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ABSTRACT

Emerging software-defined networking technologies enable

more adaptive communication infrastructures, allowing for

quick reactions to changes in networking requirements by

exploiting the workload’s temporal structure. However, op-

erating networks adaptively is algorithmically challenging,

as meeting networks’ stringent dependability requirements

relies on maintaining basic consistency and performance

properties, such as loop freedom and congestion minimiza-

tion, even during the update process. This paper leverages an

augmentation-speed tradeoff to significantly speed up con-

sistent network updates. We show that allowing for a small

and short (hence practically tolerable, e.g., using buffering)

oversubscription of links allows us to solve many network

update instances much faster, as well as to reduce computa-

tional complexities (i.e., the running times of the algorithms).

We first explore this tradeoff formally, revealing the computa-

tional complexity of scheduling updates.We then present and

analyze algorithms that maintain logical and performance

properties during the update. Using an extensive simulation

study, we find that the tradeoff is even more favorable in

practice than our analytical bounds suggest. In particular, we

find that by allowing just 10% augmentation, update times

reduce by more than 32% on average, across a spectrum of

real-world networks.
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1 INTRODUCTION

To render communication networks more dependable, the

networking community currently makes great efforts to au-

tomate network operations. The envisioned ”self-driving”

networks [11] can relieve operators of their most complex

tasks, henceminimizing the chances for human errors, which

frequently are the cause of major outages [5, 7, 43]. Further-

more, more automated networks enable more adaptive net-

work operations, allowing to quickly react to network events

such as shifts in the demand and hence to exploit temporal

structure in the traffic patterns for optimizations [4, 32, 44].

These more automated and adaptive network operations are

enabled, among others, by emerging software-defined and

programmable networking technologies, that allow direct

control over the forwarding tables of switches and routers.

A programmatic and software-defined control and update

of forwarding paths can be attractive in many situations [14].

For example, fast route updates can be useful in reacting to

security policy changes or security threats, by actively rerout-

ing traffic through a firewall. In wide-area networks, Internet

Service Providers may adjust their traffic engineering policy

in reaction to changes in the load. Adaptions to the routes

taken by packets may also be required to react to link failures

or to support maintenance work or service relocations.

However, a more adaptive network operation introduces

an algorithmic challenge: in order to meet the stringent de-

pendability and performance requirements, networks need

to be reconfigured quickly and consistently. A key chal-

lenge here is that updates at different switches occur asyn-

chronously, and update times can vary significantly, between

milliseconds to fractions of a second [20, 24]. Especially when

adaptions are frequent, it is important that the network ful-

fill certain properties, such as congestion freedom and loop

freedom, even during the update.
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Figure 1: This paper explores the benefits of augmen-

tation on the speed and feasibility of network updates.

While prior work (red triangles on the left) did not

consider augmentation (the dashed orange area), our

approach with augmentation provides flexibility for

operators and hence supports more fine-grained net-

work operations. The green circles represent our theo-

retically optimal bounds that we proved in this paper,

and curves represent the tradeoff that we saw in our

empirical results, as can also be seen in the counter-

part of this qualitative plot in the evaluation section

(Figure 4).

Over the last few years, the consistent network update

problem has received much attention in the literature. Semi-

nal work focused on logical properties [15, 35–38, 42], but

also performance aspects received much attention early

on [6, 8, 14, 33]. While the question of how to reroute flows

in a congestion-free manner is still not well-understood algo-

rithmically (especially if one requires that algorithms come

with provable performance and approximation guarantees),

it has been shown recently that the resulting update sched-

ules can be long and complex, requiring many rounds of

updates [2, 35].

This paper is motivated by the observation that already a

small and short oversubscription of links (which we will refer

to as augmentation) can lead to significantly faster update

schedules (see Figure 1 for an illustration). This, in turn, may

allow more fine-grained network operations. Such augmen-

tation is often feasible in practice and mitigated by buffering

and congestion control if the augmentation is bounded in

magnitude and time. Short oversubscriptions are common

today in congestion control, especially unproblematic in vir-

tual networks, which provide soft capacity constraints, and

typically do not affect prices [30].

1.1 Our Contributions

This paper argues that existing literature on network update

scheduling ignores the fact that short link oversubscriptions

are unproblematic due to buffering, and uncovers an inter-

esting tradeoff between the tolerable oversubscription and

the speed at which networks can be updated, measured by

the number of rounds in the rerouting schedule. In gen-

eral, several challenges might occur when trying to update

a network’s routing policy: infeasibility, i.e., cases where an

update schedule without overloading any link simply does

not exist; speed, i.e., the time it takes for the updates to com-

plete; and computability, i.e., cases where an update schedule

exists, but finding a feasible or optimal update schedule is

NP-hard. We show that all these challenges can be overcome

by allowing a small oversubscription of the communication

links. In this paper, we will distinguish between additive and

multiplicative augmentation of a link. Additive augmentation

refers to the maximum capacity increase on any given link

in the network, and multiplicative augmentation is a factor

by which we multiply capacities.

We first explore this tradeoff analytically and show that

under a factor-2 multiplicative augmentation, fast update

schedules is always feasible; we also show that for smaller

factors, the problem of computing update schedules is NP-

hard—i.e., a short schedule may exist, but finding it is compu-

tationally infeasible in the worst case. We then present both

optimal and fast algorithms to exploit the augmentation-

speed tradeoff while provably maintaining basic consistency

properties. We report on an extensive simulation study using

real-world networks, and we find that we can reach higher

speeds with a slight augmentation. More precisely, a 10% aug-

mentation can reduce update times by 32% on average across

a range of networks derived from the Internet Topology Zoo.

As a contribution to the research community, we release

our experimental artifacts as well as our simulation code (as

open source) together with this paper at github.com/inet-

tub/AugmentRoute.

1.2 Organization

The remainder of this paper is organized as follows. In §2, we

introduce our formal model and define the properties which

need to be maintained transiently. §3 details the analytical

study of the valid update schedules under augmentation and

derives hardness results. Then we present two polynomial-

time greedy algorithms and an optimal algorithm based on

mixed integer programming in §4, and explore their behavior

on real-world networks in §5. After reviewing the related

work in §6, we conclude our contribution in §7.
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2 MODELLING CONSISTENT NETWORK

UPDATES AND TRADEOFFS

Wemodel a network as a directed graph𝐺 = (𝑉 , 𝐸). The set𝑉
consists of 𝑛 nodes representing the switches in the network,

and the set 𝐸 ⊆ 𝑉 × 𝑉 of 𝑚 directed edges denoting the

links. A directed edge 𝑒 = (𝑣,𝑤) ∈ 𝐸 connects the tail node

𝑣 to the head node𝑤 . An edge 𝑒 has a real-valued positive

capacity 𝑐𝑒 ∈ R≥0, and 𝐶max = max𝑒 𝑐𝑒 is the maximum

edge capacity among all edges.

Flows are unsplittable and routed along unique paths,

which are dictated by the network’s routing policy. When

the policy changes, it may become necessary to update the

routing path by updating the outgoing edges of the nodes

(i.e., the forwarding rules). We consider flow pairs consisting

of an old flow (which is already in use) and an updated flow

(which the new policy enforces). We emphasize that flows

in each flow pair share the same source and terminal node.

We also consider that the forwarding is done based on both

the source and the terminal.

Definition 1 (Flow pairs). A set of 𝑘 flow pairs is defined as

𝑃 = {𝑃1, . . . , 𝑃𝑘 }, where each flow pair 𝑃𝑖 consists of an old

flow 𝐹𝑜𝑖 and an updated flow 𝐹𝑢𝑖 . Flows of the 𝑖
𝑡ℎ

flow pair are

unsplittable, which means each is only a simple 𝑠𝑖 -𝑡𝑖 path in

𝐺 . Each flow corresponds to a real-valued positive demand 𝑑𝑖 ,

initiating from the same source node 𝑠𝑖 and ending at the same

terminal node 𝑡𝑖 .

