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Abstract—Container scheduling is a fundamental part of
today’s service and cloud-based applications. Schedulers operate
at different levels depending on how much control the system
developers have. On the one hand, container orchestration
managers such as Google Kubernetes manage the scheduling
of containers to different nodes. On the other hand, serverless
managers, such as Google Autopilot, take care of the underlying
infrastructure automatically, and developers do not need to
manage the nodes. However, when it comes to container depletion,
i.e., removing the assigned cloud resources to an idle container,
current scheduling technologies have limitations. In this paper,
we propose our approach to managing cloud resource usage when
containers are idle efficiently. For this purpose, we deplete idle
containers statefully, i.e., propose a novel manager that monitors
idle containers, saves their state, and efficiently depletes them.
This manager reconstructs a depleted container using the saved
state when reconstruction is needed. In our approach, we suggest
an Infrastructure as Code component to automate the creation
of new nodes if a depleted container cannot be scheduled on
the same node, e.g., because of being overloaded. We provide
an analytical model for the stateful depletion of containers and
their rescheduling and empirically evaluate the accuracy of our
model. For this purpose, we ran an experiment on a private cloud
infrastructure and Google Cloud Platform. Our model has a low
error rate of 4.28% averaged over public and private clouds.

Keywords—Container Scheduling; Container Depletion; Cloud
Resource Management; Infrastructure as Code amplifiers

I. INTRODUCTION

Many different container orchestrating technologies are
available. These technologies operate at different levels, e.g.,
Google Kubernetes1 and Docker Swarm2 are container orches-
tration managers. In contrast, technologies such as Google
Autopilot3 and Microsoft Azure Container Instances4 are
serverless managers that automatically take care of the un-
derlying infrastructure. These technologies are essential for
the dynamic behavior of cloud-based applications; however,
current technologies take container depletion into account only
to a limited extent. As a result, when a container has been
scheduled to a node but is idle, the assigned cloud resources,
e.g., vCPUs and memory, are not used efficiently. In this case,

1https://kubernetes.io
2https://docs.docker.com/engine/swarm/
3https://cloud.google.com/kubernetes-engine/docs/concepts/

autopilot-overview
4https://azure.microsoft.com/en-us/services/container-instances/

existing container schedulers would provision more resources
than needed resulting in a cost increase of cloud resources.

This problem is highly relevant in cases such as the paper’s
real-world industrial case study. In it, an extremely high num-
ber of containers is needed to process the fiscal transactions
of users. For example, there can be (at least) one container
per customer that is instantiated when the first fiscal trans-
action of the customer occurs. These containers have limited
cloud resource demand but cannot be shared across multiple
customers for privacy and security-related issues. There can
be various load profiles for different customers. On the one
hand, a type of customer can have an extremely high number
of transactions per minute, e.g., a bank-related institute. On the
other hand, other customers can have transactions sporadically,
e.g., in a small retail shop. In the latter case, the containers
are idle, waiting to process the subsequent transactions. We
set out to answer the research questions:

RQ1: How can idle containers be depleted in a stateful
manner and rescheduled on a cloud node at run-time?

RQ2: How much improvement does this stateful depletion
result in with regards to efficient resource management?

RQ3: Can we find a decision point, based on the number of
containers, to automatically create a new machine and migrate
the depleted containers?

In our prior work [4], [5], we proposed a self-adapting
architecture that automatically reconfigures the services of a
cloud-based system. In this paper, we propose a new concept
that adapts this architecture to the problem of stateful depletion
and scheduling of containers on cloud nodes. For this, we
present the updated metamodel of our architecture and propose
a new self-adapting approach. We focus on dynamically recon-
figuring services and modeling container scheduling concerns
considering compliance rules. Additionally, we automate the
deployment of containers using an Infrastructure as Code (IaC)
component, e.g., for tasks such as adding virtual machines to
the scheduler node pool at runtime.

We present an analytical model of stateful depletion of idle
containers to predict the improvements in terms of the number
of processed requests. To evaluate our proposed approach, we
designed an experiment according to our studied industrial
use case (see Section II-A for details). We performed the

https://kubernetes.io
https://docs.docker.com/engine/swarm/
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
https://azure.microsoft.com/en-us/services/container-instances/


experiment on private as well as public cloud infrastructures.
Moreover, we empirically found the decision point (based
on the number of containers) to automatically change the
infrastructure using the IaC component. We calculated the
prediction accuracy of our model as 4.28% averaged over
private and public clouds. Given that the target prediction
accuracy is commonly used as 30.0% in the cloud quality-
of-service field [19], this error rate is more than reasonable.

The structure of the article is as follows. In Section II,
we give the background of our study. Section III presents
the overview of our approach, and Section IV explains our
approach details. Our analytical model is parameterized in
Section V and evaluated in Section VI. In Section VII, we
discuss the prediction error of our model and present the
threats to validity of our study. The related work of our paper is
presented in Section VIII. Finally, we conclude in Section IX.

II. BACKGROUND

In this section, the background of our study is presented.

A. Real-World Industrial Case Study

A case study with particular complexity is encountered by
fiskaly GmbH, a provider of cloud-based Certified Technical
Security Systems (CTSS) used to combat tax fraud. According
to German legislation5, every electronic cash register or Point
of Sale (PoS) must be associated with a CTSS instance.
This instance is responsible for tracking PoS business cases,
recording them as event logs, and digitally signing and storing
these logs for a future audit by the tax authorities. Each CTSS
comprises two main components: A protocol unit, known as
Security Module Application for Electronic Record-keeping
Systems (SMAERS), and a cryptography unit, known as
the cryptographic service provider. While multiple SMAERS
instances can share the latter, each SMAERS is required to
be assigned to a customer organization or, in practice, to a
specific PoS or set of PoS of such an organization. In other
words, the process data of each customer entity must be kept
separate from all other customers.

