie.ac.at

Abstract—We study a randomized and a deterministic algo-
rithm for the fixed-precision low-rank approximation problem
of large sparse matrices. The Randomized QB Factorization
(RandQB EI) constructs a reduced and dense representation of
the originally sparse matrix based on randomization. The repre-
sentation resulting from the deterministic Truncated LU Factor-
ization with Column and Row Tournament Pivoting (LU CRTP)
is sparse, but fill-in introduced in the factorization process can
affect sparsity and performance. We therefore attempt to mitigate
fill-in with an incomplete LU CRTP variant with thresholding
(ILUT CRTP). We analyze this approach and identify poten-
tial problems that may arise in practice. We design parallel
implementations of RandQB EI, LU CRTP and ILUT CRTP.
We experimentally evaluate strong scaling properties for differ-
ent problems and the runtime required for achieving a given
approximation quality. Our results show that LU CRTP tends
to be particularly competitive for low approximation quality.
However, when a lot of fill-in occurs, LU CRTP is outperformed
by RandQB EI especially for higher approximation quality.
ILUT CRTP outperforms both LU CRTP and RandQB EI and
can achieve speedups up to 40 over LU CRTP, depending on the
amount of fill-in.

Index Terms—Randomized low-rank approximations, Deter-
ministic low-rank approximations, Randomized QB Factoriza-
tion, Truncated LU Factorization with Tournament Pivoting.

I. INTRODUCTION

Consider a large sparse input matrix A ∈ R
m×n with

numerical rank l = min(m,n). The Eckart-Young Theorem

states that the truncated Singular Value Decomposition (SVD)

minimizes ||A − Âk|| in both spectral and Frobenius norm,

where Âk is any rank-k matrix. However, the computation of

the truncated SVD is often prohibitively expensive in terms of

runtime and memory. Several algorithms have emerged that

produce competitive results at lower computational cost.

Low-rank matrix approximations are important in a broad

range of problem domains, see, for example, [15]. Fixed-
rank algorithms are used for problems where the rank of the

approximation is known a priori. Fixed-precision problems on

the other hand determine a rank K � l such that

min
K=rank(ÂK)

∥∥∥A− ÂK

∥∥∥ < τ ‖A‖ (1)

Supported partially by the Vienna Science and Technology Fund (WWTF)
through project ICT15-113.

for a tolerance τ given by the user. Methods addressing this

problem are known as fixed-precision algorithms.

We surveyed fixed-precision methods and found that, while

the literature on this topic is extensive and rich, the set of

algorithms that are suitable for large sparse matrices is rather

small. We consider and compare two representative fixed-

precision methods which are based on fundamentally different

concepts, the randomized QB Factorization (RandQB EI) [20]

and the deterministic Truncated LU Factorization with Column

and Row Tournament Pivoting (LU CRTP) [10].

A. Related Work

Bach et al. [1] state that “the majority of research and software

implementations of randomized low-rank approximation meth-

ods have so far focused on the fixed-rank problem”. We focus

on fixed-precision methods, where the rank is determined by

the algorithm. In particular, we are interested in algorithms

that can handle large sparse matrices.

Halko et al. [12] give a comprehensive overview of ran-

domized algorithms for computing low-rank approximations.

The Randomized Range Finder (RRF) constitutes the basic

idea of probabilistic fixed-rank algorithms. The method uses

randomized sketching [12] to derive a small basis from the

large input matrix A, such that this basis captures the es-

sential information of A. The Adaptive Randomized Range

Finder (ARRF) uses the same concept to incrementally and

adaptively construct a low-rank approximation that satisfies

(1). Martinsson et al. [16] propose a blocked version of ARRF

called RandQB b, whose stopping criterion is more precise

than the estimator suggested in [12]. However, the input matrix

is updated with a dense matrix in each iteration and the

algorithm is therefore not suitable for sparse matrices. Bach

et al. [1] introduce a randomized fixed-precision algorithm

based on ARRF. Like RandQB b, this algorithm is not suited

for sparse problems. The randomized SVD (RSVD) [12] is

another concept derived from RRF. The algorithm computes

a randomized SVD with an initial estimated rank k. If the

error of the approximation is too large, another RSVD with

a larger k is computed. This is continued until the error is

small enough. RandUBV has been presented very recently in

[13]. The method is based on block Lanzcos bidiagonalization

and is closely related to RandQB EI. Numerical experiments

459

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00051

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g 
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

05
1

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



suggest that RandUBV is competitive to RandQB EI in terms

of runtime and approximation quality.

LU CRTP, a deterministic alternative to the truncated SVD,

was first presented in [10] and enhanced in [2] with, inter alia,

a novel strategy that discards some columns of A to reduce

computational work. Grigori et al. [10] show that in theory and

under certain conditions, the fixed-rank version of LU CRTP

outperforms the randomized algorithm presented in [3], one

of the fastest fixed-rank algorithms known at the time. It is

still an open question whether this holds in practice for the

fixed-precision variant of LU CRTP and RandQB EI.

Techniques for finding low-rank approximations have also

been investigated for data-sparse hierarchical matrices [11,

17]. We focus on algorithms for general sparse matrices.

B. Contributions

Based on the parallel implementation of LU CRTP for sparse

fixed-rank problems by Grigori et al. [10], we develop a paral-

lel version of LU CRTP for sparse fixed-precision problems.

We also develop a parallel implementation of RandQB EI and

compare the two parallel algorithms in terms of number of

iterations, runtime, accuracy and parallel scalability. Uniform

termination criteria are required to establish a meaningful

comparison between the methods. Moreover, we include an

analysis of the asymptotic arithmetic complexity and runtime

performance of the most expensive kernels and present results

with a sequential implementation of RandUBV [13].

We illustrate that LU CRTP tends to produce fill-in that

can significantly slow down the algorithm. To counter this

problem, we adapt LU CRTP by dropping small enough

entries. We call this new version of the algorithm Incomplete
LU CRTP with Thresholding (ILUT CRTP). We analyze our

approach and identify potential limitations that may arise in

practice. Numerical experiments illustrate that our adaptation

can significantly improve runtime performance and lower the

number of non-zeros in the factors produced.

C. Synopsis

In Section II we review the randomized algorithm RandQB EI

and the deterministic algorithm LU CRTP. Section III intro-

duces ILUT CRTP, an adaption of LU CRTP which reduces

the fill-in. In Section IV we analyze the asymptotic arithmetic

complexities for RandQB EI, RandUBV and LU CRTP. In

Section V we discuss the parallelization of RandQB EI and

LU CRTP. We summarize numerical experiments in Sec-

tion VI, and we conclude in Section VII.