In order to update a flow pair 𝑃𝑖 from and old flow 𝐹𝑜𝑖 to

an updated flow 𝐹𝑢𝑖 , we need to update all the nodes that

are appearing only in 𝐹𝑜𝑖 or only in 𝐹𝑢𝑖 . An update schedule

from the old flow 𝐹𝑜𝑖 to the updated flow 𝐹𝑢𝑖 is a sequence of

update rounds. In each round, a subset of the nodes changes

their outgoing edges from the edges used in 𝐹𝑜𝑖 to the edges

used in 𝐹𝑢𝑖 . Formally, for a flow pair 𝑃𝑖 , we define an 𝑅-round

update schedule𝑈𝑖 = {𝑈 1
𝑖 , . . . ,𝑈

𝑅
𝑖 } such that in each round

𝑟 = 1, . . . , 𝑅, a set of nodes that were not included in previous
updates, i.e.,𝑈 𝑟

𝑖 ⊆ 𝑉 (𝐹𝑜𝑖 ∪𝐹𝑢𝑖 )\(𝑈 1
𝑖 ∪· · ·∪𝑈 𝑟

𝑖 −1), are updated.
We assume that all the changes in the same round happen

asynchronously, i.e., in an unpredictable order. This makes

the problem harder, as a worst-case order inside each update

set must be taken into consideration.

To maintain consistency during network updates, an up-

date schedule must provide loop freedom and congestion free-

dom.

2.1 Loop Freedom

When scheduling batches of updates simultaneously, indi-

vidual updates at nodes can happen at different times, which

might cause transient forwarding loops, see Figure 2 for

an example. Loop freedom requires that forwarding loops

never happen during the update of a flow pair, regardless of

(a) Initial flow

(b) After updating nodes 𝑎 and 𝑑

Figure 2: Solid lines represent the old flow, dashed

lines the updated flow. Solid circles show nodes that

are not updated, and dotted circles are updated nodes.

(a) Initially, a flow passes through blue lines. (b) After

the update 𝑎 and 𝑑 , a transient loop appears (red lines)

that violates loop-freedom property, even though the

terminal is still reachable (through blue lines).

whether nodes in the loop can be reached from the source

node or not.

In the case of nodes that are in the old path but not in

the updated path, 𝐹𝑜𝑖 \ 𝐹𝑢𝑖 , their routing policy is updated

from edge to no-edge. Since we need to ensure reachability

at all times, we update these nodes after the nodes leading

to them. Similarly, nodes in 𝐹𝑢𝑖 \ 𝐹𝑜𝑖 initially have not been

assigned an outgoing edge and need to be updated before the

nodes leading to them. Note that together with loop-freedom,

handling these cases guarantees that a path from the source

to the terminal node exists at all times: Each node that has

an incoming edge has a single outgoing edge (except for the

terminal node), and there are no loops in the graph.

2.2 Congestion Freedom

Assume that for each flow pair, we have an update schedule

that is valid and loop-free. We want to make sure that we

can apply all the updates simultaneously without causing

congestion on the network links. For this, fix an update

round 𝑟 in all flow pairs, and for each flow pair 𝑖 , consider

the temporary flow 𝐹𝑖 , that includes edges from old flow 𝐹𝑜𝑖
and edges from the updated flow 𝐹𝑢𝑖 that pass flow "during"

round 𝑟 , i.e. edges from old flow that has not been updated

"before" round 𝑟 , edges from the updated flow that will be

used "after" round 𝑟 .

Definition 2 (Valid schedule). An update schedule is valid

if at any time, the set of temporary flows 𝐹 = {𝐹1, . . . , 𝐹𝑚}
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satisfies that for every edge 𝑒 ∈ 𝐸, the sum of demands of

flows that pass through an edge is at most its capacity, i.e.

∀𝑒 ∈ 𝐸 :
∑

𝑗 :𝑒∈𝐹 𝑗 𝑑 𝑗 ≤ 𝑐𝑒 .

This paper is motivated by the benefits of slight augmenta-

tion of the current capacity. We investigate two possibilities

for augmentation: multiplicative augmentation and additive

augmentation. In the first approach, we consider all capaci-

ties multiplied by a real number 𝛼 ≥ 1. In the latter one, we

allow capacities to be increased by a fixed number 𝛽 ≥ 0.

Definition 3 ((×𝛼)-valid schedule, (+𝛽)-valid schedule).

For 𝛼 ≥ 1, 𝛽 ≥ 0, we say that a schedule is (𝛼, 𝛽)-valid if

at any time, the set of temporary flows 𝐹 = {𝐹1, . . . , 𝐹𝑚} satis-
fies that for every edge 𝑒 ∈ 𝐸, we have

∑
𝑗 :𝑒∈𝐹 𝑗 𝑑 𝑗 ≤ 𝛼𝑐𝑒 + 𝛽 .

A schedule is (×𝛼)-valid if it is (𝛼, 0)-valid, and (+𝛽)-valid if

it is (1, 𝛽)-valid.

We first show that every update schedule is (×2)-valid and
(+𝐶max)-valid, and then prove that for any 𝜖 > 0, , the two
problems of deciding if a (×(2 − 𝜖))-valid update schedule

exists, and if a (+(𝐶max/3− 𝜖))-valid update schedule exists,
are both NP-hard.

3 THEORETICAL ANALYSIS

In this section, we start exploring the speed-congestion trade-

off analytically. We first derive upper bounds on the required

additive and multiplicative augmentation that make update

schedules valid. We further explore the computational com-

plexity of finding valid update schedules, showing it is NP-

hard to decide whether a valid update schedule exists when

the augmentation is below some threshold.

3.1 Upper Bounds

The following theorem characterizes the amount of multi-

plicative and additive augmentation needed to render update

schedules valid.

Theorem 1. Every update schedule is (×2)-valid and

(+𝐶max)-valid.

Proof. Consider an update schedule at any given point

in time during update, and an edge 𝑒 . Let 𝑆𝑜 be the set of

indices of flows that are not yet updated at this time point

at 𝑒 , and 𝑆𝑢 the set indices of flows that are updated; the

current load on 𝑒 is at most

∑
𝑖∈𝑆𝑜 𝑑𝑖 +

∑
𝑖∈𝑆𝑢 𝑑𝑖 .

Since the set of old flows is valid, we have

∑
𝑖:𝑒∈𝐹𝑜

𝑖
𝑑𝑖 ≤

𝑐𝑒 , and similarly the set of updated flows is valid and∑
𝑖:𝑒∈𝐹𝑢

𝑖
𝑑𝑖 ≤ 𝑐𝑒 . Note that 𝑆𝑜 ⊆ {𝑖 : 𝑒 ∈ 𝐹𝑜𝑖 } and 𝑆𝑢 ⊆

{𝑖 : 𝑒 ∈ 𝐹𝑢𝑖 }, and hence

∑
𝑖∈𝑆𝑜 𝑑𝑖 ≤ ∑

𝑖:𝑒∈𝐹𝑜
𝑖
𝑑𝑖 ≤ 𝑐𝑒 and∑

𝑖∈𝑆𝑢 𝑑𝑖 ≤
∑

𝑖:𝑒∈𝐹𝑢
𝑖
𝑑𝑖 ≤ 𝑐𝑒 . Thus,

∑
𝑖∈𝑆𝑜 𝑑𝑖 +

∑
𝑖∈𝑆𝑢 𝑑𝑖 ≤ 2𝑐𝑒 ,

as desired.

For the additive case, note that 2𝑐𝑒 ≤ 𝑐𝑒 +𝐶max, and the

proof immediately follows from the multiplicative case. □

These bounds leave the question of how to find a schedule

that minimizes the number of rounds, a question that needs

to be resolved for each flow pair separately. We explore

techniques to minimize the number of rounds later in the

paper.

3.2 Hardness Results

We next study the computational complexity and prove a

tight converse of the multiplicative case in Theorem 1, and a

non-tight converse for the additive case.

Theorem 2. For every constant 1/3 > 𝜖 > 0, deciding if a
(×(2 − 𝜖))-valid update schedule exists is NP-hard.

The proof of this theorem extends a construction from [1],

and shows that an algorithm for finding a (×(2 − 𝜖))-valid
update schedule can be used in order to find a satisfying

assignment for a 3-CNF formula of the well-known 3SAT

problem [26]. In the 3SAT problem, we should assign 0-1

values to a set of binary variables such that a set of boolean

clauses become valid. Each clause consists of only three

variables, or their negation.

The details of the proof can be found in Appendix A. Our

proof transforms each clause or variable into a series of

gadgets. A gadget is a series of old and updated paths between

a pair of nodes, designed to transform a valid update into a

solution for 3SAT.

