
Joining the BRICKS Network - A Piece of Cake

Robert Hecht and Bernhard Haslhofer1

ARC Seibersdorf research - Research Studios
Studio Digital Memory Engineering
Thurngasse 8, A-1090 Wien, Austria

{robert.hecht|bernhard.haslhofer}@researchstudio.at

Abstract. Project BRICKS aims to build a Europe-wide distributed Digital Li-
brary in the field of Cultural Heritage. Each member organisation will run a node
in the network (BRICKS node or BNode) and make its content available to the
entire network. Content described in diverse Metadata standards can be searched
with a unique query. Unlike other Digital Libraries, BRICKS is open and expand-
able, both on the organizational and the technical level. The aim of this paper is to
demonstrate that the technical effort of joining the BRICKS network is minimal
compared with the potential benefits of joining the BRICKS community.
This paper focuses on the BRICKS importer component, which is based on the
Open Archives Protocol for Metadata Harvesting (OAI-PMH). After a short overview
of the architecture of the importer and an outline of OAI-PMH, we list the tech-
nical requirements of the importer give a detailed list of the steps an institution
take to join BRICKS. We also present first results obtained with our importer
component.

1 Introduction

The EU project BRICKS aims to build a Europe-wide distributed Digital Library in the
field of Cultural Heritage. The basis of this library will be a peer-to-peer network in
which each member organisation runs one or several nodes in the network (BRICKS
node or BNode) and makes its content available to the entire network 1. The absence of
central adminstration structures, although posing various implementation challenges,
is seen as a major incentive for organisations to join the network: there will be no
adminstration costs other than those for setting up and maintaining their own BNode.
The software is available for free and will run on relatively inexpensive computers.
Thus the cost of running a BNode will mainly be determined by the amount of work
necessary to import and update content and metadata in the BNode. We are aware of
the fact that this effort must be kept at a minimum to encourage institutions to join the
network. In this paper, we describe the approach taken to achieve this goal.

The rest of this paper is structured as follows: in section 2 we give outline the ar-
chitecture of the importer component and how it collaborates with other components of
the system. In section 3 we present the Open Archive Initiative Protocol for Metadata

1 An institution can still restrict access to its documents to certain users, but the technical infras-
tructure to access documents from every node is in place.

Harvesting (OAI PMH) and describe how we use it. Section 4 lists the steps an insti-
tution must carry out to import their metadata (and contents). Section 5 describes our
experiences with the importer, and in section 6 we summarize our results.

2 Architecture

BRICKS consists of a number of loosely coupled components built on top of the peer-
to-peer infrastructure. Each of these components is accessible via a web service inter-
face. Software developpers can build applications using these components. The network
aspects are hidden by the components - application developers don’t need to worry
about them.

The BRICKS Importer is an application which builds upon the following BRICKS
components:

– The Metadata Manager: a repository for all descriptive metadata, i. e. metadata
that describe content. Such metadata can include e.g. the title of a document, its
author, the creation date, keywords, etc. The metadata descriptions are based on
the Resource Description Framework (RDF) [1]. However, the Metadata Manager
does not expose the RDF Graph, but summarizes the contained information into
Records, which contain all data for a content item which conform to a given meta-
data schema.

– The Content Manager: the content repository of BRICKS, based on the Java Con-
tent Repository (JCR) [2]. The Content Manager can handle arbitrarily complex
content models and store content that conforms to these models. The Content Man-
ager offers two options to import external content:
1. Importing the content: a copy of all content items is created and stored in the

BRICKS Content Manager.
2. Referencing content: the Content Manager stores a reference to the location

of the content and retrieves it from the external system when a user wants to
access it.

It should be noted that a user who accesses a document will not notice if the Content
Manager stores the actual content or just a reference to it.

– The Collection Manager: This component allows to organise content (and meta-
data) into a hierarchical system of sets - the so-called collections. The function of
collections is more or less equivalent to that of folders / directories in a file system.
Every BNode has at least one collection - the root collection. In principle, all con-
tent could be stored there, although this is strongly discouraged for organisational
reasons (just like you wouldn’t store all the files on your computer in the root di-
rectory).

The architecture of the Importer is outlined in fig. 2. The importer uses the OAI
Protocol for Metadata Harvesting (PMH) to import metadata (see section 3). It acts
as PMH client. The external system (the existing content management system) needs to
implement or interface with an OAI PMH server (see section 4 for details). The retrieved
metadata are stored in the Metadata Manager. The content (reference) is stored in the
Content Manager.

Fig. 1. Importer Architecture

The Importer is configured via a configuration file. In this file, the user needs to
specify the address of the OAI PMH server, a schedule for harvesting, and the collection
where the retrieved data should be stored. The specification of the target collection is
very fine grained and can be made dependent on the metadata. E.g. it is possible to store
all documents written by a certain author or all documents created in a certain period of
time in one collection.

