
DISSERTATION / DOCTORAL THESIS

Titel der Disseratation / Title of the Doctoral Thesis

„Engineering Blockchain-Based Applications
in the Context of the Ethereum Ecosystem“

verfasst von / submitted by

Dipl.-Ing. Alex Maximilian Wöhrer, Bakk. (FH)

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2022 / Vienna, 2022

Studienkennzahl lt. Studienblatt / A 786 880
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Doktoratsstudium Informatik
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dr. Uwe Zdun

Vita

Maximilian Wöhrer is a research associate in the Software Architecture Research Group at the
Faculty of Computer Science, University of Vienna, Austria. Before that, he worked as a software en-
gineer in different areas. He received a master’s degree in computer science in 2009 from the Univer-
sity of Vienna. His research interests include blockchain technology, smart contracts, software archi-
tecture, software engineering, and the application of design patterns in the afore mentioned domains.

i

Acknowledgements

First and foremost, I would like to thank my doctorate supervisor, Professor Uwe Zdun, for his
valuable suggestions, expert advice, and continuous support in all matters during my work on
this thesis. Through his guidance and support, it was possible for me to successfully navigate the
rocky road from a rough vision to the completion of this thesis. Likewise, I would like to thank
all co-authors for their help and contributions as well as the anonymous reviewers of my scientific
contributions who helped me to revise and improve my work. Furthermore, I would like to express
my gratitude to the entire Software Architecture Group, especially my long-time room and research
colleague Philipp Paulweber, the secretaries Edisa Redzic and Sylvia Ennsberger, as well as our
technician Gerhard Pernecker for all their support and for providing such a warm, productive and
pleasant working environment. Last but not least, a big thank you goes to my parents, my twin sister,
and my girlfriend who have supported me in every aspect of my life, not only during my studies.

iii

Abstract

Blockchain is more than just the technology behind the cryptocurrency Bitcoin. It can be seen as a
driving force that has the potential to transform many domains. The technology is based on various
computational and economic concepts to create a fraud-free intermediation platform to efficiently
settle transactions between mutually distrusting parties. More specifically, the blockchain pro-
vides an infrastructure based on a Peer-to-Peer network to record transactions in a decentralized,
transparent, and immutable manner to enable the storage of data or the autonomous execution of
programs known as smart contracts.

Driven by these possibilities, numerous companies and organizations have begun to explore
blockchain in recent years to find meaningful application areas and develop applications based
on the technology. In this context, new ground is being broken in many areas, and accordingly,
recommendations for efficient approaches are needed.

In this regard, this thesis addresses technical considerations and methods for building blockchain-
based applications. In general, overarching designs and approaches are elaborated that have
established themselves as best practices for blockchain-based software solutions from an architec-
tural, development, and implementation perspective. The analysis is done in the scope of different
topics in the context of the well-known blockchain platform Ethereum. However, many of the
insights gained can also be generalized and applied to other platforms.

First, fundamental architectural decisions and approaches are studied, from which follows that a
hybrid architecture consisting of on- and off-chain components offers a good compromise between
decentralization and quality attributes such as scalability, privacy, and usability. Furthermore,
design patterns for data exchange across blockchain boundaries by means of so-called oracles are
elaborated, resulting in four basic oracle patterns related to data flow dimensions (i.e., inbound/out-
bound and pull/push). Moreover, design patterns for smart contracts are devised and presented by
means of 18 concrete patterns that solve problems related to operation, access control, management,
and security. Subsequently, an abstract domain-specific language for smart contracts is developed
and studied to enable the automatic application of these design patterns via code generation. Along
the way, it is shown that abstraction and code generation can be a viable way to formulate smart
contracts in order to increase the efficiency, clarity, and flexibility of code while reducing the
susceptibility to errors. Last, typical DevOps activities are explored which show that core DevOps

v

Abstract

concepts and activities are similar to those in other domains, with the difference that more rigorous
testing and differentiated deployment practices are required due to the inherent immutability of
the blockchain. In summary, this thesis contributes to a better understanding of various topics that
are important for the development of blockchain-based applications.

vi

Kurzfassung

Blockchain ist mehr als nur die Technologie hinter der Kryptowährung Bitcoin. Die Technologie
kann als treibende Kraft angesehen werden, die das Potenzial besitzt, viele Bereiche zu verändern.
Die Blockchain selbst basiert auf verschiedenen rechnerischen und wirtschaftlichen Konzepten,
um eine betrugsfreie Vermittlungsplattform zur effizienten Abwicklung von Transaktionen zwis-
chen sich gegenseitig misstrauenden Parteien zu schaffen. Genauer gesagt, bietet die Blockchain
eine auf einem Peer-to-Peer-Netzwerk basierende Infrastruktur zur dezentralen, transparenten
und unveränderlichen Aufzeichnung von Transaktionen, um die Speicherung von Daten oder die
autonome Ausführung von Programmen, sogenannten Smart Contracts, zu ermöglichen.

Angetrieben von diesen Möglichkeiten haben in den letzten Jahren zahlreiche Unternehmen und
Organisationen begonnen, sich mit der Blockchain zu beschäftigen, um sinnvolle Anwendungs-
bereiche zu erkunden und Anwendungen auf Basis der Technologie zu entwickeln. In diesem
Zusammenhang wird allerdings in vielen Bereichen Neuland betreten, dementsprechend sind
Empfehlungen für effiziente Herangehensweisen gefragt.

Diese Arbeit behandelt in dieser Hinsicht technische Überlegungen und Methoden zur Erstellung
von Blockchain-basierten Anwendungen. Dabei werden im Allgemeinen übergreifende Designs
und Ansätze elaboriert, die sich als Best Practices für Blockchain-basierte Softwarelösungen
aus Architektur-, Entwicklungs- und Implementierungssicht etabliert haben. Die Aufarbeitung
geschieht im Rahmen unterschiedlicher Themenkomplexe im Kontext der bekannten Blockchain
Plattform Ethereum. Viele der gewonnen Erkenntnisse lassen sich aber auch auf andere Plattformen
verallgemeinern und anwenden.

Zunächst werden grundlegende Architekturentscheidungen und -ansätze erarbeitet, aus denen
folgt das eine hybride Architektur bestehend aus on- und off-chain Komponeten einen guten Kom-
promiss zwischen Dezentralisierung und Qualitätsmerkmalen wie Skalierbarkeit, Datenschutz
und Benutzerfreundlichkeit bietet. Des Weiteren werden Entwurfsmuster für den Informationsaus-
tausch über Blockchain-Grenzen hinweg mittels sogenannter Orakel ausgearbeitet, woraus sich
vier grundlegende Orakelmuster in Bezug auf Datenflussdimensionen (d. h. inbound/outbound und
pull/push) ergeben. Außerdem werden Entwurfsmuster für Smart Contracts erarbeitet und anhand
von 18 konkreten Mustern präsentiert, die Probleme im Zusammenhang mit dem Betrieb, der
Zugangskontrolle, der Verwaltung und der Sicherheit lösen. In weiterer Folge wird eine abstrakte

vii

Kurzfassung

domänenspezifischen Sprache für Smart Contracts entwickelt und studiert um die automatische
Anwendung dieser Entwurfsmuster mittels Codegenerierung zu ermöglichen. Dabei wird gezeigt,
dass Abstraktion und Codegenerierung ein gangbarer Weg zur Formulierung von Smart Contracts
sein können um die Effizienz, Klarheit und Flexibilität von Code zu erhöhen und gleichzeitig
die Fehleranfälligkeit zu verringern. Zuletzt werden typische DevOps Aktivitäten untersucht die
zeigen, dass die zentralen DevOps-Konzepte und -Aktivitäten denen in anderen Bereichen ähneln,
mit dem Unterschied, dass aufgrund der inhärenten Unveränderlichkeit der Blockchain strengere
Tests und differenzierte Bereitstellungspraktiken erforderlich sind. Zusammenfassend trägt diese
Arbeit zu einem besseren Verständnis verschiedener Themen bei, die für die Entwicklung von
Blockchain-basierten Anwendungen von Bedeutung sind.

viii

Contents

Vita i

Acknowledgements iii

Abstract v

Kurzfassung vii

List of Tables xiii

List of Figures xv

Listings xvii

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 2
1.3. Research Methodology . 6
1.4. Publications . 7
1.5. Thesis Structure . 8

2. Background 11
2.1. Blockchains and Cryptocurrencies . 11
2.2. Smart Contracts . 14
2.3. Ethereum Platform . 15

2.3.1. Ethereum Virtual Machine (EVM) . 15
2.3.2. Ethereum Smart Contracts . 16
2.3.3. Ethereum Programming Languages 16

3. Architecture of Blockchain-Based Applications 19
3.1. Introduction . 19
3.2. Related Work . 20

ix

Contents

3.3. Research Study Design . 21
3.4. Architectural Design of Blockchain-Based Applications 21

3.4.1. Event-Driven Architecture . 22
3.4.2. Blockchain as a Multi-Faceted Architectural Component 23
3.4.3. Degrees of Decentralization . 23
3.4.4. Transaction Handling . 25
3.4.5. Practices for Scalability and Privacy 27
3.4.6. Conceptual Components and Their Interaction 28
3.4.7. Feature Model . 36
3.4.8. Smart Contracts and Microservices . 36
3.4.9. Blockchain as a Service (BaaS) . 38

3.5. Discussion and Threads to Validity . 39
3.6. Conclusion . 40

4. Oracle Patterns 43
4.1. Introduction . 43
4.2. Background . 45
4.3. Related Work . 46
4.4. Patterns . 47

4.4.1. Inbound Oracle Patterns . 48
4.4.2. Outbound Oracle Patterns . 51

4.5. Use Cases . 53
4.6. Analysis of Performance and Transaction Fees 56
4.7. Discussion and Threats to Validity . 59
4.8. Conclusion . 60

5. Smart Contract Patterns 63
5.1. Introduction . 63
5.2. Related Work . 64
5.3. Research Study Design . 65
5.4. Patterns . 66

5.4.1. Action and Control Patterns . 67
5.4.2. Authorization Patterns . 77
5.4.3. Lifecycle Patterns . 80
5.4.4. Maintenance Patterns . 83
5.4.5. Security Patterns . 90

5.5. Discussion . 96

x

Contents

5.6. Conclusion . 98

6. Domain Specific Language for Smart Contract Development 101
6.1. Introduction . 101

6.2. Background . 103

6.2.1. Contract Stages . 103

6.2.2. Contract Building Blocks . 103

6.3. Research Study Design . 106

6.4. Contract Modeling Language (CML) . 106

6.4.1. Language Characteristics . 106

6.4.2. Type System . 107

6.4.3. Clause Structure . 108

6.4.4. CML by Example: Simple Open Auction 109

6.5. Solidity Code Generation . 110

6.5.1. CML to Solidity Mapping . 110

6.5.2. Code Generation Idioms . 113

6.6. Evaluation . 121

6.7. Discussion . 122

6.8. Related Work . 123

6.9. Conclusion . 124

7. Blockchain DevOps 127
7.1. Introduction . 127

7.2. Related Work . 128

7.3. Research Study Design . 129

7.4. DevOps for Blockchain Smart Contracts . 130

7.4.1. Preliminary Considerations . 130

7.4.2. Continuous Integration (CI) . 132

7.4.3. Continuous Delivery (CD) . 140

7.4.4. CI/CD Overview . 144

7.5. Discussion and Threats to Validity . 145

7.6. Conclusion . 146

8. Conclusions and Future Work 149
8.1. Research Questions Revisited . 149

8.2. Limitations and Threats to Validity . 153

8.3. Future Work . 154

xi

Contents

Bibliography 157

A. Appendix 183
A.1. DSL for Smart Contracts - Contract Modeling Language (CML) 183
A.2. DevOps for Ethereum Smart Contracts . 188

xii

List of Tables

4.1. An overview of the four oracle types. 44
4.2. A summary of statistics on time and costs for oracle invocations. 59

5.1. An overview of pattern usage examples. 96
5.2. An overview of smart contract design patterns. 97

6.1. An overview of basic contractual building blocks. 104
6.2. An overview of construct mappings between CML and Solidity. 111
6.3. A complexity comparison between CML and generated Solidity representation. . 122

xiii

List of Figures

2.1. A high-level overview of the basic principles and operation of a blockchain. . . . 12

3.1. A comparative overview of a traditional, hybrid, and DApp architecture. 24

3.2. An overview of transaction handling options. 26

3.3. A typical component structure pattern of a DApp utilizing a backend. 28

3.4. A typical component structure pattern of an enterprise grade blockchain integration. 29

3.5. A sequence diagram showing key components for processing a transaction. . . . 34

3.6. A feature model for a blockchain-based application. 37

4.1. A conceptual overview of the oracle data flow partitioning. 47

4.2. An overview of the oracle types and conceptual structural components. 48

4.3. A sequence diagram showing the Pull-Based Inbound Oracle. 49

4.4. A sequence diagram showing the Push-Based Inbound Oracle. 51

4.5. A sequence diagram showing the Pull-Based Outbound Oracle. 52

4.6. A sequence diagram showing the Push-Based Outbound Oracle. 53

4.7. A supply chain process employing oracles. 54

4.8. The procedure for oracle-based creditworthiness verification. 55

4.9. The procedure for oracle-based tracking of goods. 56

4.10. The schematic process for measuring latency. 58

4.11. The performance plots for the four oracle implementations. 59

5.1. An overview of the conducted MLR process. 66

6.1. An overview of contract stages. 103

6.2. An exemplary contract for the sale of goods. 105

6.3. A conceptual breakdown of covenant clause components. 108

6.4. The structure of a CML clause declaration. 109

6.5. The CML code generation process. 111

7.1. An overview of test types for smart contracts and blockchain-based software. . . 135

7.2. An illustration of the test structure for Solidity and JavaScript tests. 138

xv

List of Figures

7.3. An overview of DevOps stages for smart contracts. 144

A.1. An overview of the Xtext DSL Framework. 184

xvi

Listings

2.1. A simple deposit contract. 17

5.1. Application of the Checks-Effects-Interaction pattern within a function. 68
5.2. An example of an insecure withdrawal function. 68
5.3. An auction contract with a push payment. 70
5.4. An auction contract with a pull payment. 71
5.5. A contract implementing a state machine. 72
5.6. A contract implementing a commit and reveal scheme. 75
5.7. An oracle contract that allows to request data from outside the blockchain. 77
5.8. An oracle consumer contract with a callback. 77
5.9. A simple contract to track the ownership of a contract. 79
5.10. A contract implementing various function access restrictions. 80
5.11. A contract that provides its creator with the ability to destroy it. 81
5.12. A contract interface with time period based deprecation. 83
5.13. A contract interface with time block number based deprecation. 83
5.14. A contract to separate data storage. 85
5.15. A contract to separate the logic. 85
5.16. A satellite contract encapsulates certain contract functionalities. 86
5.17. A base contract referring to a satellite contract. 87
5.18. A register contract to store the latest version of a contract. 88
5.19. A relay contract to forward data and calls. 89
5.20. A contract implementing an emergency stop. 91
5.21. A contract that delays the withdrawal of funds deliberately. 92
5.22. A contract with a rate limit that avoids repetitive function execution. 93
5.23. A contract implementing a mutex pattern. 94
5.24. A contract implementing a balance limit. 96

6.1. A CML contract for a simple open auction. 110
6.2. An excerpt of the generated Solidity contract from Listing 6.1 113
6.3. A CML contract with “Ownership” and “Pullpayment” annotations. 114

xvii

Listings

6.4. An excerpt of the generated Solidity contract from Listing 6.3. 115
6.5. A CML contract with “SafeMath” annotation. 116
6.6. An excerpt of the generated Solidity contract from Listing 6.5. 116
6.7. A CML contract with “FixedPointArithmetic” annotation. 117
6.8. An excerpt of the generated Solidity contract from Listing 6.7. 118
6.9. A CML contract using a collection. 119
6.10. An excerpt of the generated Solidity contract from Listing 6.9. 120
6.11. An excerpt of the generated Solidity collection library code. 121

A.1. DSL specification in Xtext for the Contract Modeling Language (CML). 188
A.2. GitLab CI/CD configuration for Ethereum smart contracts. 191

xviii

1. Introduction

Advances in the development of information and communication technologies have enabled a
number of innovations in recent decades that have had a holistic impact on society. In particular,
developments related to the Internet have spawned a large number of disruptive innovations. That
is, innovations with the potential to fundamentally challenge traditional ways of doing business.
Social media, sharing economy, and cryptocurrencies can be cited as examples in this context, with
cryptocurrencies attracting considerable attention in various contexts in recent years.

Cryptocurrencies have now reached a market capitalization of almost 3 trillion US dollars at
their peak in 2021 [1] and are increasingly accepted as a means of payment in different places. The
distinctive feature of cryptocurrencies is that transactions as well as the general management of the
currencies can be carried out securely via distributed computer networks and without the influence of
central institutions. Traditional intermediaries, such as banks, are thus obsolete. For this very reason,
the underlying technology is now often considered the real innovative breakthrough: the blockchain.

Blockchain offers a promising platform technology for implementing new decentralized soft-
ware architectures in which distributed components can make agreements on shared system states
without relying on a central point of trust. It provides an infrastructure based on a Peer-to-Peer
(P2P) network for the decentralized, transparent and immutable recording of transactions to enable
the storage of data or the autonomous execution of programs, so-called smart contracts.

Due to these characteristics, blockchain has the potential to change a whole range of areas far
beyond the field of digital currencies and to be a disruptive innovation. Driven by this outlook,
numerous companies and organizations have started to engage with blockchain in recent years to
explore meaningful application areas and develop applications based on blockchain technology.

1.1. Motivation

The introduction of new technologies is fraught with challenges as they break new ground in
many areas. This uncharted territory extends to many different areas with regard to blockchain.
The goal of this thesis is to provide guidance for the realization of blockchain-based applications
from a technical perspective, covering several relevant topics in this context. This includes the
identification of overarching designs and approaches that have been established as best practices for

1

1. Introduction

blockchain-based software solutions from an architecture, development and implementation per-
spective. Our efforts in this area are mainly related to the very established and well-known platform
Ethereum, but most findings can also be applied to other platforms. Based on the collected insights,
a compendium of guiding principles for common problems is formed and archetypes or tools for
specific problem domains are developed to foster the creation of blockchain-based software.

1.2. Problem Statement

In this thesis, a holistic approach is taken to address some of the issues that exist in the development
of blockchain-based applications. In the following, particular research problems and correspond-
ing research questions are discussed in more detail. Regarding the research questions, we have
formulated a general research question for each problem domain that roughly outlines the scope
of the research, which is then supplemented by further detailed questions in that context.

Lack of Architectural Design Guidance for Blockchain Applications

Looking at the maturity of blockchain technologies in practical applications, it is fair to say that
the adoption and diffusion of the technology is arguably still evolving. Having gone through the
hype cycle for blockchains as an emerging technology, we are currently in a phase of consolidation
where practical applications provide insights into the pros and cons of using blockchain technology
in real-world scenarios. Accordingly, the optimal integration and design of software solutions
that integrate blockchains is not entirely clear. From a software architecture perspective, there is
only a limited systematic and holistic approach to the development of blockchain-based software
systems. In this context, it would be helpful to have a set of basic architectural design decisions
for blockchain integration that could be derived from innovative and already realized applications.
Looking at blockchain as part of a larger system, it is likely that certain application scenarios and
architectural patterns will be more common and prove more beneficial than others.

To explore this architectural design space and possible solution strategies, we are interested
in fundamental architectural design decisions, design options for these decisions, and involved
conceptual components in the design of blockchain-based software architectures. In this context,
we ask the following questions:

Research Question 1 (RQ 1)

What design decisions, design options, and conceptual components need to be considered
for blockchain-based applications?

RQ 1.1 What are the (key) architectural design decisions for blockchain-based

2

1.2. Problem Statement

applications?

RQ 1.2 What are possible design options regarding these decisions and the associated
(best) practices?

RQ 1.3 Which conceptual components are relevant in the architectural design and what
are their relations?

Lack of Design Guidance Connecting Blockchain to the Off-Chain World

Blockchain technologies provide a secure process execution infrastructure that can be used to for-
mulate and execute business logic in the form of smart contracts. However, smart contracts cannot
invoke software components that reside outside the on-chain execution environment. Rather, they
can only perform operations within the blockchain environment and be accessed via blockchain
transactions. This isolates them from the physical world and other applications. But many process
and information flows require communication across blockchain boundaries with external applica-
tions and real-world objects. This requires the use of so-called oracles, i.e., software elements that
form a bridge between the on-chain execution environment and the off-chain world. Yet, despite
their high relevance, a thorough investigation of oracle designs and their characteristics is still
lacking in the literature.

This research gap leads us to pose the following research questions in order to elaborate basic
blockchain oracle patterns:

Research Question 2 (RQ 2)

What (fundamental) patterns exist to implement blockchain oracles and how do they differ
regarding cost and performance?

RQ 2.1 What are the fundamental design patterns for implementing blockchain oracles?

RQ 2.2 What are the characteristics of these regarding cost and performance?

Lack of Smart Contract Design Patterns

Smart contract development for blockchains is a challenging task so far. It requires the use of un-
conventional programming paradigms due to the inherent design and characteristics of blockchain-
based program execution. Or to put it another way, the development process requires a different
technical approach than what most web and mobile developers are used to. Unlike modern program-

3

1. Introduction

ming languages, which are based on a long evolution and thus contain many helpful abstractions
and data types, blockchain-based programming languages are still relatively young. This means
that smart contract developers lack these aids and are therefore often responsible for internally orga-
nizing and manipulating data at a deeper level which is inherently more error-prone. Complicating
matters further is the fact that errors in implemented contracts can have serious consequences due to
the direct coupling of contract code and financial assets. Fortunately, many implementation issues
and vulnerabilities associated with smart contract development can be avoided by following best
practices. However, much practical knowledge in this area is scattered across development-specific
literature and practitioner reports, so the information is often not very structured or comprehensive.
This means there is a lack of an informative compendium that contains a solid foundation of es-
tablished and proven design and code patterns that facilitate writing functional and error-free code.

In view of these problems, it is beneficial to have a foundation of established design and coding
guidelines. This leads us to consider the following research questions:

Research Question 3 (RQ 3)

What are common design patterns and Solidity coding practices for Ethereum smart
contracts?

RQ 3.1 Which design patterns commonly appear in the Ethereum ecosystem and what
problems do they solve?

RQ 3.2 How do these design patterns map to Solidity coding practices?

Lack of Tools for Secure-By-Design Smart Contracts

In view of the problems mentioned in the previous point, a methodology is desirable which prevents
implementation errors from occurring when transferring business processes to smart contracts.
This first requires suitable abstractions and descriptive means for contract representation, which
can then be transferred to an implementation through code generation while adhering to common
design patterns. Such an approach can reduce the complexity of the design, resulting in increased
understandability and reduced susceptibility to errors. However, such abstract descriptions and
their implementation including the generation of executable code are anything but easy to realize
and are still the subject of research.

Following the above approach, leads us to consider the following research questions:

4

1.2. Problem Statement

Research Question 4 (RQ 4)

What might a secure-by-design approach to smart contracts look like that starts from a
higher level of abstraction and generates an implementation leveraging design patterns?

RQ 4.1 How and in how far is it possible to bring the abstraction level of smart contracts
closer to the contract domain?

RQ 4.2 Can higher abstraction levels in combination with code generation (considering
platform-specific programming idioms) reduce the risk of smart contract errors?

Lack of DevOps Guidance for Smart Contracts

As blockchain continues to evolve and spread, the technology is increasingly finding its way into
enterprise software development. It is in this area that many companies are already embracing
established practices such as DevOps. DevOps is an operational philosophy that combines practices
and tools that increase an organization’s ability to deliver applications and services faster and with
better quality than would be possible with traditional software development and infrastructure man-
agement processes. Accordingly, it makes sense to extend the DevOps approach to the blockchain
space to accelerate the overall pace of software development and delivery while improving software
quality. This translates into improved overall productivity, resulting in lower total cost of ownership
for enterprises. However, there is currently a lack of guidance for a structured DevOps approach
and a breakdown of the specifics in the context of blockchain-based software development.

This problem leads us to consider the following research questions:

Research Question 5 (RQ 5)

What does a typical DevOps approach for blockchain-based applications look like and what
are the differences compared to a DevOps approach for traditional software projects?

RQ 5.1 What are typical stages and activities in a DevOps approach for blockchain-based
applications?

RQ 5.2 What are the particularities of using DevOps in blockchain-based software
development?

5

1. Introduction

1.3. Research Methodology

The research conducted in this thesis to answer the above research questions is based on various
research methods or principles. A brief insight into relevant research methods is provided below,
a more detailed description as well as the modalities of application will follow in due course later
in the various chapters of this thesis.

(Systematic) Literature Review

Literature review and survey are methods that establish the basis for scientific inquires and enable re-
search synthesis [2]. Research synthesis refers to the combination of results from multiple research
studies. The general goal is to make the results on a particular topic from several different studies
generalizable and applicable. Furthermore, new insights can be gained by comparing these results.

One type of literature review that relies on repeatable analysis methods is the Systematic Litera-
ture Review (SLR). It is an independent scientific method for identifying and evaluating all relevant
literature on a topic in order to draw conclusions about a research question under investigation [3].
In this context, a methodological formal approach is used to reduce bias and increase the reliability
of the selected literature.

Multivocal Literature Review

A Multivocal Literature Review (MLR) is a form of SLR which includes “gray” literature (e.g.,
blogs, videos, and web pages) in addition to published “white” literature (e.g., academic jour-
nals, and conference papers) [4]. The approach allows us to take into account knowledge from
practitioners outside the academic front in order to gain valuable application-oriented insights.

Grounded Theory

Grounded Theory (GT) is a qualitative strategy of inquiry in which the researcher derives a general,
abstract theory of a process, action, or interaction grounded in the views of participants in a study [5].
GT methods consist of systematic, yet flexible guidelines for collecting and analyzing qualitative
data to construct theories from the data themselves [6]. Although the research conducted in the
context of this thesis is not directly based on GT, we have used principles of the GT method in
order to observe and analyze collected data.

Design Science Research

Our approach to the development of software tools in the scope of this thesis is based on the
methodology of design science research, where “knowledge and understanding of a problem

6

1.4. Publications

domain and its solution are achieved in the building and application of the designed artifact” [7]. In
other words, a possible solution for a given problem domain is envisioned and implemented as an
innovative prototype. Then the implementation is evaluated to see if the problem has been solved.
If the problem is only partially solved or not solved at all, new concepts have to be developed and
implemented again until an adequate solution is found. Accordingly, the approach to generating
progress or new knowledge is driven by practical implementation where designed artifacts are both
useful and fundamental to understanding the problem [8]. This approach enables the exploration
of new technologies and the progression of accepted practices, in the absence of a solid theoretical
foundation, through the design and evaluation of new systems and their components [9].

1.4. Publications

This thesis consists of papers previously published in scientific conferences, workshops and journals.
It should be noted that given the constant and rapid development in many of the areas covered,
some of the content needs to be considered in a new light and may no longer represent the state
of the art. In this respect, time related statements in the texts are to be understood in relation to the
publication date of the respective underlying papers and may not reflect the current state of affairs.

The following is a detailed list of the publications included in this thesis:

Paper A: M. Wohrer and U. Zdun, “Smart contracts: Security Patterns in the Ethereum Ecosys-
tem and Solidity,” in 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), vol. 2018-Janua, IEEE, Mar. 2018, pp. 2–8, ISBN: 978-1-
5386-5986-1. DOI: 10.1109/IWBOSE.2018.8327565. [Online]. Available: https:
//ieeexplore.ieee.org/document/8327565/

Paper B: M. Wohrer and U. Zdun, “Design Patterns for Smart Contracts in the Ethereum Ecosys-
tem,” in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, IEEE, Jul.
2018, pp. 1513–1520, ISBN: 978-1-5386-7975-3. DOI: 10.1109/Cybermatics_2018.
2018.00255. [Online]. Available: https://ieeexplore.ieee.org/document/
8726782/

Paper C: M. Wohrer and U. Zdun, “Domain Specific Language for Smart Contract Development,”
in 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
IEEE, May 2020, pp. 1–9, ISBN: 978-1-7281-6680-3. DOI: 10.1109/ICBC48266.
2020.9169399. [Online]. Available: https://ieeexplore.ieee.org/document/
9169399/

7

https://doi.org/10.1109/IWBOSE.2018.8327565
https://ieeexplore.ieee.org/document/8327565/
https://ieeexplore.ieee.org/document/8327565/
https://doi.org/10.1109/Cybermatics_2018.2018.00255
https://doi.org/10.1109/Cybermatics_2018.2018.00255
https://ieeexplore.ieee.org/document/8726782/
https://ieeexplore.ieee.org/document/8726782/
https://doi.org/10.1109/ICBC48266.2020.9169399
https://doi.org/10.1109/ICBC48266.2020.9169399
https://ieeexplore.ieee.org/document/9169399/
https://ieeexplore.ieee.org/document/9169399/

1. Introduction

Paper D: M. Wohrer and U. Zdun, “From Domain-Specific Language to Code: Smart Contracts
and the Application of Design Patterns,” IEEE Software, vol. 37, no. 5, pp. 37–42,
Sep. 2020, ISSN: 0740-7459. DOI: 10.1109/MS.2020.2993470. [Online]. Available:
https://ieeexplore.ieee.org/document/9089272

Paper E: R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, C. Di Ciccio, I. Weber, M. Wöhrer,
and U. Zdun, “Foundational Oracle Patterns: Connecting Blockchain to the Off-Chain
World,” in Lecture Notes in Business Information Processing, vol. 393 LNBIP, 2020,
pp. 35–51, ISBN: 9783030587789. DOI: 10.1007/978-3-030-58779-6_3. arXiv:
2007.14946. [Online]. Available: https://link.springer.com/10.1007/978-
3-030-58779-6_3

Paper F: M. Wohrer and U. Zdun, “Architectural Design Decisions for Blockchain-Based Ap-
plications,” in 2021 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC), IEEE, May 2021, pp. 1–5, ISBN: 978-1-6654-3578-9. DOI: 10.1109/
ICBC51069.2021.9461109. [Online]. Available: https://ieeexplore.ieee.

org/document/9461109/

Paper G: M. Wohrer, U. Zdun, and S. Rinderle-Ma, “Architecture Design of Blockchain-Based
Applications,” in 2021 3rd Conference on Blockchain Research and Applications for
Innovative Networks and Services (BRAINS), IEEE, Sep. 2021, pp. 173–180, ISBN: 978-
1-6654-3924-4. DOI: 10.1109/BRAINS52497.2021.9569813. [Online]. Available:
https://ieeexplore.ieee.org/document/9569813/

Paper H: M. Wohrer and U. Zdun, “DevOps for Ethereum Blockchain Smart Contracts,” in 2021
IEEE International Conference on Blockchain (Blockchain), IEEE, Dec. 2021, pp. 244–
251, ISBN: 978-1-6654-1760-0. DOI: 10.1109/Blockchain53845.2021.00040.
[Online]. Available: https://ieeexplore.ieee.org/document/9680513/

1.5. Thesis Structure

Chapter 2, Background, provides an overview of the terms and topics relevant to this thesis. In
particular, basic concepts of blockchain technology and smart contracts are explained and an
introduction to the Ethereum ecosystem is given.

This chapter contains contents of the following paper: Paper A

Chapter 3, Architecture of Blockchain-Based Applications, systematically explores the architectural
design space and possible solution strategies for designing blockchain-based software solutions.

8

https://doi.org/10.1109/MS.2020.2993470
https://ieeexplore.ieee.org/document/9089272
https://doi.org/10.1007/978-3-030-58779-6_3
https://arxiv.org/abs/2007.14946
https://link.springer.com/10.1007/978-3-030-58779-6_3
https://link.springer.com/10.1007/978-3-030-58779-6_3
https://doi.org/10.1109/ICBC51069.2021.9461109
https://doi.org/10.1109/ICBC51069.2021.9461109
https://ieeexplore.ieee.org/document/9461109/
https://ieeexplore.ieee.org/document/9461109/
https://doi.org/10.1109/BRAINS52497.2021.9569813
https://ieeexplore.ieee.org/document/9569813/
https://doi.org/10.1109/Blockchain53845.2021.00040
https://ieeexplore.ieee.org/document/9680513/

1.5. Thesis Structure

More specifically, architectural design decisions and decision options are described in terms of pat-
terns and practices for applications with different degrees of decentralization, including conceptual
components, and possible relationships between them.
This chapter is based on the contents on the following papers: Paper F, Paper G

Chapter 4, Oracle Patterns, discusses foundational blockchain oracle patterns. In this context,
oracle patterns are characterized and categorized based on fundamental dimensions, described in
a structured manner, and discussed in the context of an implementation based on use cases.
This chapter is based on the contents of the following paper: Paper E,

Chapter 5, Smart Contract Patterns, presents design patterns that address common issues and
vulnerabilities related to smart contract implementation. More specifically, design patterns for the
Ethereum ecosystem, organized by operational scope, are explained along with their application
context and sample code.
This chapter is based on the contents of the following papers: Paper A, Paper B

Chapter 6, Domain Specific Language for Smart Contract Development, focuses on the design and
study of a domain-specific smart contract language. Specifically, a language based on a higher level
of abstraction is described that can be automatically transformed into an implementation through
code generation, following common idioms and design patterns.
This chapter is based on the contents of the following papers: Paper C, Paper D

Chapter 7, Blockchain DevOps, explains current practices and solution approaches for an efficient
blockchain-oriented DevOps approach. In this context, procedural steps and related activities
are elaborated according to the main phases of Continuous Integration (CI) and Continuous
Delivery/Deployment (CD).
This chapter is based on the contents of the following paper: Paper H

Chapter 8, Conclusions and Future Work, gives a summary of the main contributions of this thesis,
discusses the limitations, and presents open challenges to be addressed in future work.

9

2. Background

This chapter provides an overview of the terms and topics relevant to this thesis. First, the basic
operating principles of a blockchain are explained, followed by an explanation of smart contracts
and finally a description of the Ethereum platform.

2.1. Blockchains and Cryptocurrencies

A universal definition of blockchain is not easy because there are many ways to describe a
blockchain, depending on which perspective one takes. Blockchain can be seen as a novel architec-
ture built on existing technologies, an immutable database and distributed shared ledger, a trustless
secure transaction system, a cryptocurrency, possibly even as a precursor to the next generation
of the Internet and the Web. All these declarations are valid views of one and the same thing. In
the abstract, blockchain can be understood as a new architectural paradigm and trust protocol. At
its core, blockchain offers a P2P transaction model that allows parties to conduct tamper-proof and
cryptographically secured transactions. A concept that forms the foundation of most decentralized
applications and cryptocurrencies. Looking at the latter in more detail, the importance of the concept
can be understood particularly well. Any exchange for assets relies on some kind of record-keeping
to track the balances of individuals and to verify that transactions are covered by sufficient funds.
This principle also applies to cryptocurrencies, which rely on maintaining a shared global ledger
between nodes of a P2P network. The ledger is organized as a hash-chain of blocks, the so-called
blockchain, wherein each block contains a set of facts (transactions). Network nodes replicate the
blockchain and listen for new transaction requests on the network, which they collect and verify,
to form a new block. This process is executed in relative synchrony, as each node proposes its own
block of new transactions, to append and update the chain. In order to choose a globally accepted
successor block, the nodes agree to follow a distributed consensus protocol. The protocol defines a
set of rules to select a winner among all nodes that propose a new block. The most widely known and
used consensus protocol is called Proof-of-Work (PoW) consensus. It works by probabilistically
determining a winner through the solution of a difficult cryptographic puzzle. Once a winning node
is determined, that node broadcasts its block to all other nodes, who check that the proposed block
fulfills predefined validity constraints. If the check is passed, the nodes update their blockchain to

11

2. Background

include the newly proposed block, and move on to work on the next block. This line of action makes
it possible to create a distributed trustless consensus system, which is the major breakthrough of
the blockchain technology. Bitcoin, the first real-world implementation of a blockchain-based
cryptocurrency system, uses a blockchain as an open, distributed ledger that resides on a large, de-
centralized, publicly accessible network to record and validate the exchange of its tokens (Bitcoins).

Following Bitcoin, we will now take a closer look at the general operating principle of a
blockchain. Figure 2.1 serves to illustrate the high-level process of transaction processing, which
can be described step-by-step as follows:

Hash Prev
Block (Hn-1) Nonce

Hash
Merkle Root Time

Block n (Block Hash Hn)

Bl
oc

k
Da

ta TX1
TX2
TX3
TX4
TX5
TX6
TX7
TX8

TX1
TX2
TX3

Transaction
Data Hashing Digital

Signature
Transaction

Proposal
Transaction
Validation

Transaction
Pool

Block
Validation

H1 H2 H3 H4 H5 H6 H7 H8

TX1 TX2 TX3 TX4 TX5 TX6 TX7 TX8

H12 H34 H56 H78

H1234 H5678

H12345678

Block

Merkle Root
Hashing

Valid Transactions

Hash Prev
Block (Hn-2) Nonce

Hash
Merkle Root Time

Block n-1 (Block Hash Hn-1)

Bl
oc

k
He

ad
er Hash Prev

Block (Hn) Nonce

Hash
Merkle Root Time

Block n+1 (Block Hash Hn+1)

Validator
Node

Miner
Node

Private Key

Public Key

Figure 2.1.: A high-level overview of the basic principles and operation of a blockchain.

12

2.1. Blockchains and Cryptocurrencies

a) Transaction proposal: A blockchain user creates a transaction (e.g., to transfer financial
value to another party or to interact with a smart contract). The transaction data is first hashed
for later data integrity verification, then digitally signed with the users’s private key, and
finally sent to the blockchain P2P network.

b) Transaction validation: Once the transaction has been submitted to the blockchain network,
typically a full node of the P2P network, as the recipient, validates the transaction according
to the business and technical rules set by the blockchain network. Validation of the trans-
action includes verifying user authentication by decrypting the digital signature with the
user’s public key and verifying data integrity by hashing the transaction data and comparing
it with the previously decrypted signature. In case the transaction is valid, the node adds the
transaction to the transaction pool and forwards it to peers on the network.

c) Block creation: Transactions in the transaction pool are combined into a block at regular
intervals (e.g., every 10 minutes for Bitcoin). Network nodes, called mining nodes or miners,
collect all valid transactions from the transaction pool and create candidate blocks. A can-
didate block bundles the most recent valid transactions into a block structure based on block
specifications. For each transaction in the bundle, a cryptographic hash of the transaction
data is created. These hash values are then combined in pairs and hashed again until a single
hash value is obtained. This value is known as the Merkle (tree) root hash value. In addition,
the miner node looks for the most recent block in the blockchain and, as a reference to that
block, inserts its hash in the block header of the candidate block.

d) Block mining: Once a block candidate is created, mining nodes compete against each other
to add new blocks and receive a reward for their efforts. This process is called mining. The
winner is determined by a consensus mechanism. In blockchain systems such as Bitcoin or
Ethereum, a PoW consensus mechanism is used for mining. Here, the blockchain has an
additional field per block, the "nonce" field (abbreviation for "number used once"), which
holds a number that is only used once in the respective context. The nodes in the competition,
known as miners, must find a nonce number that, in combination with the data in the block,
produces a hash that is subject to certain conditions that are difficult to fulfill. For example,
one possible condition is that the resulting block hash is less than a target number, or that
the hash contains a fixed number of leading zeros. So, to find the right number, miners must
try different numbers for the nonce field and compute the hash until a number is found that
meets the requirements for the target hash. In practice, each random number has an equal
chance of winning the race, so one can start by iterating through a loop in a brute-force
manner (e.g., for Bitcoin from 1 to 232) until one finds such a nonce. However, it requires
a tremendous hashing power to find such a nonce in a timely manner. The challenging

13

2. Background

condition, called difficulty, can be dynamically adjusted over time to account for mining
hardware advancements in order to maintain constant block generation time intervals. The
effort of finding a correct nonce increases exponentially the smaller the target number.

e) Block chaining: The first node to find a matching nonce notifies the rest of the network to
verify the new block. Validation nodes then verify the validity of the block by checking
the correctness of the block’s hash value, its timestamp, its height (i.e. position within the
blockchain) and size, the hash value of the previous block, and the validity of all the block’s
transactions. Here, validation only requires the computation of a single hash, namely the
number specified by the miner in the nonce field and the block’s data. So solving the PoW
task is challenging, but validation takes only a fraction of a second. If the verification is
successful, the peers add the new block to their copy of the blockchain, stop the mining work
at hand, and move on to the next block. Furthermore, the winning miner can claim his reward.
Once the new block is verified and accepted by the majority of miners in the network, it is
accepted and forms the new head of the chain. Should someone want to tamper with the
blockchain, for example to change a confirmed transaction in a specific block, they would
need to determine a nonce not only for that block, but for all chained blocks following the
changed transaction. Thus, a fraudulent miner would be much slower than a miner that only
confirms the current block, therefore such an attempt would not be fruitful.

In summary, the fundamental concept of Bitcon is to create a shared public ledger (longest
PoW chain), which verifies and immutably records all transactions through a decentralized P2P
computer network and a consensus mechanism with computational proof. However, a blockchain
may not only record financial transactions, but also allow specially designed computer programs
to be executed and stored as part of transactions. This is based on the idea that a blockchain may
be thought of as a shared database, which might allow any kind of data to be recorded. In particular,
the data recorded for a transaction may be the source code of a computer program and the validity
check for an asset transaction may be replaced by executing that program. Taken this concept one
step further implies, that a blockchain may be used to formulate mutual agreements through the
creation of programmed applications or so-called smart contracts.

2.2. Smart Contracts

Smart contracts are computer programs that can facilitate, verify, and enforce the negotiation and
execution of legal contracts. They are executed through blockchain transactions, interact with
cryptocurrencies, and have interfaces to handle input from contract participants. When run on the
blockchain, a smart contract becomes an autonomous entity that automatically executes specific

14

2.3. Ethereum Platform

actions when certain conditions are met. Because smart contracts run on the blockchain, they
run exactly as programmed, without any possibility of censorship, downtime, fraud or third party
interference [18]. Smart contracts are designed to provide more contractual certainty compared
to traditional contract law while reducing transaction costs. Their use enables new business models
and promises improved contract processing, as manual contract processes with possible scope
for interpretation and documentation effort can be avoided. This allows to increase the speed and
quality of basic business processes. There are now a number of platforms that enable the operation
of smart contracts, such as Ethereum [18], Solana [19], Polkatod [20], Ergo [21], Algorand [22],
Cardano [23], to name the more important ones. Of these, Ethereum, as the world’s first smart
contract platform, is the most well-known and widely used platform today.

2.3. Ethereum Platform

Ethereum is a public blockchain based distributed computing platform, that offers smart contract
functionality. It provides a decentralized virtual machine as runtime environment to execute smart
contracts, known as Ethereum Virtual Machine (EVM).

2.3.1. Ethereum Virtual Machine (EVM)

The EVM handles the computation and state of contracts and is build on a stack-based language
with a predefined set of instructions (opcodes) and corresponding arguments [24]. So, in essence,
a contract is simply a series of opcode statements, which are sequentially executed by the EVM.
The EVM can be thought of as a global decentralized computer on which all smart contracts run.
Although it behaves like one giant computer, it is rather a network of smaller discrete machines
in constant communication. All transactions, handling the execution of smart contracts, are local
on each node of the network and processed in relative synchrony. Each node validates and groups
the transactions sent from users into blocks, and tries to append them to the blockchain in order
to collect an associated reward. This process, as explained earlier, is called mining, and the partici-
pating nodes are called miners. To ensure a proper resource handling of the EVM, every instruction
the EVM executes has a cost associated with it, measured in units of gas. Operations that require
more computational resources cost more gas, than operations that require fewer computational
resources. This ensures that the system is not jammed up by denial-of-service attacks, where users
try to overwhelm the network with time-consuming computations. Therefore, the purpose of gas
is twofold. It encourages developers to write quality applications by avoiding wasteful code, and
ensures at the same time that miners, executing the requested operations, are compensated for
their contributed resources. When it comes to paying for gas, a transaction fee is charged in small
amounts of Ether, the built-in digital currency of the Ethereum network, and the token with which

15

2. Background

miners are rewarded for executing transactions and producing blocks. Ultimately, Ether is the fuel
for operating the Ethereum platform.

2.3.2. Ethereum Smart Contracts

Smart contracts are applications which are deployed on the blockchain ledger and execute au-
tonomously as part of transaction validation. To deploy a smart contract in Ethereum, a special cre-
ation transaction is executed, which introduces a contract to the blockchain. During this procedure
the contract is assigned an unique address, in form of a 160-bit identifier, and its code is uploaded
to the blockchain. Once successfully created, a smart contract consists of a contract address, a
contract balance, predefined executable code, and a state. Different parties can then interact with a
specific contract by sending contract-invoking transactions to a known contract address. These may
trigger any number of actions as a result, such as reading and updating the contract state, interacting
and executing other contracts, or transferring value to others. A contract-invoking transaction must
include the execution fee and may also include a transfer of Ether from the caller to the contract.
Additionally, it may also define input data for the invocation of a function. Once a transaction is ac-
cepted, all network participants execute the contract code, taking into account the current state of the
blockchain and the transaction data as input. The network then agrees on the output and the next state
of the contract by participating in the consensus protocol. Thus, on a conceptual level, Ethereum can
be viewed as a transaction-based state machine, where its state is updated after every transaction.

2.3.3. Ethereum Programming Languages

Smart contracts in Ethereum are usually written in higher level languages and are then compiled to
EVM bytecode. Such higher level languages are LLL (Low-level Lisp-like Language) [25], Serpent
(a Python-like language) [26], Viper (a Python-like language) [27], and Solidity (a JavaScript-like
language) [28]. LLL and Serpent were developed in the early stages of the platform, while Viper
is currently under development, and is intended to replace Serpent. The most prominent and widely
adopted language is Solidity.

Solidity

Solidity is a high-level Turing-complete programming language with a JavaScript similar syntax,
being statically typed, supporting inheritance and polymorphism, as well as libraries and complex
user-defined types.

When using Solidity for contract development, contracts are structured similar to classes in
object oriented programming languages. Contract code consists of variables and functions which
read and modify these, like in traditional imperative programming.

16

2.3. Ethereum Platform

Solidity

1 pragma solidity ^0.4.17;

2

3 contract SimpleDeposit {

4 mapping (address => uint) balances;

5

6 event LogDepositMade(address from, uint amount);

7

8 modifier minAmount(uint amount) {

9 require(msg.value >= amount);

10 _;

11 }

12

13 function SimpleDeposit() public payable {

14 balances[msg.sender] = msg.value;

15 }

16

17 function deposit() public payable minAmount(1 ether) {

18 balances[msg.sender] += msg.value;

19 LogDepositMade(msg.sender, msg.value);

20 }

21

22 function getBalance() public view returns (uint balance) {

23 return balances[msg.sender];

24 }

25

26 function withdraw(uint amount) public {

27 if (balances[msg.sender] >= amount) {

28 balances[msg.sender] -= amount;

29 msg.sender.transfer(amount);

30 }

31 }

32 }

Listing 2.1: A simple contract where users can deposit some value and check their balance.