II. FIXED-PRECISION LOW-RANK APPROXIMATION

Using Matlab-like notation, we refer to the submatrix of a

matrix A ∈ R
m×n formed by rows i to j and columns v to

w as A(i : j, v : w). Indices start with 1. If not explicitly

defined, ‖·‖ denotes either the Frobenius or spectral norm.

First, we summarize and highlight important aspects of

RandQB EI and LU CRTP. Both methods aim to satisfy (1).

RandQB EI iteratively computes a condensed subspace for the

range of the input matrix A. LU CRTP iteratively produces

truncated block LU factors based on the Rank Revealing QR

factorization with Tournament Pivoting (QR TP). QR TP is

briefly addressed in this Section and in Section V. A more

detailed explanation can be found in [10] and the refer-

ences therein. The algorithmic backgrounds of RandQB EI

and LU CRTP are fundamentally different, but the individ-

ual approximation-generating processes can be generalized

to illustrate the basic concept of these algorithms. In the

first iteration, both methods produce approximation matrices

H
(1)
k ∈ R

m×k and W
(1)
k ∈ R

k×n for A, such that

H
(1)
k W

(1)
k = Âk ≈ A. (2)

If (2) does not satisfy (1) then in successive iterations i, the

matrices H
(i)
k and W

(i)
k are generated and concatenated to

yield the matrices HK and WK , i.e.,

HK = [H
(1)
k , . . . ,H

(i)
k ], WK = [W

T (1)
k , . . . ,W

T (i)
k ]T ,

with overestimated rank K = ik and resulting approximation

HKWK = ÂK ≈ A.

If RandQB EI is used as the underlying algorithm, HK and

WK are inherently dense. As a consequence, if A has, e.g.,

only up to kl non-zeros, the amount of non-zeros in H
(1)
k

and W
(1)
k already surpasses the amount of non-zeros in A.

If the underlying algorithm is LU CRTP, HK and WK are

potentially sparse. However, the sparsity of HK and WK

depends on the properties of A and, in the worst case, these

matrices might be dense as well. Moreover, factors with

higher density not only require more memory, but, in case

of LU CRTP, are also produced at higher computational cost.

We therefore adapt LU CRTP later on such that the number

of non-zeros in HK and WK are potentially reduced and the

overall factorization process is likely to be less costly.

A. Randomized QB Factorization

RandQB EI [20] (see Algorithm 1) is based on RandQB b

[16] and computes an approximate basis matrix QK ∈ R
m×K

for the range of the input matrix A, and a matrix BK ∈
R

K×n such that QKBK ≈ A. The matrices QK and BK are

constructed incrementally, where BK = QT
KA can be used

to compute an approximate factorization of A. The resulting

approximation error is given as

erand = ‖A−QKBK‖ . (3)

1) Algorithm: In each iteration, a random matrix Ωk ∈
R

n×k is constructed in line 4 of Algorithm 1, where k is

the block size. Ωk is used to compute a new block Qk of QK

in line 5, which is then reorthogonalized in line 10 against

the previously computed parts of QK to reduce round-off

errors. New rows of BK are computed in line 11. To improve

approximation quality, the algorithm can work on a similar

matrix K = (AAT )pA with the same singular vectors as

A and related singular values σj(K) = σj(A)2p+1, with

1 ≤ j ≤ l and 0 ≤ p ≤ 3. This modification exponentially

accelerates singular value decay and is known as the power

460

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



scheme [12] (lines 6-9). Finally, in line 12 the matrices QK

and BK are expanded with Qk and Bk.

2) Termination Criterion: The Frobenius norm of (3) can

be computed at small cost for the so far computed approx-

imation in each iteration of RandQB EI. [20] show that

‖A−QKBK‖2F = ‖A‖2F − ‖BK‖2F for any factorization of

the form QKBK ≈ A, given that QK is orthonormal. Since

‖BK‖2F =
∑i

j=1

∥∥∥B(j)
k

∥∥∥2

F
, with B

(j)
k being the blocks of BK

computed in the first i iterations, we can indicate the error with

an update to ‖A‖2F by subtracting
∥∥∥B(i)

k

∥∥∥2

F
in each iteration

i. The error indicator E(i) for RandQB EI is defined as

E
(i)
rand :=

√√√√‖A‖2F −
i∑

j=1

∥∥∥B(j)
k

∥∥∥2

F
. (4)

The method converges if E
(i)
rand < τ ‖A‖F (line 14 of

Algorithm 1). Theorem 3 of [20] shows that (4) fails in double

precision floating point arithmetic for τ < 2.1 · 10−7.

Algorithm 1 RandQB EI

Input: A ∈ R
m×n, block size k, power parameter p ≥ 0,

tolerance τ
Output: QK ∈ R

m×K , BK ∈ R
K×n, rank K,

such that ‖A−QKBK‖F < τ ‖A‖F
1: QK = [ ],BK = [ ], E = ‖A‖2F
2: for i = 1, 2, . . . do
3: j = (i− 1)k + 1, K = ik
4: Ωk = randn(n, k)
5: Qk = orth(AΩk −QK(BKΩk))
6: for r = 1 : p do � power scheme

7: Q̂k = orth(ATQk −BT
K(QT

KQk))
8: Qk = orth(AQ̂k −QK(BKQ̂k))
9: end for

10: Qk = orth(Qk −QK(QT
KQk))� re-orthogonalization

11: Bk = QT
kA

12: QK(:, j : K) = Qk, BK(j : K, :) = Bk

13: E = E − ‖Bk‖2F
14: if

√
E < τ ‖A‖F then stop

15: end for

B. Truncated LU Factorization with Tournament Pivoting

LU CRTP [10] (see Algorithm 2) performs a block LU

factorization with column and row pivoting and computes

truncated LU factors LK ∈ R
m×K and UK ∈ R

K×n and

permutation matrices Pr ∈ R
m×m and Pc ∈ R

n×n such that

LK UK ≈ Pr A Pc with resulting approximation error

edet = ‖PrAPc − LKUK‖ . (5)

1) Algorithm: In each iteration i, the approximation

LkUk ≈ Ā = P(i)
r A(i)P(i)

c , (6)

is computed, where P
(i)
r ∈ R

(m−z)×(m−z) and P
(i)
c ∈

R
(n−z)×(n−z) are permutation matrices, with z = (i − 1)k,

and A(1) = A. Lk ∈ R
(m−z)×k and Uk ∈ R

k×(n−z) are

truncated factors from the factorization

Ā=

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)

≈
(

I
Ā21Ā

−1
11

)(
Ā11 Ā12

)
= LkUk,

where

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12 (7)

denotes the Schur complement of Ā11 ∈ R
k×k. This fac-

torization has the property that Ā11 reveals the k largest

singular values of A(i) and S(Ā11) reveals the l−K smallest

singular values of A(i) due to the fact that the permutation

matrices P
(i)
r and P

(i)
c in (6) emerged from a rank revealing

QR factorization. QR TP is a rank revealing block QR factor-

ization algorithm that finds the k “most linearly independent”

columns of the input matrix and permutes them to the k

leftmost positions. P
(i)
c is obtained from QR TP in line 5

of Algorithm 2. The factorization has the form

A(i)P(i)
c =

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
, (8)

where the upper triangular R11 ∈ R
k×k reveals the K−k+1

to K largest and R22 ∈ R
(m−K)×(n−K) the l − K smallest

singular values of A. In practice, only P
(i)
c , R11, Q11 and

Q21 are computed explicitly.
[
QT

11,Q
T
21

]T
resp. R11 in (8)

corresponds to Qk resp. R(i) in line 6 of Algorithm 2. The

QR TP factorization on
[
QT

11,Q
T
21

]T
in line 7 yields P

(i)
r .