The scheduler generates Harvesting Tasks. Each Harvesting Task represents one
pass of metadata harvesting with a certain set of parameters. The configuration file may
define an arbitrary number of harvesting tasks. Harvesting tasks can be one-time (i.e at
a defined date and time) or periodic, e.g. each Friday at midnight or on the second day
of each month at 3:00 am.

Since the format of the OAI PMH is not RDF, but the Metadata Manager stores
only RDF data, we need to translate the imported metadata to RDF before storing them.
Mapping the XML serialisation of PMH to RDF/XML is rather straightforward and can
be performed using XSLT [3] style sheets. This is performed by the XSLT Transformer
component. For common standard metadata schemas, these style sheets will be pro-
vided as part of the BRICKS distribution. For other standards and proprietary schemas,
they must be provided by the user. The workflow of an import is as follows:

1. The scheduler recognises that an import is due and creates a Harvesting Task.
2. The Harvesting Task triggers the OAI client to send a request to the OAI server.
3. The OAI client forwards the returned Metadata to the Harvesting Task.

4. The Harvesting Task creates content items corresponding to the returned metadata
Records in the Content Manager. Depending on the settings in the configuration
file, it either stores the location (e.g. URL) of the content item, or retrieves it from
the web server of the external system and stores the content item themself. The
content is put into a collection specified in the configuration file.

5. The Harvesting Task uses the XSLT Transformer to convert the metadata from the
OAI PMH format to RDF/XML.

6. The Harvesting Task stores the converted metadata in the Metadata Manager.

3 OAI PMH

The Open Archive Initiative Protocol for Metadata Harvesting (OAI PMH) [4] is a
protocol to exchange metadata that enjoys growing popularity in the Digital Library
world. OAI PMH allows a Service Provider (client) to retrieve metadata from a Data
Provider (server). It is implemented on top of HTTP and uses the internet as backbone.

OAI PMH structures metadata as Metadata Record. A Metadata Record contains all
information concering a content item (e.g. a text document) that can be expressed with
a specified standard (e.g. Dublin Core, VRA, MARC,...). If a content item is described
in several standards, a separate record must be sent for each of them. Furthermore, OAI
PMH requests that each content item has a unique identifier.

OAI PMH allows grouping information into (hierarchical) sets. E.g. a server for
metadata of a museum might define sets like paintings, drawings, engravings, sculp-
tures,... or medieval, renaissance, baroque,... Sets can overlap, i.e. a given content item
can be an element of several sets. Sets can have subsets (arbitrary level of nesting sup-
ported), so a museum might divide their ”‘engravings”’ set according to time periods,
like egravings:baroque. Servers are not requested to support this feature, but if they do,
it allows clients to selectively retrieve only the information they are interested in (e.g. a
client could retrieve only items in the ”‘drawings”’ set).

OAI PMH defines six Requests:

– Identify: Returns information about the server
– ListMetadataFormats: Returns a list of metadata formats supported by the server.
– ListSets: Returns the list of sets defined by the server (if any).
– ListIdentifiers: Retrieves the identifiers of items matching certain restrictions (e.g.

on set, creation date, metadata format). If no restrictions are given, all identifiers
are returned.

– ListRecords: Retrieves all Records of a given metadata format. Further restrictions,
e.g. on set or creation date can be added.

– GetRecord: Retrieves a specific Record defined by its unique identifier and meta-
data format.

In the BRICKS Importer, we mainly use the ListRecords request.

The fact that OAI PMH allows to selectively retrieve records that were created,
modified, or deleted in a given time-span enables ”‘incremental harvesting”’, i.e. one
can in a first pass harvest all metadata from a server and then run periodic updates in
which only the changes are retrieved. Of course, this saves a lot of time.

OAI PMH Metadata Records can follow arbitrary metadata schemas, but they must
include an unqualified Dublin Core description. Thus, organsiations that want to run an
OAI server need to map their metadata to Dublin Core. However, this is typically not a
problem, since Dublin Core is so generic that almost every existing Metadata Schema
can be mapped to it. Moreover, it should be noted that this mapping is a one-time effort,
since it is sufficient to define which fields in the existing descriptions should be mapped
to which Dublin Core element.

4 Setting up the Import of external data

For institutions that want not only to use BRICKS but to contribute, the first step is to
make their already existing external metadata and content available within the BRICKS
network. We provide an Importer component which minimises the effort both for the
first import of data from an external system to BRICKS and the synchronisation be-
tween the two systems. Rather than inventing a new communication protocol to achieve
this, we have adopted the already accepted and well-established OAI PMH.