Listing 2.1 shows a simple contract written in Solidity in which users can deposit some value and
check their balance. Before describing the code in more detail, it is helpful to give some insights
about Solidity features like global variables, modifiers, and events.

Solidity defines special variables (msg, block, tx) that always exist in the global namespace and
contain properties to access information about an invocation-transaction and the blockchain. For
example, these variables allow the retrieval of the origin address, the amount of Ether, and the data

17

2. Background

sent alongside an invocation-transaction.
A particular convenient feature in Solidity are so-called modifiers. Modifiers can be described

as enclosed code units that enrich functions in order to modify their flow of code execution. This
approach follows a condition-orientated programming paradigm, with the main goal to remove
conditional paths in function bodies. Modifiers can be used to easily change the behavior of
functions and are applied by specifying them in a whitespace-separated list after the function name.
The new function body is the modifiers body where ’_’ is replaced by the original function body.
A typical use case for modifiers is to check certain conditions prior to executing the function.

An additionally important and neat feature of Solidity are events. Events are dispatched signals
that smart contracts can fire. User interfaces and applications can listen for those events on the
blockchain without much cost and act accordingly. Other than that, events may also serve logging
purposes. When called, they store their arguments in a transaction’s log, a special data structure
in the blockchain that maps all the way up to the block level. These logs are associated with the
address of the contract and can be efficiently accessed from outside the blockchain.

Given this short feature description, we can now return and analyze the code example. First, the
compiler version is defined (line 1), then the contract is defined in which a state variable is declared
(line 3), followed by an event definition (line 5), a modifier definition (line 7), the constructor
(line 12), and the actual contract functions (line 16 onward). The state of the contract is stored in
a mapping called balances (which stores an association between a users address and a balance).
The special function SimpleDeposit is the constructor, which is run during the creation of the
contract and cannot be called afterwards. It sets the balance of the individual creating the contract
(msg.sender) to the amount of Ether sent along the contract creation transaction (msg.value). The
remaining functions actually serve for interaction and are called by users and contracts alike. The
deposit() function (line 16) manipulates the balances mapping by adding the amount sent along
the transaction-invocation to the senders balance, while utilizing a modifier to preliminary ensure
that at least 1 Ether is sent. The withdraw() function (line 25) manipulates the balances mapping by
subtracting the requested amount to be withdrawn from the senders balance and the getBalance()
function (line 21) returns the actual balance of the sender by querying the balances mapping.

In summary, this simple example shows the basic concepts of a smart contract coded in Solid-
ity. Moreover, it illustrates the most powerful feature of smart contracts, which is the ability to
manipulate a globally verifiable and universally consistent contract state (the balances mapping).

18

3. Architecture
of Blockchain-Based Applications

Designing blockchain-based applications is a challenging task and requires a number of coordinated
architecture decisions, including how to connect and orchestrate centralized elements, such as
backend logic, with decentralized elements, such as the blockchain ledger and smart contracts. To
guide decision making in this regard, we systematically explore this architectural design space and
possible solution strategies in this chapter. More precisely, we provide architectural design decisions
and decision options in terms of patterns and practices for applications with different degrees of
decentralization, describe conceptional components, as well as possible relations between them.

Based on an analysis of collected data with Grounded Theory techniques, our research indicates
that blockchain interactions can be abstracted as two kinds of blockchain gateway services, one
of which sends state-changing operations and the other of which collects state information. By
applying an event-driven architectural pattern, blockchain integration boils down to choreographing
blockchain-dependent business logic with these gateway services.

3.1. Introduction

Blockchains are distributed peer-to-peer systems which implement a trustless shared public append-
only transaction ledger [29]. They are being recognized as a useful technology in a wide variety
of business applications to increase operational efficiency and enable new business models. How-
ever, considering the degree of maturity of blockchain technologies in practical applications, the
acceptance and adoption of the technology is still in an early stage. Having gone through the
hype-cycle for blockchains as an emerging technology, the industry is currently in a phase of
consolidation where first practical applications provide insights into the advantages and disadvan-
tages of using blockchain technology. Accordingly, there is currently a lack of a systematic and
holistic approaches to system design of blockchain-based applications [30]. To close this gap, we
investigate architectural design options for the integration of blockchains in software solutions by
gathering data from different sources and applying GT techniques to extract and identify common
practices. If one considers the blockchain as a part of a larger system, it can be assumed that certain
practices and architectures occur more frequently and thus prove to be more advantageous than

19

3. Architecture of Blockchain-Based Applications

others. Furthermore, we investigate existing, well-proven software design patterns and assess their
applicability to blockchain based applications.

In order to concretize the research objectives, we ask the following research questions: What
are the key architectural design decisions for blockchain-based applications? What are possible
design options regarding these decisions and the associated (best) practices? Which conceptual
components are relevant in the architectural design and what are their relations? For illustrative
purposes this chapter refers to the Ethereum blockchain, today’s most popular ecosystem. Please
note that the presented concepts are independent from a particular blockchain implementation.

This chapter is structured as follows: First, we discuss related work in Section 3.2 and our re-
search methodology in Section 3.3. Then, we elaborate the architectural design of blockchain-based
solutions as our main contribution in Section 3.4. Finally, we discuss our findings in Section 3.5,
and draw conclusions in Section 3.6.

3.2. Related Work

Blockchain-Oriented Software Engineering (BOSE) is a growing discipline that focuses on the
application and definition of software engineering principles for blockchain-based system design,
development, and deployment. Porru, Pinna, Marchesi, et al. [30] present one of the first works to
identify issues, challenges, and peculiarities in this field. They advocate the need for new research di-
rections and novel specialized blockchain software engineering practices. Wessling, Ehmke, Meyer,
et al. [31] argue that a blockchain-oriented view is required for the architectural design process and
propose the idea of blockchain tactics as a means to support the process of integrating decentralized
elements in software architecture. In this work, however, the authors focus on the effects of design
patterns at the implementation level and do not provide architectural guidance. Marchesi, Marchesi,
and Tonelli [32] [33] propose a holistic agile software development process to gather and analyze
requirements as well as design, develop, test, and deploy blockchain applications. Nonetheless, the
approach is not specific enough to derive decisions on the architectural level. Udokwu, Anyanka,
and Norta [34] explore and evaluate several high-level design approaches for developing blockchain-
based applications, including the former two works. They also propose another model-driven design
framework with an automatic architecture model derivation, which unfortunately is not very specific.
Bodkhe, Tanwar, Parekh, et al. [35] present various blockchain-based solutions and their applicabil-
ity in various Industry 4.0-based applications. In the aforesaid work, a blockchain-based reference
architecture is described, but rather on a high level. Viswanathan, Dasgupta, and Govindaswamy
[36] present a Blockchain Solution Reference Architecture (BSRA) that guides architects in creating
end-to-end solutions based on Hyperledger Fabric. Architectural components are mentioned, but
only described within a layered structure, so that the interaction of the components is not apparent.

20

3.3. Research Study Design

So far none of these works provide systematic architecture guidance in the field of BOSE. It is
the aim of our work to close this gap.

3.3. Research Study Design

In the search for (best) practices (hereinafter conceptually equivalent to software design patterns and
other similar best practices), we apply a research methodology that is guided by the pattern deriva-
tion approach of Riehle, Harutyunyan, and Barcomb [37]. The approach describes the application of
established scientific research methods for the purpose of pattern discovery and validation. In accor-
dance with this approach patterns are discovered (“mined”) and codified (“written”) using GT [38],
[39] techniques. Driven by our research questions and known practices from our own experience,
we defined initial search terms that were used to query major search engines (e.g., Google, Bing) in
order to compile a number of well-fitting, technically detailed sources from the so-called “gray" liter-
ature [40] (e.g., practitioner reports, practitioner blogs, system documentations etc.). The resulting
sources pool [41] was then examined in a later analysis with GT techniques. This included a thor-
ough study and the annotation of the materials with labels (“codes” established with so-called “open
coding”) along with optional memos explaining important aspects of codes. Further, conceptual
relations between codes (so-called “axial coding”) were established to identify candidate categories
for patterns. While this may indicate a simple linear execution of the work, pattern discovery and
validation proceeded incrementally in several iterative stages, in which new sources (inspired from
previous iterations) were exploited to constantly compare, revise, and contrast patterns until a theo-
retical saturation was reached. Theoretical saturation [38], [39] refers to a state in which adding new
sources no longer yields new findings, and is commonly used as a stop criterion in GT-based studies.

3.4. Architectural Design of Blockchain-Based Applications

Today, the design and development of applications based on blockchain technologies is a difficult
undertaking and the degree to which the technology is used is also significantly influenced by
characteristics such as performance, usability, and user experience. A well thought-out architec-
tural design helps to balance these criteria. To this end, this section discusses design guidance for
blockchain integration that we found and coded in our study. Architectural decisions, decision
options (aka practices or patterns), and typical conceptual components and their relationships
are discussed. In a final analysis these decisions, their options, and the associated conceptual
components are summarized in a feature model along with the relationships between them. To
round things off, we also briefly touch on relevant aspects related to microservices and Blockchain
as a Service (BaaS) at the end of this section.

21

3. Architecture of Blockchain-Based Applications

3.4.1. Event-Driven Architecture

As a software component, the blockchain has an asynchronous and event-driven character. This
is due to the latency in the execution and confirmation of transactions and the fact that significant
changes or operations that occur on the blockchain are usually propagated as events. Examples
are events resulting from the execution of a smart contract or the creation of a new block. Given
these characteristics, blockchains are not suited for real-time based systems and likewise scenarios
where end-users expect an immediate impact of an operation. As with other systems that do
not rely on synchronous execution or communication (i.e., no strict arrival times of messages or
signals), message coordination can be achieved by using Event Driven Architecture (EDA). EDA
is an architectural style in which there is no centralized controller to manage a workflow. Instead,
different components interact with each other much more dynamically when certain events that
affect their respective domains occur.

Event Sourcing

Event Sourcing is a persistence concept used in event-driven architectures. It refers to storing
application state as a sequence of immutable events. With it, a complete replay of the events that
have happened since the beginning of the event recording can be achieved. This stands in contrast
to the traditional Create, Read, Update and Delete (CRUD) approach, where only the current state
of an object is stored and iteratively mutated. Event Sourcing has several benefits. It allows for
the creation of any number of user-defined data stores as materialized views of persisted events
and knowledge about the state of domain objects at any given time by examining retroactive events.
Blockchain and Event Sourcing share characteristics which suggest a natural affinity. Both share
the concept of an “immutable append only log” which is considered as the single source of truth
containing all events that have happened. Therefore, it seems natural to map, combine, and extend
blockchains by Event Sourcing within application scenarios.

Command-Query Responsibility Segregation

The Command-Query Responsibility Segregation (CQRS) pattern [42] is quite often mentioned
alongside with Event Sourcing, because when using Event Sourcing some form of CQRS emerges
almost naturally. CQRS is a design solution that segregates operations that read data from operations
that write data by using separate interfaces and persistence models. This approach promotes
separation of concerns, as the distinction between write and read aspects can result in persistence
models that are more aligned, maintainable, and flexible. Most of the complex business logic can go
into the write model, while the read model can be kept relatively simple. Further, problems such as
scaling read and write operations, using optimized data schemata, and securing authorized writes are

22

3.4. Architectural Design of Blockchain-Based Applications

easier to solve. The pattern can be utilized for blockchain integration, for example to account for the
general discrepancy of write and read operations. The write model is represented by both transaction
execution and the blockchain itself. The read model, as antagonist, is a locally synchronized replica
of the blockchain to achieve fast read performance and rich querying capabilities.

3.4.2. Blockchain as a Multi-Faceted Architectural Component

When using the blockchain as a component in enterprise software, an important question is how
to categorize it from an architectural point of view. If one starts out from classifying the blockchain
within traditional boundaries such as a 3-tier architecture (presentation, application, data), the
blockchain can be both, a data-tier that can store data on its ledger, and an application-tier, that
can process data by means of smart contracts. When choosing the perspective of providing and
consuming software as a service, in short Everything as a Service (XaaS), no clear picture emerges
either, since the blockchain contains aspects of an application (Software as a Service [SaaS]),
middleware (Platform as a Service [PaaS]), or infrastructure (Infrastructure as a Service [IaaS])
component. Consequently, the blockchain can be understood as a multi-faceted architectural
software component that can be used in different degrees and settings.

3.4.3. Degrees of Decentralization

One can use the blockchain as a stand-alone platform capable of implementing a complete ap-
plication logic (on top of smart contracts) or as an auxiliary tool in larger enterprise solutions to
meaningfully complement business aspects (e.g., auditable history, asset tracking, etc.). Figure 3.1
illustrates this aspect, comparing a traditional 3-tier application design with a fully decentralized
and hybrid blockchain-driven architecture. The latter two are essentially the major decentralization
styles which will be discussed in the following.

Fully Decentralized Applications

A Decentralized Application (DApp) is a software solution built on top of a distributed peer-to-peer
network. A DApp typically consists of a Web frontend that makes direct calls to a decentralized
backend infrastructure (here, the blockchain executing smart contracts incorporating the core
application logic). This structure is similar to a two-tier client-server architecture, with no inter-
mediate support required for operation. The front-end code, which can be written in any language
(just like a traditional Web application), can be hosted on a central server or on a decentralized
storage (e.g., InterPlanetary File System [IPFS]). Through the latter a complete decentralization
of the application is achieved. Benefits of DApps include an increased trust level and resistance
to censorship, as the execution is not relying on a central provider which makes computation more

23

3. Architecture of Blockchain-Based Applications

Application
Server

Decentralized
Storage

Blockchain
Platform

Hybrid
Application

Traditional Web
Application

Decentralized
Application

Client

Frontend

Backend

Database

Client

Frontend

Smart Contracts

Ledger

Figure 3.1.: A comparative overview of a traditional, hybrid, and decentralized application
architecture.

transparent and further lowers the risk for a single point of failure. The disadvantages include
low transaction throughput, high response times, difficult updating, incurring transaction costs (to
be paid by the user), fluctuating transaction costs, and in general an immature technology stack
accompanied by a vendor lock-in. For a comprehensive empirical study of blockchain-based
DApps we refer to [43] and for an intra-architectural performance comparison to [44].

Hybrid (Semi-Decentralized) Applications

Building fully decentralized applications is a difficult undertaking. DApps based solely on dis-
tributed components quickly reach their limits due to current technical limitations and usability
challenges. As a result, the current approach in building such applications is more nuanced. Instead
of relying exclusively on decentralized components, often a hybrid architecture is realized and
centralized components are added where appropriate. In this context, a traditional backend is
still relevant and several reasons speak for its use, although it lowers the trust compared to purely
decentralized applications.

First of all, the blockchain is a closed ecosystem, thus smart contracts cannot directly interact
with off-chain services to fetch information or trigger actions. On the contrary, they depend on the
outside world to push information into the network or triggering actions by monitoring the network.
This means a backend server is needed whenever a reliance on third-party services exists, such as

24

3.4. Architectural Design of Blockchain-Based Applications

ingesting external data, or performing mundane operations like sending emails. Another use for
a backend is to act as cache or indexing engine for the blockchain, which also helps to provide a
more responsive user interface and smoother perceived user experience. While the ultimate source
of truth is the blockchain, clients can rely on the backend for search functions and validate the
returned data on-chain. Next, large data storage is impractical on the blockchain due to the high
costs associated with on-chain storage. Therefore, an application may need to rely on a backend to
store large amounts of data, while only a hash is stored on the blockchain for validation. In the same
way, complex calculations that would exceed the block gas limit of the blockchain can be moved to
a backend. Another case where a backend can be useful is batching multiple transactions. The user
can be relieved of repetitive transactions that take a lot of time by collecting user signed transactions
in the backend and issuing them all at once. As long as these transactions are not time sensitive,
batching them is a valid use case. A backend is also handy for automation, when a smart contract is
designed to be called at a future time. Since smart contracts are passive entities, i.e. they do nothing
until a participant explicitly interacts with them, there is no built-in ability to schedule events in smart
contracts. Thus, a backend system can be used to reliably initiate periodic calls for smart contracts.

Overall, to build a secure and partially decentralized application there is a strong need for a
dedicated running backend.

3.4.4. Transaction Handling

Transactions provide the means to interact with a blockchain. Essentially, a transaction is a cryp-
tographically signed instruction that is generated by an account, serialized and then transmitted
to the blockchain for processing. There are three options how transactions can be initiated [43][45]
which are discussed in the remainder of this section.

User Signed Transaction

The traditional way to initiate a transaction is from the user. In this case, the user interacts directly
with a smart contract by signing a transaction with his private key and then sending it to the
blockchain network along with a payment to cover the execution costs. This procedure requires
that the user has software that supports client-side interactions (e.g., wallet) and tokens to pay for
the transaction.

Meta Transaction

Transaction costs and the acquisition of tokens to pay for them are a major hindrance to a main-
stream adoption of DApps. Meta transactions aim to solve this onboarding issue so that first time
users can execute decentralized transactions without a crypto wallet. The simple idea is that a third

25

3. Architecture of Blockchain-Based Applications

party sends another user’s transaction and pays for the execution. In this arrangement, the user
signs a message containing information about a transaction the user wants to execute. This message
is then sent free of charge to the off-chain third party, who subsequently wraps this information
in a transaction and sends it to the blockchain network. This transaction is usually sent to an
intermediate contract that verifies the user’s signature of the attached transaction payload, before
forwarding a subsequent transaction that executes a user intended method on the target contract.
The advantage of this method is that the user is in control of his private key and does not need to
bother with transaction fees. On the downside, the total costs are higher due to the additional costs
for the relay contract and the fact that more transactions are required. Another issues is that the
third party is centralized and could turn rogue, censoring transactions.

Backend Signed Transaction

Another approach to solving problems related to the accessibility of decentralized applications is to
take the entire transaction signing and payment process away from the user and handle these matters
in the backend. Although this method offers a high degree of comfort for the user and is relatively
easy to implement, it destroys the fundamental concept of sovereignty and decentralized trusted
execution, which is a basic principle of blockchains. Another downside is lacking transparency
as the application may take unknown or unauthorized actions on behalf of the user and there is no
way to challenge or reverse misaligned transactions. Further, since users do not own private keys
they cannot own tokens or perform operations directly with other smart contracts. The only way to
achieve this is to manage user keys in the backend which requires a sophisticated security concept
to avoid any attacks.

User
Tx

Client Backend Smart
Contract

¤Ç

Txµ

Meta
Tx

Client Backend Relay
Contract

Smart
Contract

¤ ¤Ç

µ Txµ
µ Txµ

Backend
Tx

Client Backend Smart
Contract

¤Ç

 Txµ

Figure 3.2.: An overview of transaction handling options.

26

3.4. Architectural Design of Blockchain-Based Applications

3.4.5. Practices for Scalability and Privacy

This section briefly describes some of the techniques as options that can be selected or not in an
architecture that are already in use to meet the challenges of scalability (see [46], [47]) and privacy
(see [48]) that blockchains face.

Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) are cryptographic protocols that allow one party to prove to another
party that a statement is true without disclosing information beyond the fact that the statement is true.
The algorithm that accomplishes this repeatedly tests a statement for true/false until the probability
that the statement is false becomes incredibly low. For example, a company stores instead of
the actual count (n) of a product inventory the hashed count on the blockchain and publishes the
statement that n>10 is true. With ZKPs others can rely on the fact that the published statement of
this calculation is correct, without knowing the exact input value. This proof of correctness on the
basis of “zero knowledge” gives ZKP its name. When used correctly, this technique can increase
privacy on the blockchain. For a survey on ZKPs for blockchains see [49], [50].

Homomorphic Encryption

Homomorphic Encryption (HE) makes it possible to perform certain arithmetic operations on
encrypted values; when the result is decrypted, the result is the same as it would have been if
the same calculation had been performed with the unencrypted inputs. One can use HE to store
encrypted data on the blockchain and allow a third party to analyze it and return an encrypted result
that later can only be accessed by trusted parties in possession of the decryption key. Although
this approach is very promising, it requires lengthy computations and is therefore not generally
applicable. It is currently more practical to use ordinary encryption or an off-chain storage. For
an illustration of potential practical application scenarios we refer to [51], [52].

State Channels

State channels refer to an approach in which users transact with one another directly outside the
blockchain to minimize the use of blockchain operations. Instead of using the blockchain as the
primary processing layer, it is used as a settlement layer. State updates occur outside and are only
propagated to the blockchain when necessary. This approach enables a faster transaction flow and
increased privacy because participants interact directly with each other. We refer the interested
reader to [53], [54] for more information on this topic.

27

3. Architecture of Blockchain-Based Applications

3.4.6. Conceptual Components and Their Interaction

The anatomy of blockchain-based applications in terms of essential components is to some de-
gree similar across different use cases. In the following, we list several components that every
blockchain-like solution may wish to consider in its architectural design. Commonly found layout
patterns of components are outlined using the example of a typical DApp incorporating a backend in
Figure 3.3 and an enterprise-oriented application containing several loosely coupled services (e.g.,
microservices [55]) in Figure 3.4. While there are many degrees of freedom in such architecture de-
signs, such rough blueprint patterns can help in initial designs and for architecture classification. In
the following, we discuss the typical conceptual components in those broader architecture patterns.

BlockchainFrontend Backend

Browser
HTML, CSS, JS

Wallet &
Private Key

Off Chain
Storage

Blockchain
Endpoint

Event
Listener

HTTP/REST
Edge

Service Application

JSON RPC

API
Call

Web3.js

Smart
Contract

1

2 4

6

10

11

7

Figure 3.3.: A typical component structure pattern of a DApp utilizing a backend.

1) Wallet and Private Key

Instead of a password-protected centralized account, blockchain users have a decentralized identity
that is based on asymmetric encryption, also known as public-key cryptography. The mechanism
relies on pairs of keys: public keys, which may be distributed openly, and private keys, known only
to the owner. A key pair is the identity on the blockchain. The public key (in a shorter representation)
serves as account identification (address) and is derived from the private key that grants ownership
of that account. Therefore the private key is the most crucial information for identification and
its safekeeping is essential. A wallet is either a device, physical medium, program or service that
stores a user’s private keys. In addition to this basic purpose, wallets often provide the functionality
of encrypting, signing, and forwarding information (transactions) to the blockchain.

28

3.4. Architectural Design of Blockchain-Based Applications

Blockchain 3rd PartyFrontend Backend

Browser
HTML, CSS, JS

Off Chain
Storage

Blockchain
Endpoint

Event
Listener

Oracle

Blockchain
Application

HTTP/REST
Edge

Service

App

Transaction
Manager

Key
Vault

Identity & Access
Management

Message
Bus

App

JSON RPC

Smart
Contract

3

2

4

5

6

7

8

9
10

11

12

Figure 3.4.: A typical component structure pattern of an enterprise grade blockchain integration.

2) Edge Service

Edge services are components that are exposed to the public Internet and provide the capabil-
ities required to deliver functionality and content to users over the Internet. They can refer
to a multitude of components such as Content Delivery Networks, firewalls, load balancers,
Application Programming Interface (API) gateways, reverse proxies, etc. They typically allow a
shielded data flow from the Internet into the provider’s infrastructure and into the enterprise. Edge
services can also support backend applications by performing common tasks such as authentication,
authorization, logging or monitoring to simplify underlying services.

3) Identity and Access Management

The identity and access management component stores user information to support user authen-
tication and authorization as well as the provision of user data. Edge services can use this to control
user-specific access to resources, services, and applications. For blockchain-based applications, it
is necessary to align identity and access management holistically also with the blockchain inherent
identity concept. It needs to be clarified to what extent users need sovereignty over their own
blockchain identity and how this maps into an application-wide identity management perspective.
For example, it is possible to leave the blockchain identity handling to the user or to the application
as a custodian responsibility; in addition, an application-tailored blockchain identity concept with-
out user binding is also conceivable. All of this must also be reconciled with transaction handling
and secret key custody. In this context, it is possible to handle key management and transaction sub-

29

3. Architecture of Blockchain-Based Applications

mission either entirely by the user or in the backend, or as a middle ground have meta-transactions
where user-signed transaction requests are sent via a backend that pays for their execution.

4) Backend Application Logic

An application implements the logic required to achieve business goals, typically by building either a
monolithic solution or a set of small services organized by business capabilities that can be deployed
independently. One of the most important considerations when integrating blockchain is what data
and computations to put on-chain respectively off-chain. This decision is largely influenced by
the business case and the intended benefit of using a blockchain (trust building, traceability, etc.) as
well as current technological limitations. Generally, one should follow the basic design philosophy
of using blockchains sparingly as they are slow and expensive. In terms of the communication flow
between the application logic and the blockchain, this aspect is typically split into two separate
components, one performing read and the other write operations. These components then serve
as an interface to interact with the blockchain. When following a service-based design, it is also
possible to further encapsulate both components through a dedicated “blockchain service” to have
a central hub for blockchain interaction (e.g., Hyperledger Fabric Gateway [56]).

5) Message Bus

In a service-oriented application, the services not only process requests from users, but interact with
each other to handle these requests. Therefore, they must engage in an appropriate communication
protocol. In such a situation, asynchronous communication by exchanging messages via a message
framework has many advantages. The messaging framework takes the role of a message broker
allowing to validate, store (buffer), transform, and route (one-to-one/many, content/topic-based)
messages between services.

This approach offers the advantage of loose runtime coupling, because it decouples the message
sender from the consumer. It also improves availability, given that the message framework
buffers messages when a consumer is temporarily unavailable. However, this aspect also reveals
a disadvantage, namely that the message framework must be highly available. Looking at our
gray literature sources, the choice for a messaging framework basically comes down to message
processing or stream processing. In message processing, messages are written to a queue and a
broker takes care of delivering the published messages addressed to specific endpoints. Once the
processing of a message is confirmed, the message is removed. This form of message delivery is
suitable for environments with complex pre-definable and stable routing logic or where there is a
need for guaranteed one-to-one delivery of messages. Common platforms for message processing
are ActiveMQ [57] or RabbitMQ [58]. In stream processing, messages are written to a log that

30

3.4. Architectural Design of Blockchain-Based Applications

is persistent (limited to a retention period/size) and any endpoint may listen to these events and
react accordingly. Messages are not removed once they are consumed, instead they can be replayed
or consumed multiple times. This implies that the endpoints keep track of which messages to
read (next). Popular stream processing platforms are Kafka [59] or Pulsar [60]. When using a
streaming platform one can filter, aggregate, analyze or transform any blockchain events (e.g., mined
transactions or blocks, emitted event logs) and also combine this information with non-blockchain
events. Hence, one could build a streaming analytics process that performs state checks by
monitoring contextually relevant events over time (e.g., [61]). To sum up, message processing is all
about smart pipes, dumb endpoints; while data stream processing is the opposite: dumb pipes, smart
endpoints. In principle, both messaging framework types can be used for blockchain integration,
but this decision also depends on the surrounding application components and the integration effort
regarding the software stack used. Overall, regardless of the taken approach, the logic implemented
in endpoints should be idempotent, so that receiving the same event twice has no side effects.

6) Off-Chain Storage

Any data store outside the blockchain that holds data related to the blockchain can be considered as
off-chain storage. Off-chain storage serves two main purposes. On the one hand, it should enable
faster access to on-chain data through local replication, and on the other hand, it should decouple
business data from the blockchain, be it for reasons of confidentiality or data size. The former is
a read-only store and since it reflects the on-chain state, it should only be updated according to
received blockchain events and not by business logic. Its purpose is to support caching and indexing
to enable search, filter, sort, and pagination capabilities for on-chain data. There are several ways
to realize this type of storage. For example, it is conceivable to use the messaging framework (e.g.,
Kafka [59]) as event store and utilize its sink connectors (with Kafka Connect [62]) to provide
data to databases, key-value stores, and search indexes (e.g., [63]). For data provisioning from
the blockchain, source connectors exist that allow to ingest blockchain data tapped via web3 into
Kafka (e.g., [64]). Another approach is to create a separate data store and synchronization service
that subscribes to various blockchain events on the message bus and pushes data to a storage, which
later on is consumed by application services for queries. As a side note, there is also a decentralized
solution for querying in which a frontend database is used. For this purpose a browser database
(e.g., PouchDB [65], GunDB [66]) syncs all relevant events, but this approach is not suitable
for applications with a high data respectively event load. Now for the second purpose, namely a
separate off-chain storage to detach business data from the blockchain. This type of storage can
be used by business logic for a more controlled management of confidential data and may also
serve as an exchange channel, if a shared storage is used. Its realization can take many forms
depending on the type of data, such as a database (e.g., SQL, NoSQL) for metadata or a decentral-

31

3. Architecture of Blockchain-Based Applications

ized Content Adressable Storage (CAS) (e.g., IPFS [67], Swarm [68]) for Binary Large Objects
(BLOBs), whereby the integrity of the data is guaranteed by storing hashes on-chain. All things con-
sidered, it is advisable to treat both storage concepts separately, although it is technically possible to
unify them. For completeness, if data is to be held only on-chain, techniques such as ordinary encryp-
tion, homomorphic encryption, or zero-knowledge proofs can be used to ensure data confidentiality.

7) Key Vault

A key vault is a component used to maintain control of encryption keys and other secrets. It is
essential for providing the private key that is always required when publishing transactions. There
are several complex strategies and different software solutions that allow storing private keys quite
securely on the backend (e.g., HashiCorp Vault [69]). Some solutions build on geographically
distributed databases, while others built on specially designed hardware. In any case, it is not
possible to sign transactions on the backend without revealing private keys somewhere in the
system. Hence, it must be assumed that there is no 100% protection against the compromise of
stored private keys. Through a neat construction of smart contracts, the effects of private key
leakage can be minimized. The basic principle is to limit the functionality for accounts used on
a backend, so that an adversary is unable to cause damage other than stealing a limited amount of
funds. For this purpose, smart contracts use purely operational accounts for operative tasks and
integrate the possibility to manage these accounts via a master account. The master account, whose
private key is highly secured, finances the operational accounts and is able to override them, i.e.
replace compromised accounts with newly created ones.

8) Event Listener

The event listener is a service component in the backend infrastructure and listens for and reacts
to events emanating from a blockchain system or application. It contributes to a clear separation of
concerns by avoiding the need for services to subscribe directly to a blockchain endpoint for events.
It handles (dynamically) registered event subscriptions, and broadcasts these events in a consum-
able manner (over a message bus) to downstream services running on the backend. Blockchain
is a closed system, so for event retrieval, inevitably repeated polling against blockchain endpoints
is required. Notably, there are two possibilities: Either make explicit endpoint protocol requests
for certain events, e.g. to check whether a transaction has been mined based on a transaction hash,
or follow a “crawler” based approach, where a bulk invocation retrieves all transactions at once
given a (new) block number for examination. In both cases, in order to avoid undetected events, the
event listener has to gracefully handle various errors that invariably occur in production systems:
nodes out of sync, crashing nodes, congested nodes, network disconnects, stale data returned in

32

3.4. Architectural Design of Blockchain-Based Applications

requests, etc. This suggests that it is advantageous to use multiple (own) blockchain endpoints for
redundancy. In this constellation an aggregator pattern can combine (and de-duplicate) multiple
endpoint events to propagate the data in a reliable, at-least-once manner. In the same way, the
event listener may consider the immutability of the event stream (depending on the consensus
mechanism). For a consensus algorithm that allows multiple chain heads, there may be multiple
competing event streams at any one time. It is either possible to wait for guaranteed event finality
(sufficient succinct block confirmations), or propagate events as soon as they arrive and assume that
downstream services handle ramifications of prematurely published events. The latter approach has
been mentioned in a few gray literature sources and adopts an eventual consistency guided way of
thinking for transactions, whereby the application assumes that any blockchain transaction waiting
on, will eventually confirm and continues on as usual. This approach leaves the application in a state
which is ahead of the blockchain, allowing for example an improved user experience. However, hav-
ing two instances of state (i.e. blockchain and application) can be problematic if state management
is not handled carefully including rollback scenarios; namely, in case a transaction fails.

9) Transaction Manager

The transaction manager is a service within the blockchain application that receives messages
(from the message bus) and issues state-changing transactions (invoking smart contracts). It is
an abstraction that controls how transactions are signed and broadcast to the blockchain network,
via a connected blockchain endpoint. The component performs various tasks associated with the
publication of transactions. First, it takes care of estimating adequate transaction costs, to ensure
transactions are equipped with enough funds for a timely execution. Second, it takes care of nonce
management. A nonce is an arbitrary (mostly sequential), unique number that is used to prevent
replay attacks. Third, it deals with signing the entire transaction (including the nonce). This step
usually integrates a key vault as a private key assembly solution. Some blockchain libraries embed
the mentioned tasks behind the scenes, nevertheless it is important to know the background. In
addition, the transaction manager has to handle various errors that may occur: network congestion,
dropping peers, dropping transactions due to a sudden price increase, etc. In order to ensure reliable
and stable transaction processing, the transaction manager can join forces with the event listener to
verify that transactions are mined within a specified time. If this is not the case, a certain transaction
can be republished with different parameters (e.g., corrected nonce, a higher tx fee) and monitoring
starts again. The basic process flow of this approach is depicted in Figure 3.5.

33

3. Architecture of Blockchain-Based Applications

App
Service

Message
Bus

Tx
Manager

Event
Listener

Off-Chain
Storage

Key
Vault

Block-
chain

publish tx

publish tx

store
transient tx

publish tx

sign tx

signed tx

estimate cost

cost estimate

publish tx

tx hash

save tx hash
init republish

tx published

tx published

tx published

track published tx

mine tx

tx mined

tx mined

tx mined

update tx

tx mined

tx mined

cancel
tx republish

Figure 3.5.: A sequence diagram showing the interplay of key components during the processing
of a transaction.

10) Blockchain Endpoint

A blockchain endpoint is a device or data point running a piece of software that implements the
blockchain protocol to participate in the blockchain network. A node verifies all transactions
in each block, keeping the network secure and the data accurate. Often there are different node
implementations in different programming languages (e.g., Geth [70], Parity [71]), which follow
a formal specification. Furthermore, a distinction is made between different node types. A full
node has the entire blockchain downloaded and available. Hence, it can verify transactions and
execute smart contracts independently. A blockchain network is maintained and operated by full
nodes and the total number of full nodes indicates the degree of decentralization. A light node
holds block headers instead of the entire blockchain and can validate whether a transaction belongs
to the blockchain with the support of a full node. Accordingly, a lightweight node cannot operate

34

3.4. Architectural Design of Blockchain-Based Applications

without a full node. In addition, there are also service providers that operate node clusters (e.g.,
Infura [72], QuikNode [73]) which allow users to interact with the blockchain without having to set
up their own node. All in all, operating an own node requires no trust in the network since the data
can be verified in the node itself. If the blockchain is to be used in a truly private, self-sufficient
and trustless manner, the operation of an own node is required.

11) Smart Contract

A smart contract implements the business logic on the blockchain and can be seen as a self executing
autonomous entity. It needs to be deterministic as otherwise peers could not agree on the results of a
valid execution. As a design principle, contracts should be constructed to minimize the number and
size of on-chain transactions and write operations to reduce costs. Smart contracts require a rather
unconventional programming paradigm, because of the inherent characteristics of blockchain-
based program execution. To handle those challenges, design patterns emerged to capture best
practices and common solutions in a structured way [74]–[76]. We examine this topic in more
detail in Chapter 5. In terms of data processing, smart contracts have their own state, but mostly
they operate in relation to a common data model within the domain of a system, thus modeling and
handling state transfer is a main concern. Complex aggregate or inferred state computations are
typically kept off-chain and pushed on-chain with trusted oracles as needed. Another topic worth
mentioning is the structural design and layout of smart contracts. In this context, there are different
design options: A single smart contract acts as an interface (facade) that orchestrates interaction
with other downstream smart contracts, or multiple smart contracts act independently with equal
priority, and their functionality is being combined within a client/backend. In certain scenarios it
is also common to use a template (factory) contract on-chain to instantiate contracts with the same
structure and flow, but for a different context.

12) Oracle

Smart contracts often require access to data that is external to the blockchain ledger. An oracle
is a trusted system designed to supply external data to the blockchain. Oracles require a level of
trust that contradicts the trustless and decentralized nature of blockchains. This oracle problem,
basically boils down to the issue of verifying the reliability of extrinsic information. The use of
oracles should therefore be well thought out and accompanied by measures to mitigate this problem
(e.g., sourcing data from multiple oracles). We will deal with oracles separately in Chapter 4.

35

3. Architecture of Blockchain-Based Applications

3.4.7. Feature Model

To visually summarize the content presented so far, i.e., architectural design decisions, their options
in the form of patterns and practices, and associated conceptual components, we present a feature
model in Figure 3.6. Here, a feature is a distinctive aspect or characteristic of the blockchain-based
software system. The feature model models possible relations between design options (modeled
as features) via affiliated tags (mandatory/optional), relations (or/alternative), and relations to
conceptual components (requires).

Where appropriate, the given design options are evaluated according to their positive impact
on privacy, usability, and scalability. By means of drawn-in relations, the required conceptual
architectural components for certain scenarios as well as necessary design options for a fully
decentralized solution can be derived from the model.

3.4.8. Smart Contracts and Microservices

Microservices are an application architectural style in which a complex application is composed
of many smaller, discrete, decoupled, and network-connected services that communicate with each
other using standardized interfaces. Although smart contracts and microservices are fundamentally
different in terms of the native environments they serve (decentralized vs. centralized platforms)
and the challenges they seek to address, they are both a response to the rise of distributed archi-
tecture. While smart contracts are more about enabling transactions in low-trust environments,
microservices are about enabling modularity and scale. However, smart contracts and microser-
vices also have commonalities from a service-oriented architecture perspective (see [77]–[79]).
Both are designed for focused functionality, autonomy, composability, and communication via
standardized and well-defined interfaces. Hence, smart contracts can to some extent be interpreted
as services of a blockchain-based computing paradigm. In this light, it makes sense to combine
both concepts and design blockchain-based applications with microservices architecture principles.
Following this approach brings not only the benefits associated with microservices (e.g., loose
coupling, scalability, polyglot development, etc.) but also facilitates blockchain integration. When
blockchain is treated as a service component in a microservices paradigm, it becomes easier to deal
with its asynchronous and event-based nature. Proven concepts in microservices architecture, such
as EDA, event sourcing, and CQRS, provide useful tools in this context. With EDA blockchain
transactions can emanate as events and the flow of information within a system can be organized
asynchronously in coordination with these events. Event sourcing and CQRS complement this
approach, as blockchain state changes can be naturally stored as a continuum of immutable events
within an event store, from which any view or structural model can be derived.

36

3.4. Architectural Design of Blockchain-Based Applications

Blockchain-
Based
Application

Decentralization
Full

Partial

Identity
Provisioning

Blockchain [P]

In-House [U]

Transaction
Handling

User Tx [P]

Meta Tx [P,U]

Backend Tx [U]

Transaction
State Sync

Strict Consistency

Eventual Consistency

Key
Management

User [P]

Backend [U]

Blockchain
Connection

Own Full Node [P]

3rd Party Service

Frontend
Provisioning

Decentr. Storage [S]

Backend Hosting

Application
Logic

Off-Chain [P]

On-Chain

Off-Chain
Interaction

State Channel [P,S]

Rich
Querying

Frontend DB [U]

Backend DB [U]

Confidential
Storage

Off-Chain Hash Ref. & CAS [P,S]

On-Chain
Ordinary Encr. [P]

Homomorphic Encr. / ZKP [P]

Legend: Abstract
Feature

Concrete
Feature

Conceptual
Component

Mandatory Optional

Or
Group

Alternative
Group Requires [X] Helps

P...Privacy
U...Usability
S...Scalability

ID & Access Mngmt

Transaction Mngr

Wallet

Key Vault

Edge Service

Off-Chain Storage

Event Listener

Blockchain Endpoint

Smart Contract

Backend Appl. Logic

Figure 3.6.: A feature model for a blockchain-based application.

37

3. Architecture of Blockchain-Based Applications

3.4.9. Blockchain as a Service (BaaS)

Looking at current trends in software development, one can speak of a new cloud-native appli-
cation era where IT systems and applications are increasingly being outsourced to cloud service
providers, for reasons of cost savings and improved management and maintenance. This trend has
also caught up with the blockchain sector under the term Blockchain as a Service (BaaS). BaaS
enables businesses to rely on a service provider to provision and manage aspects of a blockchain
infrastructure in order to facilitate the development, testing, deployment, and ongoing management
of blockchain applications. This approach allows development resources to be better focused on a
specific goal by utilizing a wide range of readily available components while avoiding infrastructure
and platform configuration overhead. A cloud environment can also be attractive in order to keep
access and cooperation hurdles low for other participants (e.g., in a consortium). However, there
are also disadvantages. Relying on a single service provider to run a decentralized blockchain
network can be contradictory as it introduces a form of (re)centralization (trusting those who
manage infrastructure). There is also the risk of a vendor lock-in, as it is difficult or very expensive
to switch to a different service provider (due to lack of standardization especially for BaaS); the
same also applies to the selection of a blockchain platform.

Many well-known IT companies such as Microsoft, Amazon, IBM, SAP, or Oracle now offer
BaaS solutions (for a comparison see [80]–[82]) and enable the operation of blockchain nodes
on their respective platforms, some even allow the use of third-party infrastructure. Various
blockchain ecosystems and consensus mechanisms are offered, mostly geared towards permis-
sioned blockchains (e.g., Hyperledger Fabric [83], ConsenSys Quorum [84]) that focus on per-
formance and speed with strict privacy and access controls, which are preferred for business
collaboration. In addition, many platforms offer a variety of different applications for operations,
node, and smart contract management. Some even offer ready-to-use templates to provide pre-
defined blockchain network configurations or generic applications (e.g., supply chain, financial
services). Pricing models vary (e.g., number of nodes/transactions, storage space required, CPU
utilization), also among providers, and often tenants can choose among several different options.
This fits well to the prevailing on-demand and pay-as-you-go model of cloud service providers and
various other services tenants can consume. As for the degree of built-in blockchain integration
features, these vary between service providers. Some providers allow a deep integration with other
built-in platform services out-of-the-box (e.g., through adapters, connectors, triggers, purpose
fitted SDKs, etc.) using different integration approaches (e.g., serverless functions, workflow
orchestration), while others focus only on infrastructure provision and basic interaction. With
service providers in the former group, a Function as a Service (FaaS) approach is feasible, allowing
the use of serverless computation options based on event-driven models where a piece of code (aka
“function”) calling a smart contract is invoked by an event-based trigger such as a HTTP request (or

38

3.5. Discussion and Threads to Validity

any other event). This enables, for example, the implementation of a uniform interface for smart
contract interaction in a REST-API manner.

3.5. Discussion and Threads to Validity

A typical software architecture design requires various trade-off decisions to balance desired
quality attributes. In the case of blockchain integration, this boils down to striking a balance
between decentralization on the one hand and performance, privacy, and usability on the other.
It can be said that the more decentralized a solution is, the more difficult it is to ensure the above
quality attributes. To tackle this challenge, a hybrid architecture approach currently offers a good
compromise. Decentralized and centralized components are combined, allowing the advantages
of both to be used. The engineering challenge is then comprised of ensuring a smooth and timely
communication between the two. In this context, it can be advantageous to treat events as first-class
citizens of an application and use a messaging framework to coordinate communication between
different components in an event-driven manner.

As far as communication is concerned, interaction with the blockchain can be narrowed down
to two aspects. The first is listening to blockchain events and reading the blockchain network
state. The second is publishing transactions to invoke state-changing operations. This is ba-
sically a two-way communication where the transaction manager is the write channel and the
event listener is the read channel. By applying a service-oriented paradigm to these components
and employing asynchronous communication, blockchain integration boils down to choreograph
blockchain-dependent business logic with these gateway services.

Today, the computational and storage capabilities of blockchains are limited. If blockchains were
scalable, they could host the whole software stack of an application, including its graphical user
interface, business logic, and data. In that case, an application could truly be called decentralized
respectively distributed. Since blockchain is not scalable today, various approaches (such as a dedi-
cated backend, off-chain storage, etc.) are combined in order to achieve the highest possible degree
of decentralization while taking into account basic requirements and software quality attributes.

Setting up application and blockchain infrastructure components can be a time-consuming
and laborious task. Instead of developing an in-house solution with self-managed software, it
can be efficient to outsource the infrastructure challenges to API gateway services or to cloud
service providers. While gateway services abstract and encapsulate blockchain interaction behind
HTTP API calls, cloud service providers offer a comprehensive implementation platform with a
set of architectural artifacts that can be leveraged to accelerate the development. Various compute,
orchestration, storage, messaging, logging, and monitoring services can be combined. Service
providers with built-in integration options also have the advantage of being able to abstract direct

39

3. Architecture of Blockchain-Based Applications

interactions with the blockchain, facilitating the flow of communication and eliminating concerns
about the reliability of transaction handling and event notification. In addition, available integration
options can offer a scaffolding, that allows to wrap blockchain interaction into easier consumable
and integratable blockchain services (e.g., as FaaS).

Overall, BaaS solutions can ease blockchain and application infrastructure management and
speed up development, but are not on par with self-managed solutions in terms of provided trust.
Nevertheless, the degree of trust can be indirectly influenced by how much is managed by a service
provider, respectively whether BaaS is consumed as SaaS, PaaS, or IaaS.

The presented work is subject to a number of limitations and threats to validity. The practices
are mined using a qualitative research method, thus possible biases of individual researchers
cannot be fully excluded and might have influenced the results. This includes the pattern discovery
and codifying procedure, as other researchers may have different interpretations and may code
differently. Due to the fact that basic functional principles are the same across different blockchain
implementations, it is likely that our results can be generalized. However, given that the majority
of available sources only deal with a handful of more prominent blockchain solutions, there is a
threat that our results can only be applied to similar blockchain architectures and the integration
of different blockchain systems might not be possible without adaptation.

3.6. Conclusion

Blockchain is considered a disruptive technology that enables new business models and techno-
logical solutions. Consequently, new types of architectures and designs are required to utilize the
technology at its best while addressing currently associated inefficiencies. To this end, we describe
architectural design solutions for creating blockchain-based applications with different degrees
of decentralization. In this context, we studied architectural decisions (see Figure 3.6) along with
decision options (patterns and practices) and their connections to conceptual components. Based
on our findings, we identified high-level architectural blueprints or patterns (see Figure 3.3 and
Figure 3.4) in which we describe key components along with their purpose and interaction.