As a result, at least one but potentially up to thousands
of SMAERS instances, each running on its own container,
must be managed for each customer. Consequently, hundreds
of thousands of containers for the German market alone exist.
These containers are clustered together in groups of more than
100 containers on virtual machines in the cloud. Depending
on the customer’s identity and the location of the associated
PoS, a SMAERS instance may be highly active, processing
thousands of transactions each day or only sporadically active,
with a handful of transactions per week. Larger organizations
tend to batch-create SMAERS instances, meaning that some
clusters may feature many high-load instances belonging to the
same customer, while others have more mixed demography.
Fiskaly needs to regulate resource consumption to ensure very
high availability of the CTSS components per its service level
agreements and low-latency servicing of customer requests

5https://kassensichv.com

(typically under 250 msec). This regulation is necessary be-
cause cash register transactions cannot be delayed for long.
Furthermore, all signed logs generated by the CTSS have to be
persisted and be constantly available for immediate export for
auditing purposes by the tax authorities. This export includes
formally decommissioned SMAERS instances, which must be
kept active and accessible indefinitely.

B. Existing Solutions

1) Container Schedulers: Different business-grade con-
tainer schedulers are available, e.g., Google Kubernetes1 or
Docker Swarm2. These tools usually work with constraints,
with which a system designer controls on which cloud node
a container is scheduled and deployed. However, these sched-
ulers are mostly static: A designer must usually define the node
pools and the constraints in advance. If a reconfiguration is
needed, this information must be updated manually. Moreover,
a container orchestration tool would provision more resources
than needed when containers are idle, resulting in a cloud cost
increase. This increase is because the depletion of containers
cannot be done generically and must be tailored for each
application separately.

2) Elastic Containers: Many cloud providers offer a stan-
dard service to automate this process, i.e., to run containers
without considering the underlying cloud nodes. For instance,
Google Autopilot3, Microsoft Azure Container Instances4 and
Amazon Elastic Container Service6 on Fargate7, all of which
free a designer from the container scheduling and deployment
decisions. However, these solutions are not always applicable
when a degree of control is needed over the underlying cloud
nodes, e.g., following a compliance rule that dictates on which
servers customer data should be stored. So the containers
might violate deployment regulations in a fiscal application.
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6https://aws.amazon.com/ecs/
7https://aws.amazon.com/fargate/
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Figure 2: Component Diagram of the Proposed Approach

3) Controllers: Different container scheduling technologies
provide controllers that monitor the state of a cloud-based
application. For example, using a controller in Kubernetes8,
the number of pods9 can be changed automatically to achieve
the desired state of an application. However, these controllers
do not usually focus on a specific container but adjust a
cluster of containers to achieve a goal for that cluster. Using a
specific controller for each container requires additional effort.
Furthermore, extending a controller from a specific technology
demands detailed knowledge of the used scheduler and cannot
be easily applied to another technology.

III. APPROACH OVERVIEW

To answer RQ1, we study the scenario where we can deplete
containers in a stateful fashion, i.e., save their state for later
reconstruction and free their resources. When a new request
for a depleted container is made, we reconstruct the container.
Our approach either schedules this container on an existing
node or creates a new node. Our generic approach can be
used with different container orchestration technologies.

A. Metamodel

In our prior work [4], [5], we introduced a self-adaptive
architecture that took QoS metrics, e.g., reliability and per-
formance, into consideration when reconfiguring services of
a cloud-based system. Figure 1 presents a simplified version
of our metamodel focusing on container scheduling. A model
has hosts and components. A specific component is an api
gateway. The api gateways forward requests received from
clients to services. These are monitored and reconfigured by
the manager components.

8https://kubernetes.io/docs/concepts/architecture/controller/
9https://cloud.google.com/kubernetes-engine/docs/concepts/pod

B. Component Diagram

Figure 2 shows the component diagram of our proposed ap-
proach that is based on the extensively studied Map, Analyze,
Plan, Execute, Knowledge (MAPE-K) loops [6], [7], [15]. This
solution automatically updates the scheduler settings based
on the monitored data at runtime. The Gateway published
the monitoring data to the Quality of Service (QoS) Monitor
that analyzes if a reconfiguration is needed. For example, if
degradation of metrics has been observed, the monitor triggers
the Dynamic Reconfigurator components, i.e., the Container
Scheduler and the Infrastructure as Code (IaC) components.

On the one hand, the proposed solution can be used as a
stand-alone tool using a proprietary container scheduler and
an IaC manager, e.g., manual scripts working with proprietary
cloud technologies. On the other hand, the presented compo-
nent diagram can be seen as a high-level component diagram
used on top of the existing container schedulers, e.g., Google
Kubernetes1 and IaC tools such as Ansible10.

IV. APPROACH DETAILS

We analytically model the improvements of the number of
processed requests when statefully depleting idle containers.

A. Definition of Container Types

Based on our studied industrial use case (see Section II-A),
we define busy containers as the ones that are active most
of the time processing requests with a high frequency, i.e.,
thousands of requests per day. On the other hand, some
containers receive requests with a lower frequency and are
idle between incoming calls. In this paper, we call these
sporadically active containers sporadical containers.

10https://www.ansible.com

https://kubernetes.io/docs/concepts/architecture/controller/
https://cloud.google.com/kubernetes-engine/docs/concepts/pod
https://www.ansible.com


B. Reconfiguration Algorithms

Algorithm 1 proposes a simple depletion strategy that is
used by the Manager component in Figure 2. We monitor
sporadical containers for idleness. When depletion is triggered
for a container, we replace it with an extra container, i.e., a
new container that has yet to be deployed. However, deploying
an extra container only happens if there are more than twice
as many depleted containers as extra containers in the system.
This policy ensures that we do not overload the cloud nodes
by deploying extra containers after each depletion.