Q̄11 from P
(i)
r Qk=

[
Q̄T

11, Q̄
T
21

]T
ensures through the relation

Ā11=Q̄11R11 that the singular values of Ā11 stay close to the

singular values of R11. The method sets A(i+1) := S(Ā11) in

line 12 and recurses on A(i+1) in successive iterations. The

truncated factors Lk and Uk are concatenated in line 11 to

incrementally build the factors LK and UK .

2) Termination Criterion: Grigori et al. [10] terminate

LU CRTP if
∣∣R(i)(k, k)

∣∣ is smaller than a tolerance, which

does not guarantee that (1) is satisfied. Similar to the error

indicator (4), (5) can be computed efficiently as long as A(i+1)

is sparse. Since ‖PrAPc − LKUK‖ =
∥∥A(i+1)

∥∥, the error

indicator for LU CRTP is given as

E
(i)
det :=

∥∥∥A(i+1)
∥∥∥
F
. (9)

In contrast to (4), (9) also works in double precision for

τ < 2.1 · 10−7. We terminate LU CRTP in line 13 of

Algorithm 2 if E
(i)
det < τ ‖A‖F . This allows for a fair

comparison to RandQB EI. Note that evaluating (9) in the

last iteration includes line 12 of Algorithm 2. The termination

criterion in [10] does not require this additional computation.

3) The fill-in problem: The formation of (7) potentially

produces fill-in that increases computational cost in successive

iterations and also affects the sparsity of LK and UK . In the

worst case, A(2) is already dense. In the best case, the matrices

A(i+1) remain sparse throughout the factorization process.

461

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



In a sparse QR factorization without pivoting, column

reorderings can be applied to maintain sparsity. Row per-

mutations, on the other hand, have no effect [10]. For the

classical QR factorization with column pivoting, a priori
column reorderings are meaningless due to value-dependent

pivoting in the factorization process. This is not the case for

QR TP for which fill-reducing column reordering algorithms

can be used. Therefore, Grigori et al. [10] first permute the

input matrix with the column approximate minimum degree

algorithm COLAMD [4]. LK can also be computed with a

method, that benefits numerical stability, but introduces addi-

tional small values (see [10]). If this computation is required,

it further contributes to the amount of fill-in introduced.

Algorithm 2 LU CRTP

Input: A ∈ R
m×n, block size k, tolerance τ

Output: LK ∈ R
m×K ,UK ∈ R

K×n,Pr ∈ R
m×m,Pc ∈

R
n×n, rank K, s.t. ‖PrAPc − LKUK‖F < τ ‖A‖F

1: LK = [ ],UK = [ ],Pr = I ∈ R
m×m,Pc = I ∈ R

n×n

2: A(1) = A
3: for i = 1, 2, . . . do
4: j = (i− 1)k + 1, K = ik

5: P
(i)
c = QR TP(A(i), k)

6: [Qk,R
(i)] = qr((A(i)P

(i)
c )(:, 1 : k))

7: P
(i)
r = QR TP(QT

k , k)
T

8: Ā = P
(i)
r A(i)P

(i)
c =

(
Ā11 Ā12

Ā21 Ā22

)
9: Update Pr, Pc, LK and UK using P

(i)
r and P

(i)
c .

10: Lk =

(
I

Ā21Ā
−1
11

)
, Uk =

(
Ā11 Ā12

)
11: LK (j : m, j : K) = Lk, UK(j : K, j : n) = Uk

12: A(i+1) = Ā22 − Ā21Ā
−1
11 Ā12 � S(Ā11)

13: if
∥∥A(i+1)

∥∥
F
< τ ‖A‖F then stop

14: end for

III. INCOMPLETE LU CRTP WITH THRESHOLDING

As mentioned in the previous section, LU CRTP potentially

produces fill-in in the matrices A(i+1). Our numerical exper-

iments show that performance can be significantly reduced

due to fill-in. We may resolve this problem by dropping

small enough elements in A(i+1) based on a threshold μ.

This adaptation leads to better runtime performance and also

reduces the non-zeros of the LU factors for almost no loss in

approximation quality (see Section VI).

A. Analysis of thresholding

When ILUT CRTP (see Algorithm 3) is run to completion,

we obtain block LU factors of

PrÃPc = PrAPc +T(l/k−1), (10)

where the threshold matrix T(l/k−1) is a sum of permuted

perturbation matrices T̃(i), that arise from thresholding.

T(l/k−1) =

l/k−1∑
i=1

⎛
⎝ l/k∏

j=i+1

P̃(j)
r T̃(i)

l/k∏
j=i+1

P̃(j)
c

⎞
⎠ (11)

(10) is a derivation from a result for classical (scalar) ILU

factorization algorithms [19]. The bottom right corner subma-

trices of P̃
(i)
r , P̃

(i)
c , resp. T̃(i) in (11) contain P

(i)
r , P

(i)
c , resp.

T̄(i) from Algorithm 3. From Corollary 8.6.2 and Theorem

8.6.4 in [9], we have∣∣∣σi(A)− σi(Ã)
∣∣∣ ≤ ∥∥∥T(l/k−1)

∥∥∥
2
i = 1, . . . , l, (12)

√∑
i

(σi(A)− σi(Ã))2 ≤
∥∥∥T(l/k−1)

∥∥∥
F
. (13)

The following analysis examines how thresholding would

affect a rank-revealing block LU factorization algorithm which

produces singular value approximations of A resp. Ã, with the

same accuracy as the TSVD such that
∥∥A(i+1)

∥∥
2
= σK+1(A).

