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Abstract

Data dissemination is a fundamental task in distributed computing. This paper studies
broadcast problems in various innovative models where the communication network connect-
ing n processes is dynamic (e.g., due to mobility or failures) and controlled by an adversary.

In the first model, the processes transitively communicate their ids in synchronous rounds
along a rooted tree given in each round by the adversary whose goal is to maximize the
number of rounds until at least one id is known by all processes. Previous research has
shown a d 3n−1

2 e−2 lower bound and an O(n log log n) upper bound. We show the first linear

upper bound for this problem, namely d(1 +
√

2)n− 1e ≈ 2.4n.
We extend these results to the setting where the adversary gives in each round k-disjoint

forests and their goal is to maximize the number of rounds until there is a set of k ids such

that each process knows of at least one of them. We give a
⌈
3(n−k)

2

⌉
− 1 lower bound and a

π2+6
6 n+ 1 ≈ 2.6n upper bound for this problem.

Finally, we study the setting where the adversary gives in each round a directed graph
with k roots and their goal is to maximize the number of rounds until there exist k ids that

are known by all processes. We give a
⌈
3(n−3k)

2

⌉
+2 lower bound and a d(1 +

√
2)ne+k−1 ≈

2.4n+ k upper bound for this problem.
For the two latter problems no upper or lower bounds were previously known.

1 Introduction

Data dissemination is one of the most fundamental tasks in distributed systems. This paper
studies data dissemination in an innovative model where the communication network connecting
n processes is dynamic. In particular, we consider a worst-case perspective and assume that the
information flow between the processes is controlled by an oblivious message adversary which
may drop an arbitrary set of messages sent by some processes in each round. This results in a
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sequence of directed communication graphs, whose edges tell which process can successfully send
a message to which other process in a given round. The oblivious message adversary model is
appealing because it is conceptually simple and still provides a highly dynamic network model:
The set of allowed graphs can be arbitrary, and the nodes that can communicate with one
another can vary greatly from one round to the next. It is, thus, well-suited for settings where
significant transient message loss occurs, such as in wireless networks subject to interference,
jamming, or mobility.

We look into three data dissemination problems in dynamic networks: broadcast, cover and
k-broadcast. These problems come in many flavors and feature intriguing connections to other
classic problems such as leader(s) election, regular and k-set consensus (also known as k-set
agreement), for which our problems’ time complexity is typically a lower bound.

In particular, we assume that each process has a unique id and in every message each process
communicates all the ids it knows of so far. We first study a fundamental model where commu-
nication happens along arbitrary rooted trees, chosen by an adversary who aims to maximize the
broadcast time, which is the number of rounds it takes until there exists a process that everyone
knows of. We then extend our investigations to sparser networks, considering k-forests (a union
of k rooted trees). Here the adversary will maximize the cover time, which is the number of
rounds it takes until there exists k process such that everyone knows of at least one of them.
Moreover, in more highly connected networks, we study k-rooted dynamic networks (directed
graphs with k roots), where the adversary aims at maximizing the k-broadcast time, which is the
number of rounds it takes until there exist k processes that everyone knows of. Before presenting
our results, we introduce our model more formally.

Model Let n be the number of processes and let each process have a unique identifier from
[n]. Let G be a fixed set of directed networks with n nodes such that each node has a unique
identifier from [n]. There will be a sequence of rounds t = 1, 2, . . . , such that, in each round t,
an adversary chooses a network G̃t from G, which determines the communication links in round
t as follows: Initially every process knows (or has heard) of its own identifier. During round t
process i sends all identifiers it knows of to its out-neighbors in G̃t. The rounds stop whenever
the objective – broadcast, k-broadcast or cover of size k – is attained. The goal of the adversary
is to maximize the number of rounds.

To model the information propagation we use graph products:

Definition 1.1. If A = ([n], E1) and B = ([n], E2) are two directed networks on n nodes, then
the product graph A ◦ B is the network on n nodes, with edge set E, where (x, y) ∈ E if and
only if there exist a node z such that (x, z) ∈ E1 and (z, y) ∈ E2.

Consider round t and let G(t) be the product graph G(t) = G1 ◦ . . . ◦Gt, where Gi is created
from G̃i by adding a self-loop to every node. Note that in G(t) the in-neighbors of a process x
are exactly the processes that x knows of after t rounds, and its out-neighbors are the processes
it has sent information to. We added a self-loop to every node in Gi to capture the fact that no
process “forgets” any piece of information in any round. An example is given in Figure 1.

We will consider three different models, each of which has a different objective, detailed
below. Figure 2 summarizes the 3 models, gives examples and states the results.

Broadcasting on Trees

Definition 1.2. Let Tn be the set of all rooted trees with a self-loop added at every node.

In this variant, the networks given by the adversary are restricted to trees in Tn and we
analyze the broadcasting time t∗, which is the smallest round t such that there exists a node
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Figure 1: Example of information propagation. Self-loops are omitted, but are present on every
node in every round. x : yz means that y was an in-neighbor of x before the current round (and
still is), whereas z is a new in-neighbor of x. We omit mentioning x in its own in-neighbors as
it is always the case.

in G(t) with an out-edge to every other node. Note that this corresponds to a process such
that every other process has heard of its identifier. We will say that the node has broadcast
(its identifier to everyone) or simply broadcast has happened. Trees being rooted ensure that
broadcast happens in a finite number of rounds1.

Definition 1.3. The broadcast time t∗(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗(G1, G2, . . .) = min{t ∈ N : ∃x ∈ [n],∀y ∈ [n], (x, y) ∈ G1 ◦ . . . ◦Gt}

Definition 1.4. The broadcast time t∗(G) of an adversary G, is defined as follows:

t∗(G) = max{t∗(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗(Tn). Note that even in the simple case where
the adversary gives the same directed tree in each round, the broadcast time can be as large as
n − 1, namely if the tree is simply a path. Conversely, in each round, it is easy to see that at
least one new edge appears in the product graph2, and thus the broadcast time is at most n2.
This raises the question of how large the broadcast time can be made if in each round a different
directed tree can be used.