Algorithm 1: Reconfiguration Algorithm to Statefully
Deplete and Deploy Extra Containers

input ndepl // number of depleted containers
input nextra // number of extra containers

foreach (c : containers ) // parallel for loop − all containers
begin

while( true ) // waiting for idle signal
begin

if ( idle )
deplete () // stateful depletion
if (ndepl >= 2 · nextra + 1)

replace () // replace with extra containers
nextra ← nextra + 1

ndepl ← ndepl + 1
end

end

return nextra // used in our analytical model

Algorithm 2 shows a simple scheduling algorithm when
a request for a depleted container arrives. In this case, the
container is scheduled on an existing node. Alternatively, if
the current nodes are overloaded, the Infrastructure as Code
component creates a new node, on which the container is
scheduled. Section VII presents an analysis to recognize and
predict an overloaded node. Note that this algorithm affects
the number of depleted containers, i.e., ndepl. This is used in
Algorithm 1 to calculate the number of extra containers, i.e.,
nextr, used in our analytical model.

Algorithm 2: Reconfiguration Algorithm to Schedule a
Depleted Container

input ndepl // number of depleted containers

foreach (c : depleted containers ) // parallel for loop − depleted containers
begin

while( true ) // waiting for requests
begin

if ( request )
if (nodes are not overloaded)

deploy on current nodes()
else

deploy on another node() // can create a new node using IaC
ndepl ← ndepl − 1

end
end

return ndepl

C. Analytical Model

Here, we present the analytical model of our approach.
1) Definition of Depletion Events: To calculate the achieved

improvements (in terms of the number of processed requests
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Figure 3: The Sporadical Load Profiles of Two Containers
(dots represent depletion)

when statefully depleting idle containers), we need some base
measurements to compare. That is the number of requests that
are processed without any depletion of containers. For this
purpose, we use a combination of busy and sporadical services.
We calculate the number of requests processed during a fixed
observed time. We analytically model this measurement of
requests without depletion in the following sections. Moreover,
we model the depletion event of sporadical containers (in terms
of the number of processed requests) when they are idle and
busy containers are replaced.

2) Number of Requests without Depletion Events: Let T be
the observed system time in seconds, during which busy and
sporadical containers are processing incoming requests. Based
on our industrial use case (see Section II-A), we define a busy
load profile as constantly feeding a busy container with a call
frequency, i.e., fbusy without stopping during T . Let nbusy be
the number of busy containers in a system. A sporadical load
profile is defined as a call frequency fspor for a short time
Tspor followed by a delay dspor of no incoming requests. As
shown in Figure 3, a sporadical load is repeated with different
values of time and delay. Let nspor be the number of sporadical
containers in an application and

∑
act be the summation of the

periods a container is active. The number of processed requests
without depletion, i.e., R, can be calculated as the total number
of requests processed by the busy containers plus the requests
processed by the sporadical containers when active:

R =

nbusy∑
c=1

f c
busy · T +

nspor∑
c=1

∑
act

f c
spor · T c

spor (1)

3) Number of Requests with Depletion Events: We deplete
sporadical containers when idle (not processing requests) for
a period of time Tidle. In Figure 3, containers are depleted
(represented by dots) after Tidle of inactivity. We deploy extra
containers instead according to Algorithm 1 (see Section IV-B
for explanation). Let nextr be the number of extra containers,
f c
extr the call frequency of extra container c, and T c

extr the time
period an extra container c is active. The number of processed
requests with depletion, i.e., Rdepl, is:

Rdepl = R +

nextr∑
c=1

∑
act

f c
extr · T c

extr (2)



We calculate the percentage improvement of the processed
requests as follows using Equation (2):

∆R =
100%

R
· (Rdepl −R) (3)

∆R =
100%

R
·
nextr∑
c=1

∑
act

f c
extr · T c

extr (4)

V. PARAMETERIZATION OF MODEL ELEMENTS

Our analytical model can be applied to different scenarios
of multiple load profiles with various numbers of containers.
Architects must parameterize our model to their specific use
case at hand. In this section, we introduce an illustrative
sample case and explain how this parameterization of our
model elements can be performed.

A. Illustrative Sample Case

We consider a scenario where the load profiles of multiple
sporadical containers are so that these containers can be
swapped without losing any requests. In this case, when a
container is idle, another container receives incoming calls,
as shown in Figure 4 for an example. The main benefit of
this case is that the resources of the node, e.g., vCPUs, are
not reserved for an idle container and can be used efficiently
for a busy container resulting in faster response time. This
efficient usage can also reduce costs depending on the cloud
cost profile a user opts for. If customers are billed per resource
usage (e.g., see Google Autopilot pricing11), the cost reduction
can be significant.

100 200 300 400 5000

Container 1

Container 2

Time (s)
600

Figure 4: The Sporadical Load Profiles of Two Containers in the
Illustrative Sample Case (dots represent depletion)

B. Model Parameterization for the Sample Case

In this case, the sporadical load is repeated homogeneously.
Therefore, we can calculate the total requests processed by
busy containers and requests processed by the sporadical
containers over their active periods as a fraction of T . We
rewrite Equation (1):

R = nbusy · fbusy · T + nspor · fspor · T ·
Tspor

Tspor + dspor
(5)

Let nextr, fextr and Textr be the number of extra containers,
frequency and active time of extra containers, respectively. As

11https://cloud.google.com/kubernetes-engine/pricing

a result of homogeneous load, we can rewrite Equation (2) for
the illustrative sample case as:

Rdepl = R + nextr · fextr · Textr (6)

Following Algorithm 1, the nextr, in this case, is half the
number of sporadical containers. The reasoning behind this is
that two containers are swapped repeatedly, as it can be seen
in Figure 4, and one container is replaced in this case:

nextr =
nspor

2
(7)

We mentioned that when we deplete idle containers, we
replace them with busy containers as extra, i.e., we feed them
with a busy load profile to maximize the number of processed
requests, therefore:

fextr = fbusy (8)

In this illustrative sample case, the extra containers are
deployed after the first depletion happens, i.e., after Tidle, and
are active for the rest of the experiment:

Textr = T − Tidle (9)

Finally, the percentage improvement of the processed requests
∆R presented in Equation (4) for this scenario is:

∆R =
(nspor/2) · fbusy · (T − Tidle)

R
· 100% (10)

VI. EVALUATION

To answer RQ2 and to evaluate our approach, we designed
an experiment on cloud settings that are representative of our
industrial case study (see Section II-A).