While it may seem straightforward to use blockchain for a specific business aspect, using the
technology often comes at the expense of scalability, privacy, and usability. As a result, most design
decisions are influenced by the need to compensate for theses drawbacks. For example, to allow
complex calculations, store large amounts of data, keep data confidential, or query blockchain-
related data. To meet these requirements, skillfully coordinated design decisions are needed to
work around the current drawbacks of blockchain. As for the integration of blockchain with its
asynchronous and event-driven character, it is natural to adopt architectural styles and programming
paradigms that are focused on these very characteristics. In this regard, an event-driven architec-

40

3.6. Conclusion

ture consisting of reactive components such as microservices or, in the cloud context, serverless
functions, and dedicated blockchain read/write gateway services provides a good fit.

In the future, ongoing developments in the area of blockchains could lead to blockchains becom-
ing more powerful and mainstream. Architectures embedding the technology will likely evolve
and provide a promising foundation for diverse applications. In this context, future research could
investigate (architectural) migration patterns to transfer functionality or architectural components
to blockchain technology. With this outlook, it may one day be taken for granted that standard ap-
plications based on blockchain technology will be executed in an absolutely decentralized manner.

41

4. Oracle Patterns

Blockchain provides a platform for the development of decentralized applications which have
beneficial characteristics such as high integrity, transparency, and resistance to censorship and
manipulation. However, a blockchain is an isolated system due to its underlying operating principle
and structure. This means that access to external information is not readily available. To address
this limitation, oracles are used in practice. However, the best practices related to the use of such
oracles have not yet been broken down, classified, and studied in their fundamental aspects. In
this chapter, we fill this gap by examining basic blockchain oracle patterns based on fundamental
dimensions related to data flow. From the blockchain perspective, this refers first to the direction
of data flow, i.e., inbound or outbound, and second to the initiation of data flow, i.e., push- or
pull-based. We provide a thorough and systematic description of the four patterns that emerge from
these dimensions and discuss an implementation of the patterns based on use cases. On this basis,
we perform a quantitative analysis that leads to the conclusion that the four distinct patterns are
characterized by different performance and cost profiles.

4.1. Introduction

From a conceptual point of view, the blockchain represents an append-only transaction store
distributed across many machines and structured into a linked list of blocks [85]. Based on
this rationale and additions for distributed code execution, blockchain technology today offers a
platform for decentralized applications with properties such as high integrity, transparency, and
resistance to censorship and manipulation. These properties are particularly handy in use cases
where data integrity and traceability are critical, such as clinical trials [86], [87], food safety [88], or
in handling financial arrangements [85, Ch.12]. In addition, these appealing properties also promise
new possibilities for handling inter-organizational business processes [89]. Specifically, the use
of blockchain technology promises efficiency and effectiveness gains, for example, through the
automated execution of business processes [90] or the exchange of information between mutually
distrusting parties on the blockchain. In this context, the automation of business processes is
achieved through the use of smart contracts, i.e., programs that are stored on the blockchain ledger
and executed in the course of transaction processing. The blockchain thus offers a decentralized,

43

4. Oracle Patterns

Pull Push

Inbound

The on-chain component

requests the off-chain state

from an off-chain component

The off-chain component

sends the off-chain state

to the on-chain component

Outbound

The off-chain component

retrieves the on-chain state

from an on-chain component

The on-chain component

sends the off-chain state

to an off-chain component

Table 4.1.: An overview of the four oracle types.

neutral execution platform for coded business processes in the form of smart contracts.

However, blockchain systems have one limitation and that is that they form self-contained
systems. In this respect, only data that is already on the blockchain can be accessed within the
blockchain. To mitigate this limitation, so-called oracles are used in practice as intermediaries.
An oracle is a component that can transmit data between the outside world and the blockchain.
But implementing oracles presents significant conceptual challenges, as they can be considered
a major point of failure and also introduce security and trust issues [89]. Consequently, much of
the research on oracles focuses on how to address these security and trust issues. For example, by
using multiple independent oracle entities to form a decentralized oracle [74], extending trust prop-
erties to off-chain computations [91], or strengthening trust in incoming data [92]. Nevertheless,
fundamental aspects of blockchain oracles that enable their categorization and abstraction have
not yet been explored in detail.

In this chapter, we fill this gap by abstracting from the way oracles are implemented and focusing
on the basic patterns by which they are realized. In this context we ask the following research
questions: What are the fundamental design patterns for implementing blockchain oracles? What
are the characteristics of these regarding cost and performance? To this end, we examine two key
dimensions regarding the realization of oracles: (i) the direction, i.e., whether the data flow is
inbound or outbound from the blockchain’s perspective; and (ii) the initiation of the data flow, i.e.,
whether it is a push- or pull-based interaction from the blockchain’s perspective. These options
result in four possible combinations, which are shown in an overview in Table 4.1. We describe
each of these options as a pattern and examine the associated implications and characteristics.
It is worth noting at this point that these four patterns can be implemented without relying on
smart contracts, meaning their application is possible even for first-generation blockchains like
Bitcoin. Additionally, each of the patterns can be appropriately combined with other higher-level
patterns from the literature, e.g., to incorporate decentralization or provable computation. In order
to characterize the different patterns, we implemented them in the context of two use cases on

44

4.2. Background

the Ethereum platform. These implementations were then used to perform measurements. This
involved sending more than 2,500 transactions to the Ethereum test network to obtain concrete
data that allowed us to quantitatively investigate the characteristic differences between the four
oracle patterns, with a focus on evaluating time (latency) and costs.

This chapter is organized in the following way: First, we provide a short background on oracles in
Section 4.2 and discuss related work in Section 4.3. Then, we present and compare elaborated oracle
patterns in Section 4.4. After that, we describe use cases for their implementation in Section 4.5 be-
fore analyzing the patterns in terms of time and cost based on these use cases in Section 4.6. Finally,
we discuss our results and threats to validity in Section 4.7 and draw conclusions in Section 4.8.

4.2. Background

Blockchain Oracles

In many cases, applications running on the blockchain require data from off-chain states and events.
Examples include sports results, weather forecasts, stock prices, randomness sources, or any other
arbitrary data from services or devices outside the blockchain, where the required data is mostly
accessible via web services and APIs. Blockchain oracles provide the ability to communicate with
entities outside the blockchain in such cases. In general, they can be designed and implemented
in various ways, e.g., as software (interacting with online sources) or hardware (interacting with
the physical world), human (interacting with individuals) or computer (performing computations
outside the chain), single-source (centralized, with one source) or consensus-based (decentralized,
with a variety of sources) oracles [93].

There are a number of commercial and open source tools that implement inbound oracles, such
as Orisi [94], Provable Things [95], TinyOracle [96], ChainLink [97], and Witnet [98], [99]. Orisi is
a solution for Bitcoin that enables a distributed system of oracle nodes operated by independent and
trusted parties. From the set of oracles, the majority must agree on the outcome of a particular condi-
tion. This process is handled by a temporary multi-signature address, which also serves as a vault for
backers’ funds. In terms of our categorization scheme, Orisi represents a pull-based inbound oracle.
Provable Things, previously known as Oraclize, is a popular inbound oracle service that supports
various smart-contract blockchain platforms. The service acts as a trusted intermediary between
blockchains and a variety of independent data sources, and supports mechanisms (e.g., returning
a result median) to minimize the risk of corrupt oracles [100]. It is powered by the Provable Engine
which executes a set of instructions once certain conditions are met. This allows the service to be
classified as both a push and pull-based inbound oracle. TinyOracle is an Ethereum-specific toolkit
that is used to request data asynchronously via an intermediary contract. These data requests are
being caught by a server side listener in the form of an Remote Procedure Call (RPC) client. After

45

4. Oracle Patterns

processing, the response will be sent back to a specific method of the querying contract. In regards
to our categorization scheme, TinyOracle represents a pull-based inbound oracle. Chainlink is
a decentralized blockchain oracle network built on Ethereum. It is an open-source technology
infrastructure that allows any blockchain to securely connect to off-chain data and computation re-
sources. The Chainlink network nodes retrieve, verify, and transmit data (even without prior explicit
request) to the blockchain and executing smart contracts. Node operators are compensated with the
network’s native cryptocurrency, LINK. The service can be classified as both a push and pull-based
inbound oracle. Witnet provides a protocol that creates an overlay decentralized oracle network
(DON) connecting smart contracts to any online data source. The network runs a native customized
blockchain and its own protocol token namely WIT. Witnet peer nodes are colloquially referred to as
witnesses, these earn WIT tokens as a reward for retrieving web data and reporting it directly to the
smart contracts. The protocol applies a common consensus algorithm that resolves inconsistencies.
In our categorization scheme, the service can be classified as a pull-based inbound oracle.

4.3. Related Work

Blockchain oracles have been considered in a number of research papers, specifically examining
inbound oracles. Xu, Pautasso, Zhu, et al. [101] introduce the concept of validation oracles for eval-
uating conditions that cannot be expressed within blockchains. In this context, they refer to trusted
third parties that act as either automated or human intermediaries. The authors distinguish between
two types here. First, internal validation oracles that regularly submit externally verified data to
the blockchain, and external validation oracles that act as trusted external validators of transactions
based on information outside the blockchain. According to our scheme, the first type corresponds to
push-based and the second type to pull-based inbound oracles. Adler, Berryhill, Veneris, et al. [102]
present a decentralized, trustless, and permissionless blockchain oracle system, called ASTRAEA.
Submitters enter propositions into the system, while voters and certifiers play a game to determine
the truth value of each proposition. In the process, the game-theoretic incentive structure is analyzed
to show that a desirable Nash equilibrium exists in which, under a set of simple assumptions, all
rational players behave honestly. The proposed oracle implementation resembles a pull-based
inbound oracle. Zhang, Cecchetti, Croman, et al. [103] present Town Crier, an oracle system to
provide authenticated data feeds. The system addresses trust issues in regards to oracles by using
trusted hardware, namely the Intel Software Guard Extensions (SGX) instruction set, a capability
in certain Intel CPUs. It allows to scrape HTTPS-enabled websites and serve source-authenticated
data to relying smart contracts. This oracle implementation resembles a push-based inbound oracle.

Overall, it can be noted that a majority of the effort is dedicated to the design and implementation
of inbound oracles. In fact, a recent ISO/TC 307 technical report characterizes oracles solely for

46

4.4. Patterns

providing off-chain information to the blockchain [104]. However, in this chapter, we also examine
and specify the patterns behind the opposite information flow, that of outbound oracles, also known
as reverse oracles [74].

4.4. Patterns

This section describes basic oracle patterns resulting from the division of direction (inbound/
outbound) and initiation of data flow (pull/push) between on-chain and off-chain components. Fig-
ure 4.1 shows the data flow along the basic dimensions outlined above. In applying this breakdown,
a basic distinction can be made between inbound oracles and outbound oracles, each of which can
be further refined according to data pull and push strategies.

On-
chain

Off-
chain

pull
push

push
pull

Pull strategy
Data flow

Inbound

Outbound

1. Pull-based Inbound
2. Push-based Inbound
3. Pull-based Outbound
4. Push-based Outbound

1.
2.

3.
4.

Push strategy

Figure 4.1.: A conceptual overview of the oracle data flow partitioning.

Before discussing the individual patterns in more detail, we first provide a general overview of the
patterns and their respective conceptual structural components (also called “pattern participants”) in
Figure 4.2. The blockchain is viewed as part of a larger software system, with software components
located on- and off-chain. In such an environment, it is often necessary to be able to communicate
across system boundaries in both directions to exchange information. For example, components
on the blockchain (such as smart contracts) may need knowledge from software components
outside the blockchain and vice versa, meaning the outside world also needs knowledge from the
blockchain. Regarding the terminology used in this chapter, it should be noted that the term “event”
in relation to the blockchain refers to any activity that can take place on the blockchain (e.g., data
is persisted, a transaction takes place, a block is added, etc.).

47

4. Oracle Patterns

Blockchain

Pull-based Inbound
Oracle

Event Listener

Controller

Blockchain
Facade

Off-chain
State Retriever

Push-based Inbound
Oracle

Controller

Blockchain
 Facade

Update
Listener

Pull-based Outbound
Oracle

On-chain
State

 Retriever

Controller

Off-chain
Request
Handler

Push-based Outbound
Oracle

Event Listener

Controller

Off-chain
Transmitter

Off-chain
component

Off-chain
component

Off-chain
component

Off-chain
component

Figure 4.2.: An overview of the oracle types and conceptual structural components.

4.4.1. Inbound Oracle Patterns

In the following, we present the patterns for inbound data flow towards the blockchain, i.e., the
Pull-Based Inbound Oracle and Push-Based Inbound Oracle.

Pull-Based Inbound Oracle

PATTERN Pull-Based Inbound Oracle

Problem A blockchain application requires knowledge contained outside the blockchain.
However, because blockchains are closed systems, applications cannot directly
obtain information from the outside world.

Solution A Pull-Based Inbound Oracle allows blockchain applications to request state
information from off-chain components. When a blockchain application requests
an off-chain state, the Pull-Based Inbound Oracle receives this request, collects
the state from off-chain components, and sends the result (via a transaction) back
to the blockchain.

48

4.4. Patterns

Benefits State requests are initiated on the blockchain. Thus, the entire process is
transparent. It can be traced whether off-chain data was successfully provided
(in time) or not.

Drawbacks State requests are initiated on the blockchain but cannot be fulfilled without
outside intervention, resulting in a passive nature of information retrieval.
Furthermore, the response time depends on the speed of the blockchain network,
which can lead to a bottleneck. Network congestion may result in delayed or
missed off-chain state inquiries, as the oracle starts working only after it has
registered requests from the blockchain.

An inbound oracle transmits information from the outside world to the blockchain. Since a
blockchain cannot obtain information directly from the outside world, it relies on the outside world
to push information into the network. Given this fact, the most obvious approach for obtaining
external information on the blockchain is to inform the outside world of the need to push the
required information to the network. This approach is described in the Pull-Based Inbound Oracle
pattern and is characterized by initiating the exchange of information on-chain.

The conceptual interaction of the pattern participants is shown in Figure 4.3: An Event Listener
subscribes to relevant events on the blockchain, which forwards the event data to a Controller.
The Controller collects the required data from an off-chain component via an Off-Chain State
Retriever. The collected data can be further processed by the Controller before being returned to
the blockchain via a Blockchain Facade.

Controller

Process
data

Off-chain
Component Blockchain

Subscribe to events /
Pull data

Data

Event
Listener

Blockchain
Facade

Data

Request off-chain data

Provide
data

Off-chain State
Retriever

Off-chain data

Request
off-chain data

Off-chain data

Process
data

Build
transaction

Send signed transaction

PULL-BASED INBOUND ORACLE

Figure 4.3.: A sequence diagram showing the component interactions for the Pull-Based Inbound
Oracle.

49

4. Oracle Patterns

Push-Based Inbound Oracle

PATTERN Push-Based Inbound Oracle

Problem A blockchain application needs to be supplied with knowledge outside the
blockchain, but since blockchains are closed systems, this knowledge cannot
be communicated directly.

Solution A Push-Based Inbound Oracle enables off-chain information to be propagated
to the blockchain by monitoring off-chain state changes and passing them to
the blockchain.

Benefits Scattered or irregularly updated data outside the blockchain is proactively
forwarded to the blockchain application. Therefore, the blockchain application
does not need any capabilities to search and query data outside the blockchain.
In addition, given the limited functionality of blockchain environments,
data outside the blockchain can be more easily checked and verified by the
Push-Based Inbound Oracle.

Drawbacks The Push-Based Inbound Oracle is not deployed or triggered on the blockchain,
so data provisioning depends entirely on (non-distributed) applications running
off-chain. To manipulate blockchains with false information, an attacker only
needs to compromise the off-chain component(s) from which the oracle receives
the data.

Another approach to transferring external knowledge to the blockchain is to monitor changes
in the off-chain world that are relevant to the blockchain and transfer these changes to the network.
Data can be sent from a specific data source to the blockchain when a state change occurs or as soon
as data needs to be transferred to the blockchain. This approach is described by the Push-Based
Inbound Oracle pattern and is characterized by the fact that the information exchange is initiated
off-chain.

The Push-Based Inbound Oracle, as conceptualized in Figure 4.4, listens for relevant off-chain
component updates via an Update Listener and forwards the data to the Controller. The Controller
can process (e.g., filter, verify, etc.) the data before sending it to the blockchain via a Blockchain
Facade.

50

4.4. Patterns

PUSH-BASED INBOUND ORACLE

Blockchain Blockchain
Facade Controller Update

Listener
Off-chain

Component

Data

Listen for updates /
Search for data

Data

Process
data

Build
transaction

Send signed
transaction

Data

Figure 4.4.: A sequence diagram showing the component interactions for the Push-Based Inbound
Oracle.

4.4.2. Outbound Oracle Patterns

In the following, we present the patterns for outbound data flow from the blockchain, i.e., the
Pull-Based Outbound Oracle and Push-Based Outbound Oracle.

Pull-Based Outbound Oracle

PATTERN Pull-Based Outbound Oracle

Problem Information contained on the blockchain is needed outside the blockchain, but
since blockchains are closed systems, the outside world cannot request this
information directly.

Solution A Pull-Based Outbound Oracle can be used to query and filter blockchain data to
make it available to the outside world. It can be called by (off-chain) components
to pull (all) blockchain data and query relevant information.

Benefits The Pull-Based Outbound Oracle can be used to decouple state requests from
the actual state query. Thus, the pattern offers the possibility to access and query
relevant information on the blockchain in a consistent way.

Drawbacks Depending on the size of the blockchain and knowledge about the location of
the requested information, it may take some time to provide the data.

51

4. Oracle Patterns

An outbound oracle transmits information from the blockchain to the outside world. Because of
its underlying properties, a blockchain can store state information in the form of transactions, but
it cannot actively communicate that state to the world outside the blockchain. Therefore, the most
obvious way to obtain data from the blockchain is to retrieve it. This approach is described by the
Pull-Based Outbound Oracle pattern and is characterized by initiating the exchange of information
off-chain.

The Pull-Based Outbound Oracle, as conceptually outlined in Figure 4.5, receives off-chain
data requests via an Off-chain Request Handler and forwards the requests to the Controller, which
processes the requests before forwarding them to the State Retriever, which is responsible for
retrieving data from the blockchain. The result is returned to the Controller, which can process
the data before sending it to the off-chain requestor via the Off-chain Request Handler.

Off-chain
Component Blockchain

Pull events /
On-chain data

Events /
On-chain data

State
Retriever Controller

Process
data

Process
data

Off-chain
Request
Handler

Provide
request

Provide
request

Data

Result Result

Request data

PULL-BASED OUTBOUND ORACLE

Figure 4.5.: A sequence diagram showing the component interactions for the Pull-Based Outbound
Oracle.

Push-Based Outbound Oracle

PATTERN Push-Based Outbound Oracle

Problem Information contained on the blockchain must also be available outside the
blockchain. However, because blockchains are closed systems, blockchain
applications cannot share this information directly with the outside world.

Solution A Push-Based Outbound Oracle monitors the blockchain for any relevant
changes and then initiates or performs activities outside the blockchain.

52

4.5. Use Cases

Benefits The Push-Based Outbound Oracle constantly monitors the blockchain. This
allows to (partially) automate blockchain-related tasks by taking action when
a blockchain state is updated.

Drawbacks The oracle must run continuously to monitor all events (in a timely manner) on
the blockchain. If the oracle stops unexpectedly, state updates may be missed
(depending on the implementation). In addition, depending on the speed of the
blockchain network, delays can occur, which can lead to undesired delays in
time-critical scenarios.

Another approach to transfer internal information from the blockchain is to observe changes
on the blockchain that are relevant to the outside world and transfer these changes off-chain. This
approach is described by the Push-Based Outbound Oracle pattern and is characterized by the fact
that the information exchange is initiated on-chain.

The Push-Based Outbound Oracle, as shown in Figure 4.6, subscribes to relevant events on the
blockchain via an Event Listener and forwards event data to the Controller, which can process the
data before sending it to an off-chain component via the Off-chain Transmitter.

Subscribe to
events

Off-chain
Component Blockchain

Event

Event
Listener Controller

Process
Data

Off-chain
Transmitter

Build data
transmission

Event

Data

Data

PUSH-BASED OUTBOUND ORACLE

Figure 4.6.: A sequence diagram showing the component interactions for the Push-Based
Outbound Oracle.

4.5. Use Cases

There are several uses for blockchain, one of which is the execution or orchestration/choreography
of business processes between multiple parties (see, e.g., [105]). In the following, a business

53

4. Oracle Patterns

process as well as two use cases within this business process are described in more detail, which
we referred to when implementing the oracle patterns.

Su
pp

lie
r

Prepare
transportProduce

receive
order

receive
request

provide
details

provide
waybill

M
id

dl
em

an

forward
order

order
transport

receive
order

M
an

uf
ac

tu
re

r

Calculate
demand

receive
order

report start
of production

Produce
place
order

receive
 order

deliver
order

B
ul

k
B

uy
er

Sp
ec

ia
l C

ar
rie

r

request
 details

receive
order

receive
 details

receive
waybill

deliver
order

1

2

3

4

4

3

21

Push-based inbound oracle
to trace goods via QR code

Pull-based outbound oracle
to trace the supply chain

Push-based outbound oracle
to save information to an ERP system

Pull-based inbound oracle
to assess a bulk buyer's creditworthiness

Figure 4.7.: A supply chain process in Business Process Model and Notation (BPMN) adapted
from [90] including the use of oracles.

As a business process, we take a supply chain scenario represented in Figure 4.7, which is derived
from a scenario in [90]. The illustrated business process is about the flow of goods between a
wholesale buyer, a manufacturer, a middleman, a special carrier, and a supplier. The process begins
with a bulk buyer placing an order with a manufacturer. The manufacturer, in turn, calculates
the materials needed and instructs an middleman to forward the order to a supplier and book
transportation through a dedicated special carrier. Once the required materials are ready, the special
carrier takes care of the transport from the supplier to the manufacturer. Last but not least, the
manufacturer produces the goods and delivers them to the bulk buyer.

When this business process is mapped on a blockchain, there is inevitably a flow of information
between the blockchain and the real world. Here, oracles ensure the transfer of information from
the off-chain to the on-chain world and vice versa. In our implementation, we use four oracles -

54

4.5. Use Cases

one for each pattern. Their use is highlighted in Figure 4.7 and is explained in more detail below
using two specific use cases.

Use Case 1 The first use case in Figure 4.8 concerns a bulk buyer’s order request to the manufac-
turer. It involves a single Pull-Based Inbound Oracle pattern to verify the buyer’s creditworthiness.
The following steps are executed:

1. The bulk buyer places an order via a web application.
2. The order data, including the order ID and information about the bulk buyer, is forwarded

to a smart contract via a transaction.
3. The smart contract publishes an event containing information about the bulk buyer such as

name and tax registration number. The Event Listener of the oracle as a subscriber of such
events receives this information.

4. To retrieve information about the creditworthiness of the buyer, the oracle makes a request
to an external credit check service via the Off-chain State Retriever.

5. The oracle processes the response with the Controller and returns this information as trans-
action data to the smart contract with its Blockchain Facade.

6. Finally, the manufacturer can retrieve the order with the knowledge that a credit check has
been performed on the buyer.

Bulk Buyer Application for
placing orders

Smart
Contract Pull-based

inbound
oracle

Credit
assessment API

1) 2)
3) 4)

5)6)

Blockchain
Manufacturer

7)

Figure 4.8.: Oracle-based creditworthiness verification of actors in the supply chain process shown
in Figure 4.7.

Use Case 2 The second use case in Figure 4.9 concerns blockchain-based tracking of goods in
a supply chain via QR code scanning. The process involves three different oracle patterns, namely
the Push-Based Inbound Oracle, Push-Based Outbound Oracle, and Pull-Based Outbound Oracle.
The basic process flow is as follows:

1. An employee of the manufacturer receives a package containing goods from the supplier
and uses a device with a QR code scanning application to confirm the receipt.

2. The QR code information is decoded to reveal the order ID, name, and quantity of the items.
3. The Push-Based Inbound Oracle receives the decoded data through its Update Listener and

its Controller enriches the data with the scan location and current timestamp.

55

4. Oracle Patterns

4. The oracle’s Blockchain Facade encodes the data into a blockchain transaction and transmits
it to a smart contract.

5a. The smart contract in turn publishes an event which is subsequently registered by the Event
Listener of a Push-Based Outbound Oracle.

6a. The oracle’s Controller decodes the event data and forwards it to an Enterprise Resource
Planning (ERP) system via its Off-chain Transmitter.

5b. The bulk buyer tracks the production status of items identified by the order ID via the
blockchain using a web application.

6b. Upon an order ID information request, the web application calls the Off-chain Request
Handler of a Pull-Based Outbound Oracle.

7b. The oracle’s Controller transforms that request into a query that is fulfilled by the oracle’s
On-chain State Retriever.

8b. The query result is processed by the oracle and the information is passed through its com-
ponents in reverse order.

9b. The processed result is returned to the web application and the entire record about the order
and its products can be retrieved.

Employee
receiving
a package

ID: 181635
Name: Product X

QTY: 100
...

QR-code scanning
web application Decoded output

Push-based
inbound oracle

Blockchain

Smart Contract
1) 2) 3) 4)

Pull-based
Outbound Oracle

Push-based
Outbound Oracle

5a)

5b)6b)

ERP System
6a)

7b)

8b)
9b)

Web Application
Bulk Buyer

Figure 4.9.: Oracle-based tracking of goods via QR Code scanning in the supply chain process
shown in Figure 4.7.

We have implemented both of the above use cases for the Ethereum platform using Python,
web3.py [106], and QR code scanner [107]. The full source code is available on GitHub [108].

4.6. Analysis of Performance and Transaction Fees

In this section, we explain our results regarding the quantitative analysis of proof-of-concept
implementations of the four oracles based on the use cases described above.

56

4.6. Analysis of Performance and Transaction Fees

Setup

In our analysis, we are mainly interested in two dimensions: time and cost. Regarding time, more
precisely latency, we are focusing on two questions. The first question aims to determine whether
there are time differences that can be detected between different oracle implementations. This can
provide insights into the potential uses of each of the proposed oracle patterns and further support
their breakdown from a software perspective provided in this chapter. The second question aims
to explore whether our experimental settings affect the time delays.

To measure latency (see also Figure 4.10), we record the time between sending a transaction
to the blockchain node (t1) and receiving the transaction hash (t2). We report the difference as
dttx-hash. For the Push-Based Outbound Oracle, we measure the time between the timestamp of
the block that contained the transaction (i.e., the timestamp when the miner started mining that
block, t3) and the reception of the event (t4). We refer to the difference as dttx-mined. If it is clear
from the context, we refer to both measures as dt. In regards to measuring latency, it is debatable
whether mining time should be part of the latency measurement. This is due to the fact that the time
between the submission of a transaction and its recording or confirmation in the ledger can vary
drastically between different blockchain platforms. In this context, it is also important to consider
other influencing factors, such as network congestion and, for commit time on PoW blockchains,
the number of confirmation blocks, which is a user-defined parameter (see, e.g., [109] for details
and measurements). In our analysis, we measured the simple inclusion time without additional
confirmation blocks, as a placeholder and to highlight the underlying problem.

To measure the costs of inbound oracles, we measure gas consumption. It should be noted that
the gas costs also capture the computation and storage overhead. We convert Ether to Euros using
the average exchange rate for Ether during the study period (144.86 C/Ether), and gas consumption
is converted to Ether using the gas price of the transactions (on average 7.45×10−10 Ether / gas).

The measurements were conducted on Ethereum’s Ropsten test network, which is recognized
in the scientific literature for testing purposes, see [110]–[112]. The test code as well as the code
used for the quantitative analysis are available on GitHub [108]. The first use case of Figure 4.8
is mimicked by the smart contract customer.sol, which is used to evaluate the Pull-Based Inbound
Oracle. It is deployed under the address 0x9c2306eccc5afa6ee0c1eca6deab66cc336c3b3d.
The second use case of Figure 4.9 is mimicked by the smart contract arrival.sol, which is used to
evaluate the Push-Based Inbound Oracle, Pull-Based Outbound Oracle, and Push-Based Outbound
Oracle. It is deployed under the address 0x1186aEDAb8f37C08CC00a887dBb119787cfE6AAf.
Regarding the above implementations, the following should be noted: The retrieval state of the
Pull-Based Outbound Oracle is kept constant to exclude it as a varying factor. Furthermore, in the
implementation of the Pull-Based Inbound Oracle, we do not store any states in the receiving smart
contract, since the transaction invokes the client smart contract directly and we exclude its handling

57

4. Oracle Patterns

of the data in the experiment. In contrast, the Push-Based Inbound Oracle stores state and emits
an event; this is necessary for the client smart contract to retrieve the state.

Send
transaction

Receive
transaction

hash
Prepare

transaction
Mine
block

Receive
event

Receive
transaction

Figure 4.10.: The schematic process for measuring latency, with off-chain (white) and on-chain
(gray) tasks.

Results

Figure 4.11 and Table 4.2 show the results of our measurements. The Pull-Based Outbound Oracle
is the oracle with the lowest latency with a mean dt of 0.13±0.03 seconds, while the Push-Based
Outbound Oracle has the highest latency with a mean dt of 16.20±15.95 seconds. The difference
can be explained by the fact that the Pull-Based Outbound Oracle reads existing state from the
blockchain, while the Push-Based Outbound Oracle relies on the inclusion of a transaction that is
subject to high variance and an average delay of about 1.5 inter-block times [85]. Said transaction
triggers the event that is picked up by the Push-Based Outbound Oracle. For the Push-Based
Outbound Oracle, 75% (i.e., the third quartile) of transactions are within 0.12 seconds. For the
Push-Based Outbound Oracle, on the other hand, the corresponding value (i.e., the third quartile)
is 21.44 seconds. One can see from the box plots in Figure 4.11 that the dt measurements of the
Pull-Based Outbound Oracle and the Push-Based Inbound Oracle are characterized by a significant
number of outliers that follow a long-tail distribution. This fact is less pronounced for the other
two oracles. Leaving aside these outliers, the dt distribution for the Pull-Based Inbound Oracle
is similar to that for the Push-Based Inbound Oracle, with a mean dt of 0.52±0.05 and 0.53±0.08,
respectively, and the same minimum (0.46) and median (0.50) values. Both differ marginally in
their 25th (0.48 vs. 0.49) and 75th (0.52 vs. 0.54) percentiles.

For the Push-Based Inbound Oracle and Pull-Based Inbound Oracle, we measured transaction
costs in Ether and converted them to Euros using the previously mentioned exchange rate. Table 4.2
summarizes the obtained results. The determination of the gas price in our setup was based on the
current market price, which proved to be highly variable on Ropsten and not representative of the
Ethereum mainnet. To get an indication of the cost we would have incurred on the mainnet, we
obtained the approximate median gas price from Google’s public BigQuery database for Ethereum
for the period in question, which was 8.5 Gwei (averaged over 3.15 million transactions). Multi-
plying this by the average gas consumption and the exchange rate, we get a median transaction cost
of 0.028 C for the Push-Based Inbound Oracle and 0.056 C for the Pull-Based Inbound Oracle.

58

4.7. Discussion and Threats to Validity

Table 4.2.: A summary of statistics on time and costs for oracle invocations (on the Ropsten
Ethereum testnet).

n mean std min x0.25 x0.50 x0.75 max

Push-based inbound oracle 2437
dttx-hash [seconds] 0.53 0.08 0.46 0.49 0.50 0.54 2.14
Transaction cost [Gas] 44,827 1,265 36,739 45,139 45,235 45,259 45,319
Transaction cost [C] 4.96×10−3 5.78×10−3 2.96×10−11 6.55×10−5 6.53×10−3 6.55×10−3 1.37×10−1

Push-based outbound oracle 438
dttx-mined [seconds] 16.20 15.95 0.53 5.41 10.71 21.44 129.95

Pull-based inbound oracle 126
dttx-hash [seconds] 0.52 0.05 0.46 0.48 0.50 0.52 0.78
Transaction cost [Gas] 22,770 0 22,770 22,770 22,770 22,770 22,770
Transaction cost [C] 8.91×10−5 3.96×10−4 7.91×10−7 7.91×10−7 7.91×10−7 7.91×10−7 1.85×10−3

Pull-based outbound oracle 2611
dttx-hash [seconds] 0.13 0.03 0.11 0.11 0.12 0.12 0.45

0 20 40 60 80 100 120 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80

P
u
sh

-b
a
se

d
in

b
o
u
n
d

 o
ra

cl
e

P
u
ll-

b
a
se

d
in

b
o
u
n
d

 o
ra

cl
e

P
u
sh

-b
a
se

d
o
u
tb

o
u
n
d

 o
ra

cl
e

P
u
ll-

b
a
se

d
o
u
tb

o
u
n
d

 o
ra

cl
e

dttx-hash [seconds] dttx-hash [seconds]

dttx-hash [seconds]dttx-mined [seconds]

Figure 4.11.: The performance plots for the four oracle implementations.

4.7. Discussion and Threats to Validity

In the following, we discuss advantages as well as disadvantages of our work, our experiences from
the implementation process, the results analysis above, and finally the limitations and threats to
validity of our research.

One advantage of the classification of oracles into specific patterns, described in this chapter
and the structuring based on sub-components therein, is the clear separation and aggregation of
concerns that we can achieve. For example, our implementation, guided by the patterns in this
chapter, allows us to implement logic for different levels of abstraction. This makes it possible
to implement logic for basic concerns that apply to different oracles in a reusable way. Another
advantage in this context, for example, is that adding or changing information sources for an
oracle only requires modifying sub-components of the individual oracle without changing the

59

4. Oracle Patterns

implementation logic on the blockchain.

Regarding our analysis on time, out results show that the latency for the individual oracles is
not particularly high. If we take for comparison the results of [109], where the mean commit time
of transactions was about 200 seconds, we can say that the latency of less than one second (where
no transaction lock-in time is part of the latency) measured in almost all cases is relatively low.

Regarding our analysis on costs, our results indicate that the execution costs are not particularly
high either. According to our observations, a single interaction with any of the two inbound oracles
does not generate high fees. In order to make an objective assessment, particular attention should be
paid to gas consumption, which can be used as an absolute measure detached from current market
prices. For this purpose, the results from [113] (a cost-optimized version of [90]) can be used,
which suggest a typical gas consumption of 24,000 to 27,000 gas. The average gas consumption
for the Pull-Based Inbound Oracle reflects this expected range, for the Push-Based Inbound Oracle
the recorded higher gas consumption can be explained by the additional storage costs. Specific
implementations of this pattern can be optimized in this regard, in particular by storing data only
when needed in the chain. This may be particularly important if many oracle calls are expected
in a given environment where the cost and time delays would add up in such a scenario.

The research presented in this chapter includes a number of limitations and threats to validity.
The elaboration of patterns is based on a qualitative research approach, as is common in the field.
Therefore, it is possible that misinterpretations and biases of individual researchers or the entire
team of authors may have influenced the results. Regarding the generalizability of our research,
this can only be claimed for the technologies studied (see Section 4.2). Through our efforts to
define fundamental patterns, we have tried to minimize this risk as much as possible. Accordingly,
we assume that our findings are applicable to other blockchain platforms. Nevertheless, we cannot
claim any viability or form of completeness. For the time being, our conducted analysis can only
provide a rough estimate regarding time performance and incurred costs; further measurements
would be required to claim generalizability beyond the scope of the cases we studied. In this context,
it should be noted that the use of a test network such as Ropsten may reduce the significance of
the analysis results for practical applications. We have attempted to mitigate this by not relying
on time and cost measurements from the testnet in our discussion and instead basing relevant cost
analyses on data from the Ethereum mainnet.

4.8. Conclusion

In this chapter, we explored how blockchain oracles can be classified and characterized to connect
the on-chain to the off-chain world. To this end, we abstracted individual technical solutions
of existing implementations into four basic oracle patterns. In this context, we have elaborated

60

4.8. Conclusion

pros and cons of the individual patterns and conceptual structural building blocks that can be
used to implement the patterns in a modular fashion. On this basis, we implemented the four
patterns and analyzed them quantitatively in terms of temporal performance (latency) and cost. Our
evaluations show that neither the latency nor the costs for a single invocation of any of the patterns
are particularly high. Furthermore, the observed distributions in terms of latency suggest they can
be narrowed down to a certain probable range in most cases, but can also be left by outliers and
dominated by the transaction inclusion time.

In future work, we plan to explore the application of the patterns in the context of other blockchain
platforms. Further, we plan to explore different strategies for data structures and communication
flow to evaluate the impact of different approaches on the overall execution costs. In addition, it
would be interesting to explore the combination of oracle patterns as well as the use of patterns
for information exchange between blockchains.

61

5. Smart Contract Patterns

Smart contracts that build up on blockchain technologies are receiving great attention in new busi-
ness applications and the scientific community, because they allow distrusted parties to manifest
contract terms in program code and thus eliminate the need for a trusted third party. However, writ-
ing well performing and secure smart contracts in today’s most prominent smart contract ecosystem
Ethereum is a difficult task, due to the inherent nature of blockchain based contract execution,
missing low level programming abstractions, and the constant evolution of platform features and
security considerations. In order to provide design guidelines in this regard, this chapter presents
a set of design patterns that have been mined by means of a MLR and an analysis of collected data
based on qualitative research methods. The elicited patterns are described in detail with sample code
for better illustration and can be applied by developers to address typical implementation issues.

5.1. Introduction

Ethereum as major blockchain-based ecosystem provides an environment to code and run smart
contracts. However, writing smart contracts in Solidity, the predominant programming language
on the platform, has so far been a difficult task associated with a number of problems. First,
due to the inherent characteristics of blockchain-based program execution, rather unconventional
programming paradigms are required. For example, programmers have to consider the lack of
execution control and the immutable character of smart contracts once they are deployed. Second,
the lack of low-level programming abstractions makes the developer responsible for the internal
organization and manipulation of data at a deeper level. Third, the rapid change of platform features
and security considerations requires continuous awareness of platform capabilities and potential
security risks. On top of all this, smart contracts may handle considerable financial values, therefore
it is crucial that their implementation is correct and secure against attacks. Given these points, it is
beneficial to have a solid foundation of established design and coding guidelines that promote the
creation of correct and secure smart contracts, for example in the form of design patterns. A design
pattern describes an abstraction or conceptualization of a concrete, complex, and reoccurring
problem that software designers have faced in the context of real software development projects
and a successful solution they have implemented multiple times to resolve this problem [114]. This

63

5. Smart Contract Patterns

means that design patterns describe solutions to frequently occurring problems in a formalized
way. Another, more explicit explanation for a pattern is that it is a proven solution to a problem in
a context, resolving a set of forces. Here, the context refers to a recurring set of situations in which
the pattern applies, while the problem refers to a set of goals associated with constraints, referred
to as forces of the pattern, that typically occur in that context and influence the pattern’s solution.

So far, design patterns have not received a lot of attention in Ethereum research and information
on Solidity design and coding guidelines is scattered among different sources. To fill this gap,
we address general design patterns for smart contracts in Ethereum in this chapter. Our research
aims to answer the following two research questions: Which design patterns commonly appear
in the Ethereum ecosystem? How do these design patterns map to Solidity coding practices? In
order to answer these questions, we followed the MLR method by Garousi, Felderer, and Mäntylä
[115] to incorporate practitioners’ experience and applied an analysis of the gathered data based on
qualitative research methods (namely GT [116] techniques to synthesize the patterns). Our research
identified several patterns that highlight common problems in smart contract implementation and
provide guidance on how to resolve them.

The chapter is organized in the following way: First, we present related work in Section 5.2,
before we discuss the research study design in Section 5.3. Then we present design patterns for
Solidity in Section Section 5.4, and discuss our findings in Section Section 5.5. Finally, we draw
a conclusion in Section 5.6.

5.2. Related Work

According to Alharby and Moorsel [117] current research on smart contracts is mainly focused
on identifying and tackling smart contract issues and can be divided into four categories, namely
coding, security, privacy and performance issues. The technology behind writing smart contracts
in Ethereum is still in its infancy, which is why coding and security are among the most discussed
issues. Unfortunately, a lot of research and practical knowledge in this field is scattered throughout
blog articles and gray literature, therefore information is often not very structured. Here, only few
efforts have been made with the intention of collecting and categorizing patterns in a structured
manner (see, e.g., [118], [119]). Relatively little work addresses software patterns in blockchain
technology respectively design patterns in the Solidity language for the Ethereum ecosystem. A
work with general scope on blockchain software development written by Xu, Weber, Staples, et
al. [120] proposes a taxonomy of blockchain-based systems on architecture design. The elaborated
taxonomy assists the evaluation and design of software architectures using blockchain technology
and captures major architectural characteristics of blockchains to assess the impact of different
design decisions. Another work by Bartoletti and Pompianu [121] conducted an empirical analysis

64

5.3. Research Study Design

of Solidity contracts and identified a list of nine common design patterns that are shared by studied
contracts. These patterns summarize the most frequent solutions to handle common usage sce-
narios and are named token, authorization, oracle, randomness, poll, time constraint, termination,
math, and fork check. Yet another paper by Zhang, White, Schmidt, et al. [122] describes how
the application of familiar software patterns can help to resolve design specific challenges. In
particular, commonly known design patterns such as the Abstract Factory, Flyweight, Proxy, and
Publisher-Subscriber pattern are applied to implement a blockchain-based healthcare application.
Finally, a paper by Mavridou and Laszka [123] describes a framework for designing contracts as
Finite-State Machine (FSM) utilizing design patterns for code generation.

5.3. Research Study Design

The process of identifying recurring design patterns can be a rather informal process, where an
author defines a pattern based on his own experience and then tries to find similar or related pattern
applications to confirm the initial pattern statement. However, to follow a systematic research
methodology, we pursued a different path. That is to say, we applied a GT approach which is based
on the paradigm of deploying a theory from the reality, that the theory is meant to explain. This
means that our research is based on an inductive analysis of collected data which we systematically
explore and investigate to extract a grounded pattern compilation. Due to a lack of academic
literature regarding design patterns for Ethereum and Solidity to collect that data, we decided to
carry out a MLR. A MLR is a form of SLR which includes “gray” literature (e.g., blogs, videos,
and web pages) in addition to published “white” literature (e.g., academic journals, and conference
papers) [4]. Figure 5.1 depicts the general process of our conducted MLR incorporating guidelines
elaborated by Garousi, Felderer, and Mäntylä [4]. Starting from our research questions we defined
initial search keywords as “ethereum”, “solidity”, “(smart) contract”, and “(software OR design)
pattern”. These keyword combinations were then used to query different data sources for “white”
and “gray” literature. The results were examined, i.e., citations and links were followed and
reference lists were studied during a process called snowballing [124]. At the same time, initial
search keywords were iteratively extended until theoretical saturation was reached. Next, the
subsequent pool of sources was filtered according to predefined inclusion and exclusion criteria
which encompassed to accept sources of any type that relate to Ethereum design patterns and ex-
clude non-English works or works that seem unbalanced in presentation. Further, as Ethereum and
Solidity have significantly evolved in recent years, we prioritized recent works. The accumulated
final source pool contained among others the following important major sources. First, academic
literature related to Ethereum and Solidity patterns [121]–[123]. Second, the official Solidity
development documentation [28] and smart contract best practices [125]. Third, Internet blogs

65

5. Smart Contract Patterns

and discussion forums about Ethereum, such as the Ethereum community on Reddit [126], and
the Ethereum QA section on StackExchange [127]. Forth, Ethereum conference talks [118], [128].
Fifth, existing GitHub repositories related to smart contract coding patterns in Solidity [119], [129],
[130]. As next step the final source pool was reviewed and the extracted relevant information was
analyzed with GT techniques, following recommendations by Stol, Ralph, and Fitzgerald [116]. In
general, we took an iterative and pragmatic approach and recorded the concepts of our observations
and insights in theoretical memos. These memos represented the actual pattern synthesis process
and happened in several iterative stages, in which the patterns were constantly compared, revised,
and contrasted until all the gathered information was accounted for.

Initial Search

White
Literature

Google Scholar, IEEE,
Springer, ACM

Books, Papers Gray
Literature

Google Search

Blogs, Forums, Talks, GitHub

Search Keywords Study RQs

Pool of
Sources

Snowballing Selection
Pool

Source
Selection Final Pool

Data ExtractionExtracted DataData Synthesis

GT Techniques
MLR Results

Iterative Keyword Refinement

Figure 5.1.: An overview of the conducted MLR process.

5.4. Patterns

This section gives an overview of typical design patterns that are inherently frequent or practical in
the context of smart contract coding in Ethereum. The presented patterns help to solve commonly
recurring application requirements, or help to address typical problems and vulnerabilities related
to smart contract implementation and execution. The gathered patterns are logically divided
according to their operational scope into five categories: a) Action and Control, b) Authorization,
c) Lifecycle, d) Maintenance, and e) Security. To better illustrate the context and applicability of
the patterns, each pattern is explained in a problem- and solution-based approach with benefits and
drawbacks along with sample code in Solidity, which is also available on GitHub [131]. To provide
a concise overview of all patterns at the end of this section, Table 5.2 lists the pattern categories

66

5.4. Patterns

and their associated patterns, including a brief description of the underlying pattern problem and
its solution. To illustrate the patterns in practice, Table 5.1 also lists an example contract with
published source code used on the Ethereum mainnet for each pattern.

5.4.1. Action and Control Patterns

Action and Control is a group of patterns that provide mechanisms for typical operational tasks.

Checks-Effects-Interaction

PATTERN Checks-Effects-Interaction

Problem When a contract calls another contract, it hands over control to that other contract.
The called contract can then, in turn, re-enter the contract by which it was called
and try to manipulate its state or hijack the control flow through malicious code.

Solution Follow a recommended functional code order, in which calls to external contracts
are always the last step.

Benefits The attack surface of a contract relying on external calls is reduced, especially
against re-entrant attacks, since multiple nested function calls are no longer
possible.

Drawbacks Since it is common practice in procedural programming languages to wait for
feedback from a function execution (before making further changes based on
its results), the use of the pattern is counter intuitive compared to common
programming paradigms.