This has been an open question for several years. Results from Charron-Bost and Schiper
in 2009 [4] and Charron-Bost, Függer, and Nowak in 2015 [3] imply an n log n upper bound.
In 2019, Zeiner, Schwarz, and Schmid [18] gave a linear upper bound when the adversary is
restricted to trees with either a constant number of leaves or a constant number of inner nodes.
They also gave a

⌈
3n−1

2

⌉
− 2 lower bound. In 2020, Függer, Nowak, and Winkler [12] improved

the general upper bound to 2n log log n + O(n). So far, it has been an open conjecture [18]
whether the broadcast time is linear for arbitrary sequences of rooted trees.

Covering on k-forests

Definition 1.5. We define Fkn to be the set of all forests over n processes which are the union
of k rooted trees and a self-loop is added at every node.

In this variant, the networks given by the adversary are restricted to networks from Fkn , and
we analyze the cover time tck, which is the smallest round t such that there exists a set I ⊂ [n],
|I| ≤ k, such that every node x of G(t) has at least one in-neighbor from I. Said differently,
there exists a set of k nodes such that every node knows of at least one of them.

1If the adversary can choose a non-rooted graph, it could repeat this graph indefinitely, preventing broadcast.
2In each round, the identifier of the root reaches someone new.
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Definition 1.6. The cover time tck(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

tck(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n], ∀y ∈ [n], ∃i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦Gt}

Definition 1.7. The cover time tck(G) of an adversary G, is defined as follows:

tck(G) = max{tck(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on tck(Fkn). To the best of our knowledge, there is no
prior work that gives upper or lower bounds on tck(Fkn).

k-Broadcasting on k-rooted Networks

Definition 1.8. Let Rkn be the set of all (directed) networks over n nodes that (1) have k roots,
that is k different processes r1, . . . , rk such that there exists a directed path from any ri to any
process in [n], and (2) have a self-loop at every node.

In this variant, the networks given by the adversary are restricted to networks from Rkn,
and we analyze the k-broadcasting time t∗k, which is the smallest round t such that there exist
k nodes in G(t) with an out-edge to every other node. Said differently, there exists a set of k
nodes such that every node knows of all of them.

Definition 1.9. The k-broadcast time t∗k(G1, G2, . . .) of a sequence of graphs G1, G2, . . ., is

t∗k(G1, G2, . . .) = min{t ∈ N : ∃x1, . . . , xk ∈ [n],∀i 6= j, xi 6= xj

∧ ∀y ∈ [n], ∀i ∈ [k], (xi, y) ∈ G1 ◦ . . . ◦Gt}

Definition 1.10. The k-broadcast time t∗k(G) of an adversary G, is defined as follows:

t∗k(G) = max{t∗k(G1, G2, . . .) : ∀i ∈ N, Gi ∈ G}

We will give tight asymptotic bounds on t∗k(Rkn). To the best of our knowledge, there is no
prior work that gives upper or lower bounds on t∗k(Rkn).

Contribution We give asymptotically tight bounds for all three settings, see also Figure 2.
(1) First we settle the open problem about time complexity of broadcast in dynamic trees, by

showing that it is linear. Hence, Zeiner et al.’s [18] conjecture is true. In particular, we present
an upper bound of

⌈
(1 +

√
2)n
⌉
≈ 2.4n, which complements their

⌈
3n−1

2

⌉
− 2 lower bound.

(2) We further show that covering on k-forests also takes linear time, by giving a π2+6
6 n+1 ≈

2.6n upper bound and a
⌈
3(n−k)

2

⌉
− 1 lower bound.

(3) Finally, we show that k-broadcasting on k-rooted networks is linear as well, by giving an

upper bound of
⌈
(1 +

√
2)n
⌉

+ k − 1 ≈ 2.4n+ k, and a lower bound of
⌈
3(n−3k)

2

⌉
+ 2.

Organization The remainder of this paper is organized as follows. Section 2 introduces some
basic tools that will be useful throughout the paper, and presents first insights. In Section 3, we
give the linear upper bound for broadcast time in our model. Section 4 and Section 5 respectively
showcase our results for the cover on k-forests and the k-broadcast on k-rooted networks. After
reviewing related work in Section 6, we conclude and provide some future research directions in
Section 7. All the lower bound results can be found in appendix A, as well as other basic proofs.
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Model: Broadcasting on Trees Covering on k-Forests k-Broadcasting on k-rooted Networks

Adversary:
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Lower Bound: [18]:
⌈
3n−1

2

⌉
− 2

⌈
3(n−k)

2

⌉
− 1

⌈
3(n−3k)

2

⌉
+ 2

[12]: O(n log log n)

Upper Bound:
⌈
(1 +

√
2)n
⌉

π2+6
6 n+ 1

⌈
(1 +

√
2)n
⌉

+ k − 1

Figure 2: Summary of models and results. The adversary chooses a sequence of graphs as stated
in order to delay the objective as much as possible. In the objective examples, x : y means that
y is an in-neighbour of x at the round the objective is attained. Underlines are for emphasis
purposes only.

2 Basic Tools

In this section, we define generalizations of the in- and out-neighborhoods in the product graph,
and some basic properties these tools follow. The proofs of these properties being basic, we defer
them to the appendix.

Definition 2.1. The in-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by It′t (x), is defined as follows: If t ≤ t′, It′t (x) is the in-neighborhood of process x in the graph
Gt ◦ . . . ◦Gt′. If t = t′ + 1, set It′t (x) = {x}. Otherwise, It′t (x) = ∅.

Definition 2.2. The out-neighborhood of process x between rounds t and t′, t, t′ ≥ 0, denoted
by Ot′t (x), is defined as follows: If t ≤ t′,Ot′t (x) is the out-neighborhood of process x in the graph
Gt ◦ . . . ◦Gt′. If t = t′ + 1, set Ot′t (x) = {x}. Otherwise, Ot′t (x) = ∅.