A. Experiment Planning

1) Goal: We aim to empirically evaluate the improvement
in efficient resource usage when idle containers are statefully
depleted and reconstructed at a later time.

2) Method: We containerize multiples of the number of
services representative of our industrial case study and deploy
these containers on a virtual node in public and private cloud
infrastructures (see below for details). Then, requests with
different levels of frequencies are sent to these containerized
services. We deplete containers that are idle for a period of
time and measure the difference in the number of processed
requests with and without depletion. We follow the illustrative
sample case presented in Section V-A for our experiment
planning.

3) Experiment Cases: As in our prior work [3], we take
the experiment duration, i.e., the observed time, of T = 600
seconds. We define two load profiles, i.e., busy and sporad-
ical profiles based on our studied industrial case study (see
Section II-A). A busy load profile is active during the entire
experiment run. In our industrial case, busy containers can
process thousands of requests daily. Therefore, we define a
representative call frequency of busy containers:

fbusy = 5 r/s (11)

https://cloud.google.com/kubernetes-engine/pricing


Note that these frequencies result in 432000 requests per day.
Presenting our case study, we mentioned that a sporadical

load could be as low as a handful of weekly requests. As this
is not predictive and might result in no requests per T = 600
seconds of experiment time, we follow the sporadical load
profiles presented in Figure 4. To observe some requests during
our experiment time (and for the cases to be comparable),
we give the same call frequency for sporadical and extra
containers as for the busy containers (i.e., 5 r/s):

fspor = fextr = 5 r/s (12)

However, as mentioned before, the sporadical load is active
for a time period Tspor and inactive for a short delay dspor.
To more closely resemble our industrial case study and cover
multiple sporadical load profiles, we use two levels for Tspor

and dspor:

(Tspor, dspor) ∈ { (25, 125) , (50, 150) } (13)

Containers are depleted after a Tidle of inactivity. To study
the effects of this model element, we also use three levels:

Tidle ∈ {5, 25, 45} s (14)

These levels are chosen so we have a very short delay (5 s) as
well as the longest delay that still results in homogeneous load
(45 s) as used in our illustrative sample case (see Section V-A).
Moreover, we study a middle case (25 s) to be complete.

Following our industrial use case, we use different numbers
of busy and sporadical containers. Remember that the number
of extra containers in the illustrative sample case is half the
number of sporadical containers according to Equation (7) (see
section Section V-B for explanation):

(nbusy, nspor, nextr) ∈ { (50, 50, 25),

(80, 20, 10),

(100, 20, 10),

(100, 50, 25) } (15)

We have 96 evaluation cases in total. These include 32 ex-
periment cases (with and without depletion) validated on three
cloud infrastructures. Each evaluation case ran for T = 600
seconds. Moreover, each case was repeated five times and
averaged over to mitigate the influence of other factors on the
measurements, such as other workloads in public clouds (see
threats to validity Section VII-C). Overall, our experiment had
a run-time of 80 hours (excluding setup and processing time).
Details of each evaluation case are provided in the online
artifact of this study12.

4) Technical Details: We used private and public cloud
infrastructures to validate the accuracy of our model.

Private Cloud Infrastructure We used a physical server
having two identical CPUs. The server hosts an Intel® Xeon®
E5-2680 v4 @ 2.40 GHz13 CPU. The processor has 14 cores
and two physical threads per core (56 in total). We installed

12https://zenodo.org/record/7334238 DOI: 10.5281/zenodo.7334238
13https://www.intel.com/content/www/us/en/homepage.html

a virtual node on the server using VMware ESXi version
6.7.0 u2 hypervisor. This virtual node has eight vCPU cores,
60 GB system memory, and runs Ubuntu Server 18.04.01
LTS14. Docker technology15 is used to containerize services
implemented in Node.js16. Each service listens for a request
and performs a dummy operation, i.e., a delay of 1000 loops.

Validation Experiment on Public and Private Clouds We
used our private cloud to have control over the infrastructure.
On a public cloud, other factors, such as the parallel workload
of other applications, can influence the results. To show that
our approach can be used on other infrastructures as well, we
empirically validate the analysis of our proposed model on
our private cloud infrastructure and Google Cloud Platform
(GCP)17. On GCP, we use two machine types, i.e., general-
purpose E2 machine instance18 with two vCPUs and 8 GB
of memory, and compute-optimized C2 machine instance19

with four vCPUs and 16 GB of memory. We duplicated our
private cloud infrastructure on these machines and repeated
the whole experiment on them. Overall three repetition that we
call: Private, GCP2 (two vCPUs) and GCP4 (four vCPUs).

Load Generation For load generation, we utilized a Mac-
Book Pro with an Apple M1 Pro chip and 16 GB of system
memory that runs macOS Monterey version 12.2.1. It gener-
ates load using Apache JMeter20 that sends hypertext transfer
protocol version 1.121 requests to the virtual nodes.

5) Methodological Principles of Reproducibility: We fol-
lowed the eight principles of reproducibility [22]:
• Repeated experiments: Each experiment case is repeated

precisely on the same infrastructure with precise values.
• Workload and configuration coverage: We covered multi-

ple experiment cases according to a real-world industrial
use case (see Section VI-A3).

• Experimental setup description: Our experimental setup
is reported in Section VI-A.

• Open access artifact: The code, data, and evaluation log
of this study is published as an open access data set to
support replicability12.