Theorem 3. For every constant 1 > 𝜖 > 0 deciding if a

(+(𝐶max/3 − 𝜖))-valid update schedule exists is NP-hard.

The proof of the theorem of the additive case goes along

the lines of the proof of the multiplicative case of Theorem 4.

The proof of the additive case introduces a new variable

gadget between pairs of source-terminal nodes of the valid

update problem. We present details of the proof in the Ap-

pendix A for completeness of the paper.

4 ALGORITHMS

This section presents algorithms that navigate and exploit the

tradeoff between speed and augmentation. We first detail a

fast algorithm that will be useful for efficient updates in large

networks. In addition, we provide an optimal algorithm based

on mixed integer programming, which is useful for small

networks and will also serve as a baseline in the evaluation

of fast algorithms.

4.1 Fast Algorithm for Short Update

Schedules

Our first approach is a natural greedy algorithm that com-

putes a short loop-free update schedule. We then extend

this algorithm by adding a post-processing step that reduces

augmentation by allowing delays in update schedules. These
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algorithms are fast enough to be used in most of real-world

scenarios.

Algorithm Greedy. For this algorithm, we assume a fixed

flow pair 𝑖 and a certain round. As mentioned in the prelimi-

naries, if a node 𝑣 is only in the updated flow, it should be

updated before nodes that are in both updated and old flows,

and if 𝑣 is only in the old flow, it should be updated after

these nodes; Greedy starts by doing exactly that. Thus, we

only need to describe how to order the nodes that belong

both to the old and the updated flow of the flow pair 𝑖 .

For each flow pair, we maintain a set 𝐴𝑖 of active edges,

edges that are actively passing the flow for the pair 𝑖 . Also,

define 𝐴𝑖 as the edges from 𝐹𝑢𝑖 that are not yet updated, and

sort them based on their distance to the terminal node in the

updated flow 𝐹𝑢𝑖 . Before the first round, 𝐴𝑖 consists of all the

edges of the old flow, and 𝐴𝑖 includes all the edges from the

updated flow. During each round, we go through the edges

of 𝐴𝑖 , starting from the one nearest to the terminal node,

and for each edge, if it does not create a directed cycle in

the graph induced by 𝐴𝑖 , we add the edge to 𝐴𝑖 , and remove

it from 𝐴𝑖 , then mark its tail to be updated in the current

round. Such an edge always exists in each update round:

In the first round, the edge of 𝐹𝑢𝑖 nearest to the terminal is

directly connected to the terminal, and thus can be updated

without creating a cycle. Later, 𝐹𝑢𝑖 ∩𝐴𝑖 is a set of disjoint paths,

and one of them leads to the terminal node. On this path,

consider the node 𝑣 that is furthest away from the terminal

node; then, 𝐹𝑢𝑖 contains an edge (𝑢, 𝑣) ∈ 𝐴𝑖 , and node 𝑢

can be updated without creating a cycle (otherwise, the set

𝐴𝑖 is empty, which means that update has been finished

successfully).

After going through all of 𝐴𝑖 , we update 𝐴𝑖 by removing

all the edges from 𝐹𝑜𝑖 whose tail was updated, and move to

the next round. Note that in each round, at least the edge

currently closest to the terminal will be added to 𝐴𝑖 and

removed from 𝐴𝑖 ; thus, the algorithm ends after at most |𝐹𝑢𝑖 |
rounds.

Algorithm Delay. We propose an improved algorithm,

calledDelay, that modifies any valid schedule by delaying se-

lected flow pairs up to 𝑇 rounds (usually only 1-2 rounds) to

reduce augmentation while increasing the number of rounds

up to 𝑇 . Delay operates in phases. In each phase, the algo-

rithm greedily chooses the flow pair 𝑃𝑖 and the delay value

𝑑𝑖 ≤ 𝑇 such that delaying the start of 𝑃𝑖 ’s update schedule by

𝑑𝑖 rounds provides the highest decrease the augmentation.

Delay terminates if no such flow pairs exist anymore. Note

that the schedule of a flow pair can be delayed in multiple

phases.

Figure 3: Example where delay reduces the congestion.

The first flow pair consists of 𝐹𝑜1 = (𝑠, 𝑎, 𝑡), 𝐹𝑢1 = (𝑠, 𝑏, 𝑡)
and the second is 𝐹𝑜2 = (𝑠, 𝑐, 𝑡), 𝐹𝑢2 = (𝑠, 𝑎, 𝑡); all demands

and capacities equal to 1. During the second round of

the Greedy algorithm, it is possible that node 𝑠 gets

updated for the second flow pair before it is updated

for the first flow pair, in which case the edges (𝑠, 𝑎) and
(𝑎, 𝑡) get congested. This is avoided by the delay algo-

rithm, which shifts the schedule of the second flow

pair by one round.

Figure 3 shows the potential benefit of delaying the update

of flow pairs. In this example, delaying the bottom flow pair

for one round eliminates congestion in the network.

4.2 Optimal Algorithm

We next present an optimal algorithm that is based on a

Mixed Integer Program (MIP) for finding a loop-free update

schedule that minimizes either the number of rounds or the

augmentation. For the sake of explanation, we consider a

fixed multiplicative (additive) augmentation ratio 𝛼 (𝛽) and

describe the minimization of the number of rounds 𝑅. How-

ever, given a fixed number of rounds, with a simple change

to theMIP, we can minimize the augmentation instead
1
.

Variables: Let us fix the flow pair 𝑖 and the round 𝑟 . We

then describe the set of variables related to a node 𝑣 ∈ 𝑉 (𝐹𝑜𝑖 ∪
𝐹𝑢𝑖 ).

• Node update variable 𝑥𝑟𝑣,𝑖 is a binary variable that indi-

cates whether node 𝑣 from flow pair 𝑖 updates in round

𝑟 or not.

We define special variables for nodes that appear in both old

and updated flows. A node 𝑣 ∈ 𝑉 (𝐹𝑜𝑖 ∩ 𝐹𝑢𝑖 ) is a branching
node if it has an outgoing edge (𝑣,𝑤) in the old flow 𝐹𝑜𝑖
and another outgoing edge (𝑣,𝑤 ′) in the updated flow 𝐹𝑢𝑖 .

Similarly, 𝑣 ∈ 𝑉 (𝐹𝑜𝑖 ∩ 𝐹𝑢𝑖 ) is a merging node if it has an

incoming edge (𝑤, 𝑣) in the old flow 𝐹𝑜𝑖 and another incoming

edge (𝑤 ′, 𝑣) in the updated flow 𝐹𝑢𝑖 .

After each branching node 𝑣 , there exists a merging node

by, denoted by 𝑣 ′. The node 𝑣 ′ must exit since the old and

1
One can think of optimizing both at the same time using biconvex

optimization.
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updated flows need to intersect again, as they share a com-

mon terminal node. Furthermore, no other branching node

appears on the old and updated flows between 𝑣 and 𝑣 ′, as
a branching node needs to be part of both old and updated

flows. Hence a branching node 𝑣 is uniquely matched with a

merging node 𝑣 ′.

• Branching variable Λ𝑟
𝑣,𝑖 is a binary variable indicating

whether node 𝑣 is a branching node in the flow pair 𝑖

and gets updated in round 𝑟 .

• Merging variable Υ𝑟𝑣,𝑖 is a binary variable indicating

whether node 𝑣 is a merging node in the flow pair 𝑖

and receives flow from both old and updated flows

during round 𝑟 .

To avoid creating loops during an update round 𝑟 , we

assign an order to all nodes in the flow pair 𝑖 .

• Ordering variable 𝑜𝑟𝑣,𝑖 is an integer variable assigned to

node 𝑣 of flow pair 𝑖 in round 𝑟 in the range of [1, 𝑛].

Now we look at the variables for an edge 𝑒 = (𝑣,𝑤) ∈
𝐹𝑜𝑖 ∪ 𝐹𝑢𝑖 of the flow pair 𝑖 . We say edge 𝑒 is active during

(after) round 𝑟 if it appears in 𝐹𝑜𝑖 and its tail 𝑣 has not been

updated, or it is part of 𝐹𝑢𝑖 and 𝑣 has been updated. If an edge

𝑒 is active for pair 𝑖 , it might be part of the source-terminal

flow of pair 𝑖 .