We prove in Appendix A that these generalized neighborhoods behave as expected:

Lemma 2.3. Let t, t′ ≥ 0, x, y ∈ [n]. Then x ∈ Ot′t (y)⇔ y ∈ It′t (x).

Lemma 2.4 (Transitivity). Let t, t′, t′′ ≥ 0, and x, y, z ∈ [n]. We have the following properties:
i. If y ∈ Ot′t (x) and z ∈ Ot′′t′+1(y), then z ∈ Ot′′t (x).

ii. If x ∈ It′t (y) and z ∈ Ot′′t′+1(y),then z ∈ Ot′′t (x).

iii. If x ∈ It′t (y) and y ∈ It′′t′+1(z), then z ∈ Ot′′t (x).

5



And finally, we show that these neighborhoods only grow over time:

Lemma 2.5 (Monotonicity). If in each round, all nodes have a self-loop, then for any t1 ≤ t2
and t3 ≤ t4, for any process x we have:

i. It3t2 (x) ⊆ It4t1 (x).

ii. Ot3t2 (x) ⊆ Ot4t1 (x).

3 Broadcasting on Trees

In this section, we focus on the fundamental problem of broadcasting on dynamic trees. We give
an upper bound for the problem, before recalling a lower bound.

3.1 The Upper Bound

We will show that the key to understand how information propagate is to consider what the
root knows – or the in-neighbors of the root – before the beginning of every round. We will
show that the root must either have a lot of in-neighbors that were roots in previous rounds,
or many in-neighbors in general. We will then show that any in-neighbor of the root before a
round has at least one more out-neighbor after the round than before it. We will finally show
that any adversary that tries to balance these two facts will fail to prevent broadcast for a time
longer than linear.

Definition 3.1. Let t be a round. We denote by rt the root of Gt, and call it the root of the
round t.

Harnessing the fact that there always exists a path from a root to any other process in a
network, we give the two following lemmas:

Lemma 3.2. Let t, t′ be rounds such that t ≤ t′. We have that:

i If x is a process such that rt /∈ It′t+1(x), then
∣∣∣It′t (x)

∣∣∣ >
∣∣∣It′t+1(x)

∣∣∣.

ii If x is a process such that rt′ ∈ Ot
′−1
t (x), then

∣∣∣Ot′t (x)
∣∣∣ >

∣∣∣Ot′−1t (x)
∣∣∣, unless

∣∣∣Ot′−1t (x)
∣∣∣ = n.

Proof. i. We will show that there exists a process y ∈ It′t+1(x) that has an in-neighbor z in

Gt such that z /∈ It′t+1(x). Then, by Transitivity (Lemma 2.4), z ∈ It′t (x). By Monotonicity

(Lemma 2.5), we have It′t+1(x) ⊂ It′t (x), this will show that
∣∣∣It′t (x)

∣∣∣ >
∣∣∣It′t+1(x)

∣∣∣.
Let us now find such a z. Consider the path from rt to x in Gt. Since rt /∈ It′t+1(x), and trivially

x ∈ It′t+1(x), this path must include an edge (z, y) such that z /∈ It′t+1(x), y ∈ It′t+1(x).

ii. Let us look at the case
∣∣∣Ot′−1t (x)

∣∣∣ < n. We will show that there exists a process y ∈
Ot′−1t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1t (x). Then, by Transitivity

(Lemma 2.4), z ∈ Ot′t (x). By Monotonicity (Lemma 2.5), we have Ot′−1t (x) ⊂ Ot′t (x), this will

show that
∣∣∣Ot′t (x)

∣∣∣ >
∣∣∣Ot′−1t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1t (x)
∣∣∣ < n, there exists a process a such that a /∈ Ot′−1t (x).

Consider the path from rt′ to a in Gt′ . Since rt′ ∈ Ot
′−1
t (x), and a /∈ Ot′−1t (x), this path must

include an edge (y, z) such that z /∈ Ot′−1t (x), y ∈ Ot′−1t (x).

The following lemma will link the number of in-neighbors a node has to the number of
in-neighbors it has among the roots of the preceding rounds:

6



Lemma 3.3. Let x be a process, and t1, t2 be rounds such that t1 ≤ t2. Then:

∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2t1 (x)}
∣∣+ 1 ≤

∣∣It2t1 (x)
∣∣

This will be proven using Lemma 3.2.i, since every time rt /∈ It2t1 (x), It2t1 (x) gets larger:

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2t1 (x)}. Then, in particular, for any t ∈ A, we have

rt /∈ It2t+1(x). Then, for all t ∈ a, applying Lemma 3.2.i, we have
∣∣It2t (x)

∣∣ >
∣∣It2t+1(x)

∣∣. Let
A = {t1, . . . , tk}, with ti < ti+1 for any 1 ≤ i < k. Then:

∣∣It2t1 (x)
∣∣ ≥

∣∣It2
t1

(x)
∣∣ >

∣∣∣It2t1+1
(x)
∣∣∣ ≥

∣∣It2
t2

(x)
∣∣ >

∣∣∣It2t2+1
(x)
∣∣∣ ≥ . . . >

∣∣∣It2tk+1
(x)
∣∣∣ ≥ 1

Where the non-strict inequalities derive by Monotonicity(Lemma 2.5), and the last one from
the fact that tk + 1 ≤ t2 + 1⇒ x ∈ It2

tk+1
(x). There are k = |A| strict inequalities over integers,

which concludes the proof.

We now define the rounds graph, which will keep track of the information – the in-neighbors
– the root of each round has:

Definition 3.4. We define the rounds graph as follows:
The graph has 2n+

⌈√
2n
⌉

nodes: one node representing each process, and one node for each

of the first
⌈
(1 +

√
2)n
⌉

rounds.
And it has the directed edges: one edge from a process p to a round t if p ∈ It−11 (rt), and

one edge from a round t <
⌈√

2n
⌉

to a round t′ > t if rt ∈ It
′−1
1 (rt′).