The Checks-Effects-Interaction pattern is fundamental for coding functions and describes how
function code should be structured to avoid side effects and unwanted execution behavior. It defines
a certain order of actions: First, check all the preconditions, then make changes to the contract’s
state, and finally interact with other contracts. Hence its name is “Checks-Effects-Interactions
Pattern”. According to this principle, interactions with other contracts should be, whenever pos-
sible, the very last step in any function, as seen in Listing 5.1. The reason being, that as soon as
a contract interacts with another contract, including a transfer of Ether, it hands over the control
to that other contract. This allows the called contract to execute potentially harmful actions. For
example, a so-called re-entrancy attack, where the called contract calls back the current contract,
before the first invocation of the function containing the call, was finished. This can lead to an

67

5. Smart Contract Patterns

unwanted execution behavior of functions, modifying the state variables to unexpected values
or causing operations (e.g. sending of funds) to be performed multiple times. An example for a
contract function, prone to the described attack scenario, is shown in Listing 5.2. The re-entrancy
attack is especially harmful when using low level address.call, which forwards all remaining
gas by default, giving the called contract more room for potentially malicious actions. Therefore,
the use of low level address.call should be avoided whenever possible. For sending funds
address.send() and address.transfer() should be preferred, these functions minimize the risk
of re-entrancy through limited gas forwarding. While these methods still trigger code execution, the
called contract is only given a stipend of 2,300 gas, which is currently only enough to log an event.

Solidity

function auctionEnd() public {

// 1. Checks

require(now >= auctionEnd);

require(!ended);

// 2. Effects

ended = true;

// 3. Interaction

beneficiary.transfer(highestBid);

Listing 5.1: Application of the Checks-Effects-Interaction pattern within a function.

Solidity

contract SimpleDeposit {

...

}

function withdrawBalance() public {

uint amount = balances[msg.sender];

require(msg.sender.call.value

(amount)()); // caller's code is executed and can re-enter withdrawBalance again

balances[msg

.sender] = 0; // INSECURE - user's balance must be reset before the external call

Listing 5.2: An example of an insecure withdrawal function prone to a re-entrancy attack.

68

5.4. Patterns

Pull Payment

PATTERN Pull Payment

Problem When a contract sends funds to another party, the send operation can fail.

Solution Let the receiver of a payment withdraw the funds.

Benefits Problems that can arise in connection with sending funds are mitigated,
especially when multiple transfers are performed at once since a failed transfer
no longer causes all successful operations to be undone.

Drawbacks It is the responsibility of the payee to receive payments which leads to an
additional step, namely requesting (withdrawing) the payment. This not only
leads to higher transaction costs, but also negatively impacts the user experience
by making it less convenient for the payee.

A very common task when coding smart contracts is to send funds to another party. Unfortunately
there are several circumstances under which a transfer of funds can fail. This is due to the fact that
the implementation to send funds involves an external call, thus the same security considerations
regarding external calls and re-entrancy attacks, mentioned afore, apply.

Currently, there are three different methods to transfer funds in Solidity. These are address.send
(), address.transfer(), and address.call.value()(). If the payment recipient is a contract,
calling theses methods triggers the execution of a so-called fallback function in the receiver contract.
Per definition, the fallback function is a name- and parameterless function, that is called when
the function signature does not match any of the available functions in a Solidity contract. Since
send() specifies a blank function signature, it will always trigger the fallback function if it exists.
x.transfer(y) is equivalent to require(x.send(y)); and defines a maximum stipend of 2,300
gas, given to the receiver contract for execution, which is currently only enough to log an event.
address.call.value()() gives all available gas to the receiving contract for execution, which
makes this type of value transfer unsafe against re-entrancy. So, the difference between send()

and address.call.value()() is how much gas is made available to the fallback function in the
receiving contract.

Due to the possibility of deliberately sabotaging the transfer of funds by executing expensive
operations in the fallback method, causing an “out of gas” error, or manipulations involving
re-entrancy attacks, a more favorable approach is to reverse the payment process. Namely, let
users withdraw their funds themselves, rather then sending funds directly. Listing 5.3 shows a
problematic reliance on a successful transfer of funds, whereas Listing 5.4 mitigates this problem

69

5. Smart Contract Patterns

by isolating the external call into its own transaction that can be initiated by the recipient of the
call. Overall, it is advisable to favor pull over push payments when coding smart contracts.

Solidity

pragma solidity ^0.4.17;

contract Auction {

address public highestBidder;

uint highestBid;

function bid() public payable {

require(msg.value >= highestBid);

if (highestBidder != 0) {

// if call fails causing a rollback,

// no one else can bid

highestBidder.transfer(highestBid);

}

highestBidder = msg.sender;

highestBid = msg.value;

}

}

Listing 5.3: An intuitive solution in an auction contract would be to push a payment to a defeated
bidder once a higher bid has been received.

Solidity

pragma solidity ^0.4.17;

contract Auction {

address public highestBidder;

uint highestBid;

mapping(address => uint) refunds;

function bid() public payable {

require(msg.value >= highestBid);

if (highestBidder != 0) {

// record the underlying bid to be refund

refunds[highestBidder] += highestBid;

}

70

5.4. Patterns

highestBidder = msg.sender;

highestBid = msg.value;

}

function withdrawRefund() public {

uint refund = refunds[msg.sender];

refunds[msg.sender] = 0;

msg.sender.transfer(refund);

}

}

Listing 5.4: Introducing a refunds mapping, which stores the claimable defeated bids, to be
withdrawn by participants in a pull payment process.

State Machine

PATTERN State Machine

Problem An application scenario implicates different behavioral stages and transitions.

Solution Apply a state machine to model and represent different behavioral contract
stages and their transitions.

Benefits Mapping contract behavior using a state machine helps to reduce and simplify
the logical complexity of the implementation.

Drawbacks Implementing a large number of behavioral phases and transitions is difficult
to handle without a clear implementation respectively design concept.

A state machine models the behavior of a system based on its history and current inputs. Devel-
opers use this construct to break complex problems into simple states and state transitions. These
states and state transitions are then used to represent and control the execution flow of a program.
A state machine is often a very compact way to represent a set of complex rules and conditions and
usually helps to reduce and simplify the logical complexity of the implementation. State machines
can also be applied in smart contracts, exemplified in Listing 5.5. Many usage scenarios require
a contract to have different behavioral stages, in which different functions can be called. When
interacting with such a contract, a function call might end the current contract stage and initiate
a transition into a consecutive stage.

71

5. Smart Contract Patterns

Solidity

pragma solidity ^0.4.17;

contract DepositLock {

enum Stages {

AcceptingDeposits,

FreezingDeposits,

ReleasingDeposits

}

Stages public stage = Stages.AcceptingDeposits;

uint public creationTime = now;

mapping (address => uint) balances;

modifier atStage(Stages _stage) {

require(stage == _stage);

_;

}

modifier timedTransitions() {

if (stage == Stages.AcceptingDeposits && now >= creationTime + 1 days)

nextStage();

if (stage == Stages.FreezingDeposits && now >= creationTime + 8 days)

nextStage();

_;

}

function nextStage() internal {

stage = Stages(uint(stage) + 1);

}

function

deposit() public payable timedTransitions atStage(Stages.AcceptingDeposits) {

balances[msg.sender] += msg.value;

}

function withdraw() public timedTransitions atStage(Stages.ReleasingDeposits) {

uint amount = balances[msg.sender];

balances[msg.sender] = 0;

msg.sender.transfer(amount);

}

}

Listing 5.5: A contract based on a state machine to represent a deposit lock, which accepts deposits
for a period of one day and releases them after seven days.

72

5.4. Patterns

Commit and Reveal

PATTERN Commit and Reveal

Problem All data and every transaction is publicly visible on the blockchain, but an
application scenario requires that contract interactions, specifically submitted
parameter values, are treated confidentially.

Solution Apply a commitment scheme to ensure that a value submission is binding and
concealed until a consolidation phase runs out, after which the value is revealed,
and it is publicly verifiable that the value remained unchanged.

Benefits Application scenarios based on the transmission of confidential information can
be carried out publicly in a generally verifiable manner.

Drawbacks Under this scheme, two separate transactions are required, resulting in higher
transaction costs. In addition, such a methodology is not readily comprehensible
to lay users.

A characteristic of blockchains is that it is not possible to restrict any human or computer from
reading contents of a transaction or transaction’s state. Anyone can observe all previous data and
changes in the blockchain. Solidity variables can be annotated as being private, but this only
prevents other contracts from accessing data directly, any other party can still read data in the
blockchain.

There are many use cases where this transparency leads to problems, especially when contract
participants compete with each other, for example at an auction or a game. Knowledge about the be-
havior of other contract participants can give a party a considerable advantage. Thus, it is necessary
to take measures in order to obfuscate actions and contract inputs. Such a measure is a cryptographic
commitment scheme. In principle, it allows a party to commit to a selected value while keeping it
concealed to others, with the ability to reveal the committed value later. The commitment scheme is
specifically designed to prohibit a party from changing the value or statement after it committed to it.
The whole process can be divided into two parts. First, the commit phase in which a party commits
to a value that is hidden for other participants. Second, the reveal phase in which the previously
committed value is revealed, and everyone can verify that it is in fact, what one committed to. In
the context of smart contracts, this is achieved by hashing a chosen value with a secret (e.g. random
string) and sending it to the contract. Later, this commitment is revealed by sending the value
and the secret in plain text, thus it can be verified that the value and the secret yield the previously
committed hash. A contract implementing the described strategy is shown in Listing 5.6.

73

5. Smart Contract Patterns

Solidity

pragma solidity ^0.4.17;

contract CommitReveal {

struct Commit {string choice; string secret; string status;}

mapping(address => mapping(bytes32 => Commit)) public userCommits;

event LogCommit(bytes32, address);

event LogReveal(bytes32, address, string, string);

function CommitReveal() public {}

function commit(bytes32 _commit) public returns (bool success) {

var userCommit = userCommits[msg.sender][_commit];

if(bytes(userCommit.status).length != 0) {

return false; // commit has been used before

}

userCommit.status = "c"; // comitted

LogCommit(_commit, msg.sender);

return true;

}

function reveal

(string _choice, string _secret, bytes32 _commit) public returns (bool success) {

var userCommit = userCommits[msg.sender][_commit];

bytes memory bytesStatus = bytes(userCommit.status);

if(bytesStatus.length == 0) {

return false; // choice not committed before

} else if (bytesStatus[0] == "r") {

return false; // choice already revealed

}

if (_commit != keccak256(_choice, _secret)) {

return false; // hash does not match commit

}

userCommit.choice = _choice;

userCommit.secret = _secret;

userCommit.status = "r"; // revealed

LogReveal(_commit, msg.sender, _choice, _secret);

return true;

}

function traceCommit(address _address, bytes32

_commit) public view returns (string choice, string secret, string status) {

74

5.4. Patterns

var userCommit = userCommits[_address][_commit];

require(bytes(userCommit.status)[0] == "r");

return (userCommit.choice, userCommit.secret, userCommit.status);

}

}

Listing 5.6: A contract that allows a party to commit to a choice and reveal it at a later point in
time, traceable for anyone.

Oracle (Data Provider)

PATTERN Oracle (Data Provider)

Problem An application scenario requires knowledge contained outside the blockchain,
but Ethereum contracts cannot directly acquire information from the outside
world. On the contrary, they rely on the outside world pushing information into
the network.

Solution Request external data through an oracle service that is connected to the outside
world and acts as a data carrier.

Benefits As outside information is requested from the blockchain the data gathering
process is transparent. It can be traced whether off-chain data was successfully
provided (in time) or not.

Drawbacks Oracles require a level of trust that contradicts the trustless and decentralized
nature of blockchains, i.e. verifying the reliability of extrinsic information is
problematic. Further, an oracle depends on event and transaction processing
on the blockchain, which means that the oracle’s response time depends on the
speed of the blockchain.

Ethereum contracts run within their own ecosystem, where they communicate with each other
and store and read data from the blockchain, but external data can only enter the system through
outside interaction via a transaction (by passing data to a method). This is a drawback, because
many contract use cases depend on external knowledge contained outside the blockchain (e.g. price
feeds, weather data). A solution to this problem is to utilize oracles which have a connection to
the outside world. Contracts depending on outside information can then request the necessary
data from them. The oracle service acts as a data carrier, where the interaction between an oracle

75

5. Smart Contract Patterns

service and an Ethereum smart contract is asynchronous. First, a transaction invokes a function
of a smart contract that contains an instruction to send a request to an oracle. Then, according to
the parameters of such a request, the oracle will fetch a result and return it by executing a callback
function placed in the primary contract. The described procedure involving an oracle contract and
its consumer contract is illustrated by Listing 5.7 and Listing 5.8. In relation to the oracle patterns
discussed in Chapter 4, this implementation represents an Pull-Based Inbound Oracle.

A shortcoming of oracles is that they contradict the blockchain theorem of a decentralized net-
work, because contracts utilizing a sole oracle rely on a single party or group to be honest. Currently
operating oracle services [103], [132] address this shortcoming by accompanying the resulting
data with a proof of authenticity, that shows that the data fetched from the original data source is
genuine and untampered. These authenticity proofs are based on auditable virtual machines and
Trusted Execution Environment (TEE). Further, it should be noted that the oracle has to pay for
the callback invocation, therefore an oracle usually requires a contract to pay an oracle fee, plus
the Ether necessary to pay for the callback transaction.

Solidity

pragma solidity ^0.4.17;

contract Oracle {

address knownSource = 0x123...; // known source

struct Request {

bytes data;

function(bytes memory) external callback;

}

Request[] requests;

event NewRequest(uint);

modifier onlyBy(address account) {

require(msg.sender == account); _;

}

function query(bytes data, function(bytes memory) external callback) public {

requests.push(Request(data, callback));

NewRequest(requests.length - 1);

}

// invoked by outside world

function reply(uint requestID, bytes response) public onlyBy(knownSource) {

76

5.4. Patterns

requests[requestID].callback(response);

}

}

Listing 5.7: An oracle contract that allows to request data from outside the blockchain.

Solidity

pragma solidity ^0.4.17;

import "./Oracle.sol";

contract OracleConsumer {

Oracle oracle = Oracle(0x123...); // known contract

modifier onlyBy(address account) {

require(msg.sender == account); _;

}

function updateExchangeRate() {

oracle.query("USD", this.oracleResponse);

}

function oracleResponse(bytes response) onlyBy(oracle) {

// use the data

}

}

Listing 5.8: An oracle consumer contract implementing a callback method to receive result data.

5.4.2. Authorization Patterns

Authorization is a group of patterns that control access to smart contract functions and provide
basic authorization control, which simplify the implementation of “user permissions”.

Ownership

PATTERN Ownership

77

5. Smart Contract Patterns

Problem By default any party can call a contract method, but it must be ensured that
sensitive contract methods can only be executed by the owner of a contract.

Solution Store the contract creator’s address as owner of a contract and restrict method
execution with a general modifier that checks the callers address.

Benefits Allows easy annotation of functions that may only be executed by the contract
owner.

Drawbacks When using general modifiers, the execution flow jumps from one code line to
a completely different section, which can make it difficult to track and review
the code.

It is very common that only the owner of a contract should be eligible to call functions, which
are sensitive and crucial for the correct operation of the contract. This pattern limits access to
certain functions to only the owner of the contract; an example is shown in Listing 5.9. A typical
application of this pattern is demonstrated in the Mortal pattern.

Solidity

pragma solidity ^0.4.17;

contract Owned {

address public owner;

event

LogOwnershipTransferred(address indexed previousOwner, address indexed newOwner);

modifier onlyOwner() {

require(msg.sender == owner);

_;

}

function Owned() public {

owner = msg.sender;

}

function transferOwnership(address newOwner) public onlyOwner {

require(newOwner != address(0));

LogOwnershipTransferred(owner, newOwner);

owner = newOwner;

78

5.4. Patterns

}

}

Listing 5.9: A simple contract to track the ownership of a contract.

Access Restriction

PATTERN Access Restriction

Problem By default a contract method is executed without any preconditions being
checked, but it is desired that the execution is only allowed if certain requirements
are met.

Solution Define generally applicable modifiers that check the desired requirements and
apply these modifiers in the function definition.

Benefits When using general modifiers, they can be easily adapted or combined for
different situations, which makes them highly reusable.

Drawbacks When using general modifiers, the execution flow jumps from one code line to
a completely different section, which can make it difficult to track and review
the code.

Since there is no built in mechanism to control execution privileges, a common pattern is to restrict
function execution. It is often required that functions should only be executed based on the presence
of certain prerequisites. These prerequisites can refer to different categories, such as temporal con-
ditions, caller and transaction info, or other requirements that need to be checked prior a function ex-
ecution. Listing 5.10 illustrates how different prerequisites can be checked prior function execution.

Solidity

pragma solidity ^0.4.17;

import "./Ownership.sol";

contract AccessRestriction is Owned {

uint public creationTime = now;

modifier onlyBefore(uint _time) {

79

5. Smart Contract Patterns

require(now < _time); _;

}

modifier onlyAfter(uint _time) {

require(now > _time); _;

}

modifier onlyBy(address account) {

require(msg.sender == account); _;

}

modifier condition(bool _condition) {

require(_condition); _;

}

modifier minAmount(uint _amount) {

require(msg.value >= _amount); _;

}

function f() payable onlyAfter(creationTime + 1 minutes

) onlyBy(owner) minAmount(2 ether) condition(msg.sender.balance >= 50 ether) {

// some code

}

}

Listing 5.10: A contract demonstrating how to check certain requirements prior to function
execution.

5.4.3. Lifecycle Patterns

Lifecycle is a group of patterns that control the creation and destruction of smart contracts.

Mortal

PATTERN Mortal

Problem A deployed contract will exist as long as the Ethereum network exists. If a
contract’s lifetime is over, it must be possible to destroy a contract and stop it
from operating.

80

5.4. Patterns

Solution Use a self destruct call within a method that does a preliminary authorization
check of the invoking party.

Benefits Allows for the simple proclamation that a contract has reached the end of its life.

Drawbacks As long as there is no binding implementation on how the destruction mechanism
can be triggered, there is always the possibility that the mechanism will be
maliciously abused to extract contract funds.

A contract is defined by its creator, but the execution, and subsequently the services it offers are
provided by the Ethereum network itself. Thus, a contract will exist and be executable as long as the
whole network exists, and will only disappear if it was programmed to self destruct. Mortal is a pat-
tern that enables the creator of a contract to destroy it. The pattern uses a modifier to ensure that only
the owner of the contract can execute the selfdestruct operation, which sends the remaining Ether
stored within the contract to a designated target address (provided as argument) and then the storage
and code is cleared from the current state. Listing 5.11 exemplifies the application of this pattern.

Solidity

pragma solidity ^0.4.17;

import "../authorization/Ownership.sol";

contract Mortal is Owned {

function destroy() public onlyOwner {

selfdestruct(owner);

}

function destroyAndSend(address recipient) public onlyOwner {

selfdestruct(recipient);

}

}

Listing 5.11: A contract that provides its creator with the ability to destroy it.

Automatic Deprecation

PATTERN Automatic Deprecation

81

5. Smart Contract Patterns

Problem A usage scenario requires a temporal constraint defining a point in time when
functions become deprecated.

Solution Define an expiration time and apply modifiers in function definitions to disable
function execution if the expiration date has been reached.

Benefits When using general modifiers, it is easy to identify which functions will be
deprecated.

Drawbacks When using general modifiers, the execution flow jumps from one code line to
a completely different section, which can make it difficult to track and review
the code.

Automatic deprecation is a pattern that allows to automatically prohibit the execution of functions
after a specific time period has elapsed. Listing 5.12 shows the automatic deprecation of functions
based on an elapsed time period.

Solidity

pragma solidity ^0.4.17;

contract AutoDeprecate {

uint expires;

function AutoDeprecate(uint _days) public {

expires = now + _days * 1 days;

}

function expired() internal view returns (bool) {

return now > expires;

}

modifier willDeprecate() {

require(!expired());

_;

}

modifier whenDeprecated() {

require(expired());

_;

}

82

5.4. Patterns

function deposit() public payable willDeprecate {

// some code

}

function withdraw() public view whenDeprecated {

// some code

}

}

Listing 5.12: A contract interface that automatically deprecates after a specified time period has
elapsed.

Solidity

pragma solidity ^0.4.17;

contract AutoDeprecate {

uint public constant BLOCK_NUMBER = 4400000;

modifier isActive() {

require(block.number <= BLOCK_NUMBER);

_;

}

function deposit() public isActive() {

// some code

}

function withdraw() public {

// some code

}

}

Listing 5.13: A contract interface that automatically deprecates after a certain block number has
been reached.

5.4.4. Maintenance Patterns

Maintenance is a group of patterns that provide mechanisms for live operating contracts. In contrast
to ordinary distributed applications, which can be updated when bugs are detected, smart contracts

83

5. Smart Contract Patterns

are irreversible and immutable. This means that there is no way to update a smart contract, other
than writing an improved version that is then deployed as new contract.

Data Segregation

PATTERN Data Segregation

Problem Contract data and its logic are usually kept in the same contract, leading to a
closely entangled coupling. Once a contract is replaced by a newer version, the
former contract data must be migrated to the new contract version.

Solution Decouple the data from the operational logic into separate contracts.

Benefits No data migration is required after upgrading a smart contract.

Drawbacks Separating logic from storage adds complexity by requiring external calls to
be made, which must be handled with care because they can cause unintended
behavior. In addition, bypassing immutability can affect user trust in a contract
if version change policies are not implemented.

The data segregation pattern separates contract logic from its underlying data. Segregation
promotes the separation of concerns and mimics a layered design (e.g. logic layer, data layer).
Following this principle avoids costly data migrations when code functionality changes. Meaning
a new contract version would not have to recreate all of the existing data contained in the previous
contract. The separation of contract data and contract logic is shown in Listing 5.14 and Listing 5.15.
It is favorable to design the storage contract very generic so that once it is created, it can store and
access different types of data with the help of setter and getter methods.

Solidity

pragma solidity ^0.4.17;

contract DataStorage {

...

}

function getUintValue(bytes32 key) public constant returns (uint) {

return uintStorage[key];

}

84

5.4. Patterns

function setUintValue(bytes32 key, uint value) public {

uintStorage[key] = value;

}

...

}

}

Listing 5.14: The data is separated in its own contract.

Solidity

pragma solidity ^0.4.17;

import "./DataStorage.sol";

contract Logic {

DataStorage dataStorage;

function Logic(address _address) public {

dataStorage = DataStorage(_address);

}

function f() public {

bytes32 key = keccak256("emergency");

dataStorage.setUintValue(key, 911);

dataStorage.getUintValue(key);

}

}

Listing 5.15: The contract logic can manipulate the data through a reference.

Satellite

PATTERN Satellite

Problem Contracts are immutable. Changing contract functionality requires the
deployment of a new contract.

85

5. Smart Contract Patterns

Solution Outsource functional units that are likely to change into separate so-called
satellite contracts and use a reference to these contracts in order to utilize needed
functionality.

Benefits Altering contract functionality can be easily done through deploying new
satellite contracts.

Drawbacks Without implemented rules for functional changes, user trust in a contract can di-
minish as new satellite contracts may introduce potentially undesirable behavior.

The satellite pattern allows to modify and replace contract functionality. This is achieved through
the creation of separate satellite contracts that encapsulate certain contract functionality. The
addresses of these satellite contracts are stored in a base contract. This contract can then can call
out to the satellite contracts when it needs to reference certain functionalities, by using the stored
address pointers. If this pattern is properly implemented, modifying functionality is as simple as
creating new satellite contracts and changing the corresponding satellite addresses. Listing 5.16
and Listing 5.17 exemplify the application of this pattern.

Solidity

pragma solidity ^0.4.17;

contract Satellite {

function calculateVariable() public pure returns (uint){

// calculate var

return 2 * 3;

}

}

Listing 5.16: A satellite contract encapsulates certain contract functionalities.

Solidity

pragma solidity ^0.4.17;

import "../../authorization/Ownership.sol";

import "./Satellite.sol";

contract Base is Owned {

86

5.4. Patterns

uint public variable;

address satelliteAddress;

function setVariable() public onlyOwner {

Satellite s = Satellite(satelliteAddress);

variable = s.calculateVariable();

}

function updateSatelliteAddress(address _address) public onlyOwner {

satelliteAddress = _address;

}

}

Listing 5.17: A base contract referring to a satellite contract in order to fulfill its purpose. The
use of a satellite allows an easy contract functionality modification.

Contract Register

PATTERN Contract Register

Problem Contract participants must be referred to the latest contract version.

Solution Let contract participants pro-actively query the latest contract address through
a register contract that returns the address of the most recent version.

Benefits Contract participants can work with the latest contract version and are aware
about possible changes as soon as a new address is returned.

Drawbacks Contract participants are responsible for tracking the latest contract version,
otherwise they run the risk of working with an outdated version.

The register pattern is an approach to handle the update process of a contract. The pattern keeps
track of different versions (addresses) of a contract and points on request to the latest one, as seen
in Listing 5.18. In conclusion, before interacting with a contract, a user would always have to query
the register for the contract’s latest address. Failing to do so would risk interacting with an old
version of the contract. When following this update approach, it is also important to determine how
to handle existing contract data, when an old contract version is replaced. An alternative solution
to point to the latest contract address would be to utilize the Ethereum Name Service (ENS). It
is a register that enables a secure and decentralized way to resolve human-readable names, like
’mycontract.eth’, into machine-readable identifiers, including Ethereum addresses.

87

5. Smart Contract Patterns

Solidity

pragma solidity ^0.4.17;

import "../authorization/Ownership.sol";

contract Register is Owned {

address backendContract;

address[] previousBackends;

function Register() public {

owner = msg.sender;

}

function changeBackend(address newBackend) public onlyOwner() returns (bool) {

if(newBackend != backendContract) {

previousBackends.push(backendContract);

backendContract = newBackend;

return true;

}

return false;

}

}

Listing 5.18: A register contract to store the latest version of a contract.

Contract Relay

PATTERN Contract Relay

Problem Contract participants must be referred to the latest contract version.

Solution Contract participants always interact with the same proxy contract that relays
all requests to the most recent contract version.

Benefits Contracts can be updated without changing anything for contract participants.

88

5.4. Patterns

Drawbacks Contract complexity is increased, e.g. by the concepts of delegate calls and inline
assembly, which increases the probability of introducing errors. In addition, up-
dates must take into account contract storage layout limitations, i.e. existing fields
can neither be deleted nor rearranged. Furthermore, user trust in a contract can di-
minish as new contract versions may introduce potentially undesirable behavior.

A relay is another approach to handle the update process of a contract. The relay pattern provides
a method to update a contract to a newer version while keeping the old contract address. This
is achieved by using a kind of proxy contract that forwards calls and data to the latest version
of the contract, shown in Listing 5.19. This approach can forward function calls including their
arguments, but cannot return result values. Another drawback of this approach is that the data
storage layout needs to be consistent in newer contract versions, otherwise data may be corrupted.

Solidity

pragma solidity ^0.4.17;

import "../authorization/Ownership.sol";

contract Relay is Owned {

address public currentVersion;

function Relay(address initAddr) public {

currentVersion = initAddr;

owner = msg.sender;

}

function changeContract(address newVersion) public onlyOwner() {

currentVersion = newVersion;

}

// fallback function

function() public {

require(currentVersion.delegatecall(msg.data));

}

}

Listing 5.19: A relay contract to forward data and calls.

89

5. Smart Contract Patterns

5.4.5. Security Patterns

Security is a group of patterns that introduce safety measures to mitigate damage and assure a
reliable contract execution.

Emergency Stop (Circuit Breaker)

PATTERN Emergency Stop (Circuit Breaker)

Problem Since a deployed contract is executed autonomously on the Ethereum network,
there is no option to halt its execution in case of a major bug or security issue.

Solution Incorporate an emergency stop functionality into the contract that can be
triggered by an authenticated party to disable sensitive functions.

Benefits Allows to easily halt any sensitive contract functionality in case of an emergency.

Drawbacks Can lead to unpredictable contract behavior unless a set of rules is implemented
to govern when the stop mechanism can be triggered.

Reliably working contracts may contain bugs that are yet unknown, until revealed by an adversary
attack. One countermeasure and a quick response to such attacks are emergency stops or circuit
breakers. They stop the execution of a contract or its parts when certain conditions are met. A
recommended scenario would be, that once a bug is detected, all critical functions would be halted,
leaving only the possibility to withdraw funds. A contract implementing the described strategy
is shown in Listing 5.20. The ability to fire an emergency stop could be either given to a certain
party, or handled through the implementation of a rule set.

Solidity

pragma solidity ^0.4.17;

import "../authorization/Ownership.sol";

contract EmergencyStop is Owned {

bool public contractStopped = false;

modifier haltInEmergency {

if (!contractStopped) _;

}

90

5.4. Patterns

modifier enableInEmergency {

if (contractStopped) _;

}

function toggleContractStopped() public onlyOwner {

contractStopped = !contractStopped;

}

function deposit() public payable haltInEmergency {

// some code

}

function withdraw() public view enableInEmergency {

// some code

}

}

Listing 5.20: An emergency stop allows to disable or enable specific functions inside a contract
in case of an emergency.

Speed Bump

PATTERN Speed Bump

Problem The simultaneous execution of sensitive tasks by a huge number of parties can
bring about the downfall of a contract.

Solution Prolong the completion of sensitive tasks to take steps against fraudulent
activities.

Benefits Allows to slow down the execution of tasks according to specific requirements.

Drawbacks Slowing down function execution complicates implementation, which increases
the probability for introducing errors.

Contract sensitive tasks are slowed down on purpose, so when malicious actions occur, the
damage is restricted and more time to counteract is available. An analogous real world example
would be a bank run, where a large number of customers withdraw their deposits simultaneously
due to concerns about the bank’s solvency. Banks typically counteract by delaying, stopping, or
limiting the amount of withdrawals. An example contract implementing a withdrawal delay is

91

5. Smart Contract Patterns

shown in Listing 5.21.

Solidity

pragma solidity ^0.4.17;

contract SpeedBump {

struct Withdrawal {

uint amount;

uint requestedAt;

}

mapping (address => uint) private balances;

mapping (address => Withdrawal) private withdrawals;

uint constant WAIT_PERIOD = 7 days;

function deposit() public payable {

if(!(withdrawals[msg.sender].amount > 0))

balances[msg.sender] += msg.value;

}

function requestWithdrawal() public {

if (balances[msg.sender] > 0) {

uint amountToWithdraw = balances[msg.sender];

balances[msg.sender] = 0;

withdrawals[msg.sender] = Withdrawal({

amount: amountToWithdraw,

requestedAt: now

});

}

}

function withdraw() public {

if(withdrawals[msg.

sender].amount > 0 && now > withdrawals[msg.sender].requestedAt + WAIT_PERIOD) {

uint amount = withdrawals[msg.sender].amount;

withdrawals[msg.sender].amount = 0;

msg.sender.transfer(amount);

}

}

}

Listing 5.21: A contract that delays the withdrawal of funds deliberately.

92

5.4. Patterns

Rate Limit

PATTERN Rate Limit

Problem A request rush on a certain task is not desired and can hinder the correct
operational performance of a contract.

Solution Regulate how often a task can be executed within a period of time with a general
modifier.

Benefits Allows easy control of how many times a given task can be performed within
a given time period.

Drawbacks Block timestamps can be affected to some degree by miners, which must be
taken into account when applying a rate limit for function execution.

A rate limit regulates how often a function can be called consecutively within a specified time
interval. This approach may be used for different reasons. A usage scenario for smart contracts
may be founded on operative considerations, in order to control the impact of (collective) user
behavior. As an example one might limit the withdrawal execution rate of a contract to prevent
a rapid drainage of funds. Listing 5.22 exemplifies the application of this pattern.

Solidity

pragma solidity ^0.4.17;

contract RateLimit {

uint enabledAt = now;

modifier enabledEvery(uint t) {

if (now >= enabledAt) {

enabledAt = now + t;

_;

}

}

function f() public enabledEvery(1 minutes) {

// some code

}

}

Listing 5.22: A contract with a rate limit that avoids excessively repetitive function execution.

93

5. Smart Contract Patterns

Mutex

PATTERN Mutex

Problem Re-entrancy attacks can manipulate the state of a contract and hijack the control
flow.

Solution Utilize a mutex in the form of a general modifier to hinder an external call from
re-entering its caller function again.

Benefits Allows to easily annotate any function to make it save against re-entrancy attacks.

Drawbacks When using general modifiers, the execution flow jumps from one code line to
a completely different section, which can make it difficult to track and review
the code.

A mutex (from mutual exclusion) is known as a synchronization mechanism in computer science
to restrict concurrent access to a resource. After re-entrancy attack scenarios emerged, this pattern
found its application in smart contracts to protect against recursive function calls from external
contracts. An example contract is depicted below in Listing 5.23.

Solidity

pragma solidity ^0.4.17;

contract Mutex {

bool locked;

modifier noReentrancy() {

require(!locked);

locked = true;

_;

locked = false;

}

// f is protected by a mutex, calls from within msg.sender.call cannot call f again

function f() noReentrancy public returns (uint) {

require(msg.sender.call());

return 1;

}

}

Listing 5.23: A contract implementing a mutex pattern to avoid re-entrancy.

94

5.4. Patterns

Balance Limit

PATTERN Balance Limit

Problem There is always a risk that a contract gets compromised due to bugs in the code
or yet unknown security issues within the contract balance platform.

Solution Limit the maximum amount of funds at risk by checking each deposit with a
general modifier for not exceeding a specified overall contract limit.

Benefits Limits the amount of possible losses.

Drawbacks The approach cannot prevent the admission of forcibly sent Ether (e.g. mining
rewards).

It is generally a good idea to manage the amount of money at risk when coding smart contracts.
This can be achieved by limiting the total balance held within a contract. The pattern monitors the
contract balance and rejects payments sent along a function invocation after exceeding a predefined
quota, as seen in Listing 5.24. It should be noted that this approach cannot prevent the admission
of forcibly sent Ether, e.g. as beneficiary of a selfdestruct(address) call, or as recipient of a
mining reward.

Solidity

pragma solidity ^0.4.17;

contract LimitBalance {

uint256 public limit;

function LimitBalance(uint256 value) public {

limit = value;

}

modifier limitedPayable() {

require(this.balance <= limit);

_;

}

function deposit() public payable limitedPayable {

// some code

}

95

5. Smart Contract Patterns

}

Listing 5.24: A contract limiting the total balance acquirable with payable function invocation.

Table 5.1.: Pattern usage examples in published source code contracts on the Ethereum mainnet.

Category Pattern Example Contract

Action
and

Control

Checks-Effects-Interaction CryptoKitties

Pull Payment Cryptopunks

State Machine DutchAuction

Commit and Reveal ENS Registrar

Oracle (Data Provider) Etheroll

Authorization
Ownership Ethereum Lottery

Accesss Restriction Etheroll

Lifecycle
Mortal GTA Token

Automatic Deprecation Polkadot

Maintenance

Data Segregation SAN Token

Satellite LATP Token

Contract Register Tether Token

Contract Relay Numeraire

Security

Emergency Stop Augur/REP

Speed Bump TheDAO

Rate Limit etherep

Mutex Ventana Token

Balance Limit CATToken

5.5. Discussion

Our research covers 18 patterns grouped into five categories. Although some patterns are very basic,
their real practical value is unfolded when patterns are combined. In this context, an examination
of the patterns reveals a certain hierarchy structure, meaning some of the patterns act as foundation
for others. For example, the Ownership pattern is often used as a prerequisite in combination with

96

https://etherscan.io/address/0x06012c8cf97BEaD5deAe237070F9587f8E7A266d#code
https://etherscan.io/address/0xb47e3cd837dDF8e4c57F05d70Ab865de6e193BBB#code
https://etherscan.io/address/0xec41cdb6ca4910486d875a2cf1fac1159d1b2bdf#code
https://etherscan.io/address/0x6090A6e47849629b7245Dfa1Ca21D94cd15878Ef#code
https://etherscan.io/address/0xD91E45416bfbBEc6e2D1ae4aC83b788A21Acf583#code
https://etherscan.io/address/0x40658db197bddeA6a51Cb576Fe975Ca488AB3693#code
https://etherscan.io/address/0xD91E45416bfbBEc6e2D1ae4aC83b788A21Acf583#code
https://etherscan.io/address/0xfA2632a88bd0C11535A38F98a98dB8251CCbAA9e#code
https://etherscan.io/address/0x54a2d42a40F51259DedD1978F6c118a0f0Eff078#code
https://etherscan.io/address/0xDa2Cf810c5718135247628689D84F94c61B41d6A#code
https://etherscan.io/address/0x459F7854776ED005B6Ec63a88F834fDAB0B6993e#code
https://etherscan.io/address/0xB5eE67c9A8FAf86D968B2D238561c01b823514F5#code
https://etherscan.io/address/0x1776e1F26f98b1A5dF9cD347953a26dd3Cb46671#code
https://etherscan.io/address/0xE94327D07Fc17907b4DB788E5aDf2ed424adDff6#code
https://etherscan.io/address/0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413#code
https://etherscan.io/address/0xfBCA29854B821ff37E504578312459286082010d#code
https://etherscan.io/address/0x30CefBcb5C26A5B19a019092Ab8d09F8739c904F#code
https://etherscan.io/address/0x56ba2Ee7890461f463F7be02aAC3099f6d5811A8#code

5.5. Discussion

Table 5.2.: A concise overview of smart contract design patterns.

Pattern Summary

A
ct

io
n

&
C

on
tr

ol

Checks-Effects-Interaction As calls to other contracts hand over control, avoid security issues
by a functional code order.

Pull Payment As a send operation can fail, let the receiver withdraw the payment.

State Machine When different contract stages are needed, these are modeled and
represented by a state machine.

Commit and Reveal As blockchain data is public, a commitment scheme ensures
confidentiality of contract interactions.

Oracle (Data Provider) When knowledge outside the blockchain is required, an oracle
pushes information into the network.

A
ut

ho
ri

z.

Ownership As anyone can call a contract method, restrict the execution to the
contract owner’s address.

Access Restriction When function execution checkups are needed, these are handled
by generally applicable modifiers.

L
if

ec
yc

le

Mortal Since deployed contracts do not expire, self-destruction with a
preliminary authorization check is used.

Automatic Deprecation When functions shall become deprecated, apply function modifiers
to disable their future execution.

M
ai

nt
en

an
ce

Data Segregation As data and logic usually reside in the same contract, avoid data
migration on updates by decoupling.

Satellite As contracts are immutable, functions that are likely to change are
outsourced into separate contracts.

Contract Register When the latest contract version is unknown, participants pro-
actively query a register.

Contract Relay When the latest contract version is unknown, participants interact
with a proxy contract.

Se
cu

ri
ty

Emergency Stop Since contracts are executed autonomously, sensitive functions
include a halt in the case of bugs.

Speed Bump When task execution by a huge number of users is unwanted,
prolong completion for counter measures.

Rate Limit When a request rush on a task is not desired, regulate how often a
task can be executed within a period.

Mutex As re-entrancy attacks can manipulate contract state, a mutex
hinders external calls from re-entering.

Balance Limit There is always a risk that a contract gets compromised, thus limit
the maximum amount of funds held.

97

5. Smart Contract Patterns

other patterns. Another example is the Access Restriction pattern, which is directly applied by
other patterns, like the Mortal pattern.

A principle shared by several patterns is related to the problem of contract immutability, which
is circumvented by using updatable object references. All Maintenance Patterns use this principle
to decouple contract functionality, data, or even whole contracts through a proxy object.

As for the security patterns, the main problem that these patterns solve is the lack of execution
control after a contract has been deployed, resulting form the distributed execution environment
provided by Ethereum. This one-of-a-kind feature of Ethereum allows programs on the blockchain
to be executed autonomously, but also has drawbacks. These drawbacks come in various forms,
either as harmful callbacks, adverse circumstances on how and when functions are executed, or
uncontrollably high financial risks at stake. By applying the security patterns presented, developers
can address these security issues and mitigate typical attack scenarios.

As for the generalizability of the patterns, it might be assumed that other platforms face similar
issues as Ethereum. In the real world, once a contract is changed, it needs to be revalidated by all
involved parties. This concept is also encountered in Ethereum, where contracts are immutable and
any change requires the creation of a new contract. Although real world contracts are conclusive and
final through their written terms, their code implementations underlie inherent software concepts
involving evolutionary code changes and bug fixes. This creates a divergence between contract
immutability (a final version of a written agreement manifested in code) and the ability to modify
that code (due to bugs or a necessary code updates). That is, the separation of code changes that
modify contract terms and those that are necessary due to evolutionary adaptations is important.
Altogether, because any software based smart contract ecosystem and its contained contracts
require code updates, it can be assumed that maintenance patterns are generally applicable to other
ecosystems as well.

5.6. Conclusion

In this chapter we derived Solidity design patterns from white and gray literature using a MLR and
qualitative research methods borrowed from Grounded Theory. While many smart contracts have
been written in Solidity for different purposes, we have identified, grouped, and described several
globally applicable patterns and have discussed common principles and relationships among them.
Each pattern is explained in a problem and solution based approach with benefits and drawbacks,
to better illustrate the context and applicability of the pattern.

Looking at the patterns, it can be said that the blockchain’s unique selling point of being an
autonomous execution platform also becomes its problem, as many of the patterns describe ways
to get around the immutability and lack of execution control of smart contracts. This reveals the

98

5.6. Conclusion

discrepancy that arises when an inherently autonomous execution environment is confronted with
the need for maintainability and upgradeability.

For future work, the presented design patterns can be used to extract code building blocks, which
could be integrated in automatic code generating frameworks. Further, the patterns could be incor-
porated into a certified set of libraries, covering typical and commonly occurring coding scenarios.
Beyond that, the collated patterns could be compared to coding practices that evolve in other smart
contract platforms. This could further reveal more abstract design patterns that are independent
from the underlying implementation framework and are valid for smart contracts in general.

99

6. Domain Specific Language
for Smart Contract Development

The notion to digitally articulate, execute, and enforce agreements with smart contracts has become
a feasible reality today. Smart contracts have the potential to vastly improve the efficiency and
security of traditional contracts through their self-executing autonomy. To realize smart contracts
several blockchain-based ecosystems exist. Today a prominent representative is Ethereum. Its
programming language Solidity is used to capture and express contractual clauses in the form of
code. However, due to the conceptual discrepancy between contractual clauses and corresponding
code, it is hard for domain stakeholders to easily understand contracts, and for developers to write
code efficiently without errors. In this chapter we address this issues by the design and study
of a domain-specific smart contract language based on a higher level of abstraction that can be
automatically transformed to an implementation. In particular, we propose a clause grammar close
to natural language, helpful coding abstractions, and the automatic integration of commonly oc-
curring design patterns during code generation. Through these measures, our approach can reduce
the design complexity leading to an increased comprehensibility and reduced error susceptibility.
Several implementations of exemplary smart contract scenarios, mostly taken from the Solidity
documentation, are used to demonstrate the applicability of our approach.

6.1. Introduction

A contract is a “promise or a set of promises, for the breach of which the law gives a remedy, or
the performance of which the law in some way recognizes as a duty” [133]. Contracts are common
in almost every facet of the business world. Like in many other areas, the trend towards digitization
has also taken hold in this field and led to the concept of smart contracts [134], [135]. Smart
contracts are a means to digitally facilitate, verify, and enforce the negotiation or execution of
contracts and “represent a new era of contracting” [136]. This evolution is grounded on several
technological advancements and transformations. Blockchain technology, with its underlying
consensus mechanism (implemented through different protocols), allows various parties to reach
agreements without requiring any trusted participants among them. This feature paved the way
for a decentralized exchange of digital assets (cryptocurrencies), and the subsequent inclusion of

101

6. Domain Specific Language for Smart Contract Development

general scripting languages enabled the evolution towards distributed computing platforms. Both
features, the build-in exchange of digital assets (as a means of payment) and the dispersed code
execution (supporting distributed applications), are the prerequisites for an ecosystem that makes
the notion of smart contracts feasible. Today’s predominant ecosystem in this regard is Ethereum
[24], a blockchain based distributed computing platform, that allows to formulate smart contracts
in the platform’s leading programming language Solidity.

The formalization of contracts in a machine-readable and executable form is a challenging
task. Mapping the broad articulation space of contracts written in natural language to a conclusive
and unambiguous digital representation requires a formalization approach to deduce a proper
digital manifestation. In the context of Ethereum, this means translating contract statements from
natural (legalese) language into equivalent Solidity code. There is therefore a high likelihood
of translation loss. To make matters worse, the blockchain runtime environment and missing
low-level abstractions complicate writing correct and secure smart contracts for Ethereum and
other blockchain technologies even further.

Our work investigates how productivity can be increased in smart contract development and how
to address the aforementioned issues with a Domain Specific Language (DSL) for smart contract
formulation called Contract Modeling Language (CML). A DSL is a programming language of
limited expressiveness focused on a particular domain [137]. When used properly DSLs can
improve productivity by simplifying complex code, promoting communication between domain
stakeholders, and eliminating development bottlenecks.

The objective of CML is to investigate how unstructured legal contracts can be uniformly modeled
and specified (covering a variety of common contract situations) in order to improve their interpre-
tation and the automatic generation of smart contract implementations. In particular we focus on
a declarative and imperative formalization, since we are interested in the conceptual representation
of contracts in a programming language. In this context our work seeks to address the following
research questions: How and in how far is it possible to bring the abstraction level of smart contracts
closer to the contract domain? Can higher abstraction levels in combination with code generation
(considering platform-specific programming idioms) reduce the risk of smart contract errors?

The chapter is organized in the following way: First, we provide a short background on contrac-
tual stages and contract building blocks in Section 6.2 and discuss our research methodology in
Section 6.3. Then, we present our domain specific language in Section 6.4, before we illustrate its
practicality in Section 6.5, and evaluate and discuss our findings in Sections 6.6 and 6.7 respectively.
Finally, we compare to related work in Section 6.8 and then draw conclusions in Section 6.9.

102

6.2. Background

6.2. Background

6.2.1. Contract Stages

A contract is usually preceded by an abstract agreement that specifies elementary modalities and
actions between parties. This informal agreement is then transferred into a written and more
rigid contract that is enforceable by law. To avoid the ambiguities of natural language and to
explicate terms and conditions as clearly and completely as possible, contracts are written in
legalese. Legalese is characterized by a common and well established legal phrasing style that
is used to formulate the specifics of a contract. A machine readable representation, usually in a
formal language, is retrieved from a conversion of the traditionally written contract, although a
contract could be immediately specified in a formal language. Above all, both representations
should ideally be equivalent. Basis for the execution of a written contract is grounded on law, where
enforceability is considered to be ex post, i.e. a party can enforce a settlement at court only after a
contractual breach. This stands in contrast to the formal machine representation and its realization
as a smart contract, where the execution is based on an architecture, that by design does not allow
non-conformism, hence enforceability is considered to be ex ante. The above described principals
are illustrated in Figure 6.1 which gives an overview of the different contractual stages, namely
contract negotiation, contract formation, and contract performance.

Agreement
(Abstract)

Contract
(Legalese)

Smart Contract
(Formal Language)

Law
(Ex Post)

Architecture
(Ex Ante)

Formalization

Execution &
Enforcement

Negotiation

Formation

Performance

Figure 6.1.: Contract stages and the conceptual relation between traditional and smart contracts.