4.1 Requirements and first steps

In the import process, the external system acts as OAI server and BRICKS as OAI
client. This means that the content providers must set up an OAI PMH server on top of
their existing systems. Costs and effort to fulfil this requirement are minimal: on the one
hand there exist several open source implementations (see [5] for a list of such systems
and other interesting tools) that can be downloaded and installed for free, and on the
other hand the OAI PMH is so simple that even non–experts can perform this task.

Since the OAI PMH specification foresees the unqualified Dublin Core [6] metadata
format as a minimal requirement, and existing metadata are often stored in relational
data bases, content providers only need to install an open source OAI server package
and provide the mappings form their database tables to unqualified Dublin Core ex-
pressed as SQL statements. Since the metadata can change in the external system, we
provide means not only for a one-time import, but also for continuous synchronisation.
To reduce traffic between the server and client, the OAI server should support incre-
mental harvesting, i.e. only records that were created, modified, or deleted since the last
harvest are sent. To enable incremental harvesting, the OAI server should also support
persistent information about deleted records.

As soon as the OAI-PMH server is set up at the content provider’s side, the BRICKS
Importer component can be configured and started to perform the (first) harvesting task.
Each harvesting task must be specified in a configuration record and will be managed
by a built-in scheduler. A configuration record holds the following information:

1. the URL pointing to the content provider’s OAI Server
2. restrictions on the metadata records to be harvested

– records pertaining to certain Sets (if supported by the OAI server)
– records corresponding to a certain metadata format
– records created, updated, or deleted in a certain time range

3. when to harvest;
– month, day, and time (e.g. January 1st and July 1st at midnight), or
– day and time (e.g. 3rd of every month at 3:00 pm), or
– weekday and time (e.g. Monday and Friday at midnight), or
– daily at a specified time (e.g. daily at 2:00 am), or
– start harvesting immediately and do not repeat

4. to which BRICKS collection the harvested metadata records should be assigned to
– set-based: specify a collection for all records pertaining to a certain set
– attribute-value-based: all harvested metadata records matching a certain regu-

lar expression are stored in a specified collection
– default collection: all metadata records that do not match any of the above

criteria will be assigned to that collection
5. specify if external content should be imported as well, and where this content can be

found. If the content is just a file, its location should be specified in the dc:identifier
element, as recommended in the OAI PMH specification.

6. the path of stylesheet(s) which is used to transform harvested XML metadata records
into RDF/XML

7. a unique identifier for the configuration record
8. what identifier to assign to the imported records

The format of the configuration file is XML, which is both popular and easy to
understand and read. Typically, it should not be necessary to modify the configuration
file, since the schedule for periodic updates can be defined when the file is first written.
So even though it might take some effort to write the configuration file, this should be
necessary just once.

Figure 2 shows a very basic configuration record which contains the necessary in-
formation to import all available unqualified Dublin Core metadata from one of the
BRICKS consortium’s content providers. It specifies the OAI server endpoint (http:
//www.findsdatabase.org.uk/oai/service.php), that the harvesting task
should start immediately, and restricts the metadata to be harvested to unqualified Dublin
Core (http://www.openarchives.org/OAI/2.0/oai_dc/).Further, it spec-
ifies that only the metadata but no contents should be imported and stored in a collec-
tion with the identifier default. Finally, the location of the stylesheet for transforming
the harvested unqualified Dublin Core records into RDF/XML is given.

4.2 Advanced data import

Although importing unqualified Dublin Core metadata into the BRICKS network is a
quick and straightforward, this is often not an optimal solution. This is because most

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ImporterConfiguration>
 <OAI_PMH_Request ID="BRICKS1">

 <ServerURL>http://www.findsdatabase.org.uk/oai/service.php</ServerURL>

 <Schedule>
 <Now/>
 </schedule>

 <Restrictions>
 <FormatRestriction>
 <Format
oaiPrefix="oai_dc">http://www.openarchives.org/OAI/2.0/oai_dc/</Format>
 </FormatRestriction>
 </Restrictions>

 <OAITargetPhysicalCollections>
 <DefaultCollection>default</DefaultCollection>
 </OAITargetPhysicalCollections>

 <ImportContents stopOnMissingDCIdentifier="false">false</ImportContents>

 </OAI_PMH_Request>

 <OAIFormatMapping>
 <Format
 oaiPrefix="oai_dc">http://www.openarchives.org/OAI/2.0/oai_dc/
 </Format>

 <MetadataXSLTPath>
 /org/bricks/impl/services/importer/misc/xslt/oai_dc2rdf_xml.xsl
 </MetadataXSLTPath>

 <ContentXSLTPath>
 /org/bricks/impl/services/importer/misc/xslt/oai_dc2oai_dc_jcrxml.xsl
 </ContentXSLTPath>
 </OAIFormatMapping>

</ImporterConfiguration>

Fig. 2. Sample configuration record for importing unqualified Dublin Core metadata

institutions are holding metadata that correspond to their proprietary schemas or some
other standardized metadata schema, which are much more expressive than the Dublin
Core schema. In most cases, mapping those schemas to unqualified Dublin Core causes
an enormous loss of semantics in the metadata. As a result, the semantically weak
metadata contributed to the BRICKS network do not provide the necessary basis for
advanced, semantic–aware search and discovery mechanisms.