We will now show that there is at least a node of out-degree n in that graph, which will
translate into a process that has broadcast its piece of information to everyone:

Lemma 3.5. In the rounds graph, there is at least a node of out-degree n.

Proof. Let us look at round t. If t ≤
⌈√

2n
⌉
, then t has in-degree at least t. Indeed, it has

in-degree:

∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ ∈ It−11 (rt)}
∣∣+
∣∣It−11 (x)

∣∣
≥ 1 +

∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ ∈ It−11 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ /∈ It−11 (rt)}

∣∣ = t

where we used Lemma 3.3 for the inequality. Similarly, if t >
⌈√

2n
⌉
, then t has in-degree at

least
⌈√

2n
⌉
. Indeed, it has in-degree:

∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉
, rt′ ∈ It−11 (rt)}

∣∣∣+
∣∣It−11 (rt)

∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉
, rt′ ∈ It−11 (rt)}

∣∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ /∈ It−11 (rt)}

∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉
, rt′ ∈ It−11 (rt)}

∣∣∣+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉
, rt′ /∈ It−11 (rt)}

∣∣∣

=
⌈√

2n
⌉

where we used Lemma 3.3 for the first inequality.
Summing the in-degrees over all the rounds, we get that the number of edges |E| is at least:

|E| ≥
d√2ne∑

t=1

t+ n×
⌈√

2n
⌉

=

⌈√
2n
⌉ (⌈√

2n
⌉

+ 1
)

2
+ n

⌈√
2n
⌉
>
⌈
(1 +

√
2)n
⌉
n

7



But only the n nodes representing the processes and the nodes representing the first
⌈√

2n
⌉
−1

rounds have out edges. The pigeonhole principle asserts then that one of those nodes has an
out-degree of at least n.

Theorem 3.6. t∗(Tn) ≤
⌈
(1 +

√
2)n
⌉

Proof. Assume it is not the case, that is, for every process x ∈ [n], for every round t ≤⌈
(1 +

√
2)n
⌉
,
∣∣Ot1(x)

∣∣ < n. We know that in the rounds graph, there is a node y of degree
at least n. Define z as follows: if y represents a process, let z be that process. If y represents
a round, let z be the root of that round. We will show that z must have broadcast before⌈
(1 +

√
2)n
⌉

rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, this means that z ∈

Iti−11 (rti) ⇔ rti ∈ Oti−11 (z) for every i ∈ [n]. By Lemma 3.2ii, we thus have, for every i ∈ [n],

that
∣∣Oti1 (z)

∣∣ >
∣∣∣Oti−11 (z)

∣∣∣. Then, using Monotonicity (Lemma 2.5) for non-strict inequalities:

∣∣Otn1 (z)
∣∣ >

∣∣Otn−11 (z)
∣∣ ≥

∣∣∣Otn−1

1 (z)
∣∣∣ >

∣∣∣Otn−1−1
1 (z)

∣∣∣ ≥ . . . ≥
∣∣Ot11 (z)

∣∣ >
∣∣∣Ot1−11 (z)

∣∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least n,
which is a contradiction.

3.2 The Lower Bound

A lower bound for this problem has been given by Zeiner, Schwarz, and Schmid [18]:

Theorem 3.7. t∗(Tn) ≥
⌈
3n−1

2 − 2
⌉

A figure of that lower bound can be found in Appendix A.

4 Covering on k-Forests

In this section, we study an adversary that has to choose a communication network in each
round that is a union of k trees. In this setting, we cannot ensure broadcast, so we look at the
time when there exists a cover of size k: k processes such that any other process has heard of
at least one of them.

4.1 The Upper Bound

Even though the problem is very similar to broadcasting on trees, the proofs of Section 3 do not
translate in a straightforward way into an upper bound for covering on k-forests. We thus have
a completely different proof for this problem.

The intuition of our approach is as follows: We will start with a cover of size n at some time
t′ = t(n) that is large enough, and then go back in time until we find a process that can reach
two other processes, say, x and y, of that cover. Calling this process pn−1 and the corresponding

time t(n−1), we thus have pn−1 ∈ It(n)

t(n−1)(x) and pn−1 ∈ It(n)

t(n−1)(y). When repeating the process,
we then remove x and y from our set of processes to cover, add pn−1, and start over, until the
cover has size k. We need to be careful to guarantee that rounds do not overlap.

Indeed, to remove pn−1 from our set of processes to cover, we have to reach it before round
t(n−1), otherwise we will not be guaranteed to reach x or y at time t(n). Thus, we will store with
each process x of the cover the corresponding round t such that x has to be reached by round
t by the process that replaces x in the cover. More specifically, we model the cover by a series
of sets (Au)k≤u≤n, where each Au is a collection of u pairs (p, t), where p is a process, and t is
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a round. To compute Au−1 from Au, we have to find a process that can reach two processes p1,
p2 by rounds t1, t2, such that (p1, t1), (p2, t2) ∈ Au and then we replace these two pairs by a new
pair, creating the cover Au−1.

In this section we first state the definitions and results of this section, before giving the full
proof to each of our claims. We first define what it means for a set A of pairs (p, t) to be a cover.

Definition 4.1. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is a cover of a set
B of processes for round t ≥ maxs{ts} if for every b ∈ B, there exists an i ∈ [s] such that
b ∈ Otti+1(ai).

We next couple the cover property of set A with strictness, which indicates that we did not
(yet) go back enough in time to find a process that reaches two different processes in A.

Definition 4.2. A set A = {(a1, t1), . . . , (as, ts)} of s (process, round) pairs is strict at round

t if there exists no process p ∈ [n] and i, j ∈ [s], i 6= j such that p ∈ Itit (ai) and p ∈ Itjt (aj).