• Edge activity variable𝑦𝑟𝑒,𝑖 is a binary variable indicating

if edge 𝑒 is active after round 𝑟 in flow pair 𝑖 or not.

• Edge transitivity variable 𝛾𝑟𝑒,𝑖 is a binary variable indi-

cating whether edge 𝑒 is active during round 𝑟 in the

flow pair 𝑖 or not.

• Edge flow variable 𝑓 𝑟𝑒,𝑖 is fractional variable in the range

(0, 1) indicating whether the source-terminal flow of

flow pair 𝑖 passes over 𝑒 during round 𝑟 or not.

Constraints: As before, let us fix a flow pair 𝑖 . We now go

through properties that an optimal schedule needs to satisfy.

Node update. Each node in the flow pair 𝑖 except for the

terminal needs to be updated exactly once. Thus, for any

given node 𝑣 ∈ 𝑉 (𝐹𝑜𝑖 ∪ 𝐹𝑢𝑖 ), the node update variable 𝑥𝑟𝑣,𝑖
should be equal to 1 in precisely one of the rounds, and 0
in others. Hence, the sum of 𝑥𝑟𝑣,𝑖 over all rounds should be

1, as shown in Constraint 3. Also, the number of rounds is

lower bounded by the last round a node updates, implying

Constraint 7.

During round 𝑟 , node 𝑣 is a branching node if and only

if it is updating from an edge (𝑣,𝑤) in the old flow to a

different edge (𝑣,𝑤 ′) in the updated flow of flow pair 𝑖 (see

Constraints 16 and 17). Based on our definition, a node is a

merging node in round 𝑟 if it receives flow from two different

edges, as shown in Constraints 18 and 19.

Mixed Integer Program to Compute Optimal Solution

1: Minimize 𝑅 (or 𝛼 , 𝛽)

2: for all 𝑖 ∈ [|𝑃 |]
3:

∑
𝑟 ∈[𝑅 ] 𝑥

𝑟
𝑣,𝑖

= 1 ∀𝑣 ∈ 𝑉 (𝐹𝑜
𝑖
∪ 𝐹𝑢

𝑖
) \ {𝑡𝑖 }

4: 𝑦0(𝑣,𝑤),𝑖 = 1 ∀(𝑣,𝑤) ∈ 𝐹𝑜
𝑖

5: 𝑦0(𝑣,𝑤),𝑖 = 0 ∀(𝑣,𝑤) ∉ 𝐹𝑜
𝑖

6: for all 𝑟 ∈ [𝑅]
7: 𝑅 ≥ 𝑟 · 𝑥𝑟

𝑣,𝑖
∀𝑣 ∈ 𝑉 (𝐹𝑜

𝑖
∪ 𝐹𝑢

𝑖
) \ {𝑡𝑖 }

8: 𝑦𝑟(𝑣,𝑤),𝑖 = 1 ∀(𝑣,𝑤) ∈ 𝐹𝑜
𝑖
∩ 𝐹𝑢

𝑖

9: 𝑦𝑟(𝑣,𝑤),𝑖 =
∑
𝑟 ′≤𝑟 𝑥

𝑟 ′
𝑣,𝑖

∀(𝑣,𝑤) ∈ 𝐹𝑢
𝑖
\ 𝐹𝑜

𝑖

10: 𝑦𝑟(𝑣,𝑤),𝑖 = 1 −∑
𝑟 ′≤𝑟 𝑥

𝑟 ′
𝑣,𝑖

∀(𝑣,𝑤) ∈ 𝐹𝑜
𝑖
\ 𝐹𝑢

𝑖

11: for all ∀(𝑣,𝑤) ∈ 𝐹𝑜
𝑖
∪ 𝐹𝑢

𝑖

12: 𝛾𝑟(𝑣,𝑤),𝑖 ≥ 𝑦𝑟−1(𝑣,𝑤),𝑖
13: 𝛾𝑟(𝑣,𝑤),𝑖 ≥ 𝑦𝑟(𝑣,𝑤),𝑖

14: 𝛾𝑟(𝑣,𝑤),𝑖 ≤
𝑜𝑟
𝑤,𝑖

−𝑜𝑟
𝑣,𝑖
−1

|𝑉 |−1 + 1

15: for all ∀𝑣 ∈ 𝑃𝑖
16: Λ𝑟

𝑣,𝑖
= 𝑥𝑟

𝑣,𝑖
∃(𝑣,𝑤) ∈ 𝐹𝑜

𝑖
∧ (𝑣,𝑤 ′) ∈ 𝐹𝑢

𝑖

17: Λ𝑟
𝑣,𝑖

= 0 �(𝑣,𝑤) ∈ 𝐹𝑜
𝑖
∧ (𝑣,𝑤 ′) ∈ 𝐹𝑢

𝑖

18: Υ𝑟
𝑣,𝑖

≤ 𝑓 𝑟(𝑤,𝑣),𝑖 , 𝑓
𝑟
(𝑤′,𝑣),𝑖 ∃(𝑤, 𝑣) ∈ 𝐹𝑜

𝑖
∧ (𝑤 ′, 𝑣) ∈ 𝐹𝑢

𝑖

19: Υ𝑟
𝑣,𝑖

= 0 �(𝑤, 𝑣) ∈ 𝐹𝑜
𝑖
∧ (𝑤 ′, 𝑣) ∈ 𝐹𝑢

𝑖

20: 𝑓 𝑟(𝑣,𝑤),𝑖 ≤ 𝛾𝑟(𝑣,𝑤),𝑖 ∀(𝑣,𝑤) ∈ 𝐹𝑜
𝑖
∪ 𝐹𝑢

𝑖

21:

∑
(𝑠𝑖 ,𝑣) 𝑓

𝑟
(𝑠𝑖 ,𝑣),𝑖 = 1 + Λ𝑟

𝑠𝑖 ,𝑖
𝑠𝑖 ∈ 𝑃𝑖

22:

∑
(𝑣,𝑡𝑖 ) 𝑓

𝑟
(𝑣,𝑡𝑖 ),𝑖 = 1 + Υ𝑟

𝑡𝑖 ,𝑖
𝑡𝑖 ∈ 𝑃𝑖

23:

∑
(𝑣,𝑤) 𝑓

𝑟
(𝑣,𝑤),𝑖 −

∑
(𝑤′,𝑣) 𝑓

𝑟
(𝑤′,𝑣),𝑖 = Λ𝑟

𝑣,𝑖
− Υ𝑟

𝑣,𝑖

∀𝑣 ∈ 𝑣 ∈ 𝑉 (𝐹𝑜
𝑖
∪ 𝐹𝑢

𝑖
) \ {𝑠𝑖 , 𝑡𝑖 }

(𝑣,𝑤), (𝑤 ′, 𝑣) ∈ 𝐹𝑜
𝑖
∪ 𝐹𝑢

𝑖
24:

∑
𝑖∈[ |𝑈 | ] 𝑓

𝑟
(𝑣,𝑤),𝑖 · 𝑑𝑖 ≤ 𝛼 · 𝑐 (𝑣,𝑤) + 𝛽 ∀(𝑣,𝑤) ∈ 𝐸

Edge activity. Constraints 4 and 5 guarantee that only

edges that are active in the initial round, round 0, are edges
from the old flow.

After the round 0, if an edge was part of both old and

updated flow, i.e. 𝑒 ∈ 𝐹𝑜𝑖 ∪ 𝐹𝑢𝑖 , edge 𝑒 remains active (Con-

straint 8. Otherwise, if an edge 𝑒 is only in 𝐹𝑜𝑖 , it remains

active until the round in which its tail 𝑣 is updated (Con-

straint 10), and if the edge 𝑒 is only in 𝐹𝑢𝑖 it becomes active

after node 𝑣 updates (Constraint 9).

If the activity of an edge 𝑒 changes during a round 𝑟 , it can

happen at any time during the round 𝑟 . Therefore we say

edge 𝑒 is active during round 𝑟 if it was active in the previous

round (Constraint 12) or it becomes active after this round

(Constraint 13).

Loop freedom. The loop freedom property does not allow

any transitive loops to appear at any time during the update.

Thus, for all edges 𝑒 = (𝑣,𝑤) ∈ 𝐹𝑜𝑖 ∪ 𝐹𝑢𝑖 that can be active

during around, i.e. 𝛾𝑟(𝑣,𝑤),𝑖 = 1, we need the order of edge’s

head, the node𝑤 , be always larger than edge’s tail, the node

𝑣 . Inspired by the Miller-Tucker-Zemlin constraint used in
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sub-tour elimination in traveling salesman problem [40], we

define Constraint 14 that prevents loops from being created.