Let the singular values σ1(A), . . . , σl(A) be ordered in

descending order. Assume that for a fixed iteration î, with

K̂ = îk and K̂ � l, there is a K̂ + 1st singular value

σK̂+1(A) < σK̂(A) and a precision τ such that σK̂+1(A) <

τ ‖A‖2. For Ã, we want to satisfy

σK̂+1(Ã) < τ ‖A‖2 . (14)

From (12), we can bound
∣∣∣σK̂+1(A)− σK̂+1(Ã)

∣∣∣ with the

spectral norm of T(̂i). It must hold that∥∥∥T(̂i)
∥∥∥
2
< τ ‖A‖2 − σK̂+1(A). (15)

to guarantee that (14) is satisfied in any case.

The following analysis on LU CRTP and ILUT CRTP is

based on both the spectral and Frobenius norm, because the

latter is easily evaluated in practice. With LU CRTP, the

singular values of A(i+1) are approximations to the l − K
smallest singular values of A. The bound on σj(A

(i+1)) with

respect to σK+j(A) is exponential in the number of iterations,

1 ≤ σj(A
(i+1))

σK+j(A)
≤

i−1∏
v=0

q(m− vk, n− vk, k), (16)

for any 1 ≤ j ≤ l−K, with q being a polynomial depending

on the size of A(i+1), k and bounds obtained from QR TP

(see [10] for more details). For some iteration ī, with ī ≥ î

and K̄ = īk, we want
∥∥∥A(̄i+1)

∥∥∥ < τ ‖A‖ resp., in case of

ILUT CRTP, ∥∥∥Ã(̄i+1)
∥∥∥ < τ ‖A‖ (17)

to hold and bound∣∣∣∥∥∥A(̄i+1)
∥∥∥− ∥∥∥Ã(̄i+1)

∥∥∥∣∣∣ . (18)

(16) imposes an exponential bound on (18). However, [10]

demonstrate that LU CRTP can be effective in approximating

the singular values of A, especially in case of fast singular

value decay (see the bound (34) in [10]). By an effective
approximation, we mean that, in practice, the ratios of the

singular values of A(i+1) with respect to the corresponding

462

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



singular values of A are, on average, close to one. This

suggests that by (12) resp. (13) and Lemma 5.1.2 from [14],∣∣∣∥∥∥A(̄i+1)
∥∥∥
2
−

∥∥∥Ã(̄i+1)
∥∥∥
2

∣∣∣ � ∥∥∥T(̄i)
∥∥∥
2
,∣∣∣∥∥∥A(̄i+1)

∥∥∥
F
−

∥∥∥Ã(̄i+1)
∥∥∥
F

∣∣∣ ≤√∑
i

(
σi(A(̄i+1))− σi(Ã(̄i+1))

)2

�
∥∥∥T(̄i)

∥∥∥
F
,

and ī is close or equal to î as long as the l − K̄ smallest

singular values of A resp. Ã are effectively approximated by

the singular values of A(̄i+1) resp. Ã(̄i+1). In contrast to (15)
with respect to (14),∥∥∥T(̄i)

∥∥∥ < τ ‖A‖ −
∥∥∥A(̄i+1)

∥∥∥ (19)

might not guarantee, that (17) is satisfied, especially when the

singular values are not effectively approximated.

If any of the singular values larger than σK̄+1(A) are

smaller than machine precision, LU CRTP may break down

due to numerical issues. The same applies to ILUT CRTP

with respect to the singular values of Ã. The fact that ī ≥ î
further increases the risk of potential failure. From (12), Ã is

guaranteed to have at least rank K + 1 if∥∥∥T(̄i)
∥∥∥ < σK̄+1(A), (20)

which also implies ∥∥∥T(̄i)
∥∥∥ < τ ‖A‖2 . (21)

σK̄+1(A) can be arbitrarily small, e.g., due to a large singular

value gap. If (20) does not hold, ILUT CRTP may fail due

to rank deficiency in Ã.

In conclusion, the convergence of ILUT CRTP depends on

the magnitude of
∥∥∥T(̄i)

∥∥∥ in the unknown bound (19), which

guarantees that ILUT CRTP converges at most within the

same number of iterations as LU CRTP, provided that the

singular values of A are effectively approximated, and the

unknown bound (20), which guarantees that rank(Ã) ≥ K+1.

We are concerned with establishing bounds on
∥∥∥T(̄i)

∥∥∥ that are

easily evaluated and that work well in practice.

B. Bounding the threshold matrix

Explicit formulations of T(i) may produce high memory cost,

whereas processing and discarding implicit formulations of

the perturbation matrices T̃(j) from (11), with 1 ≤ j ≤ i is

memory efficient. In line 10 of Algorithm 3 we bound the size

of
∥∥T(i)

∥∥ with a parameter φ, such that

∥∥∥T(i)
∥∥∥ ≤

√√√√ i∑
j=1

∥∥∥T̃(j)
∥∥∥2

F
< φ. (22)

The term in the middle can be easily evaluated and, for large

i, the bound is more pessimistic. Ideally, we would set φ to

the minimum of the bounds (19) and (20). Instead, we can

derive a possibly more optimistic bound from (21) at the cost

of an additional source for potential algorithm failure. ‖A‖2
is approximated in the first iteration with

∣∣R(1)(1, 1)
∣∣ in line 5

of Algorithm 3. Due to the rank revealing property of QR TP,∣∣∣R(1)(1, 1)
∣∣∣ ≤ ‖A‖2 . (23)

Therefore, φ might be chosen such that φ ≤ τ
∣∣R(1)(1, 1)

∣∣.
C. Determining the threshold

A relevant question is the selection of the threshold μ. We want

ILUT CRTP to determine a reasonable value that effectively

performs thresholding and is not likely to break down the

algorithm. There are many ways to derive a formula for μ that

will work in practice. The Frobenius norm of the individual

perturbation matrices T̃(i) in (11) is bounded with
∥∥∥T̃(i)

∥∥∥
F
≤

μ
√

nnz(T̃(i)). Consequently, a bound on the overall perturba-

tion matrix T(i) is given as
∥∥T(i)

∥∥ ≤ μi
√

nnz(T(i)). From

(21) and (23) we derive μ < τ
∣∣R(1)(1, 1)

∣∣ /(̄i√nnz(T(̄i)))
and end up with a heuristic that can be evaluated in practice.

μ :=
τ
∣∣R(1)(1, 1)

∣∣
u
√

nnz (A)
, (24)

where u is an estimation of ī and the number of non-zeros

in T(̄i) is approximated by the number of non-zeros in A. In

practice, one might set u at most to the number of iterations

such that K � l still holds. μ may be too large in case

u resp.
√

nnz (A) was selected much smaller than ī resp.√
nnz(T(̄i)). In this case, (22) could act as a threshold control.