As we consider earlier and earlier rounds, the sets Itit (ai) will get larger and larger, and A
will lose its strictness. Thus, we then define the following sequence of covers of [n], and analyze
their strictness over time. We carefully choose our set As so that it has cardinality s. This
means that Ak has cardinality k, which is our goal.

Definition 4.3. Let t′ be a large enough round. For every k ≤ s ≤ n, we define a sequence of
strict sets As and rounds t(s) as follows:

Define An = {(i, t′) : i ∈ [n]}, t(n) = t′.
Define t(s) = maxj∈N{As+1 is not strict at round j}. As As+1 is not strict at round t(s),

there exist i, j ∈ [s+1] and a process ps such that ps ∈ Itit(s)(ai)∩I
tj
t(s)

(aj). If (ps, t
(s)−1) ∈ As+1,

we define As = As+1 \ {(ai, ti)}, else we define As = (As+1 \ {(ai, ti), (aj , tj)}) ∪ {(ps, t(s) − 1)}.
Define ∆s = t(s) − t(s−1) for k + 1 ≤ s ≤ n.

Recall that our goal is to upper bound t′, which can be done if we upper bound
∑n

s=k+1 ∆s.
The strictness of a set is a key notion as a strict set has the following very useful property:

Lemma 4.4 (Strict Increments). Let s ≥ k + 1 and let A = {(a1, t1), . . . , (as, ts)} be a strict
set of size s at round t. Let I ⊆ {i ∈ [s] : t ≤ ti + 1}. Then there exists a set of indices J ⊆ I,
|J | ≥ |I| − k, such that for every i ∈ J ,

∣∣Itit−1(ai)
∣∣ >

∣∣Itit (ai)
∣∣.

Proof. Consider a root r of round t− 1. As A is strict at round t is follows that r ∈ Itit (ai) for
at most one ai with i ∈ I. As there are at most k roots in round t− 1, it follows that there are
at least |I| − k values i ∈ I such that none of the roots of round t− 1 is in Itit (ai). Let J be the
set of all such values of i. Let us denote for any p ∈ [n] the root of the tree that contains p in
round t by the value rt(p). It follows that in particular rt−1(ai) /∈ Itit (ai). Since t ≤ ti + 1, we
have that ai ∈ Itit (ai). Now for each such i the path from rt−1(ai) to ai in Gt−1 must contain
an edge (x, y) such that x /∈ Itit (ai), and y ∈ Itit (ai). By Transitivity (Lemma 2.4), it holds that
(Itit (ai) ∪ {x}) ⊆ Itit−1(ai), which implies that

∣∣Itit−1(ai)
∣∣ >

∣∣Itit (ai)
∣∣.

It is not hard to show that all ai of As fulfill t(s) ≤ ti + 1. The following lemma helps us find
more sets that satisfy the conditions of the Strict Increments Lemma. This essentially follows
from the fact that, by construction, at least 2s− u elements from Au are shared with As.

Lemma 4.5. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s− u.

We now define the strict rounds graph, which we use to analyze the values of ∆s as s varies
from n to k. A depiction of that graph can be seen in Figure 3.
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Figure 3: The strict rounds graph. Vertex u’s weight represents ∆u = t(u) − t(u−1). The weight
of an edge (u, s) represents how much a round t ∈ [t(u−1) + 1, t(u)] contributes at least to Ss.
Because of the strictness of As, the sum of the weights of the in-neighbors (multiplied by the
edges’ weight) of a node s, which is smaller than Ss, should not exceed n.

Definition 4.6. The strict rounds graph (V,E) consists of n− k vertices, labeled from k+ 1 to
n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex s if
s ≤ u ≤ min{2s− k − 1, n}, and its weight is w(u, s) = 2s− k − u.

The next lemma is the crucial lemma: To bound t′ we first bound the following “weighted
volumes”. If we define αs to be the weighted out-degree of a node s, and the volume of s to be
αs multiplied by its own weight, then in the strict rounds graph, the cumulative sum over the
volumes of the first j vertices is at most j · n.

Lemma 4.7. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u− k) · n.

We briefly sketch the proof of this lemma. We first prove that for every k + 1 ≤ w ≤ u the
sum σw :=

∑min{2w−k−1,n}
v=w (2w − k − v) ∆v is at most n as follows. Since for every k+1 ≤ w ≤ u

the set Aw is strict at all rounds t ≥ t(w−1) + 1, it follows that Sw :=
∑

(ai,ti)∈Aw

∣∣∣Iti
t(w−1)+1

(ai)
∣∣∣

is at most n. We then lower bound Sw by
∑min{2w−k−1,n}

v=w (2w − k − v) ∆v in two steps: First,
Lemma 4.5 allows us to find a set I of cardinality larger than 2w − v for each round in the
interval [t(v−1) + 1, t(v)] that fits the Strict Increments Lemma’s conditions. We then use the
Strict Increments Lemma to show that Sw increases by 2w − v − k in each of those rounds,
which results in a lower bound of σw for Sw, and thus the upper bound σw ≤ n. Summing this
inequality over all u− k nodes w with w ≤ u gives

∑
w≤u σw ≤ (u− k) · n.

Next note that σw is the weighted in-degree of node w in the strict rounds graph where each
edge is weighted by the product of its edge weight and the weight of its tail. By definition, the
tail of every (directed) edge has a higher label than its head and, thus, every outgoing edge of
a node s ≤ u is also an incoming edge of a node w ≤ u. This allows us to argue that

∑
w≤u σw

is at least
∑

s≤u ∆sαs, which leads to the final result.
We use Lemma 4.7 to bound t′ as follows. We first show that any vertex weight distribution

on the strict rounds graph following the volume bound must fulfill the following property.

Lemma 4.8. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict rounds

graph such that for every u ∈ {k+ 1, . . . n}, ∑s≤u δsαs ≤ (u− k) · n. Then
∑n

s=k+1 δs ≤ π2+6
6 n.

Lemma 4.7 and Lemma 4.8 give the desired bound on
∑n

s=k+1 ∆s, which in turn bounds t′.