• Result description of measured performance: We de-
scribed our results in Section VI-B and reported the error
measurements in Section VII-B.

• Statistical evaluation: See this section.
• Measurement units: We reported all units.
• Cost: We used the free trial offered by GCP22.

B. Experiment Results

Table I presents our experiment’s model predictions and
empirical measurements, and Figure 5 visualizes the data. We

14https://www.ubuntu.com
15https://www.docker.com
16https://nodejs.org/en/
17https://cloud.google.com
18https://cloud.google.com/compute/docs/general-purpose-machines
19https://cloud.google.com/compute/docs/compute-optimized-machines
20https://jmeter.apache.org
21https://tools.ietf.org/html/rfc7230
22https://cloud.google.com/free/docs/free-cloud-features
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TABLE I: Model Predictions of Experiment Cases and Empirical Results

Tidle(s)
Num. of Containers
(nbusy, nspor, nextr)

Load Profile
(Tspor, dspor)

R Rdepl ∆R(%) R Rdepl ∆R(%)

Model Private

5

(50, 50, 25)
(25, 125) 175000.00 249375.00 42.50 174180.00 245020.00 40.67
(50, 150) 187500.00 261875.00 39.87 186810.00 256480.00 37.29

(80, 20, 10)
(25, 125) 250000.00 279750.00 11.90 250756.00 280348.00 11.80
(50, 150) 255000.00 284750.00 11.67 255580.00 285244.00 11.61

(100, 20, 10)
(25, 125) 310000.00 339750.00 9.60 310988.00 340580.00 9.51
(50, 150) 315000.00 344750.00 9.44 315780.00 345462.00 9.40

(100, 50, 25)
(25, 125) 325000.00 399375.00 22.88 322420.00 388299.00 20.43
(50, 150) 337500.00 411875.00 22.04 335210.00 404290.00 20.61

25

(50, 50, 25)
(25, 125) 175000.00 246875.00 41.07 174180.00 246335.00 41.42
(50, 150) 187500.00 259375.00 38.33 186810.00 257460.00 37.82

(80, 20, 10)
(25, 125) 250000.00 278750.00 11.50 250756.00 279234.00 11.36
(50, 150) 255000.00 283750.00 11.27 255580.00 284204.00 11.20

(100, 20, 10)
(25, 125) 310000.00 338750.00 9.27 310988.00 339314.00 9.11
(50, 150) 315000.00 343750.00 9.13 315780.00 344224.00 9.01

(100, 50, 25)
(25, 125) 325000.00 396875.00 22.12 322420.00 392450.00 21.72
(50, 150) 337500.00 409375.00 21.30 335210.00 402045.00 19.94

45

(50, 50, 25)
(25, 125) 175000.00 244375.00 39.64 174180.00 242355.00 39.14
(50, 150) 187500.00 256875.00 37.00 186810.00 252295.00 35.05

(80, 20, 10)
(25, 125) 250000.00 277750.00 11.10 250756.00 278364.00 11.01
(50, 150) 255000.00 282750.00 10.88 255580.00 283048.00 10.75

(100, 20, 10)
(25, 125) 310000.00 337750.00 8.95 310988.00 338080.00 8.71
(50, 150) 315000.00 342750.00 8.81 315780.00 343366.00 8.74

(100, 50, 25)
(25, 125) 325000.00 394375.00 21.35 322420.00 387565.00 20.20
(50, 150) 337500.00 406875.00 20.55 335210.00 401460.00 19.76

GCP2 GCP4

5

(50, 50, 25)
(25, 125) 173330.00 246935.00 42.47 174650.00 245995.00 40.85
(50, 150) 187060.00 249585.00 33.43 187260.00 259580.00 38.62

(80, 20, 10)
(25, 125) 250200.00 277796.00 11.03 250764.00 280276.00 11.77
(50, 150) 254924.00 283392.00 11.17 257532.00 285234.00 10.76

(100, 20, 10)
(25, 125) 308048.00 333166.00 8.15 310904.00 340314.00 9.46
(50, 150) 309600.00 335316.00 8.31 318492.00 345512.00 8.48

(100, 50, 25)
(25, 125) 320720.00 374910.00 16.90 324540.00 393010.00 22.00
(50, 150) 325050.00 370295.00 13.92 336530.00 407845.00 21.19

25

(50, 50, 25)
(25, 125) 173330.00 243690.00 40.59 174650.00 245295.00 40.44
(50, 150) 187060.00 257365.00 37.58 187260.00 257140.00 37.32

(80, 20, 10)
(25, 125) 250200.00 277412.00 10.88 250764.00 279374.00 11.41
(50, 150) 254924.00 281530.00 10.44 257532.00 284286.00 10.39

(100, 20, 10)
(25, 125) 308048.00 332460.00 7.92 310904.00 339402.00 9.17
(50, 150) 309600.00 334226.00 7.95 318492.00 344340.00 8.12

(100, 50, 25)
(25, 125) 320720.00 369435.00 15.19 324540.00 395080.00 21.74
(50, 150) 325050.00 372150.00 14.49 336530.00 404780.00 20.28

45

(50, 50, 25)
(25, 125) 173330.00 243240.00 40.33 174650.00 240820.00 37.89
(50, 150) 187060.00 253500.00 35.52 187260.00 253210.00 35.22

(80, 20, 10)
(25, 125) 250200.00 277128.00 10.76 250764.00 278156.00 10.92
(50, 150) 254924.00 280468.00 10.02 257532.00 282176.00 9.57

(100, 20, 10)
(25, 125) 308048.00 329408.00 6.93 310904.00 338094.00 8.75
(50, 150) 309600.00 333302.00 7.66 318492.00 343506.00 7.85

(100, 50, 25)
(25, 125) 320720.00 362720.00 13.10 324540.00 392650.00 20.99
(50, 150) 325050.00 364810.00 12.23 336530.00 398930.00 18.54
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Figure 5: Plots of All Experiment Cases
without Depletion, and Depletion with Tidle seconds



analyze the results separately for private and public cloud
infrastructures.