D. Termination criterion

ILUT CRTP computes L̃K ŨK ≈ Pr Ã Pc. The resulting

approximation error is given as

ẽdet =
∥∥∥PrAPc − L̃KŨK

∥∥∥ . (25)

The termination criterion of ILUT CRTP is similar to the

criterion of LU CRTP with the caveat that
∥∥∥Ã(i+1)

∥∥∥ indicates∥∥∥PrÃPc−L̃KŨK

∥∥∥ and estimates (25), with∥∥∥PrAPc − L̃KŨK

∥∥∥ ≤ ∥∥∥Ã(i+1)
∥∥∥+

∥∥∥T(i)
∥∥∥ .

The error estimator of ILUT CRTP is defined as

Ẽ
(i)
det :=

∥∥∥Ã(i+1)
∥∥∥
F
. (26)

IV. ANALYSIS OF ASYMPTOTIC ARITHMETIC

COMPLEXITY

The sequential asymptotic complexity of RandQB EI at

iteration ī is O(
2Knnz (A) + 1

2 (3m + n)K2 + 2
ī
mK2

+p
(
2Knnz (A) + (m+ n)K2 + 1

ī
(m+ n)K2

))
[13]. Thus,

the cost roughly increases proportional to p + 1. From [13],

the sequential asymptotic complexity of RandUBV at iteration

ī is approximately O (
2Knnz (A) + 3

2ī
(m+ n)K2 + 2nK2

)
.

For LU CRTP, the cost is dominated by QR TP on the

columns of A(i). QR TP uses a reduction tree to find

463

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3 ILUT CRTP

Input: A ∈ R
m×n, block size k, tolerance τ , estimated

number of iterations u
Output: L̃K ∈ R

m×K , ŨK ∈ R
K×n,Pr ∈ R

m×m,Pc ∈
R

n×n, rank K, s.t.
∥∥∥PrAPc − L̃KŨK

∥∥∥
F
� τ ‖A‖F

1: L̃K = [ ], ŨK = [ ],Pr = I ∈ R
m×m,Pc = I ∈ R

n×n

2: Ã(1) = A, t = 0
3: for i = 1, 2, . . . do
4: Perform lines 4-11 from Algorithm 2 on Ã(i), i.e.,

obtain L̃k, Ũk, P
(i)
r and P

(i)
c , update Pr resp. Pc,

and enhance L̃K resp. ŨK .
5: if i == 1 then μ = τ

∣∣R(1)(1, 1)
∣∣ /(u√nnz (A)),

determine a bound φ with respect to τ
∣∣R(1)(1, 1)

∣∣.
6: Ã(i+1) = Ā22 − Ā21Ā

−1
11 Ā12

7: if
∥∥∥Ã(i+1)

∥∥∥
F
< τ ‖A‖F then stop

8: Remove elements in A(i) that are smaller than μ in

absolute value and obtain the threshold matrix T̄(i).
9: t = t+

∥∥T̄(i)
∥∥2

F

10: If
√
t ≥ φ then undo steps 9 and 10, set μ = 0.

11: end for

the k “most linearly independent” columns of A(i). Us-

ing either a flat or a binary tree, the asymptotic complex-

ity of QR TP is O (
16k2nnz(A(i))

)
[10]. Thus, the over-

all asymptotic complexity of LU CRTP at iteration ī is

O (
16
ī
K2 max(nnz(A(i)))

)
, with 1 ≤ i ≤ ī. Due to potential

fill-in introduced in A(i) during the factorization process,

nnz(A(i)) tends to grow with i in a way which is hard to

predict.

For square n × n matrices A, the complexity of Ran-

dUBV is very similar to the complexity of RandQB EI with

power parameter p = 0. If nnz (A) ≤ tn where t � n,

then LU CRTP is faster than RandQB EI at iteration ī if

nnz(A(i)) < O(
(p + 1) t+(̄i+1)k

8kt nnz (A)
)
. The overall cost

depends on the number of iterations needed.

V. PARALLEL FIXED-PRECISION LOW-RANK

APPROXIMATION

RandQB EI performs dense linear algebra operations on

tall and skinny resp. short and wide matrices that are widely

supported by parallel libraries like, e.g., Elemental [18]. In

LU CRTP most of the parallelism can be exploited in QR TP.

For parallelization on P processes, QR TP uses a reduction

tree to find the k “most linearly independent” columns of a

matrix. Suppose that each process P owns 2k columns of A.

The reduction tree consists of two stages - the local and the

global reduction stage. In the local reduction, each process

finds the k “most linearly independent” columns among the

columns that they own. This step is done completely without

communication between processes. In the second stage the k
selected columns of each process compete against each other

for “most linear independence”. For a binary reduction tree,

log(P ) reduce operations are performed. At each reduction

stage two neighboring processes combine their k columns to

find the k “most linearly independent” columns among these

2k columns. The last reduction operation finds the k “most

linearly independent” columns of the entire input matrix.

We implemented the parallel algorithms in C++ and

MPI, using SuiteSparseQR [6] for sparse QR factorizations

in the deterministic algorithms. For RandQB EI we incor-

porate the Elemental framework. Elemental scatters dense

matrices among processes via an elemental distribution. We

call El::Gemm for dense matrix-matrix multiplication and

El::Multiply for sparse, 1D row-distributed matrices

that are multiplied with dense tall and skinny matrices.

El::qr::ExplicitTS performs a tall and skinny QR

factorization [7] in the orthogonalization procedure. Our

LU CRTP implementation uses a (cyclic) block-column distri-

bution for A(i) and UK and a (cyclic) block-row distribution

for LK . The input matrix was first permuted using COLAMD

followed by a postorder traversal of its column elimination

tree. COLAMD is a local, intrinsically sequential reordering

heuristic. Thus, we apply COLAMD as a preprocessing step.

After performing QR TP on the columns of A(i) (line 5

of Algorithm 2), the k “most linearly independent” columns

of A(i) are located in the leftmost columns of A(i)P
(i)
c .

These columns are then orthogonalized with a sparse QR

factorization on the process owning them and scattered among

all processes so that QR TP can be performed (line 7 of

Algorithm 2). To efficiently solve the linear system Ā21Ā
−1
11

(line 10 of Algorithm 2), Ā21 is scattered and Ā11 is broadcast

to all participating processes. An Allgather operation sends the

resulting matrix to all processes for the computation of the

Schur complement (line 12 of Algorithm 2).

VI. NUMERICAL EXPERIMENTS

We first summarize sequential MATLAB 2020a experi-

ments that evaluate the effectiveness of thresholding with

ILUT CRTP on a large set of small matrices. We then compare

runtime, approximation quality and parallel scaling of parallel

versions of RandQB EI, LU CRTP and ILUT CRTP for some

large sparse matrices on the Vienna Scientific Cluster (VSC4),

a HPC system with 700 nodes and 48 cores per node. We used

Intel C++ compiler 19.0.5, Intel MPI 2019 Update 7 and Intel

MKL 2019 Update 5 with flags: “-Wall -g -O3 -std=gnu++11

-mkl=sequential”.