6.2.2. Contract Building Blocks

Although contracts cover a wide range of subject areas, most will share many common features,
as exemplified by the sale of goods contract excerpt in Figure 6.2. Regarding their form, contracts
usually build on structuring techniques such as sectional delimitation and paragraph division.
Typically contracts are split into articles, sections, subsections and paragraphs which are numbered

103

6. Domain Specific Language for Smart Contract Development

to support referencing and grouping of particular provisions. This organization can be interpreted
as macro and micro structure that eases the legibility and comprehensibility of contracts.

Regardless of the subject matter and contract type, contracts share basic building blocks that
serve the same function in all contracts [138]. First, there are (A) definitions which isolate and
specify important key terms and concepts that are usually repeated in the agreement. Definitions
make the contract more consistent and easier to read as unnecessary repetitions are avoided (e.g.,
§1.). Second, there are (B) covenants, which are promises made by a party to undertake or refrain
from certain actions in the future (e.g., §3. to §5. and §7.). These are the most important provisions
of any contract and constitute the obligations of the involved parties to certain performances.
Covenants are typically reciprocal, e.g., one party is obligated to pay, while the other is obligated to
perform. Covenants are often scattered throughout the contract and are organized by subject matter
(e.g., payment obligations, performance obligations). A party’s failure to satisfy covenants typically
entitles the other party to certain remedies. Third, there are (C) representations and warranties,
which are statements of fact made by the parties to each other as of a particular point in time (e.g.,
§9., §10.). These statements assert the truth about assumptions that are important for the decision
to enter the contract and are implicitly coupled with indemnification obligations when untruthful.
Fourth, there are (D) conditions, which specify certain requirements that must exist so that a party
is obligated to perform under the contract (e.g., §8.). Theses conditions can be classified by type
into conditions precedent and conditions subsequent. Conditions precedent specify the events
that must occur to start one’s duties to perform under the contract, likewise conditions subsequent
specify the events that must occur to end one’s duties to perform under the contract. Table 6.1 gives
an overview of essential building blocks regarded important for contract construction.

Table 6.1.: An overview of basic contractual building blocks.

Covenant Representation Warranty Condition

is a promise statement statement or promise statement

of action or inaction fact fact or condition condition

applies to future past or present present and future future

purpose
define activities
that will (not)
be carried out

make assurances
to induce parties
to enter contract

assure that
facts and conditions

are/will be true

define conditions
affecting the party’s

contractual duty

104

6.2. Background

CONTRACT FOR THE SALE OF GOODS

Paragraph 1. [_], hereinafter referred to as Seller, and [_], hereinafter referred to as Buyer, hereby
agree on this [_] day of [_], in the year [_], to the following terms.

A. Identities of the Parties

Paragraph 2. Seller, whose business address is [_], in the city of [_], state of [_], is in the business
of [_]. Buyer, whose business address is [_], in the city of [_], state of [_], is in the business of [_].

B. Description of the Goods

Paragraph 3. Seller agrees to transfer and deliver to Buyer, on or before 2019-09-01, the
following goods: 1 x production line machinery at the price of $7,500.

C. Buyer’s Rights and Obligations

Paragraph 4. Buyer agrees to accept the goods and pay for them according to the terms further
set out below.

Paragraph 5. Buyer agrees to pay for the goods half upon receipt, with the remainder due within
30 days of delivery. If Buyer fails to pay second half within 30 days, an additional fine of 10%
has to be paid within 14 days.

Paragraph 6. Goods are deemed received by Buyer upon delivery to Buyer’s address as set forth
above.

Paragraph 7. Buyer has the right to examine the goods upon receipt and has 14 days in which
to notify seller of any claim for damages based on the condition, grade, or quality of the goods.

Paragraph 8. The Buyer’s obligation to complete the purchase of the goods is subject to the
Buyer obtaining a financing commitment of at least $5,000.

D. Seller’s Obligations

Paragraph 9. Until received by Buyer, all risk of loss to the above-described goods is borne by
Seller.

Paragraph 10. Seller warrants that the goods are free from any and all security interests, liens,
and encumbrances.

Figure 6.2.: An exemplary contract for the sale of goods.

105

6. Domain Specific Language for Smart Contract Development

6.3. Research Study Design

Our approach to design a DSL is guided by the design science methodology where “knowledge and
understanding of a problem domain and its solution are achieved in the building and application
of the designed artifact” [7]. In particular, we employed an approach described by Wieringa [139],
where the design process iterates multiple times over two activities: first designing an artifact that
improves something for stakeholders (design cycle) and subsequently empirically investigating
the performance of that artifact in its context (empirical cycle). Our focus was on the design
cycles, where an improvement problem is investigated, alternative treatment designs are generated
and validated, a design is selected and implemented, and experience with the implementation is
evaluated. In our context, this meant to investigate smart contract implementation issues, to come
up with possible abstract language constructs, implement these constructs in a DSL development
framework, and subsequently evaluate and asses the suitability of the implementation. For the
empirical cycles, we performed an analysis of multiple scenario cases to evaluate the improvements
in the design cycles (Section 6.6).

6.4. Contract Modeling Language (CML)

CML is a high-level DSL using object-oriented abstractions for implementing smart contracts. It
is designed with several intentions in mind. First, it should allow for the specification of common
relevant contractual elements. Second, it should be easy to read and understand through a clause
grammar close to natural language that resembles real-world contracts. Third, it should improve
productivity and simplify complex code. Fourth, the defined contract logic should serve as basis for
code generation, backed possibly by a variety of distributed ledger technologies. Regarding the last
intention, for proof-of-concept, we focus on the generation of Solidity code, being the predominant
language for smart contracts today.

The CML language is developed in Xtext [140], a framework for the development of program-
ming languages and DSLs. For more information on Xtext and the full grammar definition of
CML we refer to Appendix A.1. To promote reproducibility of our research, the CML language
implementation source code is available on GitHub [141]. Further a CML web editor [142] for
demonstration purposes exists.

6.4.1. Language Characteristics

The basic structure of a CML contract is similar to a class in object orientation. It consists of state
variables and functions (actions), which read and modify these. In addition, a contract contains
clauses, which mimic and capture covenants in a standardized way, close to natural language syntax.

106

6.4. Contract Modeling Language (CML)

These indicate the context under which the actions are to be called, meaning they combine different
aspects that influence action execution. In its most simplistic form a clause specifies the obligation
or permission of a party to execute a specific action.

CML is a white-space aware language (like Python), thus indentation is used to structure code
blocks instead of braces. Each CML file starts with a namespace declaration to identify it uniquely.
Then, a number of namespace imports can be declared. In order to avoid hardcoding basic classes or
types directly in the grammar, CML follows a library approach. This approach allows the grammar
to focus only on the syntax, and the language to be easily extendable through modification of
library code. A default namespace is imported into every CML file by default: mainlib.cml. This
library defines the basic concepts of the language, similar to the standard libraries in other popular
programming languages like C and Java. More precisely, the library specifies essential data types
and associated functions that facilitate the implementation of contracts. This approach allows to
promote a simplification of the development process.

6.4.2. Type System

CML is statically-typed, i.e. the types of functions, function parameters, local variables, etc. need
to be explicitly declared, with the sole exception that the return type of a function can be omitted
if it is not needed. Thus each function possesses a well-defined type signature (input and output).
This allows type-checking to be performed, meaning that operations on declared typed elements are
checked to be consistent with expected types. Built-in data types in CML range from basic types to
more complex types to cover common concepts in the field of smart contract design. The simplest
of types are primitive types which describe the various kinds of atomic values allowed in CML.
These include Boolean, String, Integer, Real, DateTime, and Duration. The last two types represent
the basic temporal concepts of absolute and relative time, needed to express temporal constraints
and relationships typically encountered in contracts. Absolute time is a definite time value (also
called a time point) e.g. 2019-01-01 14:30:00 UTC, whereas the concept of relative time is used
to model time duration that is independent from any time point, e.g. 2 hours, 7 days. Regarding
temporal constrains and their verification in the context of contracts we refer interested readers
to [143]. Beyond the aforementioned primitives, CML includes predefined and easily extensible
structural composite types that are derived from literature on smart contract ontologies [144],
[145], to embody common contract-specific concepts. These include Party, Asset, Transaction,
and Event. Party denotes an individual or organization with an unique identifier that participates in
a contract. Asset describes a resource (long-lived identifiable item) with a certain economic value.
Transaction is used to describe a message that is submitted by a party along contract interaction.
Event characterizes anything that happens, being either important or unusual. In addition, a few
special variables (caller, anyone, now, contractStart, contractEnd) are defined which are always

107

6. Domain Specific Language for Smart Contract Development

present and often needed during contract definition.

6.4.3. Clause Structure

CML introduces clauses as syntactic elements based primarily on the covenants discussed in Sec-
tion 6.2 and further inspired by the study of existing approaches found in [146]–[151]. Covenants
are most relevant for smart contracts, since they enclose the expected actions to be performed. In
view of the dynamics of the natural language, in which they are represented, their composition
cannot be precisely defined. However, there are structural components that can be singled out.
Most clauses consist of (at least) three parts: an actor, an action, and a modality for that action.
A very basic covenant reflecting these components is: “The buyer must pay.” Moreover, other
commonly occurring components can be extracted, which specify the context of a covenant more
precisely, such as trigger events, conditions, and involved objects. Trigger events stipulate under
which circumstances a clause must be taken into account and refer to either internal or external
events. Internal events can be controlled by the contract parties (e.g., satisfied action, fulfilled
clause), whereas external events cannot be controlled by the parties themselves (e.g., price feed).
Clause conditions define time and state restrictions that must be subsequently met after a trigger
event. Involved objects specify the people, places, things receiving an action or having an action
done to them. An extended version of the previous example clause would look like the following:
“Upon receipt of the product the buyer must pay within 14 days.”. Figure 6.3 shows a representation
of fundamental covenant clause components discussed in this paragraph.

Trigger Condition Actor Modality Action Object

Covenant Clause

Figure 6.3.: A conceptual breakdown of covenant clause components.

Based on the above insights we propose a clause syntax, illustrated in Figure 6.4, for the transfor-
mation of covenants. Each clause has an unique identifier for referencing and must contain at least
an actor, an action, and the deontic modality of this action (i.e., “may” or “must”). Optional elements
include temporal or general constraints. Temporal constrains are indicated by the keyword “due”
followed by a temporal precedence statement (i.e., “after” or “before”) and a trigger expression. The
trigger expression refers to an absolute time or a construct from which an absolute time can be de-
duced. This includes the performance of a clause, the execution of an action, or the occurrence of an
external event. Additionally, the “due” statement can be enriched by a duration statement (“within”)
to further specify the considered time-frame, as well as a repeat statement (“every”) to model the re-

108

6.4. Contract Modeling Language (CML)

curring nature of a covenant. General constraints can be defined after the keyword “given” by multi-
ple linked conditions that evaluate to true or false. These conditions usually refer to the contract state,
conditions regarding the transaction input are handled within the functions. It is worth noting that the
deontic “must” requires the specification of a terminating temporal constraint (declared by “within”)
to evaluate the fulfillment of a covenant, since without it, a covenant can always be met in the future.

clause ID
[due [within RT] [every RT from AT to AT] (after|before) TRIGGER]
[given CONDITION]
party ACTOR
(may|must) ACTION {(and|or|xor) ACTION}

Trigger: AT | ClauseTrigger | EventTrigger | ActionTrigger
ClauseTrigger: clause ID (fulfilled|failed)
ActionTrigger: ACTOR did ACTION
EventTrigger: event ID

RT...Relative Time, AT...Absolute Time

Figure 6.4.: The structure of a CML clause declaration.

6.4.4. CML by Example: Simple Open Auction

The application of clause constructs, predefined types, and type operations is shown by example.
Listing 6.1 contains a CML contract specification for a simple auction in which anyone can bid
during a bidding period. If the highest bid is raised, the previously highest bidder gets her bid back.
After the end of the bidding period, the beneficiary can withdraw the highest bid.

Contract Modeling Language (CML)

namespace cml.examples

import cml.generator.annotation.solidity.*

@PullPayment

contract SimpleAuction

Integer highestBid

Party currentLeader

Party beneficiary

Duration biddingTime

clause Bid

due within biddingTime after contractStart

109

6. Domain Specific Language for Smart Contract Development

party anyone

may bid

clause AuctionEnd

due after contractStart.addDuration(biddingTime)

party beneficiary

may endAuction

action init(Duration _biddingTime, Party _beneficiary)

biddingTime = _biddingTime

beneficiary = _beneficiary

action bid(TokenTransaction t)

ensure(t.amount > highestBid, "There already is a higher bid.")

caller.deposit(t.amount)

if (highestBid != 0)

transfer(currentLeader, highestBid)

currentLeader = caller

highestBid = t.amount

action endAuction()

transfer(beneficiary, highestBid)

Listing 6.1: A CML contract for a simple open auction.

6.5. Solidity Code Generation

The concrete syntax (grammar) of CML is defined in Xtext, which generates the language infras-
tructure and derives a corresponding meta-model. Once a CML text input file is processed, the
parser creates an in-memory instance of that meta-model, called Abstract Syntax Tree (AST).
This representation is then traversed by the generator, which is written in Xtend [152], to produce
Solidity code that further relies on static and dynamically created support libraries. These libraries
either contain the implementation of declared CML type operations, or relate to libraries for secure
smart contract development. Figure 6.5 illustrates this process.

6.5.1. CML to Solidity Mapping

Having specified essential domain-specific constructs in CML through predefined types, we
propose a mapping that allows an automated generation of Solidity contracts. The conceptual
equivalent of CML domain model definitions (Party, Asset, Transaction) is Solidity’s struct, in

110

6.5. Solidity Code Generation

CML Program
.cml

Generator
.xtend

Solidity Code
.sol

CML Libraries
.cml

Support Libraries
.sol

Declaration Implementation

Figure 6.5.: The CML code generation process.

which the entire hierarchy of a given type is assembled. CML functions and enumerations are
mapped to their respective conceptual equivalents in Solidity. Events that are contained in CML
reflect external events and are mapped to functions in Solidity, since outside information can
only enter the Solidity platform through interaction (passing data to a method). Regarding the
constraints of clause constructs, these are reflected in a single function modifier that is added
to clause functions and contains declarative checks that preempt improper execution. Table 6.2
summarizes the proposed CML-Solidity mapping.

To illustrate the mapping process, we are transferring the simple auction CML contract from
Listing 6.1 to Solidity code presented in Listing 6.2. Beyond the generation of functional contract
code, supportive code is generated to evaluate the execution context, which is required to apply
any restrictions (e.g. time, caller, state) defined in the clause statements.

Table 6.2.: The mapping of CML constructs to Solidity constructs.

CML Construct Solidity Construct

Party Struct
Asset Struct
Transaction Struct
Enumeration Enumeration
Event Function
Function Function
Top level function Function with pure/view declaration
Clause constraints Function modifier with conditional checks

Solidity

pragma solidity >=0.4.22 <0.7.0;

pragma experimental ABIEncoderV2;

111

6. Domain Specific Language for Smart Contract Development

import "./lib/cml/ConditionalContract.sol";

import "./lib/cml/DateTime.sol";

...

contract SimpleAuction is ConditionalContract, PullPayment {

struct Party {

address payable id;

}

uint highestBid;

Party highestBidder;

Party beneficiary;

uint biddingTime;

uint _contractStart;

constructor(uint _biddingTime, Party memory _beneficiary) public {

biddingTime = _biddingTime;

beneficiary = _beneficiary;

_contractStart = now;

}

function bid() public payable checkAllowed("Bid") {

require(msg.value > highestBid, "There already is a higher bid.");

if (highestBid != 0) {

_asyncTransfer(highestBidder.id , highestBid);

}

highestBidder = Party(msg.sender);

highestBid = msg.value;

}

function endAuction() public checkAllowed("AuctionEnd") {

_asyncTransfer(beneficiary.id , highestBid);

...

function clauseAllowed(bytes32 _clauseId) internal returns (bool) {

if (_clauseId == "Bid") {

require(onlyAfter(_contractStart

, biddingTime, true), "Function not called within expected timeframe");

return true;

}

if (_clauseId == "AuctionEnd") {

require(onlyBy(beneficiary.id), "Caller not authorized");

require(onlyAfter(DateTime.addDuration

112

Support Libraries

CML Domain
Model

Transformation

State Variables

Constraint Check

Derived
Clause

Constraints

6.5. Solidity Code Generation

(_contractStart, biddingTime), 0, false), "Function called too early");

return true;

}

return false;

}

function clauseFulfilledTime(bytes32 _clauseId) internal returns (uint) {

uint max = 0;

if (_clauseId == "Bid" && (callSuccess(this.bid.selector))) {

if (max < callTime(this.bid.selector)) {

max = callTime(this.bid.selector);

}

return max;

}

if (_clauseId == "AuctionEnd" && (callSuccess(this.endAuction.selector))) {

if (max < callTime(this.endAuction.selector)) {

max = callTime(this.endAuction.selector);

}

return max;

}

return max;

...

}

Listing 6.2: The generated Solidity contract from CML definition in Listing 6.1.

6.5.2. Code Generation Idioms

Design Patterns

Design patterns are a commonly used technique to encode design guidelines or best practices (for
more information on this topic, see [153], [154]). In Chapter 5 we have gathered design patterns
for smart contracts in the Ethereum ecosystem along with corresponding code building blocks for
Solidity, which can be directly integrated in the automatic code generation process. This procedure
is exemplified with the “Ownership” and “PullPayment” pattern. The “Ownership” pattern satisfies
a contract has an owner (by default the creator of a contract) and is used to limit access to sensitive
functions to only that owner. The “PullPayment” pattern is used to mitigate security risks when
sending funds by switching from a push to a pull payment, meaning that funds must be proactively
withdrawn by the recipient. Listing 6.3 illustrates the application of patterns in CML and Listing 6.4
shows the generated code output.

113

Derived
Clause

Constraints

6. Domain Specific Language for Smart Contract Development

Contract Modeling Language (CML)

namespace cml.examples

import cml.generator.annotation.solidity.*

@Ownership @PullPayment

contract BecomeRichest

Party richest

Integer mostSent

clause BecomeRichest

party anyone

may becomeRichest

action Boolean becomeRichest(TokenTransaction t)

caller.deposit(t.amount)

if(t.amount > mostSent)

transfer(richest, token.quantity)

richest = caller

mostSent = t.amount

return true

return false

Listing 6.3: A CML contract with design pattern annotation for the “Ownership” and “Pullpayment”
pattern.

Solidity

pragma solidity >=0.4.22 <0.7.0;

...

import "./lib/openzeppelin/Ownable.sol";

import "./lib/openzeppelin/PullPayment.sol";

...

contract BecomeRichest is ConditionalContract, Ownable, PullPayment {

...

function becomeRichest() public payable

checkAllowed("BecomeRichest")

returns (bool)

{

if (msg.value > mostSent)

114

Pattern
Integration

6.5. Solidity Code Generation

{

_asyncTransfer(richest.id , address(this).balance);

richest = Party(msg.sender);

mostSent = msg.value;

return (true);

}

return (false);

...

}

Listing 6.4: An excerpt of the generated Solidity contract from Listing 6.3 utilizing design patterns.

Avoiding Overflows/Underflows

Signed and unsigned integers in Solidity are restricted in size to a range of values. For example,
an unsigned 8-bit integer (uint8) may incarnate values between 0 and 255− (28−1). If the result
of an operation is outside of this supported range an overflow or underflow occurs and the result
is truncated. To illustrate this behavior, when using 8-bit unsigned integers, 255+1 = 0. This
result is more apparent in binary representation, where 1111 11112+0000 00012 should result in
1 0000 00002. However, since only 8 bits are available, the leftmost bit is lost, resulting in a value
of 0000 00002. These overflows can have serious consequences that one should mitigate against.
One approach is to use require to limit the size of inputs to a reasonable range, or use a library
for secure smart contract development like OpenZeppelin’s [129] “SafeMath”, to cause a revert for
all overflows. The annotation @SafeMath on top of a CML contract adheres to the latter approach
and automatically replaces all occurrences of arithmetic operations with equivalent “SafeMath”
library calls, as shown in Listings 6.5 and 6.6.

Contract Modeling Language (CML)

namespace cml.examples

import cml.generator.annotation.solidity.*

@SafeMath

contract Counter

Integer counter = 0

clause ChangeCounter

party anyone

115

Asynchronous
Payment

6. Domain Specific Language for Smart Contract Development

may increaseCounter or decreaseCounter

action increaseCounter()

counter = counter + 1

action decreaseCounter()

counter = counter - 1

Listing 6.5: A CML contract with “SafeMath” annotation to indicate that arithmetic operations
should be checked for overflows and underflows.

Solidity

pragma solidity >=0.4.22 <0.7.0;

...

import "./lib/openzeppelin/SafeMath.sol";

...

contract Counter is ConditionalContract {

...

uint counter = 0;

...

function decreaseCounter() public

checkAllowed("ChangeCounter")

{

counter = SafeMath.sub(counter, 1);

}

...

}

Listing 6.6: An excerpt of the generated Solidity contract from Listing 6.5, containing wrapper
calls for safe arithmetic operations.

Fixed Point Arithmetic

Solidity supports integer numbers, but decimal numbers are not yet supported. Although it is possi-
ble to declare fixed point number types, they cannot be assigned to or from. When dealing with dec-
imals on systems that support only integers, fixed point arithmetic can be used. This is a technique
for performing operations on numbers with fractional parts using integers. The approach builds on
scaling an integer so that a certain (fixed) number of decimals are included, e.g. the value 1.23 can
be represented as 123 with a scaling factor of 1/100. In other words, the decimal values are “nor-

116

Safe Arithmetic

6.5. Solidity Code Generation

malized” to integer values. Arithmetic operations are then executed on the underlying integers with
the overhead of taking the scaling factors into account. The approach is demonstrated in Listings 6.7
and 6.8. It should be noted that during the interaction with the Solidity contract, the input and output
number values are of fixed-point type and require conversion in respect to the chosen scaling value.

Contract Modeling Language (CML)

namespace cml.examples

import cml.generator.annotation.solidity.*

def Integer equation()

return 8 / 2 * (2 + 2)

@FixedPointArithmetic(decimals=2)

contract FixedPointArithmetic

clause Clause

party anyone

may calc1 or calc2

action Integer calc1()

return equation() / 2

action Real calc2()

return equation().toReal() * 2.5

Listing 6.7: A CML contract containing arithmetic operations and “FixedPointArithmetic”
annotation.

Solidity

pragma solidity >=0.4.22 <0.7.0;

...

import "./lib/cml/FPMath.sol";

...

contract FixedPointArithmetic is ConditionalContract {

...

function calc2() public

checkAllowed("Clause")

returns (uint)

117

6. Domain Specific Language for Smart Contract Development

{

return (FPMath.fpmul(IntLib.toReal(equation()), 2.5E2, 2));

}

...

function equation() public pure

returns (uint)

{

return (FPMath.fpmul(FPMath.fpdiv(8E2, 2E2, 2), (FPMath.add(2E2, 2E2)), 2));

}

...

}

Listing 6.8: An excerpt of the generated Solidity contract from Listing 6.7, with applied fixed point
conversion and fixed point arithmetic wrapper calls.

Type Collections

Solidity supports the concept of arrays and mappings (dictionaries). Mappings can be seen as
hash tables which are virtually initialized such that every possible key exists and is mapped to a
value whose byte-representation is all zeros: a type’s default value [155]. This has the drawback
that mappings cannot be directly iterated over since there is no way to know how many keys exist,
because they all exist. A common pattern is therefore to use an auxiliary array in combination with
mappings to hold the keys that exist.

Collections of values in CML are denoted with [] after a type declaration and are transformed
to a Solidity mapping, where the type identifier is used as key. Library code is generated for each
collection containing a mapping and key store to provide basic editing and iteration functionality
for the collection. Due to missing generics in Solidity, this code must be dynamically created for
each mapping to accommodate for different types. In order to minimize the operational complexity
of key lookups, a circular linked list is used instead of an array to track mappings that exist. Key
existence is checked by verifying that a key node has a valid pointer to the previous and next node,
thus iterating all key entries can be avoided. The usage of a circular linked list has also the advantage
to support collection implementation variations, e.g. key ordering, a First In - Last Out (FIFO) stack,
or a First In - First Out (FIFO) ring buffer. Listings 6.9 to 6.11 illustrate the described approach.

Contract Modeling Language (CML)

namespace cml.examples

118

Fixed Point
Conversion

Fixed Point
Arithmetic

6.5. Solidity Code Generation

asset Asset identified by inventoryNumber

Integer inventoryNumber

Integer aquisitionCost

contract Mapping

Asset[] assets

clause AssetInteraction

party anyone

may addAsset or removeAsset or countAssets or countValuableAssets

action addAsset(Asset a)

if (!assets.contains(a.inventoryNumber))

assets.add(a)

action removeAsset(Integer inventoryNumber)

assets.rmv(inventoryNumber)

action Integer countAssets()

return assets.size()

action Integer countValuableAssets()

var Integer count = 0

for (a in assets)

if (a.aquisitionCost > 100)

count++

return count

Listing 6.9: A CML contract using a collection.

Solidity

pragma solidity >=0.4.22 <0.7.0;

...

import "./lib/cml/Model.sol";

import "./lib/cml/MapUintAsset.sol";

...

contract Mapping is ConditionalContract {

...

using MapUintAsset for MapUintAsset.Data;

MapUintAsset.Data internal assets;

...

119

Library Usage Streamlined
Type & Operations

6. Domain Specific Language for Smart Contract Development

function addAsset(Model.Asset memory a) public

checkAllowed("AssetInteraction")

{

if (!assets.contains(a.inventoryNumber))

{

assets.add(a.inventoryNumber, a);

}

}

...

function countValuableAssets() public

checkAllowed("AssetInteraction")

returns (uint)

{

uint count = 0;

for (uint i = 0; i < assets.size(); i++)

{

Model.Asset storage a = assets.getEntry(i);

if (a.aquisitionCost > 100)

{

count++;

}

}

return (count);

}

Listing 6.10: An excerpt of the generated Solidity contract from Listing 6.9.

Solidity

pragma solidity >=0.4.22 <0.7.0;

...

import "./CLLUint.sol";

import "./Model.sol";

...

library MapUintAsset {

...

struct Data {

mapping(uint => Model.Asset) map;

CLLUint.CLL mapIdList;

}

...

using CLLUint for CLLUint.CLL;

120

Operation Usage

Mapping
Circular Linked

List (CLL)
Key Storage

CLL Library Usage

6.6. Evaluation

...

function size(Data storage self) public view returns (uint) {

return self.mapIdList.sizeOf();

}

...

}

Listing 6.11: An excerpt of the generated Solidity collection library code.

6.6. Evaluation

In this section, we provide arguments to support the claim that our proposed language concepts
lead, through a reduction of complexity, to an increased comprehensibility, and reduced error
susceptibility. For this purpose we compare several contract use case scenarios (partly taken from
the Solidity documentation) specified in CML with their respective Solidity implementations
generated by our framework.

Solidity is a Turing complete language, which gives expressiveness and power, but can lead to
less comprehensible code and a more difficult assessment of correctness. As a general rule, the
more expressive a language is, the higher its complexity, and the more it is prone to include bugs
and errors. In comparison with Solidity, our DSL contains abstraction much closer to the target
domain, with the aim to promote clarity and comprehensibility.

In our context, to measure the complexity, we follow the characterization of complexity as detail
complexity, defined by Senge [156] as “the sort of complexity in which there are many variables.”
We relate this definition to measuring the logical lines of code and syntactic elements (AST nodes)
that are contained in respective representations. The number of AST nodes is determined for
Solidity with the help of an ANTLR parser [157] (taking into account all “ASTNode” expressions),
whilst for CML it is regarded as the elements contained in the generated AST (parse tree). Please
note that this is not intended as a precise and generalizable measurement, but rather to give a rough
comparison of our approach compared to contracts encoded directly in Solidity. Looking at the
results, which are summarized in Table 6.3, we can see that both metrics for the CML representation
are always lower. On average CML performs 840% better in terms of Logical Lines Of Code
(LLOC) and 610% better in terms of syntactic elements. Our results indicate that, in our examples,
evidence for the higher abstraction level of CML can be found, which leads to lower complexity
and in turn should lead to less susceptibility to errors.

121

Provided Operation

6. Domain Specific Language for Smart Contract Development

Table 6.3.: A complexity comparison between CML representation and generated Solidity
implementation.

CML Solidity ∆%
Use Case LLOC1 SE2 LLOC SE LLOC SE

Become Richest 18 43 208 502 1056 1067
Purchase 39 116 216 584 454 403

Simple Auction 28 75 402 558 1336 644
Time Lock 27 70 344 475 1174 579

Voting 64 227 485 1655 658 629

AVG 35,2 106,2 331,0 754,8 840,3 610,7

1Logical Lines of Code 2Syntactic Element: AST Node

6.7. Discussion

There are several challenges regarding the formalization of contracts as discussed by Pace and
Schneider [146]. A survey of formal languages for contracts performed by Hvitved [158] gives an
overview of possible approaches. With regard to contract formalization, one of the main problems
is the succinct, consistent, and sufficient representation of contractual statements. Finding the
right abstractions for frequently recurring components in legal contracts that are relevant for the
description of smart contracts is crucial. On this basis, a generic description covering a wide range
of contract scenarios can be worked out. To our best knowledge no literature exists that deals with
the conceptual analysis of relevant components. It rather seems that each work in the contract
formalization field has its own assumptions about an optimal description.

Regarding the sufficient representation of contracts, it is debatable whether every statement
can be fully grasped as a deterministically calculable expression. Syntactic ambiguity is almost
always present in natural language and often unintentional. Moreover, some legal statements are
intentionally kept vague and are therefore difficult to express. These statements must then be
interpreted into a clear and possibly controversial representation. Apart from this, consideration
could be given to improving the drafting and formalization process of covenants through a graphical
representation, as suggested by Martínez, Díaz, Cambronero, et al. [151], to better reflect the
complex relationships of contractual clauses.

Our approach of having clause statements, in addition to the imperative declaration of actions, is
based on the idea of providing an abstract level of description that is closer to conventional contract
clauses and provides a general overview of contract behavior. This has the advantage of better

122

6.8. Related Work

isolating execution context requirements for actions, which promotes comprehensibility and leaner
actions, as only requirements depending on input parameters need to be checked within respective
actions. To further extend the abstraction efforts, language constituents are used that are more
closely related to application domain concepts, which helps to make their intended purpose more
explicit. As an example, the Party and Duration type specifiers have a natural language meaning
that is also accessible to non-programmers, as opposed to their corresponding representation as
address and uint type in Solidity. CML builds a generic framework for contract formalization
without an exuberant syntax leaking implementation details. The code generation process allows
to alter abstracted contract specifics to a desired implementation form. Hence, a contract repre-
sentation that is very compact can translate into a more verbose implementation language, in which
the generator helps to construct the needed bulk.

Assuming that experts create the code generator, less experienced users can rely on a correct
implementation. No manual coding effort is required, therefore accelerating the development time
while decreasing the chance of errors when compared to manual coding from requirements. This
is an important aspect, as there are many potential causes of programming errors in Solidity, like
integer overflow and underflow, re-entrancy, or timestamp dependence, to just name a few [159].
Further, in case of a required adaption to new best practices, the code generator routines must only
be updated in one place and can be reused to generate adapted code.

On the negative side, since abstraction is always connected to information loss, a code generator
can hardly cover all cases and it might be required to alter the generated output to inject some
custom code. Another problem is that code is generated with the goal of being generally applicable,
which entails increased complexity. This might result in generated code that is more elaborate and
less comprehensible. In the context of Solidity this may mean that the code efficiency in terms of
transaction costs is not on par with use case optimized code. As the financial aspect is an important
concern in Solidity, this might hinder the adoption of this approach, but could be out weight by
the gained advantages concerning productivity and code quality.

Overall, if applied correctly, abstraction and code generation can increase the efficiency, clarity,
and flexibility of code whilst reducing the susceptibility to errors.

6.8. Related Work

Several works pursue the approach to utilize a domain specific language and the concept of
abstraction to facilitate the creation process of smart contracts.

Regnath and Steinhorst [149] have derived several language design concepts to approach a unified
contract language demonstrated by a prototype implementation called SmaCoNat. The proposed
concepts include the reliance on a small set of predefined operations and data types, an enforced

123

6. Domain Specific Language for Smart Contract Development

sectioned code structure, limited aliasing, and building on natural language identifiers. Hence,
approaching a unified contract language that enables a common understanding of code semantics
on higher abstraction layers. In comparison to our work, the abstraction is put on a relatively
high-level, which can pose limitations on the expressiveness of the language (as being too generic).

Another approach by Frantz and Nowostawski [147] proposes a semi-automated method for
the translation of institutional constructs in a human readable behavior specification to Solidity
smart contracts. The applied conceptual approach is closely related to our work, in the sense that
the institutional constructs describe the parties stipulations in a structured manner, similar to our
clause formalization. Another commonality is the generation of Solidity code from an abstract
representation, but unlike our work, the generated smart contracts contain only skeleton code and
require considerable manual input to make them executable.

Yet another paper by He, Qin, Zhu, et al. [148] proposes a specification language for smart con-
tracts called SPESC, which can define the specification of smart contracts for the purpose of collab-
orative design. The SPESC language contains term constructs that are akin to the clause constructs
in our work, but the details of actions cannot be adequately specified and code generation is missing.

In general, the above mentioned publications contain interesting approaches and findings, but the
proposed domain specific languages lack a model transformation to an executable smart contract
implementation, which is demonstrated in this work. To our best knowledge, apart from our and
the already mentioned work by Frantz and Nowostawski [147], there is only one further work
by Mavridou and Laszka [123] that deals with the generation of Solidity code from an abstract
representation. Regarding the clause formalization itself, our approach can be compared with
works by Prisacariu and Schneider [150] and Martínez, Díaz, Cambronero, et al. [151] in which
contract specification is based on the deontic notions of obligation, permission, and prohibition
applied to actions. This approach is often used in the formalization of contracts.

In order to also point out efforts from the legal tech industry in regards to contract specific DSLs,
the Accord Project [160] is to be mentioned. It is an open source, non-profit initiative developing
specifications and open-source software tools for future smart legal contracting. The project aims
to provide an open, standardized format for smart legal contracts that binds legally enforceable
text in natural language to executable business logic. The proposed toolchain contains Ergo [161],
a DSL with which the execution logic of legal contracts can be specified. The language features
programming constructs specifically designed for legal contracts, thus it is also comparable to CML.

6.9. Conclusion

In this chapter we have analyzed important contract building blocks and proposed a high level smart
contract language called CML. CML incorporates a fluently readable, clause like formalization

124

6.9. Conclusion

concept to describe the individual operational intents (commitments) of contract participants. This
approach enables a representation that is conceptually and syntactically easier to grasp and thus also
improves reasoning about a contract. Another key point is that CML describes contract semantics
on an higher level and transfers the specifics of an implementation to lower levels. Consequently,
the specification of a contract with its underlying model and defined behavior can be decoupled
from the actual implementation. This aspect is demonstrated by transforming contracts from CML
to Solidity code. It is possible to automate platform specific implementation steps, for example the
inclusion of design patterns or coding abstractions. Thus, contract creators can be shielded from
low level implementation specific tasks.

For future work, we plan to evaluate the efficiency of our approach in an experiment. Further,
we plan to enhance the Solidity code generation process with other commonly occurring design
patterns, coding abstractions, and more powerful code inference mechanisms. Beyond that, code
generation support for another smart contract platform can be incorporated. This could provide
further insight into the general applicability of the proposed smart contract abstraction mechanisms
and lead to future improvements and extensions.

125

7. Blockchain DevOps

With the evolution and proliferation of blockchain, the technology is becoming more prevalent in
enterprise software development. Using the already proven DevOps approach in this setting makes
sense, as it can accelerate the general pace of software development and delivery, improve software
quality, and increase overall productivity. However, there is currently a lack of guidance on a
structured DevOps approach and a breakdown of the specifics in the context of blockchain-based
software development. Therefore, we combine gray literature and DevOps application studies
from pertinent GitHub projects to systematically investigate current practices and solution ap-
proaches for an efficient blockchain-oriented DevOps procedure in this chapter. In this process,
we elaborated procedural steps and related activities according to the main stages of Continuous
Integration (CI) and Continuous Delivery/Deployment (CD). Our research shows that core DevOps
concepts and activities are similar to other areas and are entirely possible with already established
CI/CD solutions that orchestrate the right tools, with the difference that more rigorous testing and
differentiated deployment practices are required due to the inherent immutability of blockchain.

7.1. Introduction

DevOps and blockchains are two hype terms of the recent past. DevOps is a multi-layered concept
that is not easy to grasp and can be defined in many ways [162]. In its broadest sense, DevOps
refers to the combination of software development (Dev) and operations (Ops) with a focus on
cross-organizational integration to bridge the gap between different stages of the software life cycle.
Two core aspects of DevOps are Continuous Integration (CI) and Continuous Delivery/Deployment
(CD), which support the DevOps principle of interlocking the two underlying disciplines through
a high degree of automation. CI usually refers to integrating, building, and testing code, whilst
CD is primarily about automating the deployment and release engineering process.

Blockchains, on the other hand, combine various computational and economic concepts to
provide a fraud-free intermediary platform for efficiently settling transactions between different
parties. In this context, shared business processes can be realized through application code running
autonomously on the blockchain to digitally facilitate, verify, and enforce the execution of arbitrary
terms via smart contracts. As a special feature, smart contracts are usually not subject to a normal

127

7. Blockchain DevOps

software life cycle, in which a new code version may add features or fix bugs. This circumstance
means that software quality and reliability are important pillars in development, with frequent
and varied tests attempting to ensure high requirements in these areas. In this and various other
respects, DevOps can provide valuable support, be it through test automation or the provision of
stable operating environments. However, at the moment there is a lack of a structured approach
and breakdown of the specifics regarding DevOps usage in this area. To address this gap, we
explore DevOps approaches and methods by gathering data from multiple sources and applying
GT techniques to extract and identify common practices.

In order to concretize the research objectives, we ask the following research questions: What
are typical stages and activities in a DevOps approach for blockchain-based applications? What
are the particularities of using DevOps in blockchain-based software development?

For illustration purposes, this chapter describes DevOps in the context of Ethereum, a popular
smart contract platform, and Solidity, the platform’s leading programming language for smart
contracts. However, it can be assumed that the presented concepts and basic practices are in
principle transferable to other platforms as well.

This chapter is structured as follows: First, we discuss related work in Section 7.2 and our
research methodology in Section 7.3. Then, we elaborate DevOps for blockchain-based solutions
as main contribution in Section 7.4. Finally, we discuss findings in Section 7.5 and conclusions
in Section 7.6.

7.2. Related Work

According to our research, there is currently no academic literature that specifically addresses
DevOps in the context of blockchain-based software development. There are some works that deal
with (different types of) testing such software that can be considered as extended literature (see
[163] and referenced literature therein). That aside, here are some papers that at least decidedly
mention DevOps in the context of blockchains and smart contracts. Koul [164] discusses challenges
faced in testing blockchain-based applications. The paper describes different approaches to testing
and acknowledges the need to devise specialized tools and techniques for this purpose to ensure
quality standards. Continuous testing in the course of DevOps is also mentioned, but not described
in more detail. Li, Xu, Hou, et al. [165] examine the challenges of developing and operating
consortium blockchain solutions. Within their work, they discuss eight pairs of challenges and
solutions for different phases of developing and operating such systems. One of the implications
identified in their study is that applying DevOps culture and practices can be beneficial to overcome
several challenges. Unfortunately there are no details on how to practically address this. Yussupov,
Falazi, Breitenbücher, et al. [82] analyze how blockchain technology and smart contracts fit into

128

7.3. Research Study Design

the serverless architectural style of developing cloud-native applications. The authors picture
and derive a set of scenarios in which blockchains act as different component types in serverless
architectures. Moreover, implementation requirements that have to be fulfilled to successfully use
blockchains and smart contracts in these scenarios are formulated. In the course of this, DevOps
requirements are also discussed, more specifically under the aspects to support the development of
smart contracts and deployment automation, but not in sufficient detail. Other work in the broader
context can also be cited that uses blockchain technology to improve DevOps and software devel-
opment processes, particularly with respect to integrity and auditability. These include papers by
Yilmaz, Tasel, Tuzun, et al. [166] to enhance development through a distributed record of software
development events and Beller and Hejderup [167] to address trust issues through democratized
build services or package repositories.

To our best knowledge, no academic work exists to date that addresses DevOps with a focus on
blockchain-based software engineering. It is the goal of our work to make a first contribution in
this respect in order to remedy this lack.

7.3. Research Study Design

Given the fact that our research objective is strongly linked to field applications of blockchain and
that practical knowledge is often conveyed in practitioner reports, we decided to conduct a research
methodology that is guided by the pattern derivation approach [37], where we define a pattern as the
conceptual equivalent of (best) practices. In accordance with this scheme and based on our research
questions, we applied GT techniques [38] [39] for theory building where patterns are discovered
(“mined”) and codified (“written”). Driven by our research questions and known practices from our
own experience, we searched the major search engines (e.g., Google, Bing) for the following search
string (“Blockchain” OR “Smart Contracts”) AND (CI/CD OR “Continuous Integration” OR
“Continuous Delivery” OR “Continuous Deployment” OR “DevOps” OR IAC OR “Infrastructure
as Code”) in order to gather a number of technically in-depth sources from the so-called “gray" liter-
ature [40] (e.g., practitioner reports, practitioner blogs). In addition, we searched GitHub for typical
CI/CD configuration files (e.g., Travis CI: .travis.yml, GitLab CI/CD: .gitlab-ci.yml) which contain
smart contract development frameworks (e.g., Truffle [168], Hardhat [169] [formerly Buidler]) to
study their configuration. This resulted in a total of 1343 (Truffle 1313, Hardhat 30) .travis.yml and
53 (Truffle 50, Hardhat 3) .gitlab-ci.yml hits. Overall, results were filtered and reviewed for suitabil-
ity according to predefined inclusion and exclusion criteria, which encompassed to accept sources
of any type that relate to the topics at hand and exclude works that seem unbalanced in presentation.
The resulting source pool [170] was then analyzed using GT techniques. This included a close ex-
amination and labeling of materials with labels (“codes”) and optional memos explaining important

129

7. Blockchain DevOps

aspects of the findings while establishing conceptual relationships among the codes (“axial coding”)
to identify candidate patterns. In this process, pattern discovery and validation occurred stepwise in
several iterative phases, using new sources (inspired by previous iterations) to constantly compare,
revise, and contrast patterns. The primary stopping criterion, as is common in GT-based studies,
was theoretical saturation, i.e., a state in which adding new sources no longer yields new insights.

7.4. DevOps for Blockchain Smart Contracts

The core DevOps concepts and activities in the blockchain domain may not be very different from
traditional software development. Developers work in a local branch on the source code for smart
contracts and dependent applications, add new features or apply corrections to that code, test those
changes, and submit their work to a source control management system from which a solution can be
build. A release pipeline then deploys the smart contracts or dependent applications to one or more
system environments. However, some inherent blockchain peculiarities cause specific constraints
that need to be considered when adopting DevOps principles. In the following, we look at core as-
pects of DevOps for smart contracts and blockchain-based solutions, focusing on considerations and
specific approaches for incorporating CI and CD. Since it is useful to divide CI/CD processes into
phases, the content on these topics has been organized accordingly by key phases, namely for CI into
the phases Code, Build, and Test and for CD into the phases Release, Deploy, Operate, and Monitor.

7.4.1. Preliminary Considerations

Before we turn to the details of CI/CD in the scope of blockchain smart contracts, we will first take
up a number of considerations that should be made upfront in the course of a DevOps application
in the blockchain area.

Governance and Responsibilities

It plays a role whether smart contracts are developed across members of a consortium or au-
tonomously without the influence of others for a broad user base, which usually also affects the
choice regarding a permissionless or permissioned blockchain. This aspect influences the distri-
bution of competencies, authorizations, and runtime dependencies, which accordingly also have
an impact on DevOps, e.g. with regard to the management of the source code, the development
platforms, the infrastructure, the blockchain and the implementation of test and roll-out scenarios.
For example, a holistic DevOps strategy for a consortium solution must take into account not
only local development of a solution including testing, but also testing at the consortium level and
testing by blockchain members for member-specific applications. Overall, DevOps in a multiparty

130

7.4. DevOps for Blockchain Smart Contracts

environment is more complex in terms of defining policies, responsibilities, roles, environments,
and build/deployment pipelines.

Key Management

Cryptographic keys must be maintained to operate own nodes, set up test networks, and manage
identities under which transactions are created/verified and blockchain code (updates) are deployed.
Problems arise if the infrastructure holding these keys is compromised. CI/CD solutions, as such
infrastructure, must therefore be subject to strong security measures and restrictions. As a general
precaution, keys and other credentials should not be stored in source files, configuration files, envi-
ronment variables or file systems. To prevent accidental disclosure of keys via the Version Control
System (VCS), secret scanning tools can be used (e.g. gitleaks, truffleHog). It is recommended to
run these tools locally before each commit, which can be realized with so-called hooks (pre-commit
hooks for git) that run custom scripts when important actions take place in the VCS, or to integrate
them into the build validation process to prevent merging code that reveals secrets. Storing keys in
CI/CD systems may be an option in some cases as long as only keys for test environments are stored.
As soon as keys are stored for production systems, it becomes dangerous because the security of a
CI/CD system cannot be relied upon. A better approach is to use a dedicated key management solu-
tion (e.g., Hashicorp Vault [69]) for securely accessing secrets. Such a solution provides a unified
interface for accessing secrets while enabling strict access control and recording a detailed audit
trail. With this approach, secrets must be explicitly requested via a secure authentication method
(e.g., JSON Web Token) when CI jobs are executed, rather than being provided via variables.

Upgradability

Smart contracts are immutable by design, meaning they cannot be upgraded once they are deployed.
Although blockchain-based software benefits significantly from this fundamental immutability
paradigm, some degree of mutability is required for bug fixing and evolving smart contracts over
time. To resolve this contradiction, there are ways to update smart contracts (see Section 7.4.3)
with different types of governance (e.g., single-authority, multi-authority) to control the update
process. This aspect can become a weak point if not managed with great care. Interacting users
need an increased level of trust in the upgrade process and its management, since updates can
significantly change the behavior of the system. In the context of DevOps, the lifecycle management
of smart contracts must be embraced. This means that scenarios such as updating existing contracts
and compatibility with applications across multiple contract versions should be addressed and
considered in testing as well.