Note that the right side of the inequality assumes a value in

[1, 2) if 𝑜𝑟𝑣,𝑖 < 𝑜𝑟𝑤,𝑖 and a value less than 1, otherwise.

Congestion freedom. Similar to loop-freedom, we need to

maintain congestion freedom at any time during the update.

Any flow pair 𝑖 during round 𝑟 can only use the edges that

are active during that round (see Constraint 20).

As flows are unsplittable, if flow pair 𝑖 uses edge 𝑒 , it

passes all of its demand 𝑑𝑖 through it. That is why we can

define 𝑓 𝑟𝑒,𝑖 as a binary value and just multiply them by 𝑑𝑖
in Constraint 24, which ensures the augmented capacity of

edge 𝑒 limits the sum of the flows that pass through 𝑒 .

We know that for any given branching node 𝑣 in flow pair

𝑖 , there exists a corresponding merging node 𝑢. If node 𝑣

updates in round 𝑟 , all edges on both paths between 𝑣 and 𝑢

must be active during round 𝑟 . Hence, edges in both paths are

prone to congestion. That is why in round 𝑟 , from branching

node 𝑣 , we send flow on both paths, and in merging node

𝑢, we unify these flows. By Constraint 21, we enforce the

source node of flow pair 𝑖 to send a unit of flow. If the source

node is also a branching node, it can temporarily send one

additional unit of flow in the round that it updates. Similarly,

the terminal node of flow pair 𝑖 needs to receive one unit flow,

unless it is a merging node that receives one additional unit

of flow (Constraint 22). For all other nodes of the flow pair 𝑖 ,

the incoming flow must match the outgoing flow, unless the

node is a branching node that can output an additional unit

flow, or whether it is a merging node that decreases the flow

by one unit (Constraint 23).

Objectives: We describe two objectives, minimizing the

number of rounds given a fixed augmentation and minimiz-

ing augmentation given a fixed number of rounds.

Minimizing number of rounds. To enforce loop freedom

on each of the flow pairs, we might need up to 𝑛 − 1 rounds,

𝑛 = |𝑈 | is the number of nodes in the network [13]. As we

saw in the discussion about the delay algorithm, in order

to minimize the augmentation, it might be beneficial for

us not to update each flow pair in each round. Thus, we

consider the possibility that flow pairs update one after the

each other, and consider the number of rounds 𝑅 to be in the

range {1, . . . , 𝑘 · (𝑛−1)}, where 𝑘 is the number of flow pairs.

To minimize the number of rounds, we assume that we are

given the allowed augmentation, i.e., both 𝛼 and 𝛽 , and run

the mixed integer program with the objective to minimize 𝑅.

Minimizing Augmentation. By Theorem 1, multiplicative

augmentation factor 𝛼 is at most 2. Additive augmentation

value 𝛽 can be between 0 and the maximum capacity of an

edge. To minimize the multiplicative or additive augmenta-

tion, we assume that we are given the number of rounds 𝑅.

We change Constraint 6 to iterate only up to 𝑅 rounds, and

also remove Constraint 7. Finally, we change the objective

in Line 1 to minimize 𝛼 (or 𝛽) instead of 𝑅.

5 EMPIRICAL RESULTS

We complement our analytical results by studying the

augmentation-speed tradeoff in practical scenarios and

performing an extensive simulation study. We first re-

port our methodology and then present our main in-

sights. The implementation is available at github.com/inet-

tub/AugmentRoute.

5.1 Methodology

We implemented our algorithms in python 3.6, using Net-

workX 2.5 [18], Numpy 1.19 [19] and Matplotlib 3.3 [22]

libraries. To solve the mixed integer program, we used

Gurobi 9.1 [17]. We have executed our program on a ma-

chine that has Intel Xeons E5-2697V3 SR1XF as CPU and

provides 128 GB DDR4 RAM.

Topologies. We have evaluated our algorithms on 218
connected and directed graphs from the Internet Topology

Zoo [28] that have at most 100 nodes. We removed trees

from the graph set, in which any schedule can update triv-

ially in one round. The limitation on the number of nodes is

due to the high running time of the mixed integer program.

As the data set only provides the network topology, we now

describe how to set the link capacities, flow pairs, and their

demands.

Generating Flows. For the flow pair 𝑖 , we choose two dis-

tinct nodes uniformly at random as the source 𝑠𝑖 and terminal

𝑡𝑖 . If we use the shortest paths, old and updated paths fully

overlap with each other, so instead, we extend the shortest

path routing with Valiant routing [31] (or more generally,

segment routing [12]) to segment path routing. In the segment

path routing, from nodes other than source and terminal, we

randomly choose one of the waypoint nodes, 𝑤1
𝑖 , and find

the shortest (𝑠𝑖 ,𝑤1
𝑖 ) and (𝑤1

𝑖 , 𝑡𝑖 ) paths. The basis of calculat-
ing shortest paths is the weights that we assign to each edge,

in the range of (1, 100). Since the high running time of MIP

is a limiting factor, we use 250 flow pairs in our experiments.

Setting Link Capacities. We construct a set of baseline flows

used to set the link capacities, with demand chosen uniformly

at random from (10, 20). This method is preferable to other

methods, such as setting the capacity of each edge indepen-

dently, since it assigns link capacities proportionally to a

possible link usage from old and updated paths.

Setting Demands of Old and Updated Flows. To generate

demand for old and updated paths such that both of them
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Figure 4: The experimental augmentation-speed

tradeoff (blue) and augmentation-feasibility tradeoff

(purple). With only 20% augmentation, we observe a

sharp decrease frommore than 6 rounds to less than 4
rounds on average.With as little as 15% augmentation,

the percentage of solvable flow pairs increases from

80% to over 99%.

remain valid, we use an approach reminiscent of conges-

tion control protocols (and in particular, the slow start algo-

rithm [23, 48]). We also set the initial demands of all old and

updated flows to 1, and arranged them in round-robin order.

We then multiply the demand by a growth factor 𝑔. We stop

multiplying the demand of a flow pair if either the old or the

updated flow cannot be increased due to link capacity con-

straints. The value of the growth factor directly affects link

utilization, as links get less utilized with an increased growth

factor. In our experiments, the default value of the growth

factor is 1.1, as it provides more than 99% link utilization.

Running MIP. We first run Greedy and Delay on each

input graph, receiving their update schedules. We then calcu-

late the augmentation and the number of rounds that those

schedules need. In the end, we run the mixed integer pro-

gram first based on the number of rounds that each of those

algorithms needs, and also based on the augmentation that

they require.

5.2 Results

We first study the achievable improvement of optimal update

schedules with additional augmentation, then evaluate the

performance of our greedy algorithms, and finally describe

how our algorithms can be used in other practical settings.

Benefits of Augmentation. To evaluate the benefits of aug-

mentation, we use our optimal algorithm to find the best

update schedule given a certain amount of augmentation.

We only focus on multiplicative augmentation, as additive

augmentation follows a similar trend. Having Theorem 1,

it is enough to check augmentations between 1 and 2. We

compare instances with different augmentations on two met-

rics: the average number of rounds which represents the

speed of an update schedule, and the percentage of feasible

(a) (b)

Figure 5: The percentage of cases in which a given

number of rounds is required for the optimal algo-

rithm, compared to (a) Greedy and (b) Delay algo-

rithms. The optimal algorithm optimizes the number

of rounds, given the multiplicative augmentation re-

sulting from the other algorithm.

solutions. As shown in Figure 4, the number of rounds drops

considerably with a slight increase in augmentation. With

only 5% additional augmentation, the number of rounds re-

duces by more than 22%, and with 10% augmentation, the

number of rounds drops by more than 32%. The number

of feasible solutions increases by more than 16% with 10%

augmentation and grows above 99% while using less than

15% augmentation.

Comparing Optimal and Fast Algorithms. We start by

comparing the algorithms when the optimal algorithm is

allowed the same augmentation as the Greedy or Delay al-

gorithms, with the delay threshold equal to three. In Figure 5

we compare the percentage of optimal and Greedy (Delay)

schedules that have a certain number of rounds. We see that

theMIP schedules more than half of the cases in three rounds,

and the Greedy and Delay algorithms can have up to 6 and

7 rounds, respectively. The difference between the number

of rounds matches our intuition since the cases that Greedy

algorithm performs poorly are rare, but they are possible.