A. Results for ILUT CRTP

We considered a set of 197 matrices from the San Jose

State University Singular Value Database [8], a subset of the

261 matrices used in [10] to test the numerical stability of

LU CRTP. We only employed matrices stored in sparse rep-

resentation and we omitted 28 matrices for which thresholding

could not be performed. 3 out of these 28 matrices are diagonal

matrices. The remaining are matrices with integer entries

that might be handled with other algorithms. We ordered the

matrices in ascending order based on their numerical rank.

We stopped the factorization at the numerical rank as in [10]

to avoid numerical issues. We used k = 8, tolerances τ ∈
{10−3, 10−6, 10−9} and threshold control φ = τ

∣∣R(1)(1, 1)
∣∣.

464

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



We computed μ using (24). The estimated number of iterations

was set to the iteration at which LU CRTP terminated in a

previous run for the same parameter setting.

In all cases, the error was smaller than τ ‖A‖F and agreed

with the corresponding estimator. The threshold control was

never triggered. The number of non-zeros in the truncated LU

factors was significantly reduced for some matrices. Overall,

ILUT CRTP was effective for roughly 30% of the test cases.

In some cases, the alternative computation of LK that im-

proves numerical stability (see Section II-B3) had to be done

which exacerbated the fill-in problem. In 12 cases, the number

of non-zeros in the factors from ILUT CRTP was slightly

higher for each of the three values of τ . Column and row

pivoting is different for A resp. Ã, and therefore, it is possible

that more non-zeros in the factors from a factorization of

Ã are introduced. This suggests that ILUT CRTP is not a

general solution for the fill-in problem. However, for a larger

set of matrices, we observed that thresholding can be quite

beneficial. The ratio of the total number of non-zeros in the

truncated LU factors of LU CRTP over the total number of

non-zeros in the factors of ILUT CRTP for all 197 matrices

with τ = 10−6 is shown in Fig. 1 (left). For completeness,

we included quantities that illustrate the maximum fill-in of

A(i) resp. Ã(i). Moreover, we evaluated a more aggressive

thresholding approach, for which similar or slightly better

ratios are observed. In each iteration, values smaller than φ
are sorted, and the smallest elements are dropped until the

bound (22) would be violated otherwise. In 9, 37 resp. 4

cases with respect to the three values of τ , the error (25)
was slightly larger than τ ‖A‖F despite the estimator (26)
indicating that the desired approximation quality was achieved.

Due to space limitations, we do not show these results here.

We also evaluated potential benefits of applying COLAMD

for reordering. While COLAMD reduces fill-in slightly more

when applied in every iteration, we found that COLAMD

alone was not effective in reducing the number of non-zeros

in the LU factors compared to thresholding (see Fig. 1).

B. Accuracy vs. Cost

We now compare the runtime cost per correct digit in parallel

low-rank approximations for matrices in Table I. Table II

shows the best combination of number of processes and

block size for all experiments and all methods; except for

ILUT CRTP, for which we used the same parameters as for

LU CRTP. The threshold μ for ILUT CRTP was determined

using (24) with the estimated number of iterations set to the

number of iterations needed by LU CRTP. RandQB EI with

p = 1 provided a good trade-off between runtime and required

number of iterations. For matrices M3, M5 and M6, RandQB EI

with p = 0 did not converge within a reasonable number of

iterations.

In sequential Matlab experiments, we also compared Ran-

dUBV with RandQB EI in terms of runtime and number of

iterations needed to attain a given approximation quality for

matrices M1-M5. RandUBV was faster in all cases and per-

forms roughly the same amount of work as RandQB EI with

TABLE I
TEST MATRICES FROM THE SUITESPARSE MATRIX COLLECTION [5]

label matrix name size nnz description

M1 bcsstk18 11948 149090 Structural Problem
M2 raefsky3 21200 1488768 Fluid Dynamics
M3 onetone2 36057 222596 Circuit Simulation
M4 rajat23 110355 555441 Circuit Simulation
M5 mac econ fwd500 206500 1273389 Economic Problem
M6 circuit5M dc 3523317 14865409 Circuit Simulation

p = 0 and same k while often requiring fewer iterations. The

number of iterations for RandUBV are included in Table II.

Although the runtime in Matlab experiments is not necessarily

a sufficiently reliable indicator, these experiments still motivate

the development of an efficient parallel implementation of

RandUBV as the basis for future work. Despite reorthogonal-

ization, RandQB EI experienced a slight loss of orthogonality

in the approximate basis QK over the iterations. With i = 1,

the quantity
∥∥QT

KQK − I
∥∥
∞ was in the range 10−15 to 10−14

and increased by about one order of magnitude for matrices

in Table I for the respective lowest value of τ in Table II.

We also evaluated the minimum rank required to achieve a

certain approximation quality with the singular values obtained

from the TSVD (see Figs. 2 and 3). Due to the prohibitive

computational cost of TSVD, we did not consider its runtime

performance. For M5, the singular values could not be evalu-

ated. With RandQB EI, the exact rank approximation can also

be determined at small cost [20]. In Fig. 2, a comparison of the

minimum rank approximation from RandQB EI with p = 2 to

the minimum rank required suggests that the minimum rank

required is reasonably approximated in Fig. 3.

Fill-in can severely impact the runtime of LU CRTP. Fig. 1

(right) shows the fill-in in A(i) produced throughout the

iterations for different matrices. Figs. 2 and 3 show that, if fill-

in occurs at a certain approximation quality, the performance

of LU CRTP decreases significantly from that point on. The

work required to achieve a certain approximation quality

depends on the singular values of A. The right plot of Fig. 3

shows that the rank of the approximation has to be over 40%
of the original matrix size to achieve an approximation error

below 4 ·10−5. Contrary to dense factors, sparse factors with a

large rank might be still useful. Due to fill-in, LU CRTP could

not achieve the same approximation quality as RandQB EI

within a reasonable time. ILUT CRTP effectively reduced fill-

in and could attain the same quality as RandQB EI in less

time. The error (25) agreed with the estimator (26) in all cases.

With respect to larger matrices, we could not find an example

where ILUT CRTP was unable to reduce fill-in, but we do

not rule out this possibility due to the results in Fig. 1 (left).