1) Private Cloud Infrastructure: The experiment results
are very close to our analytical model predictions in all
cases of our private cloud infrastructure. Our model predicts,
and our experiment confirms that having the same number
of containers and feeding them with the same load profile,
a shorter Tidle (the time period a container is idle before
depletion) results in a higher Rdepl (number of processed
requests with depletion). This improvement is because we
quickly identify idle containers and replace them with busy
ones. Therefore, more requests are processed during the same
period of time, i.e., resources are used more efficiently.

Moreover, when sporadical load profiles have a longer Tspor

(the time period a sporadical container is active), we have a
higher Rdepl in all cases when we keep other model elements
constant. This improvement is because when sporadical con-
tainers are swapped, they stay active for longer, processing
more requests. Another interesting observation is that the ratio
of busy to sporadical containers directly impacts ∆R, i.e.,
the percentage improvement of the processed requests. In all
experiment cases with (nbusy, nspor, nextr) of (80, 20, 10) and
(100, 20, 10), we have around 10% increase in the number
of the processed requests. As we increase the number of
sporadical containers (and consequently the number of extra
containers) in the experiment case of (100, 50, 25), the ∆R
also rises to a value close to 20%. Having a one-to-one of
busy and sporadical containers results in the highest ∆R as
predicted by our models and confirmed by our experiment of
(50, 50, 25) containers.

2) Public Cloud Infrastructure: The experiment results on
GCP follow the data trend of the private cloud. However,
as seen in Figure 5, as the number of containers goes
higher, GCP2 has lower processed requests compared to our
model predictions and other experiment infrastructures. This
deterioration is because GCP2 has an E2 machine instance
with two vCPUs. This machine can handle a lower number
of containers, i.e., (nbusy, nspor, nextr) of (50, 50, 25) and
(80, 20, 10), closely to the other experiment infrastructures.
Nonetheless, when a high number of containers are deployed
on this machine, i.e., (100, 20, 10) and (100, 50, 25) contain-
ers, the E2 machine is saturated and results in fewer processed
requests. As seen in Table I and Figure 5, a more powerful
C2 machine in GCP4 that has four vCPUs can handle all our
experiment cases, and the experiment results are close to our
model predictions.

VII. DISCUSSION

This section discusses our findings to answer RQ3. More-
over, we calculate the prediction accuracy of our model.
Finally, we present the threats to the validity of our study.

A. Container Migration

As we studied in Section VI-B, the GCP2 infrastructure
becomes saturated when the number of containers increases.

As shown in Figure 2, our approach includes an Infrastructure
as Code (IaC) component. IaC can automatically start a new
machine to migrate the depleted containers, i.e., schedule the
containers on a newly-created machine. In our experiment, the
GCP2 infrastructure performed close to our model predictions
with (nbusy, nspor, nextr) of (50, 50, 25) and (80, 20, 10).
That is when there are up to 100 deployed containers in a
system, i.e., busy and sporadical containers.

nbusy + nspor ≤ 100 (16)

However, with more than 100 deployed containers, i.e.,
(nbusy, nspor, nextr) of (100, 20, 10) and (100, 50, 25), the
GCP4 infrastructure gave values close to our model predic-
tions. Therefore, we can empirically conclude that for our
experiment cases, the decision point to start a new machine is
when we have 100 deployed containers. We call this GCP
Mixed. The IaC component uses the following formula to
change the infrastructure and schedules a container using
Algorithm 2.

GCP Mixed =

{
GCP2 if (nbusy + nspor ≤ 100)

GCP4 otherwise

Table II presents the model predictions of our experiment cases
and the empirical measurements on this infrastructure.

B. Evaluation of the Prediction Error

We measure the accuracy of our model predictions com-
pared to the empirical results of our private infrastructure (see
Table I) and the GCP Mixed infrastructure (see Table II).
We calculate the prediction error by calculating four error
measurements commonly used in the cloud research [27]:
• Mean Absolute Percentage Error (MAPE)
• Mean Absolute Error (MAE)
• Mean Squared Error (MSE)
• Root Mean Squared Error (RMSE)

We calculate the error measurements in terms of ∆R and
define the common elements used in the error measurements.
Let ∆Rc

model and ∆Rc
empirical be the result of the model,

and the measured empirical data for an experiment case c,
and nc be the number of measured empirical cases. As shown
in Table I and Table II, we have nc = 24 ∆R values per
each experiment infrastructure. The error measurements are
calculated using the following formulae:

MAPE =
100%

nc
·
ncase∑
c=1

∣∣∣∣∣∆Rc
model −∆Rc

empirical

∆Rc
empirical

∣∣∣∣∣ (17)

MAE =
1

nc
·
ncase∑
c=1

∣∣∆Rc
model −∆Rc

empirical

∣∣ (18)

MSE =
1

nc
·
ncase∑
c=1

(
∆Rc

model −∆Rc
empirical

)2
(19)

RMSE =
√
MSE (20)

Table III Presents the prediction error of the proposed
model compared to the measured data on different experiment



TABLE II: Model Predictions and Empirical Results on the GCP Mixed Infrastructure

Tidle(s)
Num. of Containers
(nbusy, nspor, nextr)

Load Profile
(Tspor, dspor)

R Rdepl ∆R(%) R Rdepl ∆R(%)

Model GCP Mixed

5

(50, 50, 25)
(25, 125) 175000.00 249375.00 42.50 173330.00 246935.00 42.47
(50, 150) 187500.00 261875.00 39.87 187060.00 249585.00 33.43

(80, 20, 10)
(25, 125) 250000.00 279750.00 11.90 250200.00 277796.00 11.03
(50, 150) 255000.00 284750.00 11.67 254924.00 283392.00 11.17