We then fix the number of rounds from the Greedy and

Delay algorithms and find the required augmentation for

the mixed integer program. In Figure 6, we compare the

average augmentation given fixed rounds. The top figures

show the comparison between multiplicative augmentations

as shown on the y-axis, and in the bottom figures, we can

see additive augmentations. When the number of rounds is

limited, the optimal algorithm needs as high augmentation as

Greedy (Delay), but when the number of rounds increases,

the optimal algorithm can delay or provide a gap between

updates of each flow pair, which leads to lower augmentation.

We compare the running time of our algorithms in Fig-

ure 7. As expected from an integer program, the running time

grows fast when increasing the number of nodes or flows

(the variance is due to the various heuristics applied by the

solver). The fast growth of running time of MIP continues
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(a) (b)

(c) (d)

Figure 6: Comparison of an optimal scheduling

vs. Greedy (a,c) and Delay (b,d), in terms of multi-

plicative augmentation (a,b) and additive augmenta-

tion as percentage of 𝐶max (c,d). In each case, the MIP

uses the number of rounds needed by the other al-

gorithm. The red dots denote the worst-case scenario

when all the possible old and updated flows overlap

on each edge.

even after 100 nodes. Hence, Greedy and Delay are particu-

larly useful in large networks as well as when the main focus

is on speed. On the other hand, the MIP can be attractive to

provide minimal augmentation on small networks.

Takeaway for other settings. Given the above results, and

based on today’s flexible networks, allowing for momentary

link augmentations can solve issues, such as long update

schedules. Particularly, our recommendation is that in events

of long update schedules in practice, optimizing schedules

based on efficient algorithms like Greedy or Delay could be

enough to reduce the number of rounds significantly.

6 ADDITIONAL RELATEDWORK

With the rise of software-defined networks, researchers have

started exploring the benefits and challenges of more adap-

tive network operations on many fronts [27, 45]. The con-

sistent network update problem has already received much

attention. We refer to the extensive survey by Foerster et

al. [14] for an overview. There also exists interesting empir-

ical studies on the topic of consistent network update, for

example, Kuzniar et al. [29] showed the high variance in the

(a) (b)

Figure 7: Average time (in seconds) needed to run our

algorithms on networks from the Internet Topology

Zoo: (a) on graphs with at most 50 nodes and varying

numbers of flow pairs; (b) on graphs of varying sizes

and 250 flow pairs.

timing of updates in switches. While approaches to maintain-

ing logical properties such as loop-freedom and waypoint

enforcement alone are fairly well-understood in the liter-

ature, much less is known about algorithms that provably

account for performance aspects such as congestion [14].

In the seminal work in the area of consistent network

update, Reitblatt et al. [42] introduced a fairly general two-

phase approach to update networks while preserving reach-

ability to the terminal. Mahajan and Wattenhofer [37] have

initiated the study of update mechanisms that do not require

packet tagging. They introduced the first approach to maxi-

mize the number of links that can be updated in each round.

The problem was shown to be NP-hard for a single termi-

nal [3, 16], and the study has been extended for multiple

terminals in [16, 49].

When there are multiple routes with different policies,

it may further be important to minimize the number of in-

teractions with an individual router [10]. Recently, a few

papers have focused on the synthesis of update sched-

ules [9, 25, 39, 46, 47], however, in this paper, we are inter-

ested in the natural and well-studied objective of minimizing

the number of rounds. Ludwig et al. [13, 35] showed that

finding a schedule that provides loop freedom in 3 rounds

is NP-hard, and there is always a pair of flows that requires

Θ(𝑛) rounds. The authors of [34] presented a mixed integer

linear program to compute optimal solutions, however, with-

out considering congestion; our formulation builds upon

that and accounts for congestion aspects, as studied in [2]

for loop-free scenarios.

On the other hand, relatively little is known about schedul-

ing congestion-free updates, andmost existing works revolve

around heuristics [14, 21, 41, 50]. Amiri et al. [2] presented a

first algorithmic result, devising a fixed-parameter tractable

algorithm to update a fixed number of flows on directed

acyclic graphs. The authors also showed that the problem is

NP-hard in general, already for two flows. The authors later

extended their results in [1], considering more general but



Monika Henzinger, Ami Paz, Arash Pourdamghani, and Stefan Schmid

still acyclic graphs, and focusing on optimal solutions. To

the best of our knowledge, we are the first to observe and

exploit the augmentation of links to speed up and improve

the feasibility of update schedules.

7 CONCLUSION

This paper uncovered an interesting tradeoff between aug-

mentation, speed and feasibility of network updates. We

proved that 2 times multiplicative augmentation is sufficient

to make any update schedule feasible and provided insight

into the complexity of scenarios with lower augmentation.

We further presented fast and optimal algorithms for finding

consistent update schedules and empirically showed that the

tradeoff between augmentation and speed is even better in

practice.

In future works, it would be interesting to further explore

this tradeoff considering additional consistency properties

(such as waypoint enforcement), or to explore extensions to

scenarios supporting splittable flows.
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A OMITTED PROOFS

In this section, we detail the proofs of Theorems 4 and 5

that prove the NP-hardness of finding valid schedules with

a limited augmentation.

Theorem 4. For every constant 1/3 > 𝜖 > 0, deciding if a
(×(2 − 𝜖))-valid update schedule exists is NP-hard.

Given a 3-CNF formula and a constant 0 < 𝜖 ≤ 1/3, we
build a graph and define flow pairs on it. The core of the

construction is variable gadgets, one for each variable 𝑥 𝑗 in

the formula, with two flow pairs representing truth values,

such that one of them must be updated before the other. A

choice to update the true flow first or the false flow first,

for each variable, implies a corresponding assignment of

the value true or false to the variable, giving a satisfying

assignment for the formula. In addition, the construction

contains another gadget, that guarantees that the choice of

flows to update first indeed satisfies each of the clauses.

The reduction. The reduction graph is composed of the

nodes 𝑠 and 𝑡 , a pair of nodes 𝑢𝑖 , 𝑣𝑖 for each clause 𝐶𝑖
, a pair

of nodes 𝑢𝑖𝑗 , 𝑣
𝑖
𝑗 for each occurrence of a variable 𝑥 𝑗 (negated

or not) in a clause 𝐶𝑖
, and, for each variable 𝑥 𝑗 , the nodes

𝑤1
𝑗 ,𝑤

2
𝑗 and 𝑤 𝑗 (0), . . . ,𝑤 𝑗 (

√
𝑎), where 𝑎 =

( ⌊
1
2𝜖

⌋
+ 1

)2
. The

graph edges and their capacities are defined as part of the

flow definitions, next.

The variable gadget. For each variable 𝑥 𝑗 , we define a gad-

get — see Figure 8. The gadget is composed of paths from

𝑤1
𝑗 to𝑤

2
𝑗 , of different capacities and flows.

First, a path (𝑤1
𝑗 , 𝑢

𝑖1
𝑗
, 𝑣

𝑖1
𝑗
. . . , 𝑢

𝑖max( 𝑗 )
𝑗

, 𝑣
𝑖max( 𝑗 )
𝑗

,𝑤2
𝑗 ) from𝑤1

𝑗 ,

through each edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) such that 𝑥 𝑗 appears in𝐶𝑖
without

https://www.ems1.com/911/articles/officials-human-error-to-blame-in-minn-911-outage-xjwcEfhzmbDD8tub/
https://www.ems1.com/911/articles/officials-human-error-to-blame-in-minn-911-outage-xjwcEfhzmbDD8tub/
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Figure 8: The variable gadget for variable 𝑥 𝑗 which ap-

pears in two clauses without negation and in three

clauses negated. Left: original flows; right: updated

flows; edges without flows are omitted. The original

flows, from bottom up, have sizes 𝑎, 𝑎, 2𝑎, 2𝑎 +
√
𝑎, 2𝑎 +

2
√
𝑎, . . . , 2𝑎 + (

√
𝑎 − 1)

√
𝑎, 3𝑎.

negation (in an arbitrary order), and to 𝑤2
𝑗 ; and, a similar

path through each edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) such that 𝑥 𝑗 appears in 𝐶𝑖

negated. All edges in both paths have capacity 𝑎, and initial

flows 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒 respectively, of demand 𝑎 each. Then,

for 𝑘 = 0, . . . ,
√
𝑎, the gadget contains a path (𝑤1

𝑗 ,𝑤 𝑗 (𝑘),𝑤2
𝑗 )

with edges of capacity 2𝑎 + 𝑘
√
𝑎, and flow 𝐹 (𝑘) of demand

2𝑎 + 𝑘
√
𝑎 as well; the flow 𝐹 (

√
𝑎) will also be referred to as

the blocking flow. The updated flows for both 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒

are flows through (𝑤1
𝑗 ,𝑤 𝑗 (0),𝑤2

𝑗 ). For 𝑘 = 0, . . . ,
√
𝑎 − 1, the

updated flow for 𝐹 (𝑘) is on the path (𝑤1
𝑗 ,𝑤 𝑗 (𝑘 + 1),𝑤2

𝑗 ), i.e.,
the old path of the flow 𝐹 (𝑘 +1). The updated flow for 𝐹 (

√
𝑎)

is through a different gadget, described next.