131

7. Blockchain DevOps

7.4.2. Continuous Integration (CI)

Continuous Integration is a DevOps practice for automating the integration of code changes made
by multiple developers. More specifically, it allows developers to frequently integrate changes
(merge code) into a central repository, where each integration is validated by an automated build,
including tests, to catch integration errors up front. The main goals of CI are to optimize software
quality by detecting and fixing bugs faster, and to minimize the time needed to validate and deploy
software updates. The general CI flow is as follows: Developers have a local copy of the code on
which they make changes and run local tests, once tests are successful they commit their changes
and then submit a merge request. This request to merge code changes into a shared code repository
is then reviewed through an approval process and depends on the success of a series of automated
tests included in the build pipeline. Whereby the build pipeline is typically triggered on every
merge request that targets the main branch as well as whenever a commit is pushed to that branch.

These basic principles and action steps can also be applied to blockchain-based development. In
our research, we found that already established CI solutions (e.g., Jenkis [171], Travis CI [172], Cir-
cleCI [173], Gitlab CI/CD [174], GitHub Actions [175]) provide sufficient means to build and test
smart contracts and are also practically used for these purposes. These integrations usually consist
of a dedicated CI environment (CI server) that monitors a code repository and performs automated
actions in a (dockerized) shell environment when changes occur to check the state of that code along
with the change that occurred. In general, there are a number of frameworks for smart contract
development that support the management and automation of recurring tasks that occur during the
creation process. As such, these frameworks are also essential in a CI approach to more easily auto-
mate certain repetitive tasks (like testing). Corresponding tools (e.g., Truffle [168], Hardhat [169],
Embark [176], Brownie [177], Waffle [178]) aim to provide a comprehensive development solution
with an integrated testing blockchain to facilitate compiling, deploying, testing, and debugging
smart contracts. These tools are usually available as Command Line Interface (CLI), either as
pre-built Docker images, or they can be easily installed and run in a (dockerized) shell environment.
In this manifestation, they can also be easily applied in a CI pipeline during various processing steps.

Code

The code phase focuses on core development tasks within IDEs supported by appropriate plugins
and frameworks. A suitable programming environment helps to avoid inconsistent styling, security
vulnerabilities and code anti-patterns, which can later lead to the failure of automated tests.

Solidity code is typically written either in the web-based Remix IDE [179] with integrated
compiler and Solidity runtime environment or locally in a code editor of choice. In the Remix IDE,
plugins can perform a variety of tasks such as verifying contracts, linting, generating documentation,

132

7.4. DevOps for Blockchain Smart Contracts

compiling, debugging, deploying, and much more to support a rapid development cycle. When
developing in a local IDE supported by a VCS system, as is typically the case when implementing
larger projects, such focused integrated IDE support and abundance of development tools as in
Remix is not yet present. As a way out, there is currently either the possibility to integrate the local
file system into Remix, or conversely, there is the embryonic option to integrate Remix plugins into
a local IDE (e.g., remix-vscode for Visual Studio Code [180]). Overall, the Remix IDE is designed
for UI-driven ad hoc development characterized by non-repetitive tasks, while a local IDE along
with the use of CLI tools supports automation.

The general design principle in software engineering of reducing complexity is especially true in
the design of smart contracts. Emphasizing the creation of code that is simple and comprehensible,
rather than clever, increases code reliability and minimizes the room for errors. Decomposition
plays an important role in this context, i.e., breaking down a solution by separable processes and
core entities (similar to microservices) to enable independent evolution of individual components.
Code should be factored out into components which are well specified and easy to comprehend.
Likewise, contracts should be focused on a single task or capability (preferring many simpler
smart contracts over a few larger ones) and be designed to minimize the number/size of on-chain
transactions/writes (to reduce costs) as well as the dependencies required for testing. For general
concerns (e.g., access control), production-tested library contracts (e.g., OpenZeppelin [129])
and standardized contract implementations (e.g., ERC-20 [181]) should be used. Furthermore,
contracts should be developed and tested by locking pragmas with a fixed compiler version to avoid
the impact and risk of undiscovered bugs in newer compiler versions. In addition all public contract
interfaces (everything in the Application Binary Interface (ABI)) should be fully annotated with
specially tagged comments in the so-called NatSpec format [182] (inspired by Doxygen [183])
to provide documentation for functions, return variables, etc.

Build

The build phase includes all the steps required to generate the artifacts needed for execution from
the source code. Regarding Solidity, this is the compiled bytecode for the EVM and the associated
ABI as the interface required to interact with the EVM bytecode. To generate these artifacts there
are two compilers, solc, written in C++, and solc-js, which uses Emscripten [184] to cross-compile
from solc C++ source code to JavaScript, thus both use the same compiler source code. The solc
compiler [185] is available via binary packages for Linux/MacOs and as a Docker image that
contains the compiler executable and allows Solidity files to be compiled by mounting a local
folder. The solc-js [186] compiler is available via npm as Node.js library [187] with fewer features
and compiles purely using JavaScript, so it works in browser and Node.js environments. The rec-
ommended way to interface with the Solidity compiler especially for more complex and automated

133

7. Blockchain DevOps

setups is the so-called JavaScript Object Notation (JSON)-input-output interface. The compiler
API expects a JSON formatted input and outputs the compilation result in a JSON formatted output.
The compilers can be used either directly or via development frameworks mentioned earlier, which
allow easier handling of compiler versions and compiler configuration. In the latter option, the com-
pilation output format may vary depending on the framework used, but is usually represented as a
JSON bundle containing useful information related to compiler input/settings (e.g. compiler name,
compiler version) and output (e.g. bytecode, Application Binary Interface [ABI], SourceMap, etc.).

In some cases it may be necessary to use a preprocessor (e.g., solpp [188]) before compilation,
e.g. to reduce the source files by merging referenced imports from the file system, Node.js modules
or URLs and their dependencies into a single file. Another reason would be, if the source files
contain symbols or macros that should be extended, or if they contain proprietary operations that
are only useful during development (e.g. the console.log() command from Hardhat) and should be
removed. For CI, it is best to keep raw source files in a separate directory and run the preprocessor
to output the code to the pipeline’s source directory before compiling a project.

Test

Once a build is successful, it is automatically deployed for review in a test environment where a
series of automated tests are run. There are numerous ways to perform tests, and this also applies
to blockchain-based software. A basic division according to separable components of the software
to be tested and the test purpose is useful. For components, a subdivision according to architecture
layers (i.e., application, smart contract, data, consensus, network) is suitable [163]. Regarding test
purposes, these can be diverse and categorized in different ways, e.g., by the type of execution or
focus. In terms of test complexity, a chronological order of unit, integration, system, and acceptance
testing is generally used. Figure 7.1 provides an overview and aid to orientation with respect to
possible test types. A detailed discussion of all presented test types is beyond the scope of this
chapter. Therefore, we mainly focus on smart contract testing with currently established methods
and practical tools considered useful in the context of CI.

Testing Environment For testing, smart contracts need to be deployed in a blockchain en-
vironment. This environment can be either an existing permanent or a purpose-built ephemeral
environment that is specifically provisioned. In order to achieve reproducible results and avoid
undue delays, the latter option is usually resorted to by utilizing a (temporary) local (in-memory)
blockchain for testing and development purposes (e.g., Ganache [189]) that simulates the char-
acteristics of a real blockchain network. Unlocked and funded accounts are provided and new
transactions are mined instantly, making automated tests much faster and cheaper to run. It is also
easier to manipulate the blockchain environment, such as changing the gas price, mining speed, and

134

7.4. DevOps for Blockchain Smart Contracts

Type
Systems
Symbolic
Execution

System
Testing

User Accept.
Testing

Testing

Static Testing
(Reviews)

Dynamic
Testing

White Box
Testing

Unit Testing

Black Box
Testing

Functional
Testing

Non-Functional
Testing

Security
Testing

Performance
Testing

Usability
TestingFuzz

Testing

Integration
Testing

Mutation
Testing

Formal
Verification

Proof
Assistants

Static Analysis
(Tools)

Static
Testing

FormalInformal

Walkthrough

Peer Review

Inspection

Audit

Figure 7.1.: An overview of test types for smart contracts and blockchain-based software.

time flow in general, which can be useful for testing. However, there are some situations where this
technique reaches its limits. For example, when there is a need to test a contract against live test data
(which is not fully reproducible) to confirm that certain code paths work correctly. Another example
is testing compatibility with live contracts for which no source code is available and whose behavior
can therefore not be replicated for testing. As a way out, there is the possibility of integrating
production blockchains into a local blockchain testing environments (see next paragraph Test Data).
In our research, we also came across an unconventional but constrained method of testing deployed
contracts live without consuming gas [190]. This exploits the estimateGas command by clever
construction, calling estimateGas on a contract deployment invocation for a contract with test code
in the constructor and inferring success from the returned result.

Test Data The tight intertwining of data and logic and the embedding of transactions in a
cryptographically secured blockwise data structure, make application testing and test data gener-
ation for blockchain-based applications more complex than for traditional applications. As these
typically have a clearer separation between the application logic and an underlying database, for
which there are usually means to prepopulate it with test data. Applications relying on a relational
database, for example, can be setup with initialization scripts that contain INSERT SQL statements
to prepopulate database tables for testing. However, such an approach is much more difficult
with respect to blockchain applications. This is because a desired initial state for a prepopulated
blockchain in the context of a business process typically consists of a series of signed transactions

135

7. Blockchain DevOps

from multiple parties that have taken place via a single or multiple smart contracts.

Generally speaking, there are three ways to equip a blockchain for testing. In the simplest
case, one uses an empty blockchain without any transaction history, a blank slate, so to speak.
This approach is a viable option before initial deployment and is suitable for local testing of
transaction history-independent logic and is usually also the starting point for many test cases.
Another possibility is to fill a blockchain synthetically. Transactions are grouped within blocks,
so prepopulating a blockchain could be done with custom tooling that forms valid blocks, though
it requires careful coordination and sequencing of transactions also in the context of multiple
parties. A more practical option in this context, as is common when setting up tests, is to run
specific sequences of transactions and save the resulting state using a snapshot. This approach
can be promising in complicated test cases to speed up tests by setting up so-called test-fixtures,
i.e. consistent test environments with all preconditions a system shall have. With this approach,
similar to how one would set up a checkpoint in a video game, a snapshot of the blockchain state
at the current block is saved and the blockchain can be restored to this state again and again, which
simplifies automated tests. The last way to equip a blockchain for testing is to fork a production
blockchain. With this approach, one can simulate the same state (i.e. entire transaction history) as
the production blockchain within a local development blockchain. This is achieved by forking the
production blockchain from a node endpoint at a given block into the local chain. This usually does
not involve downloading the entire production blockchain, but only making calls to endpoint nodes
for data as needed. Tasks related to new blocks are processed by the local chain, while tasks for
older blocks (e.g., reading historical blockchain data) are processed by the original forked chain.
Overall, forking provides a way to interact with production contracts and data in a deterministic
manner to test complex interactions locally. Or in other words, it allows to work with existing smart
contracts on the blockchain without recreating them and without making real transactions.

Unit and Integration Tests Unit tests are typically automated tests written and run by software
developers to ensure that a section of an application (known as the “unit”) meets its design and
behaves as intended [191]. According to a survey of Chakraborty, Shahriyar, Iqbal, et al. [192]
regarding blockchain software, the most common technique to check correctness is unit tests
followed by manual code reviews.

In the context of smart contracts, unit tests should ideally cover all contract methods, or at
least those that are publicly exposed (i.e., public, external). As part of this, it should be ensured
that method return values are as expected and invalid input parameters are rejected. Further,
expected execution of reverts and event emitting should be checked, which is a bit more complex
as this requires processing of transaction receipts/logs, but there are tools to help with this (e.g.
truffle-assertions [193], OpenZeppelin Test Helpers [194]). Since most smart contracts introduce

136

7.4. DevOps for Blockchain Smart Contracts

some form of role-based access control, access privileges should also be verified. With respect to
the interdependence of test cases, each test case should be executable in isolation without relying
on the state imposed by other test cases. Although it is possible to reduce test execution time by
writing cascading test cases, this should be avoided to clearly communicate the intent of test cases
(to others) and avoid dependency on the execution of other test cases to minimize complexity.

Integration tests as the next level, are more complex than unit tests, as the behavior of different
parts as a whole is tested. For smart contract testing, this can mean interactions and complex sce-
narios with multiple calls between different dependencies (i.e., users/contracts) of a single contract
or across multiple contracts, as well as on all types of oracles and front-end client applications. Sub-
sequently, one can assume two different areas for integration testing. One refers to inter-blockchain
interaction between cooperating smart contracts, the other to interaction between smart contracts
and dependent client applications (consortium member backends) running elsewhere. The first
aspect can be covered with blockchain development frameworks, for the latter other tools for
integration testing might be more efficient.

When it comes to writing automated tests for Ethereum, developers have basically two main op-
tions: Solidity and JavaScript/TypeScript. Solidity tests can basically test every single function in a
contract in a bare-to-the-metal style, as the tests are written in the language of the components under
test, resulting in test behavior that is close to EVM. When writing unit tests in Solidity it is necessary
to create mock dependencies for oracles or dependent contracts to return predefined values for differ-
ent methods and arguments. In this context, a common pattern is to create mock contracts as separate
Solidity files that mimic the original dependency, but in a way that can be easily controlled by the
developer for testing (e.g., [195]). To this end, the mock contract simply extends the dependency
and adds/overrides functions. This approach can be cumbersome for several reasons: Another con-
tract is created for each individual mock, thus the test setup is more complex and slower as multiple
contracts need to be deployed and put into a specific state for each test. Further, test flexibility is lim-
ited to a predefined mock functionality. JavaScript tests, unlike Solidity tests, test contract behavior
from an external client viewpoint (using contract abstractions and web3 [196]) and therefore can
cover external and public, but not internal or private Solidity functions. Under the hood, JavaScript
tests usually rely on established testing utilities such as the Mocha [197] testing framework paired
with Chai [198] as an assertion library to test smart contracts asynchronously. This usually makes
tests easier to implement and setting up a desired contract state less tedious. Some frameworks have
also addressed the cumbersome mock situation of Solidity tests, and there are efforts to create mocks
dynamically within the test code (e.g., Waffle [178], MockContract [199]). Some frameworks also
allow to execute tests in parallel (e.g., OpenZeppelin [129], Truffle [168]), to speed up testing, if
the tests are split across multiple files. In that case, each test file is executed by the test runner at
the same time, saving (a massive amount of) time when running a large test suite. The runner as test

137

7. Blockchain DevOps

Local Blockchain

Functionality

Smart
Contract

A

Smart
Contract

B

Solidity Tests

Unit Tests

Unit
Test A

Unit
Test B

Integration Tests

Integration Test
A and B

JavaScript Tests

Unit Tests

Unit Test A
Dynamic Mock B

Unit Test B
Dynamic Mock A

Integration Tests

Integration Test
A and B

Mock
B

Mock
A

Empty (Clean-Room)

Synthetic (Snapshot)

Fork (Production BC)

Figure 7.2.: An illustration of the unit and integration test structure for Solidity and JavaScript tests.

environment creates an independent local blockchain for each parallel run, so that there is no risk
that the tests interact unexpectedly with each other. Altogether, to make an analogy to the distinction
between Solidity and JavaScript tests, the testing of an API can be used, whereby the logic imple-
mentation can be tested either externally (including the transmission path) or directly internally.
Consequently, one can say that JavaScript tests are more focused on integration tests and Solidity
tests are more focused on unit tests, but in practice, one can also perform unit tests with JavaScript.
Figure 7.2 illustrates this aspect and the structure for Solidity- and JavaScript-based testing.

Static/Dynamic Analysis While unit and integration tests verify that smart contracts behave
as desired according to implemented test cases, they do not uncover potential vulnerabilities in
the code itself. For this purpose, it is common to perform static analysis checks on smart contracts.
Static code analysis is a debugging technique that examines code with heuristics without actually
executing it. A linter can be understood as most basic form of static analysis and can help to improve
the code quality and remove minor issues by e.g., checking syntax errors, structural problems,
conformance against best practices, and code style guideline violations. A linter tool is typically
one of the first applied measures to verify smart contracts. As a best practice, execution before each
commit is a good idea, which can be realized with VCS hooks (pre-commit hooks for git). However,

138

7.4. DevOps for Blockchain Smart Contracts

there are also more advanced tools beyond a linter that extend on static analysis and are commonly
used to detect security vulnerabilities. These use source code or generated bytecode to examine
potential code behavior, vulnerable patterns, and errors that may occur during a program’s runtime.
Today, many such tools exist (e.g., MythX [200], Securify [201], SmartCheck [202], Slither [203],
Manticore [204], Mythril [205]; for an overview see [206], [207]) some of which incorporate a suite
of vulnerability detectors that build on analysis techniques such as dynamic analysis, symbolic
execution, Satisfiability Modulo Theories (SMT) solving, to name a few. According to a survey
by Ayman, Roy, Alipour, et al. [208] on the frequency of mentioning such tools on Medium and
Stack Exchange, Mythril was mentioned most often.

In addition to these tools, there are also special test tools for smart contracts that rely on tech-
niques already used in other software areas. One example is fuzz testing (e.g., Echidna [209]),
an automated testing technique in which software is fed invalid, unexpected, or random data as
input and monitored for vulnerable program states and exceptions (e.g., crashes, memory leaks).
Another example is (code) mutation testing (e.g., Vertigo [210]), where certain components in a
source code are intentionally changed to cause errors and ensure that a test suite is able to detect
the changes. This technique can be used to evaluate the quality of existing and to develop new tests.

Overall, analysis tools have different capabilities and detect different types of problems, but
they are not perfect, so one has to expect false positives and false negatives. In this regard, a
best practice is a combination of different tools to have a better protection and safeguard against
potential problems.

Reports An important metric when running tests is test coverage, which is a measure (usually
given in percentage) that describes the extent to which the source code of a program is executed
when a particular test suite runs. The idea is that tests should execute all code paths of the code under
test. If this premise is (largely) fulfilled and the test results are as expected, the code is less likely to
contain unforeseen errors. Code coverage tools also exist for Solidity (e.g., solidity-coverage [211],
sol-coverage [212]). Since coverage generation tracks which lines are hit during test execution
by instrumenting contracts with specific Solidity statements and detecting their execution in a
coverage-enabled EVM, coverage detection distorts gas consumption and slows testing. Thus, it is
best practice to run coverage as a separate CI job rather than assume its equivalence to an ordinary
test procedure. When run in a CI system test coverage can be generated when developers push
commits or merge branches.

Another important type of metric is tracking gas consumption. It can be useful to track gas
usage per unit test and analyze gas metrics for method calls and deployments. In this context, a gas
reporter tool (e.g., eth-gas-reporter [213]) can help to get an overview of the gas costs associated
with a smart contract. In a CI environment, the automatic generation of gas reports can be useful

139

7. Blockchain DevOps

to show differences in gas consumption between code iterations.

7.4.3. Continuous Delivery (CD)

Continuous Delivery is a DevOps practice where software is built in such a way that it can be
released to production at any time. For non-blockchain solutions, deployment pipelines deliver
updated configurations and code to hosting environments, e.g., as a virtual machine, container, or a
serverless function, or provision these environments with an Infrastructure as Code (IaC) approach.
The core concepts are the same for blockchain solutions. A proper release pipeline would deploy
needed environments and the smart contracts along with dependent applications to one or more
system environments.

Release

The release phase is the point at which a build is ready for deployment to the production environment.
At this stage, every code change has gone through a series of manual and automated tests, so it can
be assumed that problems and regressions are unlikely. Since deploying smart contracts is a rather
infrequent and delicate undertaking, it is desirable to have control over when builds are released
to production. To this end, a manual approval process can be implemented in the release phase that
allows only certain individuals within an organization to authorize a release for production. Before
doing so, however, it may be advisable to take further precautions to minimize the risk of undetected
issues prior to deployment. This includes conducting independent smart contracts security audits,
preferably at least two from different organizations (e.g., Consensys [214], OpenZeppelin [129]),
which is especially important for safety-critical areas that manage large amounts of capital. Another
advisable aspect in the release phase is to collect all artifacts generated for the deployment and store
them in a shared environment to ensure that collaborating parties are fully aligned. Information
such as metadata, ABI, bytecode, SourceMap, etc. can be stored centrally for each release. Based
on this central archiving it is possible to provide useful services, e.g. an API for client applications
to retrieve the version specific ABI for a smart contract. Assuming that one knows the Ethereum
account from which contracts are to be deployed, it is even be possible to calculate the deployment
address of a contract in advance, since the address of a contract is calculated deterministically from
the address of its creator (sender) and the number of transactions (nonce) the creator has sent.

Deploy

The deploy phase handles the process of pushing release builds into a production environment.
There are several measures to automate the process to make releases reliable and less cumbersome.

140

7.4. DevOps for Blockchain Smart Contracts

Infrastructure as Code (IaC) IaC automates the deployment of system environments to
achieve consistency of components, topology, and configuration in order to mitigate discrepan-
cies that can result from the direct application of manual changes to a system. This approach is
particularly beneficial for the provisioning process of permissioned blockchains, which is usually
complicated and should therefore be automated to avoid errors caused by manual intervention
and further save time and resources. There are some IaC utilities on the market to automate the
provisioning process (e.g., Terraform [215], Ansible [216], Puppet [217], Chef [218]), which can
also be configured appropriately for this purpose, but we have hardly come across this approach
in our research. BaaS offerings to ease provisioning are far more common, but are subject to
vendor-specific limitations in terms of supported blockchain platforms and hardware infrastructure,
furthermore dovetailing with DevOps is more difficult. In the context of permissioned blockchain
provisioning, one project worth mentioning that may also be integrated into a DevOps approach
is the Blockchain Automation Framework (BAF) [219]. The BAF is a toolkit consisting of various
software solutions that are linked together to configure and automatically deploy a scalable and
secure blockchain solution with freedom both in terms of the blockchain and infrastructure used.

Smart Contract Deployment When deploying smart contracts to test and production net-
works, automated solutions are needed to ensure proper deployment in the respective environments.
Contracts need to be initialized in a certain order with certain parameters and possibly put to a
certain state by calling functions (e.g., to set permissions), depending on the respective deployment
target. Specifically, this means that in order to deploy a smart contract, required libraries and
dependent contracts must first be deployed. To achieve flexibility with respect to different envi-
ronments, especially for testing, dependency information is typically passed into the contract via
the constructor and is not hard-coded in the contract. One can imagine that manually performing
the deployment steps described above for multiple environments is not only time-consuming, but
also error-prone. Fortunately, suitable tools (e.g., Truffle Migrations [220], Hardhat Ignition [221])
can be used to reliably automate the necessary steps for linking contracts to other contracts and
populating contracts with initial data.

Upgradeable Smart Contracts The only way to upgrade a contract is to deploy a new version
of that contract. This procedure requires manually migrating all state information of the old contract
and propagating the new contract address to users. To avoid this, there are upgrade mechanisms
that can be used to replace contract implementations while preserving their address, state, and
balance. Most commonly, a proxy pattern (see Contract Relay in Chapter 5) is used for this purpose
in combination with the delegatecall mechanism, which allows a function from another contract to
be executed as if the function were from the calling contract. Based on these concepts, it is possible

141

7. Blockchain DevOps

to develop a solution where users interact directly with a proxy that is responsible for handling
state information and delegating transactions (via delegatecall) to and from other exchangeable
(updatable) contracts that contain the associated logic. To avoid requiring the proxy to expose
the entire interface of logic contracts, which would be difficult to maintain and make the interface
itself not upgradeable, a dynamic forwarding mechanism can be used. In this case, the proxy
can forward any call of any function with any set of parameters (with the fallback function) to
the logic contract; depending on the caller address calls to manage the proxy can also be handled
directly. One drawback of the proxy approach is that the proxy contract and its delegate/logic
contracts use the same storage layout. Therefore, when handling state variables, care must be taken
to avoid scoping and storage collisions between the proxy and logic contracts or between different
versions of the latter. In principle, there are three patterns to mitigate this problem: Inherited,
Eternal, and Unstructured Storage (see [222], [223]). Inherited Storage refers to a pattern where the
proxy contract and logic contracts inherit a storage contract that specifies the storage structure and
contains the storage variables they use. Eternal Storage is a pattern where Solidity mappings are
used to create the same generic, immutable storage structure for each type variable for any contract.
Unstructured Storage is based on a pattern that uses assembly to bypass Solidity’s storage layout to
set and store values at arbitrary positions in contract storage, usually deriving the storage position
from hashing a value that follows some structure. As of Solidity 0.6.4, it is possible to create pointers
to structs at arbitrary locations in contract storage, which makes the approach even more appealing,
since structs promote encapsulation and can hold an arbitrary number of state variables of any type.

After all, smart contracts can be updated under additional effort and increased complexity. To
support developers in this regard, efforts are being made to develop and establish standards and
frameworks based on the concepts described above. For example, the EIP-2535 [224] Ethereum
Improvement Proposal, titled “Diamonds, Multi-Facet Proxy”, formulates a standard for building
modular smart contract systems that can be extended in production. Another example is OpenZep-
pelin’s Upgrades Plugins [225], which can be integrated into existing development environments
and workflows to support the deployment and management of upgradeable smart contracts.

Testnet It is common practice to test contracts on a public test network (aka testnet) before
deployement on the mainnet. In this context, the organization of releases in stages (alpha, beta)
through testnet and mainnet and the tendering of bug bounties should be considered. There are
several public testnets for Ethereum, which differ mainly in the consensus algorithm, block time,
and supported clients. The main testnets are Goerli, a cross-client Proof-of-Authority (PoA) testnet
with a block time of 15 seconds, Rinkeby and Kovan also PoA based testnets with fewer client
support and a block time of 15 respectively 4 seconds, and Ropsten, the most similar testnet to the
Ethereum mainnet with a PoW consensus and a block time of under 30 seconds. These testnets

142

7.4. DevOps for Blockchain Smart Contracts

simulate the behavior of the mainnet, accordingly Ether is needed to cover the gas costs to run code.
However, Ether in testnets has only a dummy function and no value. It can either be mined (in
Ropsten) or obtained through a service called a faucet, which issues funds in the form of free Ether
to a specified address. This allows developers to test their smart contracts without using real Ether.
In general, it is advantageous to test the behavior of smart contracts first with a PoA and later with
a PoW test network, as the former are usually more stable and the latter can have unpredictable
block times and frequent chain reorganizations.

Operate

When a build is deployed to production, it is important to make sure that everything is running as
intended. In this context, when deploying smart contracts on a permissionless blockchain, it may be
necessary to publicly verify the deployed contract to establish trust with others. This involves using
a recognized service (e.g., Etherscan [226], Sourcify [227]) to confirm that an uploaded and publicly
viewable source code is the same as the code compiled on the blockchain. This creates transparency
as users know exactly what is being deployed on the blockchain, and allows the public to audit and
verify the code to ensure it is actually doing what it is supposed to do. This task can be automated
as part of CD with the right tooling (e.g., truffle-plugin-verify [228], hardhat-etherscan [229]).

Monitor

To ensure the health, performance, and reliability of smart contracts and dependent applications,
it is necessary to monitor their operation. Monitoring and analyzing the behavior of smart contracts
can be done based on various metrics or events to detect erroneous or suspicious behavior. For
simple checking purposes, one can use a block explorer (e.g., Etherscan [230], Etherchain [231],
Blockchair [232]; for further details, see [233]), which acts as an analytics platform or search engine
that allows users to look up real-time data on blocks, transactions, miners, accounts, balances,
and other on-chain activities for both the main Ethereum network and the testnets. In addition
to these closed services, which cannot be independently verified, there is also the possibility of
operating one’s own blockchain explorer (e.g. BlockScout [234], Expedition [235]), for which
implementations for private EVM-based networks also exist (e.g. Ethernal [236]). In addition, it
is in principle possible to run a dedicated blockchain node and implement a smart contract activity
tracker that sends JSON RPC requests to that node to request transactions, blocks, and logs and
scan these for specific characteristics. Following this principle, there are also service providers
(e.g. Tenderly [237], OpenZeppelin Sentinel [238], Parsiq [239]) that do the heavy lifting of such
a solution and offer a convenient setup of complex events to be monitored. This makes it possible
to easily monitor e.g. state variables, function calls, function arguments, function reverts, emitted

143

7. Blockchain DevOps

Continuous Integration Continuous Delivery

Code Build Test Release Deploy Operate

StagingBuild ProductionCode Verify Package

VCS

Operation
Preprocess
Flatten, Extend
Compile
Generate Bytecode,
ABI, Docs

Test
Static/Dyn. Analysis
Unit & Integr. Test, ...
Report
Code Coverage
Gas Costs

Release
Version Tagging
Package & Publish to
Artifact Repoistory

Lint
Style Guide &
Security Validation
Secret Scan

Deploy
TestNet PoA
TestNet PoW

Bug Bounties
Security Audit

Verify
Verify Code
Monitor
TXs, Events,...
Alerting,
Notification

Pre-Commit
Hook

Deploy
MainNet

Review: Merge Request
Findings=Back to Code
Accepted=Merge=Release

Figure 7.3.: An overview of DevOps stages for smart contracts.

events, gas consumption deviations and send alarms in case of critical behavior via different means
(e.g., Webhooks).

In the event that own infrastructure is deployed, it should be monitored as well. There are several
monitoring solutions (e.g., Prometheus [240], cAdvisor [241]) that make it possible to observe the
activity of network nodes by collecting statistics that can be used to analyze and optimize resource
usage and for a better overall understanding of system operation.

7.4.4. CI/CD Overview

To summarize the solution aspects and approaches presented so far in a simple visual manner,
Figure 7.3 shows a representation of typical DevOps stages and associated activities that can be
incorporated in a CI/CD pipeline. While there are many degrees of freedom in setting up these
pipelines, such rough guidance can help in initial setups. A rough sequence for a smart contract
project to be built, tested, and deployed might look like the following: First, the sources are pre-
processed and compiled, then static/dynamic vulnerability testing and unitary/integration testing is
performed, thereafter reports and a release are generated, and finally deployment to the staging/pro-
duction environment is done followed by verification. To practically illustrate the process, we set
up a sample smart contract project (available on GitHub [242]) based on the Hardhat development
framework and various helpful development tools, and implemented a GitLab CI/CD pipeline to
demonstrate a holistic DevOps approach. For more information on the exact configuration, see
Appendix A.2. An interesting finding in the above setup is that while the order of DevOps stages
is clear, the order of jobs within stages or the dependencies between different jobs is only to some
extend predetermined. For example, it is not always mandatory that the code is already compiled in
order to perform static or dynamic code analysis jobs, since respective tools take care of the compi-
lation or trigger it again in the course of their processing. In this case, care should be taken to ensure
that the compiler versions used are consistent between different jobs. The fuzzy processing order
can also be used to advantage, e.g. jobs can be executed in parallel, since the processing of upstream

144

7.5. Discussion and Threats to Validity

jobs is not always mandatory. Thus, the execution time of a pipeline can be significantly reduced.

7.5. Discussion and Threats to Validity

Developing smart contracts at scale is difficult, especially for a distributed team. Add in key
management, various responsibilities, different testing strategies, varying computing and testing
environments, etc., and this leads to disparate development experiences among developers. The rem-
edy is a DevOps approach and an appropriate tool framework that allows teams to not only manage
their development and deployment process, but also integrate threat analysis and release manage-
ment, for example. While the core DevOps concepts and practices in this area are basically the same
as for any other type of software project, there are some peculiarities due to the decentralized nature
of blockchain and its immutability. These include a greater focus on testing, in particular the use of
testing tools to detect vulnerabilities using static and dynamic code analysis. During our research
we have repeatedly encountered the inclusion of various such tools, one can say that they are an
essential part of testing smart contracts. Conventional (unit) tests certainly also play an important
role, but they are much more costly to implement. Here, the fact that functions of smart contracts
can be called publicly means that testing can be compared with the testing of APIs. Therefore, when
testing implementations, understanding interfaces and communication points is a key challenge
to ensure consistency with defined processes and legacy code. Consequently, UI/end-user-based
testing plays a rather minor role, while integration (API) testing should make up the bulk of testing.

Another peculiarity is the differentiated approach to otherwise standard software deployment
practices, as smart contracts can be hardly updated. It is worth mentioning here that during our
research we found that deployments to production systems are usually done manually, either by
deploying locally from a developer’s machine or by manually triggering a deployment job defined
in a pipeline. When deployment is triggered manually in a DevOps pipeline, it is referred to as
Continuous Delivery rather than Continuous Deployment, since the latter involves fully automated
deployment of new releases to production. Continuous Deployment for smart contracts would
also be conceivable in principle, also with regard to the aforementioned proposals for upgrade
mechanisms, but is hardly an issue at present because deployment is currently a rather rare and
delicate undertaking over which developers want to have tight control. Therefore, mechanisms
associated with CD such as feature toggles (turning functionality on or off at runtime of the soft-
ware), A/B testing (evaluation of two variants of a system), Canary Releases (gradual rollout of
releases to a subset of users) are currently also uncommon. It is likely that future improvements in
the ecosystem and recent initiatives to build modular smart contract systems that can be extended in
production will make updating smart contracts a matter of course, and thus Continuous Deployment
will become more important alongside Continuous Integration. This is also a logical step given

145

7. Blockchain DevOps

necessary code changes and bug fixes that are an integral part of software development.

The presented work is subject to a number of limitations and threats to validity. The practices
are mined using a qualitative research method, thus possible biases of individual researchers
cannot be fully excluded and might have influenced the results. This includes both the experience-
and search-based procedure for finding knowledge sources and the pattern-finding and coding
procedure, as other researchers may take a different search approach and interpret and thus code the
found content differently. Bias introduced in finding knowledge sources is greatly minimized by
the chosen research method, which requires only additional sources according to the inclusion and
exclusion criteria, not a specific distribution of sources. To mitigate the threat to internal validity
that important information might be missing in sources, we looked at many more sources than
needed for theoretical saturation, presuming that it is unlikely that many different sources miss
the same important information. However, there is a risk that our approach may lead to a kind of
unconscious exclusion of certain sources. We mitigated this problem by using very general and
broad search terms. Given the large number of sources included, it is likely that our results can be
generalized. Nonetheless, the threat to external validity remains that our results are only applicable
to (permissionless) Ethereum based blockchains.

7.6. Conclusion

Over the past decade, DevOps principles have been applied to a wide range of software development
industries and disciplines. Essentially, the same principles can be applied to the development and
operation of blockchain-based applications. However, applying DevOps in this domain requires
a structured approach and corresponding guidelines. To this end, we studied practitioner reports
and existing solution approaches, which we analyzed with GT techniques, to infer typical DevOps
practices. In the process, we elaborated procedural steps according to the main stages of CI and
CD. Based on our findings, we compiled a typical DevOps approach highlighting possible stages
and associated activities.

The use of DevOps in the blockchain environment is quite possible today with already estab-
lished CI/CD solutions and is also lived in practice to make the development process faster, more
pleasant, and more controlled. The development tools for smart contracts are sufficiently mature,
also with regard to process automation and aggressive testing. The challenge is rather to specify
the necessary test and deployment requirements and to select and orchestrate the appropriate tools
from a constantly changing set of available development utilities and frameworks. Overall, it can
be said that the core DevOps concepts and activities are similar to other areas, with the difference
that more rigorous testing and differentiated deployment practices are required due to the inherent
immutability of blockchain.

146

7.6. Conclusion

As blockchain technology has grown, so have the requirements around building and testing
related applications. In this regard, in addition to formulating best practices for development, future
research can be devoted to devising testing strategies that meaningfully combine the variety of
techniques and tools in the field to integrate with DevOps and address outstanding challenges in
ensuring reliable blockchain-based applications.

147

8. Conclusions and Future Work

In this chapter, we revisit the research questions under study in order to summarize the main
contributions of this thesis. In addition, we discuss the limitations of our research and introduce
open challenges for future work.

8.1. Research Questions Revisited

This thesis contributes to several topics in blockchain software engineering and development. In
general terms, this includes the elaboration of fundamental considerations and practices related
to the design, development and implementation of blockchain solutions, both from a general
architectural perspective and for specific architectural components such as blockchain oracles and
smart contracts.

In Section 1.2, we introduced the main research problems covered by this thesis and formu-
lated several main research questions and their refinements (or sub-questions), which were then
elaborated in subsequent chapters. In this section, we revisit the research questions in order to
summarize our main contributions. To this end, we restate each research question and explain our
contributions in a subsequent paragraph.

Research Question 1 (RQ 1)

What design decisions, options, and components need to be considered for blockchain-based
applications?

RQ 1.1 What are the (key) architectural design decisions for blockchain-based
applications?

RQ 1.2 What are possible design options regarding these decisions and the associated
(best) practices?

RQ 1.3 Which conceptual components are relevant in the architectural design and what
are their relations?

RQ 1 has been addressed in Chapter 3.

149

8. Conclusions and Future Work

Starting with Research Question 1, in which we asked what design decisions, options, and
components need to be considered for blockchain-based applications, we can note the creation of a
feature model as the main contribution. It clearly illustrates possible architectural design decisions
as well as decision options and their connections to conceptual components. In addition, we have
identified high-level architectural blueprints or patterns in which we describe key components
along with their purpose and interaction. A key finding of our research is that designing software
architectures for blockchain-based systems, just as in other domains, requires various trade-off
decisions to balance desired quality attributes. In the case of blockchain integration, however,
this usually boils down to balancing decentralization on the one hand and scalability, privacy, and
usability on the other. The feature model provides a good overview of this tension and can be seen as
a helpful contribution to a more differentiated understanding. An important insight in this context is
that the more decentralized a solution is, the more difficult it is to ensure the quality characteristics of
scalability, privacy, and usability. To tackle this challenge, a hybrid architecture approach currently
offers a good compromise. This combines decentralized and centralized components so that the
advantages of both can be leveraged. In this light, many of the presented design options can be
understood as a way to circumvent current blockchain disadvantages by using centralized elements.

Research Question 2 (RQ 2)

What (fundamental) patterns exist to implement blockchain oracles and how do they differ
regarding cost and performance?

RQ 2.1 What are best practices and design patterns for implementing blockchain oracles?

RQ 2.2 What are the characteristics of these regarding cost and performance?

RQ 2 has been addressed in Chapter 4.

With respect to Research Question 2, which asks about (fundamental) blockchain oracle patterns
and their differences regarding cost and performance, our main contribution is the abstraction of
individual technical oracle solutions and the decomposition of these by data flow (inbound vs.
outbound and pull vs. push) resulting in four basic oracle patterns. The elaborated patterns are
designed in such a way that they consist of distinct building blocks that allow for a separation of
concerns which can be encapsulated into modular and reusable implementation components. A
quantitative analysis of the four patterns in terms of time performance (latency) and cost impacts
reveals that neither cost nor latency are particularly high for a single invocation of any of the
patterns. Our experiments in this regard also suggest that the patterns are subject to different
distributions with respect to latency, which in most cases can be narrowed down to a certain likely

150

8.1. Research Questions Revisited

range, but can also be left by outliers and dominated by the transaction inclusion time.

Research Question 3 (RQ 3)

What are common design patterns and Solidity coding practices for Ethereum smart
contracts?

RQ 3.1 Which design patterns commonly appear in the Ethereum ecosystem and what
problems do they solve?

RQ 3.2 How do these design patterns map to Solidity coding practices?

RQ 3 has been addressed in Chapter 5.

We now turn to Research Question 3, which addresses common design patterns in Solidity-
encoded smart contracts for the Ethereum blockchain. To this end, we can attribute as our main
contribution the identification, grouping, and description of several globally applicable patterns, as
well as the elaboration of common principles and relationships among them. Our research shows
that the patterns are widely used to address application requirements and common implementation
problems. In particular, the patterns resolve issues related to smart contract operation, access con-
trol, management, and security. They are explained in a problem- and solution-oriented approach
along with advantages and disadvantages to better illustrate their context and applicability. As such,
they can be used by developers to solve common problems related to smart contract coding. A gen-
eralizing observation is that many of the patterns deal with circumventing the immutability and lack
of execution control of smart contracts. This highlights the tension that arises when an autonomous
execution environment is confronted with the need for maintainability and upgradeability.

Research Question 4 (RQ 4)

What might a secure-by-design approach to smart contracts look like that starts from a
higher level of abstraction and generates an implementation leveraging design patterns?

RQ 4.1 How and in how far is it possible to bring the abstraction level of smart contracts
closer to the contract domain?

RQ 4.2 Can higher abstraction levels in combination with code generation (considering
platform-specific programming idioms) reduce the risk of smart contract errors?

RQ 4 has been addressed in Chapter 6.

151

8. Conclusions and Future Work

Looking at Research Question 4, which is concerned with a secure-by-design approach for
smart contracts, our main contribution is the design and study of a DSL with a higher level of
abstraction that can be transferred to an implementation. Here, we build on a fluently readable,
clause like formalization concept to describe the individual operational intents (commitments) of
contract participants. Thus, the contract semantics are described on a higher level and the specifics
of an implementation are shifted to lower levels. This decoupling of contract specification and
implementation allows free intervention regarding the formulation of the final implementation.
It is thus possible to automate platform-specific implementation steps, e.g., by including design
patterns or coding abstractions. We have demonstrated this approach by implementing coding
idioms and selected patterns that we have elaborated in the previous research question. Overall,
our research shows that abstraction and code generation, when used properly, can be a viable way
to formulate smart contracts and can be used to increase the efficiency, clarity, and flexibility of
code whilst reducing the susceptibility to errors.

Research Question 5 (RQ 5)

What does a typical DevOps approach for blockchain-based applications look like and what
are the differences compared to a DevOps approach for traditional software projects?

RQ 5.1 What are typical stages and activities in a DevOps approach for blockchain-based
applications?

RQ 5.2 What are the particularities of using DevOps in blockchain-based software
development?

RQ 5 has been addressed in Chapter 7.

The last research question, Reasearch Question 5, deals with a DevOps approach for blockchain-
based applications and possible differences compared to a DevOps approach for traditional software
projects. In this regard, our main contribution is the compilation of a typical DevOps approach,
aligned according to typical phases of CI and CD, highlighting possible stages and associated
activities. Our research shows that the core DevOps concepts and activities are similar to those
in other domains and are quite possible with already established solutions, with the difference
that more rigorous testing and differentiated deployment practices are required due to the inherent
immutability of blockchain. In this context, the actual DevOps implementation is not in itself a
difficult undertaking. Rather, the challenge is to specify the necessary testing and deployment
requirements and to select and orchestrate the appropriate tools from an ever-changing set of
available development tools and frameworks.

152

8.2. Limitations and Threats to Validity

8.2. Limitations and Threats to Validity

The work presented in this thesis contributes to a better understanding and formulation of recom-
mended actions in the implementation of blockchain-based applications, but some issues remain.
A discussion of the limitations of our research is partially included in the relevant chapters of the
thesis. In this section, we holistically summarize the main limitations of our work.

In our research, we have mainly relied on qualitative research methods, as the research questions
under study are aimed at gaining in-depth insights into topics that are not yet well elaborated or
understood in order to comprehend concepts, thoughts or experiences and subsequently derive the-
ories. Accordingly, our work is also subject to the limitations associated with qualitative research.
This includes, for example, the way data and observations are described and interpreted and how
the data may be deliberately or inadvertently altered to fit a particular theory [243]. In this context,
there is also always some bias on the part of the researcher who interprets the data according to
his or her own beliefs and views or includes only data that he or she considers relevant.

We discuss below some of the limitations and potential threats to the validity of our study and
steps we have taken to minimize or mitigate them. The discussion takes place in the context of the
most commonly cited quality criteria in qualitative research: credibility, reliability, confirmability,
and transferability [244]. These are well suited for evaluating exploratory research for theory
building and derive from the classical criteria of test validity (internal validity, external validity,
reliability, and objectivity).

Credibility (Internal Validity): Credibility is concerned with the confidence in the truth of the
data and derived interpretations. The patterns and recommendations in this thesis are mined using
a qualitative mining process (as it is usual) based on collected data. Here, a threat to credibility lies
in the bias of selected data, i.e. the sources included in our pool of objects under study. It is possible
that the data does not represent the entire area or over represents sub-areas about which we want
to make assumptions. To overcome this, snowballing has been used to track down references and
citations in data sources, and information was collected until no new knowledge could be obtained.
In this context, it should be mentioned that most available sources only deal with a handful of more
prominent blockchain solutions, so there is a risk that our results can only be applied to similar
architectures. Another concern in regards to credibility are possible misinterpretations or biases
of individual researchers, which cannot be completely ruled out and may have influenced our
results. This includes the pattern discovery and codifying procedures, as other researchers may
have different interpretations and may code differently. Here, one concern for subjectivity is that
the same researchers have been involved in the consolidation of patterns and recommendations.
Another example for unavoidable subjectivity concerns the selection of higher-level dimensions in
categorizations and their granularity, which has a major impact on the representation of results. We

153

8. Conclusions and Future Work

attempted to mitigate the stated subjectivity issues by having no prior hypotheses or caveats when
interpreting the data and analyzing all data even if it appeared unhelpful at first glance. Nonetheless,
we can not claim viability or any form of completeness for our results.

Transferability (External Validity): Transferability is concerned with the extent to which findings
or results can be transferred to other contexts and settings. Due to the fact that basic functional
principles are the same across different blockchain implementations, it is likely that our results can
be generalized. This is especially true for the elaborated architectural design decisions and oracle
patterns. Although we have relied on the Ethereum platform to describe these topics, the results
are fundamental in nature and can be generalized to other blockchain platforms. As for the smart
contract patterns and the DevOps approach, the results are likely to have limited generalizability,
as the patterns and recommendations were elaborated specifically in the scope of the Ethereum
platform. A generalization is therefore only possible in an attenuated form, where the highlighted
areas of concern in the development and implementation of smart contracts are likely to apply
to other platforms as well. For the developed DSL, generalizability is given in that the abstract
language constructs for formulating smart contracts are independent of an explicit implementation,
but as a result the expressive power suffers and is not comparable to manual implementations.

Dependability (Reliability): Dependability concerns the process for showing that the findings
are consistent and could be repeated. In the best case, this would mean that exactly the same results
are obtained when we our research is repeated. Since this cannot be fully expected in a qualitative
research setting, alternative criteria are overall comprehensibility, flow of arguments, and logic. We
attempted to meet these criteria by documenting our proceedings, tracking sources of knowledge,
and being consistent in both the process and product of our research.

Confirmability (Objectivity): Confirmability refers to the potential for agreement on interpreta-
tion between two or more people. In other words, it is the extent to which the results can be confirmed
by others. Here, a threat to confirmability is that our work lacks empirical evidence and feedback by
practitioners. However, one can say that the confidence that the results can be confirmed or corrobo-
rated by practitioners in the field is increased by the fact that we have based much of our analysis on
gray literature, which can mostly be attributed to practitioners. In addition, as a further measure to
increase confirmability and confidence in the quality of the proposed patterns and recommendations,
we have always endeavored to find several instances that substantiate our claims and assertions.