C. Strong scaling

Speedups for three matrices from Table I with respect to

different numbers of processes are shown in Fig. 4. All

methods used the same block size k to compute low-rank

approximations with the same approximation quality for the

465

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RUNTIME PER CORRECT DIGIT FOR TEST MATRICES FROM TABLE I. THE FIRST TWO COLUMNS INDICATE THE LABEL OF THE TEST MATRIX AND THE

APPROXIMATION TOLERANCE τ . THE NEXT 13 COLUMNS CONTAIN (WITH RESPECT TO τ ) THE NUMBER OF ITERATIONS NEEDED (ITS), THE RUNTIME IN

SECONDS, THE BLOCK SIZE k, AND THE NUMBER NP OF MPI PROCESSES USED (AT MOST 4096). ITSUBV SHOWS THE NUMBER OF ITERATIONS NEEDED

BY RANDUBV. THE SUBSCRIPTS pi , i ∈ {0, 1, 2} IN THE ITERATION AND RUNTIME COLUMN HEADERS OF RANDQB EI INDICATE THE VALUE OF THE

POWER PARAMETER p. NP AND BLOCK SIZE k ∈ {32, 64, 128, 192, 256, 512} WERE SELECTED WITH BEST PERFORMANCE FOR THE HIGHEST

APPROXIMATION QUALITY. THE LAST THREE COLUMNS SHOW THE RUNTIME OF ILUT CRTP, THE NUMBER OF NON-ZEROS IN THE FACTORS OF

LU CRTP OVER THE NUMBER OF NON-ZEROS IN THE FACTORS OF ILUT CRTP (RATIONNZ ), AND THE THRESHOLD μ DETERMINED BY THE

ALGORITHM. ILUT CRTP USED THE SAME PARAMETER SETTING (NP AND k) AS LU CRTP.

RandQB EI LU CRTP ILUT CRTP
label τ itsUBV itsp0 timep0 itsp1 timep1 itsp2 timep2 k np its time k np time rationnz μ

M1
10−1 27 33 1.6 23 1.5 22 2

64 128
23 4

64 128
0.8 37.1 3.3 · 105

10−2 60 72 5 56 5 55 7 55 19 1.6 41.6 1.4 · 104
10−3 95 112 11 91 12 90 17 93 45 3 18.3 8.1 · 102

M2

10−1 26 33 2.2 24 2.2 23 4

64 256

45 7

32 512

1.9 265.9 1.5 · 10−5

10−2 50 59 3.8 47 4.6 46 7 92 37 2.7 376.5 7.1 · 10−7

10−3 80 85 6.1 75 9 74 14 148 125 3.9 334.3 4.4 · 10−8

10−4 92 99 7.6 90 12 90 18 180 202 4.8 255.9 3.6 · 10−9

M3
10−1 233 164 50 152 29 151 46

64 512
38 10

256 128
9 2.2 1.9 · 10−2

10−2 256 211 80 172 37 171 57 45 13 11 2 1.6 · 10−3

10−3 273 - - 259 79 257 121 76 268 33 6.1 9.6 · 10−5

M4
10−1 1 1 1.6 1 1.7 1 1.8

192 512
1 1

128 512
- - -

10−2 5 8 3.4 4 2.8 4 4 5 4 2.2 3.7 1.5
10−3 84 110 93 72 81 69 140 104 191 16 34.4 7.2 · 10−3

M5

10−1 69 81 155 56 63 54 113

192 1024

42 23

256 512

22 1.2 3.1 · 10−1

10−2 138 149 425 128 249 126 485 98 107 52 5.1 1.3 · 10−2

10−3 164 177 575 158 371 158 696 120 242 79 6.1 1.1 · 10−3

10−4 195 - - 191 532 190 953 145 611 137 8.6 8.9 · 10−5

M6
10−3 - 1 12 1 13 1 13

256 4096
1 25

512 4096
- - -

10−4 - - - 44 331 37 563 17 236 228 2.4 2.6 · 10−2

Fig. 1. Left: The x-axis shows the empirical distribution function for 197 matrices with k = 8 and τ = 10−6. The left y-axis shows the number of
non-zeros in the factors of LU CRTP over the number of non-zeros in the factors of ILUT CRTP (blue solid line) and the number of non-zeros in the
factors of LU CRTP without COLAMD over the number of non-zeros in the factors of LU CRTP with COLAMD applied in the first iteration (red dashed
line) or with COLAMD applied in every iteration (yellow dotted line) – higher is better. The right y-axis shows fill-in as the maximum density ratio
max(nnz(A(i))/

(
#rows(A(i)) ·#cols(A(i))

)
) (green bold dotted line) resp. max(nnz(Ã(i))/(#rows(Ã(i)) ·#cols(Ã(i)))) (green thin dotted line) –

lower is better. Right: Fill-in progression for matrices M2 - M5 after each iteration in LU CRTP. Block sizes and number of processes as in Table II. The
y-axis shows fill-in as the density ratio nnz(A(i))/

(
#rows(A(i)) ·#cols(A(i))

)
.

466

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Runtime vs. approximation quality for M3 and M4. Block sizes and number of processes as in Table II. The left y-axis shows runtime and refers to
the four lines. The right y-axis shows the minimum rank required (circles) and the approximated minimum rank (asterisks) to achieve a certain approximation
quality as a percentage of the matrix size n.

Fig. 3. Runtime vs. approximation quality for M5, cf. the caption of Fig. 2. The right plot presents the same data as the left, but with an extended range
along the x-axis. Evaluating the minimum rank required to achieve a certain approximation quality was too time consuming.

Fig. 4. Left: Speedup for matrix M2 with k = 32, approximation error below 10−4. Right: Speedup for matrices M4 and M5 with k = 192, approximation
error below 10−3. Solid lines refer to M4, dashed lines refer to M5.

467

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Runtime of computational kernels in LU CRTP and ILUT CRTP with varying number of MPI processes (np) and block sizes k for matrix M2 and
τ = 10−3. LU CRTP produces significant fill-in for M2 (see Fig. 1). The runtime for each kernel was accumulated over the number of iterations and the
maximum time among processes was selected. The left-most bar in each bar group shows the runtime with np = 4. The number of processes doubles as we
move to the next bar within a bar group until the product np · k would be larger than the size of M2 (21200). E.g., with k = 32, up to 512 processes are
possible. With k = 512, at most 32 processes can be used. If significant fill-in is produced, the most expensive kernels, besides column QR TP, are the
computation of the Schur complement (line 12 of Algorithm 2) and the local row permutations of A(i), that are performed right after row QR TP in line 8 of
Algorithm 2 (the column permutations that would require communication in line 8 can be done implicitly during column QR TP). If only minor fill-in occurs
or if fill-in is effectively reduced with ILUT CRTP, the most expensive kernel besides column QR TP is row QR TP. Larger values for k or np require more
communication. This leads to increased runtimes for ILUT CRTP within and among bar groups when, at some point, the communication cost outweighs the
benefit of distributing the workload among processes. LU CRTP must process more non-zeros than ILUT CRTP and therefore benefits more from workload
distribution. This also implies that using a combination of values for k and np with best performance for LU CRTP is not necessarily the best configuration
for ILUT CRTP.