The clause gadget. For a clause 𝐶𝑖
, we build a gadget com-

posed of three flows 𝐹1, 𝐹2, 𝐹3, which are initially identical —

each flow has demand 𝑎, and they all go through the edge

(𝑢𝑖 , 𝑣𝑖 ), which has capacity 3𝑎. The updated flows for these

flows are through the paths (𝑢𝑖 , 𝑢𝑖𝑗 , 𝑣𝑖𝑗 , 𝑣𝑖 ) for the three vari-
ables 𝑥 𝑗 appearing in the clause𝐶𝑖

(negated or not), one flow

on each path; the edges of this path has capacity 𝑎. Clauses

that contain both a variable and its negation are omitted

from the construction, as they are always satisfied — see

Figure 9.

In addition, the edge (𝑢𝑖 , 𝑣𝑖 ) is a part of the updated flow

of the blocking flow, in a way described next.

Putting everything together. We now explain how the flows

go through the different gadgets. Each of the flows defined

Figure 9: The clause gadget for a clause 𝐶𝑖
which con-

tains the variable 𝑥 𝑗 . Left: original flows; right: up-

dated flows; edges without flows are omitted. The

three flows 𝐹1, 𝐹2, 𝐹3 appear in both figures and have

demand 𝑎 each; the updated blocking flow, which ap-

pears only on the right, has demand 3𝑎, and its original
flow appears in the variable gadget (Figure 10).

Figure 10: The blocking flow. Left: the old flow, going

through all the variable gadgets; right: the updated

flow, going through all the clause gadgets. The flow

has demand 3𝑎, and this is also the capacity of all the

edges in the figure.

above, i.e., 𝐹𝑡𝑟𝑢𝑒 , 𝐹𝑓 𝑎𝑙𝑠𝑒 , 𝐹1, 𝐹2, 𝐹3 and the flows 𝐹 (𝑘) for 𝑘 =

0, . . . ,
√
𝑎 all start from 𝑠 , and then traverse all the relevant

gadgets in an arbitrary order. For example, the flow 𝐹𝑡𝑟𝑢𝑒
goes from 𝑠 to 𝑤1

𝑗 for some 𝑗 , through the gadget of 𝑥 𝑗 to

𝑤2
𝑗 , then to𝑤1

𝑗 ′ for some 𝑗 ′ and so on, and finally from some

𝑤2
𝑗 ′′ to 𝑡 . The corresponding updated flow goes through the

same gadgets in the same order, and inside each gadget 𝑗 goes

through (𝑤1
𝑗 ,𝑤 𝑗 (0),𝑤2

𝑗 ), as described above. The flows 𝐹𝑓 𝑎𝑙𝑠𝑒
and 𝐹 (𝑘) for 𝑘 = 0, . . . ,

√
𝑎 are all connected in a similar

manner. Each of the flows 𝐹1, 𝐹2, 𝐹3 go from 𝑠 to 𝑢𝑖 for some

clause 𝐶𝑖
, to 𝑣𝑖 through the gadget of 𝐶𝑖

, to 𝑣𝑖
′
, and so on,

until it leaves the last 𝑣𝑖
′′
to 𝑡 . The updated flows are similarly

connected. We assume there are edges connecting 𝑠 and 𝑡 to

the gadgets and between the gadgets, where each edge has

enough capacity to contain all the initial and updated flows

assigned to it; note that the flows on these edges (except

for 𝐹 (
√
𝑎)) are not changed by the updates. The blocking

flow 𝐹 (
√
𝑎) initially traverses all the variable gadgets, and

when updated, traverses all the clause gadgets, as depicted
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in Figure 10. Except for this blocking flow, each flow can

be seen as is split into segments, one for each gadget, and

the updates on one gadget are independent the updates in

others.

Proof of the reduction. Using the above construction, we

show that deciding if a (×(2 − 𝜖))-valid update schedule

exists is NP-hard.

Proof of Theorem 4. Consider a 3-CNF formula, a con-

stant 0 < 𝜖 < 1/3, and define 𝑎, the graph and the flow pairs

as described above. We show that the formula has a satisfy-

ing assignment if and only if the graph has a (×(2−𝜖))-valid
update schedule.

Assume the formula has a satisfying assignment, and de-

fine an update schedule in the following order: in each vari-

able clause, update 𝐹𝑡𝑟𝑢𝑒 or 𝐹𝑓 𝑎𝑙𝑠𝑒 by the assignment; in each

variable clause, update 𝐹1, 𝐹2 or 𝐹3 by the variable satisfy-

ing the clause; consecutively update 𝐹 (𝑘), for 𝑘 =
√
𝑎, . . . , 0;

complete the updates of 𝐹𝑡𝑟𝑢𝑒 or 𝐹𝑓 𝑎𝑙𝑠𝑒 ; complete the updates

of 𝐹1, 𝐹2 and 𝐹3. We now detail these updates.

In update step one, update in each variable gadget, 𝐹𝑡𝑟𝑢𝑒 or

𝐹𝑓 𝑎𝑙𝑠𝑒 according to the assignment, in parallel. For a variable

𝑥 𝑗 , this forms a (×(2−𝜖))-valid flow on (𝑤1
𝑗 ,𝑤 𝑗 (0),𝑤2

𝑗 ): the
capacity of this path is 2𝑎, the increased capacity is 2𝑎 + 𝑎 =

3𝑎 ≤ 4𝑎 − 2𝜖𝑎, as the initial capacity on it has demand 2𝑎,
and the updated 𝐹𝑡𝑟𝑢𝑒 or 𝐹𝑓 𝑎𝑙𝑠𝑒 has demand 𝑎.

In step two, update in each clause gadget𝐶𝑖
, the flow 𝐹1, 𝐹2

or 𝐹3 that corresponds to the variable 𝑥 𝑗 that satisfies this

clause. The updated flow is legal, as the edges (𝑢𝑖 , 𝑢𝑖𝑗 ) and
(𝑣𝑖𝑗 , 𝑣𝑖 ) have enough capacity (𝑎) and no flow on them, and

the edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) has capacity 𝑎 as well, and after update step

one, it has no flow on it. If there is more than one variable

satisfying 𝐶𝑖
, we can choose any non-empty set of such

variables.

Next, update the blocking flow 𝐹 (
√
𝑎). Each of the edges

(𝑢𝑖 , 𝑣𝑖 ) has capacity 3𝑎, increased capacity (2 − 𝜖)3𝑎, and
after update step two, there are at most two flows of demand

𝑎 each on it, making this update valid, as 5𝑎 < (2 − 𝜖)3𝑎.
In the next

√
𝑎 update rounds update the flows 𝐹 (𝑘) for

𝑘 =
√
𝑎 − 1, . . . , 0, one per round. We will show below that

these flows cannot be updated in the same round due to

capacity constraints. These updates do not affect the flows

between the gadgets. Inside each clause gadget, the capacity

of the path𝑤1
𝑗 ,𝑤 (𝑘 + 1),𝑤2

𝑗 is always greater than the flow

𝐹 (𝑘), and this path is always unused when we update 𝐹 (𝑘),
since this update comes after the update of 𝐹 (𝑘 + 1).
In update round

√
𝑎 + 4 update the flows 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒

in each variable gadget where it was not updated in the first

round. This is now valid since in the last round we updated

𝐹 (0), so (𝑤1
𝑗 ,𝑤 (0),𝑤2

𝑗 ) has capacity 2𝑎 and no flow on it.