8.3. Future Work

Although this work contributes to the above research questions, additional work is needed to further
improve the state of the art. In the following, we conclude with a summary of open challenges and
research questions for the future that have surfaced during the execution of our research as well

154

8.3. Future Work

as from the aforementioned limitations.

At the beginning of our work, we dealt with the architectural design of blockchain-based appli-
cations. This topic is essentially about the efficient integration of on-chain and off-chain worlds,
where certain technical trade-offs have to be made in order to achieve predefined quality goals.
Future research in this area could deal with finding metrics that allow a quantitative and accurate
assessment of performance changes of individual design decisions. Another starting point for future
research would be to investigate (architectural) migration patterns for transferring existing function-
ality or architectural components to blockchain technology, provided that blockchain is considered
as a service component. Other research ideas include the development of a decision-making tool
to select the most suitable blockchain and patterns for a given context.

With respect to our work on oracle patterns in the context of the Etherum blockchain, our research
could be deepened in the future with further studies for different blockchain platforms. Moreover,
the patterns could be applied in different contexts to other use cases that span different application
domains. In addition, it would be interesting to study the combination of different oracle patterns
or the effects on execution costs in regards to the exchanged data rate and data volume.

Regarding the design patterns for smart contracts, future research could be directed to propose
new patterns, also with regard to specific topics such as efficiency in terms of gas optimization
to minimize execution costs. The subject area has not yet been exhausted, and due to constant
development, it is likely that patterns will need to be changed, added, or removed as surrounding
conditions change. With a large number of patterns, the elaboration of an ontology to identify and
distinguish patterns and their relationships, as well as a taxonomy to formalize the terminology
and structure of hierarchical relationships between patterns, is also an interesting research task.
In addition, the collected patterns could be compared to coding practices that are evolving in other
smart contract platforms. This also reveals a weakness in the research field addressed, namely that
most research in this area is focused on the Ethereum blockchain. If research were also conducted
off the beaten path, more abstract design patterns could be uncovered that are independent of the
underlying implementation framework and apply to smart contracts in general.

With regard to the proposed smart contract DSL, there are also several opportunities for further
research. For example, the efficiency of our approach could be tested in an experiment with prac-
titioners and the insights gained could be used to optimize the language for further improvements
and extensions. With respect to the abstract formalization, additional semantic checks could be
introduced at the clause level to detect conflicting clause specifications. Furthermore, the Solidity
code generation process could be extended to include more common design patterns, coding
abstractions, and more powerful code inference mechanisms. To draw even more insights, code
generation for another smart contract platform could be integrated. This could provide insight
into the general applicability of the proposed smart contract abstraction mechanisms and their

155

8. Conclusions and Future Work

transferability to a target implementation.
In view of our work on DevOps in the context of the Etherum blockchain, our research could be

deepened in the future by further studies on DevOps operations for other blockchain platforms. Re-
search perspectives arise especially with respect to the description of appropriate testing strategies
and scenarios as well as delivery strategies. Devising testing strategies is particularly recommended
to combine the variety of techniques and tools in this area in a meaningful way in order to overcome
the remaining challenges in ensuring reliable blockchain-based applications.

156

Bibliography

[1] “Global Cryptocurrency Market Charts | CoinMarketCap,” [Online]. Available: https:
//coinmarketcap.com/charts/ (visited on Feb. 23, 2022).

[2] H. Cooper, L. V. Hedges, and J. C. Valentine, The handbook of research synthesis and
meta-analysis. Russell Sage Foundation, 2019.

[3] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews
in software engineering,” 2007.

[4] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including the grey literature
and conducting multivocal literature reviews in software engineering,” arXiv preprint
arXiv:1707.02553, pp. 1–26, 2017. arXiv: 1707 . 02553. [Online]. Available: http :
//arxiv.org/abs/1707.02553.

[5] J. W. Creswell and J. D. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications, 2017.

[6] Charmaz, Constructing Grounded Theory research. sage, 2014, pp. 33–59, ISBN: 0-85702-
913-4.

[7] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information systems
research,” MIS Quarterly: Management Information Systems, 2004, ISSN: 02767783. DOI:
10.2307/25148625.

[8] A. Hevner and S. Chatterjee, “Introduction to Design Science Research,” 2010. DOI:
10.1007/978-1-4419-5653-8_1.

[9] V. Vaishnavi and W. Kuechler, “Design Science Research Methods and Patterns: Innovating
Information and Communication Technology,” in Design Science Research Methods and
Patterns: Innovating Information and Communication Technology. 2007, p. 226, ISBN:
9780429119385. DOI: 10.1201/9781420059335.

[10] M. Wohrer and U. Zdun, “Smart contracts: Security Patterns in the Ethereum Ecosystem and
Solidity,” in 2018 International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), vol. 2018-Janua, IEEE, Mar. 2018, pp. 2–8, ISBN: 978-1-5386-5986-1. DOI:

157

https://coinmarketcap.com/charts/
https://coinmarketcap.com/charts/
https://arxiv.org/abs/1707.02553
http://arxiv.org/abs/1707.02553
http://arxiv.org/abs/1707.02553
https://doi.org/10.2307/25148625
https://doi.org/10.1007/978-1-4419-5653-8_1
https://doi.org/10.1201/9781420059335

Bibliography

10.1109/IWBOSE.2018.8327565. [Online]. Available: https://ieeexplore.ieee.
org/document/8327565/.

[11] M. Wohrer and U. Zdun, “Design Patterns for Smart Contracts in the Ethereum Ecosystem,”
in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData), IEEE, IEEE, Jul. 2018, pp. 1513–
1520, ISBN: 978-1-5386-7975-3. DOI: 10.1109/Cybermatics_2018.2018.00255.
[Online]. Available: https://ieeexplore.ieee.org/document/8726782/.

[12] M. Wohrer and U. Zdun, “Domain Specific Language for Smart Contract Development,”
in 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
IEEE, May 2020, pp. 1–9, ISBN: 978-1-7281-6680-3. DOI: 10 . 1109 / ICBC48266 .
2020.9169399. [Online]. Available: https://ieeexplore.ieee.org/document/
9169399/.

[13] M. Wohrer and U. Zdun, “From Domain-Specific Language to Code: Smart Contracts
and the Application of Design Patterns,” IEEE Software, vol. 37, no. 5, pp. 37–42, Sep.
2020, ISSN: 0740-7459. DOI: 10.1109/MS.2020.2993470. [Online]. Available: https:
//ieeexplore.ieee.org/document/9089272.

[14] R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, et al., “Foundational Oracle Patterns:
Connecting Blockchain to the Off-Chain World,” in Lecture Notes in Business Information
Processing, vol. 393 LNBIP, 2020, pp. 35–51, ISBN: 9783030587789. DOI: 10.1007/
978-3-030-58779-6_3. arXiv: 2007.14946. [Online]. Available: https://link.
springer.com/10.1007/978-3-030-58779-6_3.

[15] M. Wohrer and U. Zdun, “Architectural Design Decisions for Blockchain-Based Ap-
plications,” in 2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), IEEE, May 2021, pp. 1–5, ISBN: 978-1-6654-3578-9. DOI: 10.1109/ICBC51069.
2021.9461109. [Online]. Available: https://ieeexplore.ieee.org/document/
9461109/.

[16] M. Wohrer, U. Zdun, and S. Rinderle-Ma, “Architecture Design of Blockchain-Based
Applications,” in 2021 3rd Conference on Blockchain Research and Applications for
Innovative Networks and Services (BRAINS), IEEE, Sep. 2021, pp. 173–180, ISBN: 978-
1-6654-3924-4. DOI: 10.1109/BRAINS52497.2021.9569813. [Online]. Available:
https://ieeexplore.ieee.org/document/9569813/.

[17] M. Wohrer and U. Zdun, “DevOps for Ethereum Blockchain Smart Contracts,” in 2021
IEEE International Conference on Blockchain (Blockchain), IEEE, Dec. 2021, pp. 244–251,

158

https://doi.org/10.1109/IWBOSE.2018.8327565
https://ieeexplore.ieee.org/document/8327565/
https://ieeexplore.ieee.org/document/8327565/
https://doi.org/10.1109/Cybermatics_2018.2018.00255
https://ieeexplore.ieee.org/document/8726782/
https://doi.org/10.1109/ICBC48266.2020.9169399
https://doi.org/10.1109/ICBC48266.2020.9169399
https://ieeexplore.ieee.org/document/9169399/
https://ieeexplore.ieee.org/document/9169399/
https://doi.org/10.1109/MS.2020.2993470
https://ieeexplore.ieee.org/document/9089272
https://ieeexplore.ieee.org/document/9089272
https://doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1007/978-3-030-58779-6_3
https://arxiv.org/abs/2007.14946
https://link.springer.com/10.1007/978-3-030-58779-6_3
https://link.springer.com/10.1007/978-3-030-58779-6_3
https://doi.org/10.1109/ICBC51069.2021.9461109
https://doi.org/10.1109/ICBC51069.2021.9461109
https://ieeexplore.ieee.org/document/9461109/
https://ieeexplore.ieee.org/document/9461109/
https://doi.org/10.1109/BRAINS52497.2021.9569813
https://ieeexplore.ieee.org/document/9569813/

Bibliography

ISBN: 978-1-6654-1760-0. DOI: 10.1109/Blockchain53845.2021.00040. [Online].
Available: https://ieeexplore.ieee.org/document/9680513/.

[18] Ethereum. “Ethereum Project,” [Online]. Available: https://www.ethereum.org/
(visited on Jan. 7, 2020).

[19] “Scalable Blockchain Infrastructure: Billions of transactions and counting | Solana: Build
crypto apps that scale,” [Online]. Available: https://solana.com/ (visited on Feb. 22,
2022).

[20] “Polkadot: Decentralized Web 3.0 Blockchain Interoperability Platform,” [Online]. Avail-
able: https://polkadot.network/ (visited on Feb. 22, 2022).

[21] “Ergo,” [Online]. Available: https://ergoplatform.org/en/ (visited on Feb. 22,
2022).

[22] “Algorand | The Blockchain for FutureFi | Algorand,” [Online]. Available: https://www.
algorand.com/ (visited on Feb. 22, 2022).

[23] “Cardano | Home,” [Online]. Available: https://cardano.org/ (visited on Feb. 22,
2022).

[24] G. Wood, “Ethereum: a secure decentralised generalised transaction ledger,” Ethereum
Project Yellow Paper, vol. 151, pp. 1–32, 2014, ISSN: 1098-6596. DOI: 10.1017/CBO
9781107415324.004. arXiv: arXiv:1011.1669v3.

[25] Ethereum Foundation. “LLL PoC 6.” (2014), [Online]. Available: https://github.
com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e

970e9e7ed64849ce.

[26] “Serpent | Ethereum Wiki,” [Online]. Available: https://github.com/ethereum/
wiki/wiki/Serpent.

[27] “ethereum/viper: New experimental programming language,” [Online]. Available: https:
//github.com/ethereum/viper.

[28] “Solidity — Solidity 0.4.24 documentation,” [Online]. Available: http://solidity.
readthedocs.io/en/v0.4.24/.

[29] S. Tai, J. Eberhardt, and M. Klems, “Not ACID, not BASE, but SALT: A transaction
processing perspective on blockchains,” in CLOSER 2017 - Proceedings of the 7th Interna-
tional Conference on Cloud Computing and Services Science, 2017, ISBN: 9789897582431.
DOI: 10.5220/0006408207550764.

[30] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-oriented software engi-
neering: Challenges and new directions,” 2017 IEEE/ACM 39th International Conference

159

https://doi.org/10.1109/Blockchain53845.2021.00040
https://ieeexplore.ieee.org/document/9680513/
https://www.ethereum.org/
https://solana.com/
https://polkadot.network/
https://ergoplatform.org/en/
https://www.algorand.com/
https://www.algorand.com/
https://cardano.org/
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/cpp-ethereum/wiki/LLL-PoC-6/7a575cf91c4572734a83f95e970e9e7ed64849ce
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/wiki/wiki/Serpent
https://github.com/ethereum/viper
https://github.com/ethereum/viper
http://solidity.readthedocs.io/en/v0.4.24/
http://solidity.readthedocs.io/en/v0.4.24/
https://doi.org/10.5220/0006408207550764

Bibliography

on Software Engineering Companion (ICSE-C), no. February, pp. 169–171, 2017. DOI:
10.1109/ICSE-C.2017.142. arXiv: 1702.05146.

[31] F. Wessling, C. Ehmke, O. Meyer, and V. Gruhn, “Towards Blockchain Tactics: Build-
ing Hybrid Decentralized Software Architectures,” in 2019 IEEE International Confer-
ence on Software Architecture Companion (ICSA-C), IEEE, 2019, pp. 234–237, ISBN:
9781728118765. DOI: 10.1109/ICSA-C.2019.00048.

[32] M. Marchesi, L. Marchesi, and R. Tonelli, “An Agile Software Engineering Method
to Design Blockchain Applications,” in Proceedings of the 14th Central and Eastern
European Software Engineering Conference Russia, 2018, pp. 1–8, ISBN: 9781450361767.
DOI: 10.1145/3290621.3290627. arXiv: 1809.09596.

[33] L. Marchesi, M. Marchesi, and R. Tonelli, “ABCDE—agile block chain DApp engineer-
ing,” Blockchain: Research and Applications, vol. 1, no. 1-2, p. 100 002, Dec. 2020, ISSN:
20967209. DOI: 10.1016/j.bcra.2020.100002. arXiv: 1912.09074. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S2096720920300026.

[34] C. Udokwu, H. Anyanka, and A. Norta, “Evaluation of Approaches for Designing and
Developing Decentralized Applications,” in Proceedings of the 2020 4th International
Conference on Algorithms, Computing and Systems, 2020, pp. 55–62.

[35] U. Bodkhe, S. Tanwar, K. Parekh, et al., “Blockchain for Industry 4.0: A comprehensive
review,” IEEE Access, vol. 8, pp. 79 764–79 800, 2020, ISSN: 21693536. DOI: 10.1109/
ACCESS.2020.2988579.

[36] R. Viswanathan, D. Dasgupta, and S. R. Govindaswamy, “Blockchain Solution Reference
Architecture (BSRA),” IBM Journal of Research and Development, vol. 63, no. 2/3, pp. 1–
12, 2019. DOI: 10.1147/JRD.2019.2913629.

[37] D. Riehle, N. Harutyunyan, and A. Barcomb, “Pattern Discovery and Validation Using
Scientific Research Methods,” arXiv preprint arXiv:2107.06065, 2021.

[38] B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies for qualitative
research. Routledge, 2017, ISBN: 9780203793206. DOI: 10.4324/9780203793206.

[39] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures, canons, and evaluative
criteria,” Qualitative Sociology, 1990, ISSN: 01620436. DOI: 10.1007/BF00988593.

[40] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer, Benefitting from the grey literature
in software engineering research, 2019. DOI: 10.1007/978-3-030-32489-6_14.

[41] “maxwoe/bc_architecture_design: Architectural Design Decisions for Blockchain-Based
Applications - Knowledge Sources,” [Online]. Available: https://github.com/maxwo
e/bc_architecture_design.

160

https://doi.org/10.1109/ICSE-C.2017.142
https://arxiv.org/abs/1702.05146
https://doi.org/10.1109/ICSA-C.2019.00048
https://doi.org/10.1145/3290621.3290627
https://arxiv.org/abs/1809.09596
https://doi.org/10.1016/j.bcra.2020.100002
https://arxiv.org/abs/1912.09074
https://linkinghub.elsevier.com/retrieve/pii/S2096720920300026
https://doi.org/10.1109/ACCESS.2020.2988579
https://doi.org/10.1109/ACCESS.2020.2988579
https://doi.org/10.1147/JRD.2019.2913629
https://doi.org/10.4324/9780203793206
https://doi.org/10.1007/BF00988593
https://doi.org/10.1007/978-3-030-32489-6_14
https://github.com/maxwoe/bc_architecture_design
https://github.com/maxwoe/bc_architecture_design

Bibliography

[42] C. Richardson. “Microservices Patterns.” arXiv: 1- 933988- 16- 9. (2017), [Online].
Available: https://microservices.io/patterns/index.html.

[43] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-based decentralized
applications,” Software: Practice and Experience, no. April, pp. 1–18, 2019, ISSN: 0038-
0644. DOI: 10.1002/spe.2751. arXiv: arXiv:1909.00939v1.

[44] K. M. Kina-Kina, H. E. Cutipa-Arias, and P. Shiguihara-Juarez, “A comparison of per-
formance between fully and partially decentralized applications,” in Proceedings of the
2019 IEEE 26th International Conference on Electronics, Electrical Engineering and
Computing, INTERCON 2019, 2019, ISBN: 9781728136462. DOI: 10.1109/INTERCON.
2019.8853524.

[45] F. Wessling and V. Gruhn, “Engineering Software Architectures of Blockchain-Oriented
Applications,” Proceedings - 2018 IEEE 15th International Conference on Software
Architecture Companion, ICSA-C 2018, pp. 45–46, 2018. DOI: 10.1109/ICSA-C.2018.
00019.

[46] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to Scalability of Blockchain: a
Survey,” IEEE Access, vol. 8, no. January, pp. 16 440–16 455, 2020, ISSN: 21693536. DOI:
10.1109/aCCESS.2020.2967218.

[47] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais, “SoK: Layer-Two
Blockchain Protocols,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, vol. 12059
LNCS, 2020, pp. 201–226, ISBN: 9783030512798. DOI: 10.1007/978-3-030-51280-
4_12.

[48] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,” ACM Computing
Surveys, vol. 52, no. 3, 2019, ISSN: 15577341. DOI: 10.1145/3316481. arXiv: 1903.
07602.

[49] J. Partala, T. H. Nguyen, and S. Pirttikangas, “Non-interactive Zero-knowledge for Blockchain:
A Survey,” IEEE Access, 2020, ISSN: 21693536. DOI: 10.1109/ACCESS.2020.3046025.

[50] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey on zero-knowledge
proof in blockchain,” IEEE Network, vol. 35, no. 4, pp. 198–205, 2021.

[51] Y. Wang, F. Luo, Z. Dong, Z. Tong, and Y. Qiao, “Distributed meter data aggregation
framework based on Blockchain and homomorphic encryption,” IET Cyber-Physical
Systems: Theory & Applications, vol. 4, no. 1, pp. 30–37, 2019.

[52] W. Xu, L. Wu, and Y. Yan, “Privacy-preserving scheme of electronic health records
based on blockchain and homomorphic encryption,” Journal of Computer Research and

161

https://arxiv.org/abs/1-933988-16-9
https://microservices.io/patterns/index.html
https://doi.org/10.1002/spe.2751
https://arxiv.org/abs/arXiv:1909.00939v1
https://doi.org/10.1109/INTERCON.2019.8853524
https://doi.org/10.1109/INTERCON.2019.8853524
https://doi.org/10.1109/ICSA-C.2018.00019
https://doi.org/10.1109/ICSA-C.2018.00019
https://doi.org/10.1109/aCCESS.2020.2967218
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1145/3316481
https://arxiv.org/abs/1903.07602
https://arxiv.org/abs/1903.07602
https://doi.org/10.1109/ACCESS.2020.3046025

Bibliography

Development, vol. 55, no. 10, p. 2233, 2018.

[53] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel networks,” in Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 949–966.

[54] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, “Multi-party virtual
state channels,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2019, pp. 625–656.

[55] D. J. Pacella, A. Sardesai, M. Tadayon, et al., Blockchain micro-services framework, 2019.

[56] “fabric-gateway | Go, Java and Node SDKs for Fabric embedded Gateway,” [Online].
Available: https://hyperledger.github.io/fabric-gateway/ (visited on Apr. 26,
2022).

[57] “ActiveMQ,” [Online]. Available: https://activemq.apache.org/ (visited on Mar. 9,
2022).

[58] “Messaging that just works - RabbitMQ,” [Online]. Available: https://www.rabbitmq.
com/ (visited on Mar. 9, 2022).

[59] “Apache Kafka,” [Online]. Available: https://kafka.apache.org/ (visited on Mar. 9,
2022).

[60] “Apache Pulsar,” [Online]. Available: https://pulsar.apache.org/ (visited on
Mar. 9, 2022).

[61] “Blockchain Streaming Analytics,” [Online]. Available: https://www.youtube.com/
watch?v=rY1fEaCvwXk.

[62] “Kafka Connect | Confluent Documentation,” [Online]. Available: https://docs.confl
uent.io/platform/current/connect/index.html (visited on Mar. 9, 2022).

[63] “Ocean Bounty: Smart Contract Event Monitoring Tool,” [Online]. Available: https:
//explorer.bounties.network/bounty/2146.

[64] “Kafka-web3-connector,” [Online]. Available: https://github.com/satran004/
kafka-web3-connector.

[65] “PouchDB, the JavaScript Database that Syncs!” [Online]. Available: https://pouchdb.
com/ (visited on Mar. 9, 2022).

[66] “GUN - the database for freedom fighters - Docs v2.0,” [Online]. Available: https:
//gun.eco/ (visited on Mar. 9, 2022).

[67] “IPFS Powers the Distributed Web,” [Online]. Available: https://ipfs.io/ (visited on
Mar. 9, 2022).

162

https://hyperledger.github.io/fabric-gateway/
https://activemq.apache.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://pulsar.apache.org/
https://www.youtube.com/watch?v=rY1fEaCvwXk
https://www.youtube.com/watch?v=rY1fEaCvwXk
https://docs.confluent.io/platform/current/connect/index.html
https://docs.confluent.io/platform/current/connect/index.html
https://explorer.bounties.network/bounty/2146
https://explorer.bounties.network/bounty/2146
https://github.com/satran004/kafka-web3-connector
https://github.com/satran004/kafka-web3-connector
https://pouchdb.com/
https://pouchdb.com/
https://gun.eco/
https://gun.eco/
https://ipfs.io/

Bibliography

[68] “Swarm,” [Online]. Available: https://www.ethswarm.org/ (visited on Mar. 9, 2022).

[69] “Vault by HashiCorp,” [Online]. Available: https://www.vaultproject.io/ (visited
on Mar. 9, 2022).

[70] “Go Ethereum,” [Online]. Available: https://geth.ethereum.org/ (visited on Mar. 9,
2022).

[71] “Parity Ethereum Client - OpenEthereum | Parity Technologies,” [Online]. Available:
https://www.parity.io/technologies/ethereum/ (visited on Mar. 9, 2022).

[72] “Ethereum API | IPFS API and Gateway | ETH Nodes as a Service | Infura,” [Online].
Available: https://infura.io/ (visited on Mar. 9, 2022).

[73] “Hosted Blockchain Infrastructure as a Service | QuickNode,” [Online]. Available: https:
//www.quicknode.com/ (visited on Mar. 9, 2022).

[74] X. Xu, C. Pautasso, L. Zhu, Q. Lu, and I. Weber, “A pattern collection for blockchain-based
applications,” in ACM International Conference Proceeding Series, ACM, 2018, 3:1–3:20,
ISBN: 9781450363877. DOI: 10.1145/3282308.3282312.

[75] V. Rajasekar, S. Sondhi, S. Saad, and S. Mohammed, “Emerging design patterns for
blockchain applications,” in ICSOFT 2020 - Proceedings of the 15th International Con-
ference on Software Technologies, 2020, pp. 242–249, ISBN: 9789897584435. DOI: 10.
5220/0009892702420249.

[76] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao, “Applying Design Patterns in Smart Contracts,” in
Proceedings Blockchain-ICBC, June, vol. 10974, 2018, pp. 92–106. DOI:10.1007/978-3-
319-94478-4_7. [Online]. Available: http://link.springer.com/10.1007/978-
3-319-94478-4_7.

[77] I. Weber, “Blockchain and Services – Exploring the Links: Keynote Paper,” Lecture Notes
in Business Information Processing, vol. 367, no. October 2019, pp. 13–21, 2019, ISSN:
18651356. DOI: 10.1007/978-3-030-32242-7_2.

[78] F. Daniel and L. Guida, “A Service-Oriented Perspective on Blockchain Smart Contracts,”
IEEE Internet Computing, vol. 23, pp. 46–53, 2019, ISSN: 19410131. DOI: 10.1109/MIC.
2018.2890624.

[79] G. Falazi, A. Lamparelli, U. Breitenbuecher, F. Daniel, and F. Leymann, Unified Integration
of Smart Contracts through Service Orientation, 2020. DOI: 10.1109/MS.2020.2994040.

[80] M. M. H. Onik and M. H. Miraz, “Performance Analytical Comparison of Blockchain-
as-a-Service (BaaS) Platforms,” Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, vol. 285, pp. 3–18,

163

https://www.ethswarm.org/
https://www.vaultproject.io/
https://geth.ethereum.org/
https://www.parity.io/technologies/ethereum/
https://infura.io/
https://www.quicknode.com/
https://www.quicknode.com/
https://doi.org/10.1145/3282308.3282312
https://doi.org/10.5220/0009892702420249
https://doi.org/10.5220/0009892702420249
https://doi.org/10.1007/978-3-319-94478-4_7
https://doi.org/10.1007/978-3-319-94478-4_7
http://link.springer.com/10.1007/978-3-319-94478-4_7
http://link.springer.com/10.1007/978-3-319-94478-4_7
https://doi.org/10.1007/978-3-030-32242-7_2
https://doi.org/10.1109/MIC.2018.2890624
https://doi.org/10.1109/MIC.2018.2890624
https://doi.org/10.1109/MS.2020.2994040

Bibliography

2019, ISSN: 18678211. DOI: 10.1007/978-3-030-23943-5_1. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-23943-5_1.

[81] A. Kernahan, U. Bernskov, and R. Beck, “Blockchain out of the Box – Where is the
Blockchain in Blockchain-as-a-Service?” Proceedings of the 54th Hawaii International
Conference on System Sciences, vol. 0, pp. 4281–4290, 2021. DOI: 10.24251/hicss.
2021.520.

[82] V. Yussupov, G. Falazi, U. Breitenbücher, and F. Leymann, “On the serverless nature of
blockchains and smart contracts,” arXiv, 2020, ISSN: 23318422. arXiv: 2011.12729.

[83] “Hyperledger Fabric - Hyperledger Foundation,” [Online]. Available: https://www.
hyperledger.org/use/fabric (visited on Apr. 12, 2022).

[84] “ConsenSys Quorum | ConsenSys,” [Online]. Available: https://consensys.net/
quorum/ (visited on Apr. 12, 2022).

[85] X. Xu, I. Weber, and M. Staples, Architecture for Blockchain Applications. Springer, 2019,
ISBN: 978-3-030-03034-6. DOI: 10.1007/978-3-030-03035-3.

[86] D. R. Wong, S. Bhattacharya, and A. J. Butte, “Prototype of running clinical trials in an
untrustworthy environment using blockchain,” Nature Communications, vol. 10, no. 1,
pp. 1–8, 2019, ISSN: 20411723. DOI: 10.1038/s41467-019-08874-y.

[87] B. S. Glicksberg, S. Burns, R. Currie, et al., “Blockchain-authenticated sharing of genomic
and clinical outcomes data of patients with cancer: A prospective cohort study,” Journal of
Medical Internet Research, vol. 22, no. 3, e16810, 2020, ISSN: 14388871. DOI: 10.2196/
16810.

[88] S. Ahmed and N. Broek, “Blockchain could boost food security,” Nature, vol. 550, no. 7674,
p. 43, 2017, ISSN: 14764687. DOI: 10.1038/550043e.

[89] J. Mendling, I. Weber, W. Van Der Aalst, et al., “Blockchains for business process manage-
ment - Challenges and opportunities,” ACM Transactions on Management Information Sys-
tems, vol. 9, no. 1, 2018, ISSN: 21586578. DOI: 10.1145/3183367. arXiv: 1704.03610.

[90] I. Weber, X. Xu, R. R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling, “Untrusted
business process monitoring and execution using blockchain,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9850 LNCS, Springer, 2016, pp. 329–347, ISBN: 978-3-319-45347-7.
DOI: 10.1007/978-3-319-45348-4_19.

[91] J. Eberhardt and S. Tai, “On or off the blockchain? Insights on off-chaining computation
and data,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

164

https://doi.org/10.1007/978-3-030-23943-5_1
http://dx.doi.org/10.1007/978-3-030-23943-5_1
https://doi.org/10.24251/hicss.2021.520
https://doi.org/10.24251/hicss.2021.520
https://arxiv.org/abs/2011.12729
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://consensys.net/quorum/
https://consensys.net/quorum/
https://doi.org/10.1007/978-3-030-03035-3
https://doi.org/10.1038/s41467-019-08874-y
https://doi.org/10.2196/16810
https://doi.org/10.2196/16810
https://doi.org/10.1038/550043e
https://doi.org/10.1145/3183367
https://arxiv.org/abs/1704.03610
https://doi.org/10.1007/978-3-319-45348-4_19

Bibliography

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10465 LNCS, 2017, pp. 3–
15, ISBN: 9783319672618. DOI: 10.1007/978-3-319-67262-5_1.

[92] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy data on-chaining systems,”
in Proceedings - 2019 2nd IEEE International Conference on Blockchain, Blockchain 2019,
2019, pp. 496–503, ISBN: 9781728146935. DOI: 10.1109/Blockchain.2019.00075.

[93] A. Beniiche, “A Study of Blockchain Oracles,” arXiv preprint arXiv:2004.07140, 2020.
arXiv: 2004.07140. [Online]. Available: http://arxiv.org/abs/2004.07140.

[94] “Orisi - Distributed Bitcoin Oracles,” [Online]. Available: https://orisi.org/ (visited
on Jun. 7, 2020).

[95] “Provable - blockchain oracle service, enabling data-rich smart contracts,” [Online]. Avail-
able: https://provable.xyz/ (visited on Jun. 7, 2020).

[96] “axic/tinyoracle: Simple data provider toolkit for Ethereum,” [Online]. Available: https:
//github.com/axic/tinyoracle (visited on Jun. 7, 2020).

[97] “Blockchain Oracles for Hybrid Smart Contracts | Chainlink,” [Online]. Available: https:
//chain.link/ (visited on Jun. 7, 2020).

[98] “Witnet: the decentralized oracle network,” [Online]. Available: https://witnet.io/
(visited on Mar. 29, 2022).

[99] A. S. de Pedro, D. Levi, and L. I. Cuende, “Witnet: A Decentralized Oracle Network
Protocol,” CoRR, vol. abs/1711.0, 2017. DOI: 10.13140/RG.2.2.28152.34560. arXiv:
1711.09756. [Online]. Available: http://dx.doi.org/10.13140/RG.2.2.28152.
34560.

[100] N. Neidhardt, C. Köhler, and M. Nüttgens, “Cloud service billing and service level agree-
ment monitoring based on blockchain,” in CEUR Workshop Proceedings, ser. CEUR
Workshop Proc. Vol. 2097, 2018, pp. 65–69.

[101] X. Xu, C. Pautasso, L. Zhu, et al., “The blockchain as a software connector,” in Proceedings
- 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA 2016, IEEE
Computer Society, 2016, pp. 182–191, ISBN: 9781509021314. DOI: 10.1109/WICSA.
2016.21.

[102] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania, “Astraea: A De-
centralized Blockchain Oracle,” in Proceedings - IEEE 2018 International Congress on
Cybermatics: 2018 IEEE Conferences on Internet of Things, Green Computing and Commu-
nications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and
Information Technology, iThings/Gree, IEEE, 2018, pp. 1145–1152, ISBN: 9781538679753.
DOI: 10.1109/Cybermatics_2018.2018.00207. arXiv: 1808.00528.

165

https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1109/Blockchain.2019.00075
https://arxiv.org/abs/2004.07140
http://arxiv.org/abs/2004.07140
https://orisi.org/
https://provable.xyz/
https://github.com/axic/tinyoracle
https://github.com/axic/tinyoracle
https://chain.link/
https://chain.link/
https://witnet.io/
https://doi.org/10.13140/RG.2.2.28152.34560
https://arxiv.org/abs/1711.09756
http://dx.doi.org/10.13140/RG.2.2.28152.34560
http://dx.doi.org/10.13140/RG.2.2.28152.34560
https://doi.org/10.1109/WICSA.2016.21
https://doi.org/10.1109/WICSA.2016.21
https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://arxiv.org/abs/1808.00528

Bibliography

[103] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An authenticated
data feed for smart contracts,” Proceedings of the ACM Conference on Computer and
Communications Security, vol. 24-28-Octo, pp. 270–282, 2016, ISSN: 15437221. DOI:
10.1145/2976749.2978326.

[104] ISO, “ISO/TR 23455:2019 Blockchain and distributed ledger technologies — Overview of
and interactions between smart contracts in blockchain and distributed ledger technology
systems,” ISO, Tech. Rep., 2019, p. 42. [Online]. Available: https://doi.org/10.
3403%2F30384568.

[105] C. Di Ciccio, A. Cecconi, M. Dumas, et al., “Blockchain Support for Collaborative Business
Processes,” Informatik-Spektrum, vol. 42, no. 3, pp. 182–190, 2019, ISSN: 1432122X. DOI:
10.1007/s00287-019-01178-x.

[106] “ethereum/web3.py: A python interface for interacting with the Ethereum blockchain and
ecosystem.,” [Online]. Available: https://github.com/ethereum/web3.py (visited
on Jun. 7, 2020).

[107] “code-kotis/qr-code-scanner: A simple, fast and useful progressive web application,”
[Online]. Available: https://github.com/code-kotis/qr-code-scanner (visited
on Jun. 7, 2020).

[108] “MacOS/blockchain-oracles-data-collection: Software Patterns for Blockchain Oracles,”
[Online]. Available: https://github.com/MacOS/blockchain-oracles-data-
collection (visited on Sep. 10, 2020).

[109] I. Weber, V. Gramoli, A. Ponomarev, et al., “On availability for blockchain-based systems,”
in Proceedings of the IEEE Symposium on Reliable Distributed Systems, vol. 2017-Septe,
2017, pp. 64–73, ISBN: 9781538616796. DOI: 10.1109/SRDS.2017.15.

[110] Z. A. El Houda, A. Hafid, and L. Khoukhi, “Co-IoT: A collaborative DDoS mitigation
scheme in IoT environment based on blockchain using SDN,” in 2019 IEEE Global
Communications Conference, GLOBECOM 2019 - Proceedings, 2019, pp. 1–6, ISBN:
9781728109626. DOI: 10.1109/GLOBECOM38437.2019.9013542.

[111] O. Delgado-Mohatar, J. M. Sierra-Cámara, and E. Anguiano, “Blockchain-based semi-
autonomous ransomware,” Future Generation Computer Systems, 2020, ISSN: 0167-739X.

[112] S. Krejci, M. Sigwart, and S. Schulte, “Blockchain- and IPFS-Based Data Distribution for
the Internet of Things,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12054 LNCS,
2020, pp. 177–191, ISBN: 9783030447687. DOI: 10.1007/978-3-030-44769-4_14.

166

https://doi.org/10.1145/2976749.2978326
https://doi.org/10.3403%2F30384568
https://doi.org/10.3403%2F30384568
https://doi.org/10.1007/s00287-019-01178-x
https://github.com/ethereum/web3.py
https://github.com/code-kotis/qr-code-scanner
https://github.com/MacOS/blockchain-oracles-data-collection
https://github.com/MacOS/blockchain-oracles-data-collection
https://doi.org/10.1109/SRDS.2017.15
https://doi.org/10.1109/GLOBECOM38437.2019.9013542
https://doi.org/10.1007/978-3-030-44769-4_14

Bibliography

[113] L. García-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Optimized execution of
business processes on blockchain,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
ser. Lecture Notes in Computer Science, Springer, vol. 10445 LNCS, Springer, 2017,
pp. 130–146, ISBN: 9783319649993. DOI: 10.1007/978-3-319-65000-58. arXiv:
1612.03152.

[114] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of, 1994.

[115] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for multivocal literature re-
views in software engineering,” in Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering - EASE ’16, ACM, 2016, pp. 1–6,
ISBN: 9781450336918. DOI: 10.1145/2915970.2916008. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2915970.2916008.

[116] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded Theory in Software Engineering Re-
search : A Critical Review and Guidelines,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015), IEEE, 2015, pp. 120–131, ISBN:
9781450339001. DOI: http://dx.doi.org/10.1145/2884781.2884833.

[117] M. Alharby and A. van Moorsel, “Blockchain-based Smart Contracts: A Systematic
Mapping Study,” Computer Science and Information Technology, pp. 125–140, 2017.

[118] J. Bontje. “DApp Design Patterns.” (2015), [Online]. Available: https://www.slidesh
are.net/mids106/dapp-design-patterns.

[119] Cjgdev. “Smart-Contract Patterns written in Solidity, collated for community good.” (2016),
[Online]. Available: https://github.com/cjgdev/smart-contract-patterns.

[120] X. Xu, I. Weber, M. Staples, et al., “A Taxonomy of Blockchain-Based Systems for
Architecture Design,” Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA 2017, pp. 243–252, 2017. DOI: 10.1109/ICSA.2017.33. [Online].
Available: http://ieeexplore.ieee.org/abstract/document/7930224/.

[121] M. Bartoletti and L. Pompianu, “An Empirical analysis of smart contracts: Platforms,
applications, and design patterns,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10323
LNCS, pp. 494–509, 2017, ISSN: 16113349. DOI: 10.1007/978-3-319-70278-0_31.
arXiv: 1703.06322. [Online]. Available: http://arxiv.org/abs/1703.06322.

[122] P. Zhang, J. White, D. C. Schmidt, and G. Lenz, “Applying Software Patterns to Address
Interoperability in Blockchain-based Healthcare Apps,” arXiv preprint arXiv:1706.03700,

167

https://doi.org/10.1007/978-3-319-65000-58
https://arxiv.org/abs/1612.03152
https://doi.org/10.1145/2915970.2916008
http://dl.acm.org/citation.cfm?doid=2915970.2916008
http://dl.acm.org/citation.cfm?doid=2915970.2916008
https://doi.org/http://dx.doi.org/10.1145/2884781.2884833
https://www.slideshare.net/mids106/dapp-design-patterns
https://www.slideshare.net/mids106/dapp-design-patterns
https://github.com/cjgdev/smart-contract-patterns
https://doi.org/10.1109/ICSA.2017.33
http://ieeexplore.ieee.org/abstract/document/7930224/
https://doi.org/10.1007/978-3-319-70278-0_31
https://arxiv.org/abs/1703.06322
http://arxiv.org/abs/1703.06322

Bibliography

2017, ISSN: 2331-8422. arXiv: 1706.03700. [Online]. Available: http://arxiv.org/
abs/1706.03700.

[123] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart Contracts: A Finite State
Machine Based Approach,” arXiv preprint arXiv:1711.09327, 2017. arXiv: 1711.09327.
[Online]. Available: http://arxiv.org/abs/1711.09327.

[124] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering - EASE ’14, ser. EASE ’14, New York, NY, USA:
ACM, 2014, pp. 1–10, ISBN: 9781450324762. DOI: 10.1145/2601248.2601268. arXiv:
arXiv:1011.1669v3. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2601248.2601268.

[125] ConsenSys. “Ethereum Contract Security Techniques and Tips.” (2017), [Online]. Avail-
able: https://github.com/ConsenSys/smart-contract-best-practices.

[126] “Ethereum Development and DApps,” [Online]. Available: https://www.reddit.com/
r/ethdev/.

[127] “Ethereum Stack Exchange,” [Online]. Available: https://ethereum.stackexcha
nge.com/questions/20781/at- which- point- the- smart- contracts- get-

executed.

[128] F. HENGLEIN. “Smart Contracts Are Neither Smart Nor Contracts.” (2017), [Online].
Available: https://www.infoq.com/presentations/blockchain-introduction.

[129] OpenZeppelin. “OpenZeppelin/zeppelin-solidity: OpenZeppelin, a framework to build
secure smart contracts on Ethereum,” [Online]. Available: https://github.com/
OpenZeppelin/zeppelin-solidity (visited on Dec. 5, 2017).

[130] Modular-Network. “Modular-Network/ethereum-libraries: Library contracts for Ethereum,”
[Online]. Available: https://github.com/Modular-Network/ethereum-librarie
s.

[131] “maxwoe/solidity_patterns: Smart Contracts Design Patterns in the Ethereum Ecosystem
and Solidity Code,” [Online]. Available: https://github.com/maxwoe/solidity_
patterns.

[132] Oraclize. “Blockchain Oracle Service, Enabling Data-Rich Smart Contracts.” (2017),
[Online]. Available: http://www.oraclize.it/.

[133] H. E. Willis, “Restatement of the Law of Contracts of the American Law Institute,” Ind. LJ,
vol. 7, p. 429, 1931.

168

https://arxiv.org/abs/1706.03700
http://arxiv.org/abs/1706.03700
http://arxiv.org/abs/1706.03700
https://arxiv.org/abs/1711.09327
http://arxiv.org/abs/1711.09327
https://doi.org/10.1145/2601248.2601268
https://arxiv.org/abs/arXiv:1011.1669v3
http://dl.acm.org/citation.cfm?doid=2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268
https://github.com/ConsenSys/smart-contract-best-practices
https://www.reddit.com/r/ethdev/
https://www.reddit.com/r/ethdev/
https://ethereum.stackexchange.com/questions/20781/at-which-point-the-smart-contracts-get-executed
https://ethereum.stackexchange.com/questions/20781/at-which-point-the-smart-contracts-get-executed
https://ethereum.stackexchange.com/questions/20781/at-which-point-the-smart-contracts-get-executed
https://www.infoq.com/presentations/blockchain-introduction
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/OpenZeppelin/zeppelin-solidity
https://github.com/Modular-Network/ethereum-libraries
https://github.com/Modular-Network/ethereum-libraries
https://github.com/maxwoe/solidity_patterns
https://github.com/maxwoe/solidity_patterns
http://www.oraclize.it/

Bibliography

[134] N. Szabo. “Smart Contracts.” (1994), [Online]. Available: http://www.fon.hum.uva.
nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool

2006/szabo.best.vwh.net/smart.contracts.html (visited on Sep. 10, 2019).

[135] N. Szabo. “The idea of smart contracts.” (1997), [Online]. Available: http://www.
fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/

LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_idea.html

(visited on Sep. 10, 2019).

[136] M. K. Woebbeking, “The impact of smart contracts on traditional concepts of contract
law,” J. Intell. Prop. Info. Tech. & Elec. Com. L., vol. 10, no. 1988, p. 105, 2019.

[137] M. Fowler and R. Parsons, Domain-Specific Languages. Pearson Education, 2010, ISBN:
9780321712943. DOI: 10.1007/978-3-642-03034-5.

[138] L. Johnson, “Effective Contract Drafting: Indentifying the Building Blocks of Contracts,”
Scholarly Works, Jul. 2013. [Online]. Available: https://scholars.law.unlv.edu/
facpub/882.

[139] R. J. Wieringa, Design science methodology: For information systems and software engi-
neering. Springer, 2014, ISBN: 9783662438398. DOI: 10.1007/978-3-662-43839-8.

[140] “Xtext framework,” [Online]. Available: https://www.eclipse.org/Xtext/ (visited
on Jul. 10, 2019).

[141] “maxwoe/cml: Contract Modeling Language,” [Online]. Available: https://github.
com/maxwoe/cml.

[142] “CML Web Editor,” [Online]. Available: http://cml.swa.univie.ac.at/.

[143] O. Marjanovic and Z. Milosevic, “Towards formal modeling of e-contracts,” Proceedings -
5th IEEE International Enterprise Distributed Object Computing Conference, vol. 2001-
Janua, no. January, pp. 59–68, 2001, ISSN: 15417719. DOI:10.1109/EDOC.2001.950423.
[Online]. Available: http://ieeexplore.ieee.org/document/950423/.

[144] J. De Kruijff and H. Weigand, “Ontologies for commitment-based smart contracts,” in OTM
Confederated International Conferences" On the Move to Meaningful Internet Systems",
Springer, 2017, pp. 383–398.

[145] D. McAdams, “An Ontology for Smart Contracts,” IOHK Paper, p. 3, 2017. [Online].
Available: https://iohk.io/research/library/#QCNR6SCZ.

[146] G. J. Pace and G. Schneider, “Challenges in the specification of full contracts,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 5423 LNCS, Springer, Berlin, Heidelberg, 2009,

169

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_idea.html
https://doi.org/10.1007/978-3-642-03034-5
https://scholars.law.unlv.edu/facpub/882
https://scholars.law.unlv.edu/facpub/882
https://doi.org/10.1007/978-3-662-43839-8
https://www.eclipse.org/Xtext/
https://github.com/maxwoe/cml
https://github.com/maxwoe/cml
http://cml.swa.univie.ac.at/
https://doi.org/10.1109/EDOC.2001.950423
http://ieeexplore.ieee.org/document/950423/
https://iohk.io/research/library/#QCNR6SCZ

Bibliography

pp. 292–306, ISBN: 3642002544. DOI: 10.1007/978-3-642-00255-7_20. [Online].
Available: http://link.springer.com/10.1007/978-3-642-00255-7_20.

[147] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards automated genera-
tion of smart contracts,” Proceedings - IEEE 1st International Workshops on Foundations
and Applications of Self-Systems, FAS-W 2016, pp. 210–215, 2016, ISSN: 978-3-319-
42446-0. DOI: 10.1109/FAS-W.2016.53. [Online]. Available: https://ieeexplore.
ieee.org/document/7789470.

[148] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, “SPESC: A Specification Language for Smart
Contracts,” Proceedings - International Computer Software and Applications Conference,
vol. 1, pp. 132–137, Jul. 2018, ISSN: 07303157. DOI: 10.1109/COMPSAC.2018.00025.
[Online]. Available: https://ieeexplore.ieee.org/document/8377649/.

[149] E. Regnath and S. Steinhorst, “SmaCoNat: Smart Contracts in Natural Language,” Forum
on Specification and Design Languages, vol. 2018-Septe, 2018, ISSN: 16369874. DOI:
10.1109/FDL.2018.8524068. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8524068.

[150] C. Prisacariu and G. Schneider, “A Formal Language for Electronic Contracts,” Lecture
Notes in Computer Science, vol. 4468, pp. 174–189, 2007, ISSN: 03029743. DOI: 10.
1007/978-3-540-72952-5_11. [Online]. Available: http://www.springerlink.
com/index/10.1007/978-3-540-72952-5.

[151] E. Martínez, G. Díaz, E. Cambronero, and G. Schneider, “A model for visual specifi-
cation of e-contracts,” Proceedings - 2010 IEEE 7th International Conference on Ser-
vices Computing, SCC 2010, vol. 8625 LNAI, no. section 3, pp. 1–8, Jul. 2010, ISSN:
16113349. DOI: 10 . 1109 / SCC . 2010 . 32. arXiv: 1406 . 5691. [Online]. Available:
https://folk.uio.no/gerardo/scc2010.pdf.