Corollary 4.9.
∑n

s=k+1 ∆s ≤ π2+6
6 n
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Theorem 4.10. tck(Fkn) ≤ π2+6
6 n+ 1

The rest of this section is dedicated to proving in detail all of those claims, as well as
introducing all concepts, stating and proving any intermediate lemmata that would be necessary.
First we analyze in detail the sets defined in Definition 4.3, making sure they have the desired
cardinality and proving that they form a cover of [n] from round 1 to t′. Note that it directly
follows from Definition 4.3 that the size of As is s and we will in the following always use (ai, ti)
for 1 ≤ i ≤ s to denote the elements of the set As.

Lemma 4.11. For every s ∈ {k, . . . , n}, |As| = s.

Proof. It is true by reverse induction. Indeed, it is trivially true for s = n. Suppose it is true for
some s ∈ {k+1, . . . , n} and consider two cases: If (ps−1, t

(s−1)−1) ∈ As, then |As|− |As−1| = 1,
as only (ai, ti) is removed from As. If (ps−1, t

(s−1) − 1) 6∈ As, then both (ai, ti) and (aj , tj) are
removed from As and (ps−1, t

(s−1) − 1) is added, which implies that |As| − |As−1| = 1. Thus, in
both cases |As| − |As−1| = 1. As by induction |As| = s, it follows that |As−1| = s− 1.

In Definition 4.3, we offset t(s) by one when introducing ps in As, which guarantees that As
is a cover of [n] for round t′, as shown below.

Lemma 4.12. For every s ∈ {k, . . . , n}, we have that As is a cover of [n] for round t′.

Proof. We show the claim by reverse induction. It holds trivially for s = n. Assume now that
As+1 is a cover of [n] for round t′. We will show that this implies that As is also a cover of [n] for
round t′. By the fact that As+1 is a cover, it follows for each x ∈ [n] that there exists a h ∈ [s+1]
such that x ∈ Ot′th+1(ah). If (ah, th) ∈ As, then there is nothing to do. If however (ah, th) /∈ As,
then ps ∈ Itht(s)(ah), and by Transitivity (Lemma 2.4) it follows that x ∈ Ot′

t(s)
(ps).

Now that we are assured that the cover property will hold throughout, we give the intuition of
what follows. As defined above, we have ∆u = t(u)−t(u−1) for k < u ≤ n. We will then look at As

for some s ∈ {k, . . . , n}. Since As is strict at round t(s−1) + 1, it follows that
(
Iti
t(s−1)+1

(ai)
)
i∈[s]

are pairwise disjoint subsets of [n], which implies that Ss =
∑

(ai,ti)∈As

∣∣∣Iti
t(s−1)+1

(ai)
∣∣∣ is at most

n. We will find a lower bound for that value that depends on the values of ∆u.
To do so, we will use the Strict Increments Lemma (Lemma 4.4). Indeed we will first prove

that for every i ∈ [s], it holds that t(s) ≤ ti + 1. This will allow us to use the Strict Increments
Lemma (Lemma 4.4) between rounds t(s−1) + 2 and t(s) and so each of those rounds contributes
an additive s − k to the lower bound of Ss. Of course, such a contribution only happens if
t(s−1) + 2 ≤ t(s).

We will further prove that there exist s − 1 elements i ∈ [s] such that t(s+1) ≤ ti + 1. This
will follow from the fact that |As ∩As+1| ≥ s− 1, and that for every (a, t) ∈ As+1, we have that
t(s+1) ≤ t+ 1. This allows us to use the Strict Increments Lemma (Lemma 4.4) between rounds
t(s) + 1 and t(s+1), so that each of those rounds contributes at least an additive s− 1− k to the
lower bounds of Ss in addition to the contribution of rounds [t(s−1) + 2, t(s)].

In fact, we will generalize this analysis to all values of u ≥ s with Au ∩As 6= ∅, and for each
u every round in [t(u−1) +1, t(u)] contributes at least 2s−k−u to the lower bound of Ss, leading
to a contribution at at least (2s− k − u)∆u for u.

Lemma 4.13. As is strict at round t(s) + 1, for any s ∈ {k, . . . , n}.

Proof. Let s ∈ {k, . . . , n}. As+1 is strict at round t(s) + 1. Assume by contradiction that As is
not strict at round t(s) + 1, that is, there exists a x ∈ [n] and i, j ∈ [s] such that x ∈ Iti

t(s)+1
(ai)
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and x ∈ Itj
t(s)+1

(aj). Since It(s)−1
t(s)+1

(ps) = ∅ because t(s) + 1 > (t(s) − 1) + 1, we have that

x /∈ It(s)−1
t(s)+1

(ps). This implies that (ai, ti), (aj , tj) ∈ As+1, which contradicts the strictness of
As+1. This concludes the proof.

Corollary 4.14. t(s) ≤ t(s+1) ∀s ∈ {k, . . . , n− 1}

Corollary 4.15. For every s ∈ {k, . . . , n}, we have that for every i ∈ [s], t(s) ≤ ti + 1.

Proof. By reverse induction, it is true for s = n, as for every i ∈ [n], ti = t(n). Assume it
is true for some s + 1 for s ∈ {k, . . . n − 1}, and let us look at As. Then by Corollary 4.14
and the induction hypothesis, for every i ∈ [s] we have that either (ai, ti) ∈ As+1 and thus
t(s−1) ≤ t(s) ≤ ti + 1, or that (ai, ti) = (ps, t

(s) − 1) and trivially the inequality holds.

Lemma 4.16. Let s, u ∈ {k, . . . , n} such that s ≤ u. Then As ∩Au ≥ 2s− u.

Proof. By reverse induction, it is trivially true for s = u. Assume we have |As+1 ∩Au| ≥
2(s+ 1)− u for some s such that k ≤ s ≤ u− 1.