Finally, in the last update round we update the flows 𝐹1, 𝐹2
and 𝐹3 in the clauses where they are not updated yet. This is

possible as the last update round made the edges of the form

(𝑢 𝑗

𝑖
, 𝑣

𝑗

𝑖
) free of flow. This shows the existence of a (×(2−𝜖))-

valid update schedule if a satisfying assignment exists.

For the other direction, assume the graph has a (×(2−𝜖))-
valid update schedule. The construction of the flow pairs

and the edge capacities implies that the update sequence

we define above is the only one possible, which implies a

satisfying assignment. We now prove this claim.

We start by showing that only the flows 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒
can be updated in the initial configuration, and only one of

them in each variable gadget. Consider the variable gadget

for 𝑥 𝑗 : Each path (𝑤1
𝑗 ,𝑤 𝑗 (𝑘),𝑤2

𝑗 ) has capacity and flow 2𝑎 +
𝑘
√
𝑎; its excess capacity is thus

(1 − 𝜖) (2𝑎 + 𝑘
√
𝑎) < 2𝑎 + 𝑘

√
𝑎 − 2𝜖𝑎

= 2𝑎 + (𝑘 − 1)
√
𝑎 +

√
𝑎(1 − 2𝜖

√
𝑎)

< 2𝑎 + (𝑘 − 1)
√
𝑎

where the last inequality uses the choice of 𝑎. Hence,

for all 1 ≤ 𝑘 ≤
√
𝑎, the flow 𝐹 (𝑘 − 1) cannot be updated. For

the flows 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒 , their updated path (𝑤1
𝑗 ,𝑤 𝑗 (0),𝑤2

𝑗 )
has excess capacity (1 − 𝜖)2𝑎 < 2𝑎, so they cannot both be

updated simultaneously.

Consider the clause gadget for 𝐶𝑖
. The flows 𝐹1, 𝐹2 and 𝐹3

have a demand of 𝑎 each, and their updated paths are of the

form (𝑢𝑖 , 𝑢𝑖𝑗 , 𝑣𝑖𝑗 , 𝑣𝑖 ); the central edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) is saturated, and
has excess capacity (1 − 𝜖)𝑎, smaller than the demand of 𝐹1,

𝐹2, and 𝐹3. Finally, the updated blocking flow 𝐹 (
√
𝑎) uses

edges of the form (𝑢𝑖 , 𝑣𝑖 ); each such edge has capacity 3𝑎, 3
flows of demand 𝑎 each, and its excess capacity (1 − 𝜖)3𝑎 is

not enough to accommodate the 3𝑎 demand of 𝐹 (
√
𝑎).

By this discussion, we see that the first update round can

contain at most one 𝐹𝑡𝑟𝑢𝑒 or 𝐹𝑓 𝑎𝑙𝑠𝑒 update in each variable

gadget, and only these updates. Moreover, before any other

type of update is made, there must be enough such updates

to guarantee that all the clauses are satisfied: if this is not

the case, there is a clause 𝐶𝑖
such that all its three edges of

the form (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) cannot take any of the flows 𝐹1, 𝐹2 and 𝐹3.

This, in turn, implies that the blocking flow 𝐹 (
√
𝑎) can never

be updated. Hence, before the blocking flow is updated, one

of 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒 must be updated in each variable gadget,

and then one of 𝐹1, 𝐹2 and 𝐹3 must be updated in each clause

gadget. So, a (×(2 − 𝜖))-valid update schedule implies as

satisfying assignment, as claimed. □

Theorem 5. For every constant 1 > 𝜖 > 0 deciding if a

(+(𝐶max/3 − 𝜖))-valid update schedule exists is NP-hard.

Proof. Given a 3-CNF formula, consider a graph construc-

tion as above, with 𝑎 = 0. ; see Figure 11. That is, for each 𝑥 𝑗
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Figure 11: The variable gadget for variable 𝑥 𝑗 in the

additive case.

the only node of the form𝑤 𝑗 (𝑘) is𝑤 𝑗 (0), and the blocking

flow is 𝐹 (0) = 𝐹 (
√
𝑎). For 𝐹𝑡𝑟𝑢𝑒 , 𝐹𝑓 𝑎𝑙𝑠𝑒 , their updated flows in

an 𝑥 𝑗 gadget are set to be through the path (𝑤1
𝑗 ,𝑤 (0),𝑤2

𝑗 ).
We now have only six flow pairs 𝐹𝑡𝑟𝑢𝑒 , 𝐹𝑓 𝑎𝑙𝑠𝑒 , 𝐹1, 𝐹2, 𝐹3

and 𝐹 (0), and set all their demands to 1. All the edges in the

gadgets have capacity 1, except for the edges of the paths
(𝑤1

𝑗 ,𝑤 (0),𝑤2
𝑗 ) with capacity 2, and the edges of the form

(𝑢𝑖 , 𝑣𝑖 ) with capacity 3. Thus 𝐶max = 3.
For the edges connecting 𝑠 and 𝑡 to the gadgets, and be-

tween the gadgets, set the capacity to 3. In addition, the flows
𝐹1, 𝐹2, 𝐹3 traverse the clause gadget in increasing order of

identifiers, while the updated blocking flow 𝐹 (0) traverses
them in the opposite order. This ensures that the edges be-

tween the gadgets never form a bottleneck or prevent up-

dates. Given a satisfying assignment, the construction of a

valid (and thus, a (+(𝐶max/3 − 𝜖))-valid) update schedule
is similar to the one in the proof of Theorem 4. In the first

update round, in each variable gadget 𝑥 𝑗 , update either 𝐹𝑡𝑟𝑢𝑒
or 𝐹𝑓 𝑎𝑙𝑠𝑒 , by the assignment. This is possible since the path

(𝑤1
𝑗 ,𝑤 (0),𝑤2

𝑗 ) has capacity 2 but only a single flow through

it. In the second update round in each clause 𝐶𝑖
, update one

of the flows 𝐹1, 𝐹2, 𝐹3 which goes through the edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 )
corresponding to the variable 𝑥 𝑗 that satisfies the clause. This

is possible since the edge (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) now carries no flow. In the

third update round update the blocking flow 𝐹 (0), which
uses the edges (𝑢𝑖 , 𝑣𝑖 ) that were just now cleared out from

one of the flows on them. Thus it has flow 2 and excess ca-

pacity 2 − 𝜖 , which is sufficient for the demand of flow 𝐹 (0).
In the forth update round, complete the update of 𝐹𝑡𝑟𝑢𝑒 and

𝐹𝑓 𝑎𝑙𝑠𝑒 , and in the fifth update round complete the update

of 𝐹1, 𝐹2 and 𝐹3, all without any additional augmentation in

the edges of the graph. For the converse direction, note that

𝐶max/3 − 𝜖 = 1 − 𝜖 . In the initial configuration, paths of the

form (𝑤1
𝑗 ,𝑤 (0),𝑤2

𝑗 ) have excess capacity of 1+(1−𝜖) < 2, so

only one of 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒 can be updated before 𝐹 (0). The
edges (𝑢𝑖𝑗 , 𝑣𝑖𝑗 ) have just 1−𝜖 excess capacity, so none of 𝐹1, 𝐹2
and 𝐹3 can be updated in a clause gadget in which none of

the variables was updated. Hence, a (+(𝐶max/3 − 𝜖))-valid

update schedule must first update one of 𝐹𝑡𝑟𝑢𝑒 and 𝐹𝑓 𝑎𝑙𝑠𝑒
in each variable clause, in a way that induces a satisfying

assignment, as claimed. □


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Organization

	2 Modelling Consistent Network Updates and Tradeoffs
	2.1 Loop Freedom
	2.2 Congestion Freedom

	3 Theoretical Analysis
	3.1 Upper Bounds
	3.2 Hardness Results

	4 Algorithms
	4.1 Fast Algorithm for Short Update Schedules
	4.2 Optimal Algorithm

	5 Empirical Results
	5.1 Methodology
	5.2 Results

	6 Additional Related work
	7 Conclusion
	Acknowledgments
	References
	A Omitted proofs