[152] “Xtend - Modernized Java,” [Online]. Available: https://www.eclipse.org/xtend/
(visited on Mar. 30, 2022).

[153] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1996, p. 395,
ISBN: 020163361-2. DOI: 10.1093/carcin/bgs084.

[154] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Ar-
chitecture, Volume 2: Patterns for Concurrent and Networked Objects. Chichester, UK:
Wiley, 2000, ISBN: 978-0-471-60695-6. [Online]. Available: https://www.safaribo
oksonline.com/library/view/pattern-oriented-software-architecture/

9781118725177/.

170

https://doi.org/10.1007/978-3-642-00255-7_20
http://link.springer.com/10.1007/978-3-642-00255-7_20
https://doi.org/10.1109/FAS-W.2016.53
https://ieeexplore.ieee.org/document/7789470
https://ieeexplore.ieee.org/document/7789470
https://doi.org/10.1109/COMPSAC.2018.00025
https://ieeexplore.ieee.org/document/8377649/
https://doi.org/10.1109/FDL.2018.8524068
https://ieeexplore.ieee.org/abstract/document/8524068
https://ieeexplore.ieee.org/abstract/document/8524068
https://doi.org/10.1007/978-3-540-72952-5_11
https://doi.org/10.1007/978-3-540-72952-5_11
http://www.springerlink.com/index/10.1007/978-3-540-72952-5
http://www.springerlink.com/index/10.1007/978-3-540-72952-5
https://doi.org/10.1109/SCC.2010.32
https://arxiv.org/abs/1406.5691
https://folk.uio.no/gerardo/scc2010.pdf
https://www.eclipse.org/xtend/
https://doi.org/10.1093/carcin/bgs084
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/
https://www.safaribooksonline.com/library/view/pattern-oriented-software-architecture/9781118725177/

Bibliography

[155] “Solidity 0.5.13 documentation,” [Online]. Available: https://solidity.readthedoc
s.io/en/v0.5.13/ (visited on Nov. 25, 2019).

[156] P. M. Senge, The fifth discipline: The art and practice of the learning organization. Broad-
way Business, 2006.

[157] “GitHub - federicobond/solidity-parser-antlr: A Solidity parser for JS built on top of a
robust ANTLR4 grammar,” [Online]. Available:https://github.com/federicobond/
solidity-parser-antlr (visited on Feb. 20, 2020).

[158] T. Hvitved, “Contract Formalisation and Modular Implementation of Domain-Specific
Languages,” Ph.D. dissertation, Citeseer, 2011. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.724.7779&rep=rep1&type=pdf.

[159] “Known Attacks - Ethereum Smart Contract Best Practices,” [Online]. Available: https:
//consensys.github.io/smart-contract-best-practices/known_attacks/

(visited on Dec. 3, 2019).

[160] “Accord Project,” [Online]. Available: https://www.accordproject.org/ (visited on
Feb. 20, 2020).

[161] “Ergo - Accord Project,” [Online]. Available: https://www.accordproject.org/
projects/ergo/ (visited on Feb. 20, 2020).

[162] W. de Kort, “What Is DevOps?” DevOps on the Microsoft Stack, pp. 3–8, 2016. DOI:
10.1007/978-1-4842-1446-6_1.

[163] C. Lal and D. Marijan, “Blockchain Testing: Challenges, Techniques, and Research Direc-
tions,” arXiv preprint arXiv:2103.10074, 2021. arXiv: 2103.10074. [Online]. Available:
http://arxiv.org/abs/2103.10074.

[164] R. Koul, “Blockchain Oriented Software Testing - Challenges and Approaches,” 2018 3rd
International Conference for Convergence in Technology, I2CT 2018, pp. 1–6, 2018. DOI:
10.1109/I2CT.2018.8529728.

[165] S. Li, Q. Xu, P. Hou, et al., “Exploring the Challenges of Developing and Operating
Consortium Blockchains: A Case Study,” ACM International Conference Proceeding
Series, pp. 398–404, 2020. DOI: 10.1145/3383219.3383276.

[166] M. Yilmaz, S. Tasel, E. Tuzun, U. Gulec, R. V. O’Connor, and P. M. Clarke, Applying
Blockchain to Improve the Integrity of the Software Development Process. Springer Inter-
national Publishing, 2019, vol. 1060, pp. 260–271, ISBN: 9783030280048. DOI: 10.1007/
978-3-030-28005-5_20. [Online]. Available: http://dx.doi.org/10.1007/978-
3-030-28005-5_20.

171

https://solidity.readthedocs.io/en/v0.5.13/
https://solidity.readthedocs.io/en/v0.5.13/
https://github.com/federicobond/solidity-parser-antlr
https://github.com/federicobond/solidity-parser-antlr
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.7779&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.724.7779&rep=rep1&type=pdf
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://www.accordproject.org/
https://www.accordproject.org/projects/ergo/
https://www.accordproject.org/projects/ergo/
https://doi.org/10.1007/978-1-4842-1446-6_1
https://arxiv.org/abs/2103.10074
http://arxiv.org/abs/2103.10074
https://doi.org/10.1109/I2CT.2018.8529728
https://doi.org/10.1145/3383219.3383276
https://doi.org/10.1007/978-3-030-28005-5_20
https://doi.org/10.1007/978-3-030-28005-5_20
http://dx.doi.org/10.1007/978-3-030-28005-5_20
http://dx.doi.org/10.1007/978-3-030-28005-5_20

Bibliography

[167] M. Beller and J. Hejderup, “Blockchain-based software engineering,” Proceedings - 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER 2019, pp. 53–56, 2019. DOI: 10.1109/ICSE- NIER.
2019.00022.

[168] “Truffle Suite - Truffle Suite,” [Online]. Available: https://trufflesuite.com/
(visited on Mar. 9, 2022).

[169] “Hardhat | Ethereum development environment for professionals by Nomic Foundation,”
[Online]. Available: https://hardhat.org/ (visited on Mar. 9, 2022).

[170] “maxwoe/sc-devops-knowledge-sources: DevOps for Ethereum Blockchain Smart Con-
tracts - Knowledge Sources,” [Online]. Available: https://github.com/maxwoe/sc-
devops-knowledge-sources (visited on Sep. 2, 2021).

[171] “Jenkins,” [Online]. Available: https://www.jenkins.io/ (visited on Mar. 13, 2022).

[172] “Travis CI - Test and Deploy Your Code with Confidence,” [Online]. Available: https:
//travis-ci.org/ (visited on Mar. 13, 2022).

[173] “Continuous Integration and Delivery - CircleCI,” [Online]. Available: https://circle
ci.com/ (visited on Mar. 13, 2022).

[174] “GitLab CI/CD | GitLab,” [Online]. Available: https://docs.gitlab.com/ee/ci/
(visited on Mar. 13, 2022).

[175] “GitHub Actions Documentation - GitHub Docs,” [Online]. Available: https://docs.
github.com/en/actions (visited on Mar. 13, 2022).

[176] “Embark into the Ether. | Embark,” [Online]. Available: https://framework.embarkla
bs.io/ (visited on Mar. 9, 2022).

[177] “eth-brownie/brownie: A Python-based development and testing framework for smart
contracts targeting the Ethereum Virtual Machine.,” [Online]. Available: https://githu
b.com/eth-brownie/brownie (visited on Mar. 9, 2022).

[178] “Waffle,” [Online]. Available: https://getwaffle.io/ (visited on Mar. 9, 2022).

[179] “Remix - Ethereum IDE,” [Online]. Available: https://remix.ethereum.org/ (visited
on Mar. 9, 2022).

[180] “ethereum/remix-vscode: Remix VS Code extension,” [Online]. Available: https://
github.com/ethereum/remix-vscode (visited on Mar. 9, 2022).

[181] “ERC-20 Token Standard | ethereum.org,” [Online]. Available: https://ethereum.org/
en/developers/docs/standards/tokens/erc-20/ (visited on Mar. 9, 2022).

172

https://doi.org/10.1109/ICSE-NIER.2019.00022
https://doi.org/10.1109/ICSE-NIER.2019.00022
https://trufflesuite.com/
https://hardhat.org/
https://github.com/maxwoe/sc-devops-knowledge-sources
https://github.com/maxwoe/sc-devops-knowledge-sources
https://www.jenkins.io/
https://travis-ci.org/
https://travis-ci.org/
https://circleci.com/
https://circleci.com/
https://docs.gitlab.com/ee/ci/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://framework.embarklabs.io/
https://framework.embarklabs.io/
https://github.com/eth-brownie/brownie
https://github.com/eth-brownie/brownie
https://getwaffle.io/
https://remix.ethereum.org/
https://github.com/ethereum/remix-vscode
https://github.com/ethereum/remix-vscode
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

Bibliography

[182] “NatSpec Format - Solidity 0.8.12 documentation,” [Online]. Available: https://docs.
soliditylang.org/en/v0.8.12/natspec-format.html (visited on Mar. 9, 2022).

[183] “Doxygen: Doxygen,” [Online]. Available: https://www.doxygen.nl/index.html
(visited on Mar. 9, 2022).

[184] “Main - Emscripten 3.1.6-git (dev) documentation,” [Online]. Available: https : / /
emscripten.org/ (visited on Mar. 9, 2022).

[185] “ethereum/solc-bin: This repository contains current and historical builds of the Solidity
Compiler.,” [Online]. Available: https://github.com/ethereum/solc-bin (visited
on Mar. 9, 2022).

[186] “ethereum/solc-js: Javascript bindings for the Solidity compiler,” [Online]. Available:
https://github.com/ethereum/solc-js (visited on Mar. 9, 2022).

[187] “Solc-js - npm,” [Online]. Available: https://www.npmjs.com/package/solc-
js?activeTab=readme (visited on Mar. 9, 2022).

[188] “merklejerk/solpp: A solidity preprocessor and flattener CLI and library,” [Online]. Avail-
able: https://github.com/merklejerk/solpp (visited on Mar. 9, 2022).

[189] “trufflesuite/ganache: A tool for creating a local blockchain for fast Ethereum develop-
ment.,” [Online]. Available: https://github.com/trufflesuite/ganache (visited
on Mar. 9, 2022).

[190] “0xcert - Testing smart contracts live without spending gas,” [Online]. Available: https:
//0xcert.org/news/live-testing-smart-contracts-with-estimategas-

william-entriken-tadej-vengust/ (visited on Aug. 2, 2021).

[191] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software Development, 2004.

[192] P. Chakraborty, R. Shahriyar, A. Iqbal, and A. Bosu, “Understanding the software develop-
ment practices of blockchain projects: A survey,” International Symposium on Empirical
Software Engineering and Measurement, 2018, ISSN: 19493789. DOI: 10.1145/3239235.
3240298.

[193] “rkalis/truffle-assertions: Assertions and utilities for testing Ethereum smart contracts
with Truffle unit tests,” [Online]. Available: https://github.com/rkalis/truffle-
assertions (visited on Mar. 9, 2022).

[194] “Test Helpers - OpenZeppelin Docs,” [Online]. Available: https://docs.openzeppeli
n.com/test-helpers/0.5/ (visited on Mar. 9, 2022).

[195] “OpenZeppelin/openzeppelin-contracts,” [Online]. Available: https://github.com/Op
enZeppelin/openzeppelin-contracts/tree/master/contracts/mocks (visited

173

https://docs.soliditylang.org/en/v0.8.12/natspec-format.html
https://docs.soliditylang.org/en/v0.8.12/natspec-format.html
https://www.doxygen.nl/index.html
https://emscripten.org/
https://emscripten.org/
https://github.com/ethereum/solc-bin
https://github.com/ethereum/solc-js
https://www.npmjs.com/package/solc-js?activeTab=readme
https://www.npmjs.com/package/solc-js?activeTab=readme
https://github.com/merklejerk/solpp
https://github.com/trufflesuite/ganache
https://0xcert.org/news/live-testing-smart-contracts-with-estimategas-william-entriken-tadej-vengust/
https://0xcert.org/news/live-testing-smart-contracts-with-estimategas-william-entriken-tadej-vengust/
https://0xcert.org/news/live-testing-smart-contracts-with-estimategas-william-entriken-tadej-vengust/
https://doi.org/10.1145/3239235.3240298
https://doi.org/10.1145/3239235.3240298
https://github.com/rkalis/truffle-assertions
https://github.com/rkalis/truffle-assertions
https://docs.openzeppelin.com/test-helpers/0.5/
https://docs.openzeppelin.com/test-helpers/0.5/
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/mocks
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/mocks

Bibliography

on Aug. 16, 2021).

[196] “ChainSafe/web3.js: Ethereum JavaScript API,” [Online]. Available: https://github.
com/ChainSafe/web3.js (visited on Mar. 21, 2022).

[197] “Mocha - the fun, simple, flexible JavaScript test framework,” [Online]. Available: https:
//mochajs.org/ (visited on Mar. 9, 2022).

[198] “Chai,” [Online]. Available: https://www.chaijs.com/ (visited on Mar. 9, 2022).

[199] “gnosis/mock-contract: Simple Solidity contract to mock dependent contracts in truffle
tests.,” [Online]. Available: https://github.com/gnosis/mock-contract (visited
on Mar. 9, 2022).

[200] “MythX: Smart contract security service for Ethereum,” [Online]. Available: https:
//mythx.io/ (visited on Mar. 9, 2022).

[201] “eth-sri/securify2: Securify v2.0,” [Online]. Available: https://github.com/eth-
sri/securify2 (visited on Mar. 9, 2022).

[202] “smartdec/smartcheck: SmartCheck – a static analysis tool that detects vulnerabilities
and bugs in Solidity programs (Ethereum-based smart contracts).,” [Online]. Available:
https://github.com/smartdec/smartcheck (visited on Mar. 9, 2022).

[203] “crytic/slither: Static Analyzer for Solidity,” [Online]. Available: https://github.com/
crytic/slither (visited on Mar. 9, 2022).

[204] “trailofbits/manticore: Symbolic execution tool,” [Online]. Available: https://github.
com/trailofbits/manticore (visited on Mar. 9, 2022).

[205] “ConsenSys/mythril: Security analysis tool for EVM bytecode. Supports smart contracts
built for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron and other EVM-compatible
blockchains.,” [Online]. Available: https://github.com/ConsenSys/mythril (vis-
ited on Mar. 9, 2022).

[206] M. Di Angelo and G. Salzer, “A survey of tools for analyzing ethereum smart contracts,”
Proceedings - 2019 IEEE International Conference on Decentralized Applications and
Infrastructures, DAPPCON 2019, pp. 69–78, 2019. DOI: 10.1109/DAPPCON.2019.
00018.

[207] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart Contract: Attacks and Protections,”
IEEE Access, vol. 8, pp. 24 416–24 427, 2020, ISSN: 21693536. DOI: 10.1109/ACCESS.
2020.2970495.

[208] A. Ayman, S. Roy, A. Alipour, and A. Laszka, “Smart contract development from the
perspective of developers: Topics and issues discussed on social media,” Lecture Notes in

174

https://github.com/ChainSafe/web3.js
https://github.com/ChainSafe/web3.js
https://mochajs.org/
https://mochajs.org/
https://www.chaijs.com/
https://github.com/gnosis/mock-contract
https://mythx.io/
https://mythx.io/
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
https://github.com/smartdec/smartcheck
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/ACCESS.2020.2970495
https://doi.org/10.1109/ACCESS.2020.2970495

Bibliography

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 12063 LNCS, pp. 405–422, 2020, ISSN: 16113349. DOI:
10.1007/978-3-030-54455-3_29. arXiv: 1905.08833.

[209] “crytic/echidna: Ethereum smart contract fuzzer,” [Online]. Available: https://github.
com/crytic/echidna (visited on Mar. 9, 2022).

[210] J. J. Honig, M. H. Everts, and M. Huisman, “Practical Mutation Testing for Smart Con-
tracts,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11737 LNCS, pp. 289–303, 2019,
ISSN: 16113349. DOI: 10.1007/978-3-030-31500-9_19.

[211] “Solidity-coverage/faq.md at master - sc-forks/solidity-coverage,” [Online]. Available:
https://github.com/sc-forks/solidity-coverage/blob/master/docs/faq.

md (visited on Mar. 9, 2022).

[212] “0xProject/tools,” [Online]. Available: https://github.com/0xProject/tools
(visited on Mar. 9, 2022).

[213] “cgewecke/eth-gas-reporter: Gas usage per unit test. Average gas usage per method. A
mocha reporter.,” [Online]. Available: https://github.com/cgewecke/eth-gas-
reporter (visited on Mar. 9, 2022).

[214] “Blockchain Technology Solutions | Ethereum Solutions | ConsenSys,” [Online]. Available:
https://consensys.net/ (visited on Mar. 9, 2022).

[215] “Terraform by HashiCorp,” [Online]. Available: https://www.terraform.io/ (visited
on Mar. 9, 2022).

[216] “Ansible is Simple IT Automation,” [Online]. Available: https://www.ansible.com/
(visited on Mar. 9, 2022).

[217] “Powerful infrastructure automation and delivery | Puppet,” [Online]. Available: https:
//puppet.com/ (visited on Mar. 9, 2022).

[218] “Configuration Management System Software - Chef Infra | Chef,” [Online]. Available:
https://www.chef.io/products/chef-infra (visited on Mar. 9, 2022).

[219] “hyperledger-labs/blockchain-automation-framework: An automation framework for
rapidly and consistently deploying production-ready DLT platforms,” [Online]. Available:
https://github.com/hyperledger-labs/blockchain-automation-framework

(visited on Sep. 1, 2021).

[220] “Running Migrations - Truffle Suite,” [Online]. Available: https://trufflesuite.
com/docs/truffle/getting-started/running-migrations.html (visited on

175

https://doi.org/10.1007/978-3-030-54455-3_29
https://arxiv.org/abs/1905.08833
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://doi.org/10.1007/978-3-030-31500-9_19
https://github.com/sc-forks/solidity-coverage/blob/master/docs/faq.md
https://github.com/sc-forks/solidity-coverage/blob/master/docs/faq.md
https://github.com/0xProject/tools
https://github.com/cgewecke/eth-gas-reporter
https://github.com/cgewecke/eth-gas-reporter
https://consensys.net/
https://www.terraform.io/
https://www.ansible.com/
https://puppet.com/
https://puppet.com/
https://www.chef.io/products/chef-infra
https://github.com/hyperledger-labs/blockchain-automation-framework
https://trufflesuite.com/docs/truffle/getting-started/running-migrations.html
https://trufflesuite.com/docs/truffle/getting-started/running-migrations.html

Bibliography

Mar. 9, 2022).

[221] “NomicFoundation/hardhat-ignition: Hardhat Ignition is a solidity tool for building, deploy-
ing, versioning and changing Ethereum smart contract infrastructure.,” [Online]. Available:
https://github.com/NomicFoundation/hardhat-ignition (visited on Mar. 9,
2022).

[222] “Proxy Patterns - OpenZeppelin blog,” [Online]. Available: https://blog.openzeppel
in.com/proxy-patterns/ (visited on Sep. 1, 2021).

[223] P. Klinger, L. Nguyen, and F. Bodendorf, Upgradeability Concept for Collaborative
Blockchain-Based Business Process Execution Framework. Springer International Publish-
ing, 2020, vol. 12404 LNCS, pp. 127–141, ISBN: 9783030596378. DOI: 10.1007/978-
3-030-59638-5_9. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-
59638-5_9.

[224] “EIP-2535: Diamonds, Multi-Facet Proxy,” [Online]. Available: https://eips.ethere
um.org/EIPS/eip-2535 (visited on Mar. 9, 2022).

[225] “Upgrades Plugins - OpenZeppelin Docs,” [Online]. Available: https://docs.openzep
pelin.com/upgrades-plugins/1.x/ (visited on Mar. 30, 2022).

[226] “Verify and Publish Contract Source Code | Etherscan,” [Online]. Available: https:
//etherscan.io/verifyContract (visited on Mar. 9, 2022).

[227] “Sourcify,” [Online]. Available: https://sourcify.dev/ (visited on Mar. 9, 2022).

[228] “rkalis/truffle-plugin-verify: Verify your smart contracts on Etherscan from the Truffle
CLI,” [Online]. Available: https://github.com/rkalis/truffle-plugin-verify
(visited on Mar. 9, 2022).

[229] “hardhat/packages/hardhat-etherscan at master NomicFoundation/hardhat,” [Online]. Avail-
able: https://github.com/NomicFoundation/hardhat/tree/master/packages/
hardhat-etherscan (visited on Mar. 9, 2022).

[230] “Ethereum (ETH) Blockchain Explorer,” [Online]. Available: https://etherscan.io/
(visited on Mar. 9, 2022).

[231] “Ethereum (ETH) Blockchain Explorer - etherchain.org - 2022,” [Online]. Available:
https://etherchain.org/ (visited on Mar. 9, 2022).

[232] “Blockchair - Universal blockchain explorer and search engine,” [Online]. Available:
https://blockchair.com/ (visited on Mar. 9, 2022).

[233] G. A. Pierro, R. Tonelli, and M. Marchesi, “An organized repository of ethereum smart
contracts’ source codes and metrics,” Future Internet, vol. 12, no. 11, pp. 1–15, 2020, ISSN:

176

https://github.com/NomicFoundation/hardhat-ignition
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/
https://doi.org/10.1007/978-3-030-59638-5_9
https://doi.org/10.1007/978-3-030-59638-5_9
http://dx.doi.org/10.1007/978-3-030-59638-5_9
http://dx.doi.org/10.1007/978-3-030-59638-5_9
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://docs.openzeppelin.com/upgrades-plugins/1.x/
https://docs.openzeppelin.com/upgrades-plugins/1.x/
https://etherscan.io/verifyContract
https://etherscan.io/verifyContract
https://sourcify.dev/
https://github.com/rkalis/truffle-plugin-verify
https://github.com/NomicFoundation/hardhat/tree/master/packages/hardhat-etherscan
https://github.com/NomicFoundation/hardhat/tree/master/packages/hardhat-etherscan
https://etherscan.io/
https://etherchain.org/
https://blockchair.com/

Bibliography

19995903. DOI: 10.3390/fi12110197.

[234] “blockscout/blockscout: Blockchain explorer for Ethereum based network and a tool
for inspecting and analyzing EVM based blockchains.,” [Online]. Available: https:
//github.com/blockscout/blockscout (visited on Mar. 9, 2022).

[235] “xops/expedition: A block explorer for the Ethereum stack.,” [Online]. Available: https:
//github.com/xops/expedition (visited on Mar. 9, 2022).

[236] “tryethernal/ethernal: Ethernal is a block explorer for EVM-based chains,” [Online]. Avail-
able: https://github.com/tryethernal/ethernal (visited on Mar. 9, 2022).

[237] “Tenderly | Ethereum Developer Platform,” [Online]. Available: https://tenderly.co/
(visited on Mar. 9, 2022).

[238] “Sentinel - OpenZeppelin Docs,” [Online]. Available: https://docs.openzeppelin.
com/defender/sentinel (visited on Mar. 9, 2022).

[239] “PARSIQ,” [Online]. Available: https://www.parsiq.net/en/ (visited on Mar. 9,
2022).

[240] “Prometheus - Monitoring system and time series database,” [Online]. Available: https:
//prometheus.io/ (visited on Mar. 9, 2022).

[241] “google/cadvisor: Analyzes resource usage and performance characteristics of running
containers.,” [Online]. Available: https://github.com/google/cadvisor (visited on
Mar. 9, 2022).

[242] “maxwoe/sc-devops: DevOps for Ethereum Blockchain Smart Contracts,” [Online]. Avail-
able: https://github.com/maxwoe/sc-devops (visited on Aug. 30, 2021).

[243] J. A. Maxwell, Qualitative research design: An interactive approach. Sage publications,
2012.

[244] Y. S. Lincoln and E. G. Guba, Naturalistic inquiry. sage, 1985.

177

https://doi.org/10.3390/fi12110197
https://github.com/blockscout/blockscout
https://github.com/blockscout/blockscout
https://github.com/xops/expedition
https://github.com/xops/expedition
https://github.com/tryethernal/ethernal
https://tenderly.co/
https://docs.openzeppelin.com/defender/sentinel
https://docs.openzeppelin.com/defender/sentinel
https://www.parsiq.net/en/
https://prometheus.io/
https://prometheus.io/
https://github.com/google/cadvisor
https://github.com/maxwoe/sc-devops

Acronyms

ABI Application Binary Interface.

API Application Programming Interface.

AST Abstract Syntax Tree.

BaaS Blockchain as a Service.

BLOB Binary Large Object.

BOSE Blockchain-Oriented Software Engineering.

BPMN Business Process Model and Notation.

CAS Content Adressable Storage.

CD Continuous Delivery/Deployment.

CDN Content Delivery Network.

CI Continuous Integration.

CLI Command Line Interface.

CML Contract Modeling Language.

CPU Central Processing Unit.

CQRS Command-Query Responsibility Segregation.

CRUD Create, Read, Update and Delete.

DApp Decentralized Application.

DSL Domain Specific Language.

EBNF Extended Backus-Naur Form-like.

179

Acronyms

EDA Event Driven Architecture.

ENS Ethereum Name Service.

ERP Enterprise Resource Planning.

EVM Ethereum Virtual Machine.

FaaS Function as a Service.

FIFO First In - First Out.

FIFO First In - Last Out.

FSM Finite-State Machine.

GT Grounded Theory.

HE Homomorphic Encryption.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IaaS Infrastructure as a Service.

IaC Infrastructure as Code.

IDE Integrated Development Environment.

IPFS InterPlanetary File System.

JSON JavaScript Object Notation.

LLOC Logical Lines Of Code.

MLR Multivocal Literature Review.

NoSQL Not only Structured Query Language.

P2P Peer-to-Peer.

PaaS Platform as a Service.

180

Acronyms

PoA Proof-of-Authority.

PoW Proof-of-Work.

QR Quick Response.

REST Representational State Transfer.

RPC Remote Procedure Call.

SaaS Software as a Service.

SDK Software Development Kit.

SGX Software Guard Extensions.

SLR Systematic Literature Review.

SMT Satisfiability Modulo Theories.

SQL Structured Query Language.

TEE Trusted Execution Environment.

UI User Interface.

VCS Version Control System.

XaaS Everything as a Service.

ZKP Zero-knowledge proof.

181

A. Appendix

A.1. DSL
for Smart Contracts - Contract Modeling Language (CML)

The CML language we introduced in Chapter 6 is developed in Xtext [140], a framework for
developing programming languages and DSLs. In this section, we give a brief introduction to Xtext
and then present the developed Xtext grammar.

Xtext DSL Framework

The CML language is developed in Xtext [140]. Xtext is a framework for the development of
programming languages and domain-specific languages (DSLs). Xtext uses a specifically designed
grammar language to define custom languages and provides a fully corresponding infrastructure
(parser, linker, typechecker, compiler) as well as editing support for Eclipse. Figure A.1 shows an
overview of the Xtext framework, which can be separated in a meta-level layer and an instance-level
layer. The meta-level layer is used for developing the general infrastructure, defines the syntax of
the DSL and the transformations (to code), whereas the instance-level layer is used to develop a
corresponding implementation. The syntax (grammar) of the DSL is defined in an Xtext (.xtext) file
by using Extended Backus-Naur Form-like (EBNF) expressions from which a meta model in Ecore
(.ecore) and a class model for the abstract syntax tree is derived. Often the grammar is referred
to as concrete syntax, whereas the Ecore model is referred to as abstract syntax. To utilize the
DSL, a textual DSL instance (.mydsl) is created that conforms to the concrete syntax. This instance
can likewise be represented as an instance of the Ecore model (.xmi). Model transformations are
typically written using the Xtend language (.xtend), which is a flexible and expressive dialect of
the Java programming language to allow the conversion of models to code, visualizations, or other
representations (.*).

Xtext Grammar of the Smart Contract DSL

Listing A.1 shows the complete Xtext grammar of our smart contract abstraction DSL. The full
CML language implementation source code is available on GitHub [141].

183

A. Appendix

Concrete
Syntax
.xtext

Abstract Syntax
.ecore

Transformation
.xtend

Text Input
.mydsl

Model
.xmi

Output
.*

Meta
Level

Instance
Level

Figure A.1.: An overview of the Xtext DSL Framework.

Xtext
grammar at.ac.univie.swa.Cml with org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore
generate cml 'http://swa.univie.ac.at/Cml'

CmlProgram:
('namespace' name=QualifiedName)?
imports+=Import*
declarations+=Declaration*;

Import:
'import' importedNamespace=QualifiedNameWithWildcard;

Declaration:
CmlClass | Party | Asset | Event | Contract | Enumeration | Attribute | Operation |
AnnotationDeclaration;

CmlClass:
isAbstract? kind='concept' name=ID typeVariables? extends? identifiedBy?
(BEGIN features+=FeatureAttributeAndOperation* END)?;

Contract returns CmlClass:
annotations+=Annotation*
kind='contract' name=ID extends?
(BEGIN features+=FeatureAttributeAndOperationAndClause* END)?;

Party returns CmlClass:
external?='external'? kind='party' name=ID extends? identifiedBy?
(BEGIN features+=FeatureAttribute+ END)?;

Asset returns CmlClass:
kind='asset' name=ID extends? identifiedBy?
(BEGIN features+=FeatureAttribute+ END)?;

Event returns CmlClass:
kind='event' name=ID
(BEGIN features+=FeatureAttribute+ END)?;

Enumeration returns CmlClass:
kind='enum' name=ID
BEGIN features+=FeatureEnumeration+ END;

EnumerationElement:
name=ID;

AnnotationDeclaration:
'@' 'interface' name=ID
(BEGIN features+=Attribute+ END)?;

Annotation:
'@' declaration=[AnnotationDeclaration

|QualifiedName] ('(' (args+=(AnnotationElement) (',' args+=AnnotationElement)*)?
')')?;

AnnotationElement:
param=[Attribute] '=' value=Expression;

Type:
CmlClass;

TypeReference:

184

A.1. DSL for Smart Contracts - Contract Modeling Language (CML)

ParameterizedTypeReference => ({GenericArrayTypeReference.componentType=current} '[' ']')*;

ParameterizedTypeReference:
type=[DeclaredType

|QualifiedName] (=> '<' typeArgs+=TypeReference (',' typeArgs+=TypeReference)* '>')?;

DeclaredType:
TypeTypeRef | TypeVarRef;

TypeVarRef returns ParameterizedTypeReference:
type=[TypeVariable];

TypeTypeRef returns ParameterizedTypeReference:
type=[Type|QualifiedName];

TypeVariable:
name=ID;

NamedElement:
CmlProgram | CmlClass | Feature | VariableDeclaration | AnnotationDeclaration | TypeVariable;

Feature:
Attribute | Operation | Clause | EnumerationElement;

FeatureAttribute returns Feature:
Attribute;

FeatureAttributeAndOperation returns Feature:
Attribute | Operation;

FeatureAttributeAndOperationAndClause returns Feature:
FeatureAttributeAndOperation | Clause;

FeatureEnumeration returns Feature:
EnumerationElement;

Attribute:
(constant?='constant')? type=TypeReference name=ID ('=' expression=Expression)?;

Operation:
('def' | 'action') (type=TypeReference)? name=ID
'(' (params+=Attribute (',' params+=Attribute)*)? ')'
(body=Block)?;

Clause:
'clause' name=ID
BEGIN constraint=Constraint actor=Actor action=DeonticAction END;

Constraint:
{Constraint} temporal=TemporalConstraint? general=GeneralConstraint?;

TemporalConstraint:
'due' timeframe=Timeframe

? period=PeriodicTime? precedence=TemporalPrecedence reference=(TimeQuery | Expression);

Timeframe:
'within' window=Expression;

GeneralConstraint:
'given' expression=Expression;

Actor:
'party' party=Expression;

enum Deontic:
MUST='must' | MAY='may' /* | MUST_NOT='must_not'*/;

DeonticAction:
deontic=Deontic compoundAction=CompoundAction;

CompoundAction:
XorCompoundAction;

XorCompoundAction returns CompoundAction:
OrCompoundAction (=> ({XorCompoundAction.left=current} op='xor') right=OrCompoundAction)*;

OrCompoundAction returns CompoundAction:
AndCompoundAction ({OrCompoundAction.left=current} op=('or') right=AndCompoundAction)*;

AndCompoundAction returns CompoundAction:

185

A. Appendix

PrimaryCompoundAction
({AndCompoundAction.left=current} op=('and') right=PrimaryCompoundAction)*;

PrimaryCompoundAction returns CompoundAction:
{AtomicAction} operation=[Operation] |
{NestedCompoundAction} '(' child=CompoundAction ')';

PeriodicTime:
'every' period=

Expression 'from' start=(TimeQuery | Expression) ('until' end=(TimeQuery | Expression))?;

enum TemporalPrecedence:
BEFORE='before' |
/*BEFORE_OR_EQUALS='onOrBefore' |
EQUALS='on' |
AFTER_OR_EQUALS='onOrAfter' |*/
AFTER='after';

ClauseQuery:
'clause' clause=[Clause] status=ClauseStatus;

enum ClauseStatus:
FULFILLED='fulfilled' |
FAILED='failed';

EventQuery:
'event' event=[Attribute];

ActionQuery:
party=[Attribute] query='did' action=[Operation];

TimeQuery:
ClauseQuery | EventQuery | ActionQuery;

Block:
{Block} BEGIN statements+=Statement* END;

Statement:
VariableDeclaration | IfStatement | ThrowStatement | ReturnStatement | SwitchStatement

| WhileStatement | DoWhileStatement | ForLoopStatement | ForBasicStatement | Expression;

VariableDeclaration:
'var' type=TypeReference name=ID '=' expression=Expression;

ReturnStatement:
{ReturnStatement} 'return' (=> expression=Expression)?;

IfStatement:
'if' ('(' condition=Expression ')' | => condition=Expression) thenBlock=ConditionalBlock
(=> 'else' elseBlock=ConditionalBlock)?;

ConditionalBlock returns Block:
statements+=Statement | Block;

ThrowStatement:
'throw' expression=Expression;

SwitchStatement:
'match' ('(' declaration=Expression ')' | => declaration=Expression)
BEGIN
(cases+=CasePart)*
(default?='default' ':' defaultBlock=ConditionalBlock)?
END;

CasePart:
'case' case=Expression (':' thenBlock=ConditionalBlock /* | fallThrough?=','*/);

WhileStatement:
'while' ('(' condition=Expression ')' | => condition=Expression) block=ConditionalBlock;

DoWhileStatement:
'do' block=ConditionalBlock 'while' ('(' condition=Expression ')' | => condition=Expression);

ForLoopStatement:
'for' '(' declaration=TypeVariable 'in' forExpression=Expression ')' block=Block;

ForBasicStatement:
'for' '(' declaration

=VariableDeclaration ';' condition=Expression ';' progression=Expression ')' block=Block;

Expression:

186

A.1. DSL for Smart Contracts - Contract Modeling Language (CML)

AssignmentExpression;

AssignmentExpression returns Expression:
OrExpression

(=> ({AssignmentExpression.left=current} op=('=' | '+=' | '-=') right=Expression))?;

OrExpression returns Expression:
AndExpression (=> ({OrExpression.left=current} op='or') right=AndExpression)*;

AndExpression returns Expression:
EqualityExpression (=> ({AndExpression.left=current} op='and') right=EqualityExpression)*;

EqualityExpression returns Expression:
RelationalExpression

(=> ({EqualityExpression.left=current} op=('==' | '!=')) right=RelationalExpression)*;

RelationalExpression returns Expression:
OtherOperatorExpression
(=> ({InstanceOfExpression.expression=current} 'is') type=TypeReference |
=> ({RelationalExpression

.left=current} op=('>' | '<' | '>=' | '<=')) right=OtherOperatorExpression)*;

OtherOperatorExpression returns Expression:
AdditiveExpression

(=> ({OtherOperatorExpression.left=current} op='=>') right=AdditiveExpression)*;

AdditiveExpression returns Expression:
MultiplicativeExpression

(=> ({AdditiveExpression.left=current} op=('+' | '-')) right=MultiplicativeExpression)*;

MultiplicativeExpression returns Expression:
UnaryExpression (=> ({MultiplicativeExpression

.left=current} op=('*' | '/' | '**' | '%')) right=UnaryExpression)*;

UnaryExpression returns Expression:
{UnaryExpression} op=('not' | '!' | '-' | '+') operand=UnaryExpression | CastedExpression;

CastedExpression returns Expression:
PostfixExpression (=> ({CastedExpression.target=current} 'as') type=TypeReference)*;

PostfixExpression returns Expression:
FeatureSelectionExpression
(=> ({PostfixExpression.operand=current} op=("++" | "--" | "@pre")) |
=> ({ArrayAccessExpression.array=current}
'[' indexes+=Expression ']' (=> '[' indexes+=Expression ']')*))?;

FeatureSelectionExpression returns Expression:
PrimaryExpression
(=> ({FeatureSelectionExpression

.receiver=current} ("." | explicitStatic?="::")) feature=[Feature]
(=> opCall?='(' (args+=Expression (',' args+=Expression)*)? ')')?)*;

PrimaryExpression returns Expression:
LiteralExpression |
{ThisExpression} 'this' |
{SuperExpression} 'super' |
{ReferenceExpression} reference

=[NamedElement] (=> opCall?='(' (args+=Expression (',' args+=Expression)*)? ')')?
(=> ({ArrayAccessExpression

.array=current} '[' indexes+=Expression ']' (=> '[' indexes+=Expression ']')*))? |
{NewExpression

} 'new' type=[Type|QualifiedName] '(' (args+=Expression (',' args+=Expression)*)? ')' |
{NestedExpression} '(' child=Expression ')';

LiteralExpression returns Expression:
{IntegerLiteral} value=INT |
{BooleanLiteral} value=('false' | 'true') |
{StringLiteral} value=STRING |
{RealLiteral} value=REAL |
{DurationLiteral} value=INT unit=TimeUnit |
{DateTimeLiteral} value=DATE |
{NullLiteral} 'null' |
{ArrayLiteral} '{' (elements+=Expression (',' elements+=Expression)*)? '}' |
{Closure} '[' expression=ExpressionInClosure ']';

ExpressionInClosure returns Expression:

187

A. Appendix

{Block} (expressions+=Expression ';'?)*;

enum TimeUnit:
SECOND='seconds' | MINUTE='minutes' | HOUR='hours' | DAY='days' | WEEK='weeks';

QualifiedName:
ID ('.' ID)*;

QualifiedNameWithWildcard:
QualifiedName '.*'?;

fragment typeVariables *:
'<' typeVars+=TypeVariable (',' typeVars+=TypeVariable)* '>';

fragment identifiedBy *:
'identified' 'by' identifier=[Feature];

fragment isAbstract *:
abstract?='abstract';

fragment extends *:
'extends' superclass=TypeReference;

terminal DATE:
'0'..'9' '0'..'9' '0'..'9' '0'..'9' '-' '0'..'9' '0'..'9' '-' '0'..'9' '0'..'9';

terminal REAL returns ecore::EBigDecimal:
INT '.' INT;

terminal BEGIN:
'synthetic:BEGIN';

terminal END:
'synthetic:END';

Listing A.1: DSL specification in Xtext for the Contract Modeling Language (CML).

A.2. DevOps for Ethereum Smart Contracts

The DevOps approach that we introduced in Chapter 7 is implemented in GitLab CI/CD [174].
GitLab CI/CD is a tool for software development (using the continuous methodologies) that enables
the automation, customization, and execution of software development workflows. Listing A.2
shows the complete YAML file (.gitlab-ci.yml) for project configuration, which is placed in the
repository root and defines the pipelines, jobs, and environments. The full sample project code
from which this excerpt is taken can be found on GitHub [242].

Yaml
variables:
NPM_TOKEN: ${CI_JOB_TOKEN}
NODE_VERSION: 16.7.0

default:
image: node:${NODE_VERSION}
before_script:
- npm ci --cache .npm --prefer-offline
- |
{
echo "@${CI ⌋

_PROJECT_ROOT_NAMESPACE}:registry=${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/npm/"↪→
echo "$ ⌋

{CI_API_V4_URL#https?}/projects/${CI_PROJECT_ID}/packages/npm/:_authToken=\${CI_JOB_TOKEN}"↪→
} | tee --append .npmrc

- chmod +x ./utils/setup-env.sh

188

A.2. DevOps for Ethereum Smart Contracts

- ./utils/setup-env.sh
cache:
key: ${CI_COMMIT_REF_SLUG}
paths:
- .npm/
- node_modules/

stages:
- build
- test
- report
- release
- deploy
- operate

build-src:
stage: build
script:
- echo "Compiling the code..."
- npm run compile

artifacts:
paths:
- abi
- artifacts

build-doc:
stage: build
script:
- echo "Generating docs..."
- npm run docgen

artifacts:
paths:
- docs

lint-test:
stage: test
script:
- echo "Linting code..."
- npm run lint:sol
- echo "No lint issues found."

vulnerability-test 1/2:
stage: test
script:
- apt-get update && apt-get install -y python3-pip
- pip3 install slither-analyzer
- echo "Running slither..."
- slither .

allow_failure: false

vulnerability-test 2/2:
stage: test
#image: mythril/myth
before_script:
- apt-get update
- apt-get install -y software-properties-common
- add-apt-repository ppa:ethereum/ethereum
- apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 1C52189C923F6CA9
- apt-get update
- apt-get install -y solc
- apt-get install -y libssl-dev python3-dev python3-pip libleveldb-dev
- pip3 install mythril

script:
- chmod +x ./utils/mythril-check.sh
- ./utils/mythril-check.sh

allow_failure: false

unit-test:
stage: test
script:
- echo "Running unit tests... "
- npm run test

secrets-test:
stage: test
image: python:latest
before_script: [":"] # noop, override default before_script
script:
- echo "Running secrets scanner..."
- pip install trufflehog3
- trufflehog3 --no-history -v

allow_failure: false

coverage-report:
stage: report
script:
- echo "Generating code coverage report..."
- npm run coverage

artifacts:
paths:
- coverage

189

A. Appendix

- coverage.json
allow_failure: true

gas-report:
stage: report
script:
- echo "Generating gas report..."
- npm run test # creates gas-report.txt
- echo "<pre>" > gas-report.html
- npx ansi-to-html gas-report.txt --fg black --bg white >> gas-report.html

artifacts:
paths:
- gas-report.html

release:
stage: release
script:
- tar -zcvf abi.tar.gz abi --ignore-failed-read
- tar -zcvf docs.tar.gz docs --ignore-failed-read
- tar -zcvf artifacts.tar.gz artifacts --ignore-failed-read
- tar -zcvf coverage.tar.gz coverage coverage.json --ignore-failed-read
- tar -zcvf gas-report.tar.gz gas-report.html --ignore-failed-read
- npm run semantic-release

only:
- main

except:
refs:
- tags

variables:
- $CI_COMMIT_TITLE =~ /^RELEASE:.+$/

deploy_staging:
stage: deploy
extends: .git:push
when: manual
script:
- echo "Deploy to staging environment"
- npm run deploy:staging
- rsync -a deployments "${CI_COMMIT_SHA}"

environment: staging
only:
- main

artifacts:
paths:
- deployments

deploy_prod:
stage: deploy
extends: .git:push
when: manual
script:
- echo "Deploy to production environment"
- npm run deploy:production
- rsync -a deployments "${CI_COMMIT_SHA}"

environment: production
only:
- main

artifacts:
paths:
- deployments

verify_staging:
stage: operate
needs: [deploy_staging]
script:
- npm run verify:staging

verify_delpoy:
stage: operate
needs: [deploy_prod]
script:
- npm run verify:production

.git:push:
extends: default
before_script:
- apt-get update && apt-get install -y rsync
- git clone "https://root:$GITLAB_TOKEN@${CI_SERVER_HOST}/${CI_PROJECT_PATH}.git"
"${CI_COMMIT_SHA}" # nosecret↪→

- git config --global user.email "${GIT_USER_EMAIL:-$GITLAB_USER_EMAIL}"
- git config --global user.name "${GIT_USER_NAME:-$GITLAB_USER_NAME}"

after_script:
- cd "${CI_COMMIT_SHA}"
- git add .
- |-
CHANGES=$(git status --porcelain | wc -l)
if ["$CHANGES" -gt "0"]; then
git status
git commit -m "Updated by job with ID: $CI_JOB_ID [ci skip]"

190

A.2. DevOps for Ethereum Smart Contracts

git push origin "${CI_DEFAULT_BRANCH}" -o ci.skip
fi

Listing A.2: GitLab CI/CD configuration for Ethereum smart contracts.

191

	Vita
	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Tables
	List of Figures
	Listings
	Introduction
	Motivation
	Problem Statement
	Research Methodology
	Publications
	Thesis Structure

	Background
	Blockchains and Cryptocurrencies
	Smart Contracts
	Ethereum Platform
	Ethereum Virtual Machine (EVM)
	Ethereum Smart Contracts
	Ethereum Programming Languages

	Architecture of Blockchain-Based Applications
	Introduction
	Related Work
	Research Study Design
	Architectural Design of Blockchain-Based Applications
	Event-Driven Architecture
	Blockchain as a Multi-Faceted Architectural Component
	Degrees of Decentralization
	Transaction Handling
	Practices for Scalability and Privacy
	Conceptual Components and Their Interaction
	Feature Model
	Smart Contracts and Microservices
	Blockchain as a Service (BaaS)

	Discussion and Threads to Validity
	Conclusion

	Oracle Patterns
	Introduction
	Background
	Related Work
	Patterns
	Inbound Oracle Patterns
	Outbound Oracle Patterns

	Use Cases
	Analysis of Performance and Transaction Fees
	Discussion and Threats to Validity
	Conclusion

	Smart Contract Patterns
	Introduction
	Related Work
	Research Study Design
	Patterns
	Action and Control Patterns
	Authorization Patterns
	Lifecycle Patterns
	Maintenance Patterns
	Security Patterns

	Discussion
	Conclusion

	Domain Specific Language for Smart Contract Development
	Introduction
	Background
	Contract Stages
	Contract Building Blocks

	Research Study Design
	Contract Modeling Language (CML)
	Language Characteristics
	Type System
	Clause Structure
	CML by Example: Simple Open Auction

	Solidity Code Generation
	CML to Solidity Mapping
	Code Generation Idioms

	Evaluation
	Discussion
	Related Work
	Conclusion

	Blockchain DevOps
	Introduction
	Related Work
	Research Study Design
	DevOps for Blockchain Smart Contracts
	Preliminary Considerations
	Continuous Integration (CI)
	Continuous Delivery (CD)
	CI/CD Overview

	Discussion and Threats to Validity
	Conclusion

	Conclusions and Future Work
	Research Questions Revisited
	Limitations and Threats to Validity
	Future Work

	Bibliography
	Appendix
	DSL for Smart Contracts - Contract Modeling Language (CML)
	DevOps for Ethereum Smart Contracts