We have that, by distribution of the intersection over the union operator:

As+1 ∩Au = ((As+1 ∩As) ∪ (As+1 \As)) ∩Au = (As+1 ∩As ∩Au) ∪ ((As+1 \As) ∩Au)

Hence:

|As ∩Au| ≥ |As+1 ∩As ∩Au| ≥ |As+1 ∩Au| − |(As+1 \As) ∩Au| ≥ 2(s+ 1)− u− 2 = 2s− u

Where we used that |(As+1 \As) ∩Au| ≤ |As+1 \As| ≤ 2, because we removed at most two
elements from As+1 to get As.

Lemma 4.5. Let s, u ∈ {k, . . . , n} such that s ≤ u. Let As = {(a1, t1), . . . , (as, ts)}. Let
I = {i ∈ [s] : t(u) ≤ ti + 1}. Then it holds that |I| ≥ 2s− u.

Proof. It is a direct implication of Corollary 4.15 and Lemma 4.16.
Indeed, |I| =

∣∣{(a, t) ∈ As : t(u) ≤ t+ 1}
∣∣, and we have {(a, t) ∈ As : t(u) ≤ t+ 1} ⊇ {(a, t) ∈

As ∩Au : t(u) ≤ t+ 1} = {(a, t) ∈ As ∩Au} = As ∩Au, where the penultimate equality holds by
Corollary 4.15 applied to u. Lemma 4.16 states that |As ∩Au| ≥ 2s− u.

Lemma 4.17. Let ∆s = t(s) − t(s−1). Then, for every s ∈ {k + 1, . . . , n}:
min{2s−k−1,n}∑

u=s

(2s− k − u) ∆u ≤ n

An illustration of the proof can be found in Figure 4.

Proof. Let s ∈ {k+1, . . . , n}. If for every u such that s ≤ u ≤ min{2s−k−1, n}, we have ∆u = 0,
then the result is immediate. If not, let x = min{u : s ≤ u ≤ min{2s − k − 1, n} ∧ ∆u > 0}.
In the rest of the proof, let u be restricted to fulfill x ≤ u ≤ min{2s − k − 1, n} and let
Ius = {i ∈ [s] : t(u) ≤ ti + 1}. By Lemma 4.5, we have that |Ius | ≥ 2s − u. To prove the claim

we will give upper and lower bounds for Ss =
∑

i∈[s]

∣∣∣Iti
t(s−1)+1

(ai)
∣∣∣. The upper bound directly

follows from the fact that t(s−1) + 1 is the smallest round at which As is strict, which implies
that Ss ≤ n.

We next fix a round t with t(u−1)+1 ≤ t ≤ t(u). We have that t(s−1) is the largest round As is
not strict at (by Definition 4.3), so it is strict at t ≥ t(u−1)+1 > t(s−1). By the Strict Increments
Lemma (Lemma 4.4), there exists a set Jus (t) ⊆ Ius with |Jus (t)| ≥ |Ius | − k ≥ 2s − u − k such
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t(s−1) + 1 t1 t(s) t2 t3 t4 t5 t6 t7
a1 ■ □ ■ □ ■  # # # # # # # # # # # # # #
a2 ■ ■ ■ □ ■ ■ ■ □  # # # # # # # # # # #
a3 □ ■ □ ■ □ ■ □ □ ■ □  # # # # # # # # #
a4 ■ □ ■ ■ ■ ■ ■ ■ ■ □ ■  # # # # # # # #
a5 □ ■ ■ ■ ■ ■ ■ ■ ■ ■ □ ■ □ □ □  # # # #
a6 ■ ■ ■ ■ ■ □ □ ■ □ ■ ■ □ ■ □ ■ □ □ □  #
a7 ■ ■ □ ■ □ ■ ■ ■ □ ■ □ □ □ ■ □ □ □ □ □  

∆s − 1 ∆s+1 ∆s+2 ∆s+3 ∆s+4 ∆s+5

Figure 4: Illustration of proof of Lemma 4.17, with s = 7 and k = 2. Each column represents
a round, each row represents an element (ai, ti) of As, ordered according to ti. Remember that
every ti directly precedes a t(u). We add a square if t ≤ ti, and a circle otherwise. The entry is
black if

∣∣Itit (ai)
∣∣ >

∣∣Itit+1(ai)
∣∣ and white otherwise. We have one black circle per row. Indeed,

we have that
∣∣Ititi+1(ai)

∣∣ = |{ai}| = 1 > 0 =
∣∣Ititi+2(ai)

∣∣. Lemma 4.5 gives a lower bound on
the number of squares for each column. The Strict Increments Lemma asserts that there are at
most k white squares per column. A lower bound for Ss is thus the number of black entries.

that for every j ∈ Jus (t),
∣∣∣Itjt−1(aj)

∣∣∣ >
∣∣∣Itjt (aj)

∣∣∣. As every j ∈ Jus (t) belongs to Ius it follows that

t ≤ t(u) ≤ tj + 1. Thus, for every (j, t) ∈ [s]×N with t > tj + 1 it holds that it does not belong
to Jus (t), or, equivalently, 1(j ∈ Jus (t)) = 0.

We can then write:

Ss :=
∑

i∈[s]

∣∣∣Iti
t(s−1)+1

(ai)
∣∣∣ =

∑

i∈[s]


∣∣Ititi+1(ai)

∣∣+

ti∑

t=t(s−1)+1

(∣∣Itit (ai)
∣∣−
∣∣Itit+1(ai)

∣∣)



We first separate the second sum according to which interval [t(u−1) + 1, t(u)] round t
belongs to, and furthermore add a third sum that is equal to 0, since 1(j ∈ Jus (t)) = 0 for
every (j, t) ∈ [s] × N such that t > tj + 1. For the consecutive inequality note that by the
definition of Jus (t), we have that in the second sum

∣∣Itit (ai)
∣∣ −

∣∣Itit+1(ai)
∣∣ ≥ 1(i ∈ Jus (t+ 1)).