(100, 20, 10)
(25, 125) 310000.00 339750.00 9.60 310904.00 340314.00 9.46
(50, 150) 315000.00 344750.00 9.44 318492.00 345512.00 8.48

(100, 50, 25)
(25, 125) 325000.00 399375.00 22.88 324540.00 393010.00 22.00
(50, 150) 337500.00 411875.00 22.04 336530.00 407845.00 21.19

25

(50, 50, 25)
(25, 125) 175000.00 246875.00 41.07 173330.00 243690.00 40.59
(50, 150) 187500.00 259375.00 38.33 187060.00 257365.00 37.58

(80, 20, 10)
(25, 125) 250000.00 278750.00 11.50 250200.00 277412.00 10.88
(50, 150) 255000.00 283750.00 11.27 254924.00 281530.00 10.44

(100, 20, 10)
(25, 125) 310000.00 338750.00 9.27 310904.00 339402.00 9.17
(50, 150) 315000.00 343750.00 9.13 318492.00 344340.00 8.12

(100, 50, 25)
(25, 125) 325000.00 396875.00 22.12 324540.00 395080.00 21.74
(50, 150) 337500.00 409375.00 21.30 336530.00 404780.00 20.28

45

(50, 50, 25)
(25, 125) 175000.00 244375.00 39.64 173330.00 243240.00 40.33
(50, 150) 187500.00 256875.00 37.00 187060.00 253500.00 35.52

(80, 20, 10)
(25, 125) 250000.00 277750.00 11.10 250200.00 277128.00 10.76
(50, 150) 255000.00 282750.00 10.88 254924.00 280468.00 10.02

(100, 20, 10)
(25, 125) 310000.00 337750.00 8.95 310904.00 338094.00 8.75
(50, 150) 315000.00 342750.00 8.81 318492.00 343506.00 7.85

(100, 50, 25)
(25, 125) 325000.00 394375.00 21.35 324540.00 392650.00 20.99
(50, 150) 337500.00 406875.00 20.55 336530.00 398930.00 18.54

infrastructures. Our model has a MAPE prediction error of
4.28% averaged over Private and GCP infrastructures. Given
the 30.0% target prediction accuracy commonly used in the
cloud quality-of-service field [19], The prediction error of our
approach is more than reasonable. Other low error measure-
ments also confirm the high accuracy of our model.

C. Threats to Validity

As in all empirical research, there are several threats to the
validity as well as limitations of our study that we discuss
in this section based on the four threat types by Wohlin et
al. [28].

1) Construct validity: In our study, we modeled the de-
pletion of containers based on the number of requests they
are processing at a given time period. This approach is a
common criterion in the cloud quality-of-service research (see
Section VIII) and in current container scheduling technologies
such as Google Kubernetes1 to define controllers based on the
incoming load (see Section II-B). However, a threat remains

TABLE III: Prediction Error of the Proposed Model

Measurement Private GCP Mixed Overall
MAPE(%) 2.96 5.60 4.28

MAE 0.69 0.95 0.82
MSE 1.11 2.40 1.33
RSME 1.05 1.55 1.3

that other measures, such as CPU usage percentage, might
result in more accurate modeling of container depletion. More
research with several real-world systems would be needed to
cover other measurements and exclude this threat.

2) Internal validity: This concerns factors that affect the
independent variables concerning causality. We performed
an experiment based on our studied industrial use case to
evaluate our proposed model. However, we did so in limited
experiment time and had control over the workload on cloud
infrastructures. We avoided factors such as other loads on the
machines where the experiment ran. To mitigate this threat,
we repeated each experiment case five times and averaged the
empirical measurements, and much of the related literature
takes a similar approach (see Section VIII). However, more
research with multiple real-world workloads would be needed
to confirm that no other factors influence the measurements.

3) External validity: This concerns threats that limit the
ability to generalize the results beyond the experiment. We
designed our approach with generality in mind and explained
in detail how architects could tailor it to their needs (see
Section V). Although we evaluated our approach by designing
a representative experiment and measuring empirical data, the
threat remains that evaluating based on another infrastruc-
ture may lead to different results. To mitigate this thread,
we validated our measurements on Google Cloud Platform
infrastructure and showed that our results are applicable (see
Section VI). Also, we consider multiple load profiles, includ-



ing a sporadical load profile (see Section IV-C and Figure 3).
However, the load was constant regarding the frequency of
incoming calls during active periods. We plan to cover a bursty
load of different frequencies for future work. A related threat
is that we implemented all our services with Node.js16 and
did not use an off-the-shelf implementation, e.g., Envoy23.
We did so to have a comparable infrastructure and to avoid
technological impacts on our results.

4) Conclusion Validity: This concerns factors that affect
the ability to draw conclusions about the relations between
treatments and study outcomes. As the statistical method to
compare our model’s predictions to the empirical data, we
used the MAPE metric as it is widely used and offers good
interpretability in our research context. To mitigate the threat
that this statistical method might have issues, we double-
checked three other error measures, i.e., MAE, MSE, and
RMSE, which confirmed our results reported in Section VII-B.

VIII. RELATED WORK

The proposed the approach in this paper is related to
self-adaptive systems that typically use MAPE-K loops [7],
and similar approaches to realize adaptations. Moreover, re-
search on efficient resource provisioning, e.g., [11], [17], and
cloud elasticity, e.g., [13], [14], are related to our work. Our
study extends these approaches by analytically modeling the
depletion of idle containers as a reconfiguration measure.
Similarly, multidimensional auto-scalers have been studied in
the literature for resource provisioning. AutoMAP [8] uses
response time triggers to provision resources. AutoMAP finds
optimal resources using Virtual Machine (VM) image sizes to
support cost efficiency. Nguyen et al. [21] use a forecasting
model to predict CPU demand and uses these predictions to
start new machines before load peak to increase performance.
CloudScale [25] supports scaling of CPU and memory re-
sources when local scaling is possible. Otherwise, it migrates
VMs to prevent overloaded hosts. Our work differs from these
studies because they consider auto-scaling at the VM level and
configure the resources. We proposed an approach that works
at the container level by depleting and rescheduling containers
on cloud nodes.