Fig. 6. Runtime of computational kernels in RandQB EI with varying number of MPI processes and block sizes k for matrix M2 and τ = 10−3, cf. the
caption of Fig. 5. 170 resp. 148 iterations for p = 0 resp. p = 2 with k = 32. 11 resp. 10 iterations for p = 0 resp. p = 2 with k = 512.

468

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 



respective matrix. In the left plot, we observe that, at some

point, the deterministic methods do not scale anymore. Ap-

plying QR TP on the columns of the input dominates the cost

of LU CRTP. The method scales well, as long as most of

the time is spent in the local reduction tree of QR TP. The

method does not scale anymore when log(P ) approaches the

height of the tree, such that most of the time is spent in the

global reduction. More parallelism is possible by reducing the

block size k at the cost of more iterations for achieving the

same precision. A similar trend is observed for two larger

problems in the right plot of Fig. 4. Here, the speedup is

shown with respect to a larger number of processes such

that the deterministic methods do not scale well from the

start. ILUT CRTP does the least amount of work overall and

at some point, is negatively affected by more parallelism.

A breakdown of the most expensive kernels with respect to

varying number of MPI processes and block sizes k is shown

in Figs. 5 and 6.

VII. CONCLUSION

Two fixed-precision algorithms, a randomized and a deter-

ministic one, for computing low-rank approximations of large

sparse matrices were studied, RandQB EI and LU CRTP.

For suitable comparison, we used the efficient error indicator

of RandQB EI and developed a similar error indicator for

LU CRTP. Due to potential fill-in in the factorization process,

the runtime of LU CRTP is less predictable than the one

of RandQB EI. To improve the runtime performance of the

deterministic approach, we developed ILUT CRTP. Experi-

mental evaluation on a large set of test matrices showed that

the new algorithm achieves the same approximation quality

as LU CRTP with, in some cases, significant performance

improvements and reduced number of non-zeros in the LU

factors. We developed distributed-memory parallelizations of

RandQB EI, LU CRTP and ILUT CRTP and compared them

in terms of parallel scalability, runtime and accuracy on several

large test matrices. While RandQB EI overall exhibited better

scalability, we found that LU CRTP can still outperform

RandQB EI if fill-in is not significant. ILUT CRTP effectively

improved performance and reduced the number of non-zeros

in the truncated LU factors, achieving speedups up to 40 over

LU CRTP.

REFERENCES

[1] C. Bach, F. Duddeck, and L. Song. “Fixed-precision

randomized low-rank approximation methods for non-

linear model order reduction of large systems”. In: Int.
J. Numer. Methods Engrg. 119.8 (2019), pp. 687–711.

[2] S. Cayrols. “Minimizing communication for incomplete

factorizations and low-rank approximations on large

scale computers”. PhD thesis. Sorbonne Univ., 2019.

[3] K. L. Clarkson and D. P. Woodruff. “Low-Rank Ap-

proximation and Regression in Input Sparsity Time”.

In: J. ACM 63.6 (2017), pp. 1–45.

[4] T. Davis, J. Gilbert, S. Larimore, and E. Ng. “A column

approximate minimum degree ordering algorithm”. In:

ACM Trans. Math. Softw. 30.3 (2004), pp. 353–376.

[5] T. Davis and Y. Hu. “The University of Florida Sparse

Matrix Collection”. In: ACM Trans. Math. Softw. 38.1

(2011), pp. 1–25.

[6] T. Davis. “Algorithm 915, SuiteSparseQR: Multifrontal

Multithreaded Rank-Revealing Sparse QR Factoriza-

tion”. In: ACM Trans. Math. Softw. 38.1 (2011), pp.

1–22.

[7] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.

“Communication-Optimal Parallel and Sequential QR

and LU Factorizations”. In: SIAM J. Sci. Comput. 34.1

(2012), pp. 206–239.

[8] L. Foster. San Jose State University Singular Matrix
Database. URL: http : / /www.math . sjsu .edu / singular /

matrices/ (visited on 10/14/2021).

[9] G. Golub and C. Van Loan. Matrix Computations. 4th

edition. Johns Hopkins University Press, 2013.

[10] L. Grigori, S. Cayrols, and J. Demmel. “Low Rank

Approximation of a Sparse Matrix Based on LU Fac-

torization with Column and Row Tournament Pivoting”.

In: SIAM J. Sci. Comput. 40.2 (2018), pp. C181–C209.

[11] W. Hackbusch. Hierarchical Matrices: Algorithms and
Analysis. Berlin, Germany: Springer, 2015.

[12] N. Halko, P.-G. Martinsson, and J. Tropp. “Finding

Structure with Randomness: Probabilistic Algorithms

for Constructing Approximate Matrix Decompositions”.

In: SIAM Rev. 53.2 (2011), pp. 217–288.

[13] E. Hallman. “A Block Bidiagonalization Method for

Fixed-Accuracy Low-Rank Matrix Approximation”. In:

arXiv abs/2101.01247 (2021).

[14] R. A. Horn and C. R. Johnson. Matrix Analysis. Cam-

bridge University Press, 2012.

[15] I. Markovsky. Low-Rank Approximation: Algorithms,
Implementation, Applications. Springer, 2019.

[16] P.-G. Martinsson and S. Voronin. “A Randomized

Blocked Algorithm for Efficiently Computing Rank-

revealing Factorizations of Matrices”. In: SIAM J. Sci.
Comput. 38.5 (2016), S485–S507.

[17] M. Mascagni, I. Yamazaki, A. Ida, R. Yokota, and J.

Dongarra. “Distributed-Memory Lattice H-Matrix Fac-

torization”. In: Int. J. High Perform. Comput. Appl. 33.5

(2019), pp. 1046–1063.

[18] J. Poulson, B. Marker, R. A. Van de Geijn, J. R.

Hammond, and N. A. Romero. “Elemental: A new

framework for distributed memory dense matrix com-

putations”. In: ACM Trans. Math. Softw. 39.2 (2013),

pp. 1–24.

[19] Y. Saad. Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics, 2003.

[20] W. Yu, Y. Gu, and Y. Li. “Efficient Randomized

Algorithms for the Fixed-Precision Low-Rank Matrix

Approximation”. In: SIAM J. Matrix Anal. Appl. 39.3

(2018), pp. 1339–1359.

469

Authorized licensed use limited to: Vienna University Library. Downloaded on September 07,2022 at 11:56:52 UTC from IEEE Xplore.  Restrictions apply. 