For that reason, we encourage institutions to contribute metadata corresponding to
other standards than Dublin Core or to their own proprietary formats. Of course, this
raises the required effort for importing external data, but from a future perspective it
might be worth that effort. It should also be pointed out that most of the additional
effort is one-time, because it involves the metadata schemas, not the individual metadata
records.

The following steps are necessary if institutions want to contribute metadata that go
beyond unqualified Dublin Core:

1. an XML Schema definition for the proprietary metadata schema (might be available
for standards). This is useful for validating outgoing metadata records at the OAI
Server side.

2. an OWL-DL ontology (Metadata Schema) matching the definitions in the XML
schema. This ontology must be registered with the BRICKS Metadata Manager so
that it can process the metadata.

3. an XSLT stylesheet for transforming OAI PMH metadata records into RDF/XML.
4. (optional) in case that a special or new JCR content model is desired, an XML

schema is needed that reflects the content model.

5 Results

As a case study, we have imported several collections from two institutions that par-
ticipate in the BRICKS project as content providers: the Austrian National Library’s
Pictures archive2 and Consorzio Forma’s image collection from their project “La For-
tuna Visiva di Pompeii”3. Both institutions participating in the case study have existing
content management systems in place and use metadata descriptions corresponding to
proprietary schemas.

Since the OAI PMH has been designed with easy implementation in mind, the task
of installing an already available OAI server implementation to handle OAI PMH re-
quests took about one day of work by an experienced software engineer. We assumed
that if the metadata in the existing systems are well organised, the task of accessing
and deriving metadata should not be too onerous. This is especially true if an institution
provides only unqualified Dublin Core Metadata. In our case study, our colleagues at
Consorzio Forma have proved that this assumption indeed holds.

If institutions decide to provide semantically richer metadata than unqualified Dublin
Core, the effort depends on the schema they use. If it is a standard (e.g. VRA [7], MARC
[8], or CIDOC-CRM [9]) which has already been adopted in BRICKS, the effort re-
mains nearly as low as when following the unqualified Dublin Core approach. However,
if an institution employs a completely proprietary schema, the necessary XML schema,
the OWL ontology as well as the stylesheet for transforming XML into RDF/XML must
be created. In our case study, we were facing such a scenario when importing metadata
from the Austrian National Library. However, it turned out that also this situation was
manageable in collaboration between experts from boths sides.

6 Conclusions and Future Work

We have created an importer component for the BRICKS network which minimises
both the cost (in terms of necessary hard- and software) and the amount of work needed

2 http://www.bildarchiv.at
3 http://pompeii.sns.it

to import existing data into the system. We have tested it with real-world size collec-
tions from two content providers and the results are quite satisfactory. Our future plans
include to create BRICKS metadata schemas and XSLT style sheets for the most pop-
ular metadata standards in Cultural Heritage, so that most data can be imported with
minimal effort. Moreover, we will provide a graphical user interface (GUI) for creating
and updating the configuration file so that this task can be performed by persons who
don’t understand XML.

References

1. W3C: Resource Description Framework (RDF). (2005) http://www.w3c.org/RDF.
2. java community process: JSR 170: Content Repository for Java technology API. (2005)

http://www.jcp.org/en/jsr/detail?id=170.
3. W3C: XSL Transformations (XSLT) Version 1.0. (2005) http://www.w3.org/TR/xslt.
4. Open Archives Initiative: The Open Archives Initiative Protocol for Metadata Harvesting.

(2004) http://www.openarchives.org/OAI/openarchivesprotocol.html.
5. Open Archives Initiative: OAI tools. (2005) http://www.openarchives.org/tools/tools.html.
6. The Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Version 1.1: Refer-

ence Description. (2004) http://dublincore.org/documents/dces/.
7. Visual Resources Association Data Standards Committee: VRA Core Categories, Version 3.0.

(2002) http://www.vraweb.org/vracore3.htm.
8. Library of Congress - Network Developement and MARC Standards Office: MARC Metadata

Standard. (2005) http://www.loc.gov/marc/.
9. CIDOC Documentation Standards Working Group: CIDOC Conceptual Reference Model

(CRM). (2005) http://cidoc.ics.forth.gr/.