Moreover, our study provides a novel approach for container
depletion and scheduling on cloud nodes, especially consider-
ing potentially high numbers of sporadically active containers,
as in the considered industry case (see Section II-A). While an-
other existing approach has yet to study this particular research
problem, there is a rich literature on container scheduling in a
more general sense. For example, Stratus [10] is a dynamically
allocating cluster scheduler orchestrating batch job execution
on virtual clusters of virtual machine instances on public IaaS
platforms. KCSS [20] offers a novel container scheduling
strategy for Kubernetes. Kaewkasi and Chuenmuneewong [16]
use the Ant Colony Optimization methods to implement a
new scheduler for Docker, whereas Liu et al. [18] provide

23https://www.envoyproxy.io/

a new container scheduling approach based on multi-objective
optimization. Cérin et al. [12] introduce a new Docker Swarm
scheduler that uses service level agreement information to
provision a container that must execute the service based on
a dynamic computation of available resources. Sureshkumar
and Rajesh [26], in contrast to those other approaches, use load
scheduling to optimize Container usage. Our study differs from
these works because it is not specific to container scheduling
technology. Our approach tackles containers’ stateful depletion
and rescheduling to cloud nodes from a higher level of abstrac-
tion that can be used with different container orchestration
technologies.

Finally, our approach is relevant to architecture-based op-
timization analysis [2]. This analysis builds on top of pre-
diction approaches and uses architectural tactics to search
for optimal architectural candidates. Example optimization
analysis approaches are ArcheOpterix [1], PerOpteryx [9], and
SQuAT [23]. Sharma and Trivedi [24] present an architecture-
based unified hierarchical model for software reliability, per-
formance, security, and cache behavior prediction. In our prior
work [4], [5], we used multi-criteria optimization analysis to
find Pareto optimal solutions [2]. Like our study, those works
focus on supporting architectural design or decision-making
to facilitate this process. In contrast to our work, they do not
focus on the stateful depletion of containers and rescheduling
them for efficient resource usage.

IX. CONCLUSION AND FUTURE WORK

In this paper, we studied container scheduling with deple-
tion, i.e., freeing cloud resources when containers are idle. We
studied the industrial case of fiskaly GmbH, in which many
containers that need limited resources run in parallel. This pro-
cess results in reserving many cloud resources and increasing
costs if they are idle. We set out to answer how idle containers
can be depleted statefully and rescheduled on a cloud node at
run-time when needed (RQ1), how much improvement this
stateful depletion results in concerning resource management
(RQ2), and whether we can find a decision point, based on the
number of containers, to automatically create a new machine
and migrate the depleted containers (RQ3).

For RQ1, we proposed a novel self-adaptive approach based
on MAPE-K [6], [7], [15] loops to monitor containers for
idleness and deplete them if necessary. For this purpose, we
proposed an analytical model. We explained the details of
our approach that can also work with off-the-shelf orches-
tration solutions adding depletion management capabilities.
Moreover, we discussed how architects could parameterize
our analytical model to different scenarios by following an
illustrative sample case. For RQ2, we designed and performed
an experiment on a private cloud infrastructure, as well as
on Google Cloud Platform (GCP)17. Based on the details of
our studied industrial use case (see Section II-A), we defined
multiple experiment cases and compared our empirical results
to our model predictions.

For RQ3, we found out empirically that, for our experi-
ment, 100 deployed containers is a decision point to start a

https://www.envoyproxy.io/


new machine automatically using the Infrastructure as Code
component of our proposed approach (see Figure 2). We
calculated the prediction error of our model as 4.28% based
on the widely used Mean Absolute Percentage Error (MAPE)
measurement [27] averaged over private and public clouds.
Because 30.0% is the common target prediction accuracy in
the cloud quality-of-service field [19], the prediction error is
reasonable to conclude that our model is highly-accurate and
applicable in this domain.

To the best of our knowledge, stateful depletion of con-
tainers has yet to be extensively studied in the literature.
Moreover, current container orchestration technologies, such
as Google Kubernetes1, consider container depletion mini-
mally. We believe our proposed approach that builds upon our
previous work (empirically validated in multiple studies with
an open access dataset and code presented in Section VI-A5)
can provide a solid base for a set of future work. Therefore,
we plan to apply our approach in multiple industrial use cases
and cover common cloud scenarios in this field of research.
Moreover, as we studied multiple machine types of GCP, we
plan to continue our study to provide guidance and empirical
measurements on using different machine types.
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[12] C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah. A new docker
swarm scheduling strategy. In 2017 IEEE 7th international symposium
on cloud and service computing (SC2), 2017.

[13] G. Galante and L. C. E. de Bona. A survey on cloud computing
elasticity. In 2012 IEEE Fifth International Conference on Utility and
Cloud Computing, pages 263–270. IEEE, 2012.

[14] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. In 10th International Conference on
Autonomic Computing ({ICAC} 13), pages 23–27, 2013.

[15] D. G. D. L. Iglesia and D. Weyns. Mape-k formal templates to
rigorously design behaviors for self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 10(3):1–31, 2015.

[16] C. Kaewkasi and K. Chuenmuneewong. Improvement of container
scheduling for docker using ant colony optimization. In IEEE 10th
International Conference on Autonomic Computing, 2013.

[17] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency
analysis of provisioning microservices. In Cloud Computing Technology
and Science (CloudCom), 2016 IEEE International Conference on, pages
261–268. IEEE, 2016.

[18] B. Liu, P. Li, W. Lin, N. Shu, Y. Li, and V. Chang. A new container
scheduling algorithm based on multi-objective optimization. In Soft
Computing, 22(23), 7741-7752, 2018.
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