Ss ≥
∑

i∈[s]


∣∣Ititi+1(ai)

∣∣+

ti∑

t=t(s−1)+1

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t+ 1 ≤ t(u))
(∣∣Itit (ai)

∣∣−
∣∣Itit+1(ai)

∣∣)

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Jus (t))




≥
∑

i∈[s]


∣∣Ititi+1(ai)

∣∣+

ti∑

t=t(s−1)+1

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t+ 1 ≤ t(u))1(i ∈ Jus (t+ 1))

+

t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Jus (t))




=
∑

i∈[s]


∣∣Ititi+1(ai)

∣∣+

ti+1∑

t=t(s−1)+2

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Jus (t))

+
t(min{2s−k−1,n})∑

t=ti+2

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Jus (t))
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Ss ≥
∑

i∈[s]

(
∣∣Ititi+1(ai)

∣∣

+

max{ti+1,t(min{2s−k−1,n})}∑

t=t(s−1)+2

min{2s−k−1,n}∑

u=s

1(t(u−1) + 1 ≤ t ≤ t(u))1(i ∈ Jus (t))

)
=: X1

We next invert the two sum symbols, and delete terms where 1(t(u−1) + 1 ≤ t ≤ t(u)) = 0:

X1 ≥
∑

i∈[s]


1 +

t(x)∑

t=t(x−1)+2

1(i ∈ Jxs (t)) +

min{2s−k−1,n}∑

u=x+1

t(u)∑

t=t(u−1)+1

1(i ∈ Jus (t))




≥ s+
t(x)∑

t=t(x−1)+2

∑

i∈[s]

1(i ∈ Jxs (t)) +

min{2s−k−1,n}∑

u=x+1

t(u)∑

t=t(u−1)+1

∑

i∈[s]

1(i ∈ Jus (t)) =: X2

Using that
∑

i∈[s] 1(i ∈ Jus (t)) = |Jus (t)| ≥ 2s− k − u and ∆u = t(u) − t(u−1):

X2 ≥ s+ (∆x − 1)(2s− k − x) +

min{2s−k−1,n}∑

u=x+1

(2s− k − u)∆u ≥
min{2s−k−1,n}∑

u=s

(2s− k − u)∆u,

where the last inequality follows since x ≥ s which implies that 2s− k− x ≤ 2s− k− s ≤ s and
that ∆u = 0 for u < x.

As
∑

i∈[s]

∣∣∣Iti
t(s−1)+1

(ai)
∣∣∣ = Ss ≤ n, the claim follows.

We now recall the definition of the strict rounds graph, which is built to harness the previous
result.

Definition 4.6. The strict rounds graph (V,E) consists of n− k vertices, labeled from k+ 1 to
n, where each vertex s has weight ∆s. There exists a directed edge from vertex u to vertex s if
s ≤ u ≤ min{2s− k − 1, n}, and its weight is w(u, s) = 2s− k − u.

The graph is represented in Figure 3. Each node s with k+ 1 ≤ s ≤ (n+ k)/2 has s− k+ 2
incoming edges, namely (s, s), (s+ 1, s), . . . , (2s− k − 1, s), with weights s− k, s− k − 1, . . . , 1,
respectively. Each node s with (n+ k)/2 < s ≤ n has n+ 1− s incoming edges, namely (s, s),
(s+ 1, s), . . . , (n, s), with weights s− k, s− k − 1, . . . , 2s− k − n, respectively.

Each node s has s+ 1−
⌊
s+k
2

⌋
outgoing edges, namely (s, s), (s, s− 1), . . . , (s,

⌊
s+k
2

⌋
+ 1) of

weight s−k, s−k−2, . . . , respectively. If s−k is even, all outgoing edges of s have even weight
and the edge (s,

⌊
s+k
2

⌋
+ 1) has weight 2. If s−k is odd, all outgoing edges of s have odd weight

and the edge (s,
⌊
s+k
2

⌋
+ 1) has weight 1.

Lemma 4.18. Let u ∈ [n], and define Eoutu := {(s, v) ∈ E : s ≤ u}. In the strict rounds graph,
we have that

∑

(s,v)∈Eout
u

∆sw(s, v) ≤ (u− k) · n

Proof. We are summing over all the out-edges of all the vertices with a label at most u. Let
Einu = {(s, v) ∈ E : v ≤ u}. Every outgoing edge of a node s ≤ u must end at a node v with
v ≤ s ≤ u. Thus, it is contained in the set of incoming edge of all nodes v with v ≤ u. Said
differently, Eoutu ⊆ Einu .
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Since all the terms are positive, we have:

∑

(s,v)∈Eout
u

∆sw(s, v) ≤
∑

(s,v)∈Ein
u

∆sw(s, v) =
∑

v≤u

∑

s:(s,v)∈E

∆sw(s, v)

≤
∑

v≤u

∑

s:(s,v)∈E

∆s(2v − k − s) ≤
∑

v≤u

min{n,2v−s−1}∑

s=v

∆s(2v − k − s)

Applying Lemma 4.17, the claim follows.

Lemma 4.19. Let s ≥ k + 1. If s − k is odd, we have
∑

v:(s,v)∈E w(s, v) = ( s−k+1
2 )2. If it is

even, we have
∑

v:(s,v)∈E w(s, v) = ( s−k2 )2 + s−k
2 .

Basically, as discussed above and seen in Figure 3, if s − k is odd, we have that∑
v:(s,v)∈E w(s, v) = 1 + 3 + 5 + · · · + s − k = ( s−k+1

2 )2, while if it is even,
∑

v:(s,v)∈E w(s, v) =

2 + 4 + 6 + · · ·+ s− k = ( s−k2 )2 + s−k
2 . The full proof can be found in Appendix A.

Definition 4.20. We define the following numbers: β = π2+6
6 , αs = ( s−k+1

2 )2 if s − k is odd,

αs = ( s−k2 )2 + s−k
2 if s− k is even.

Note that αs is an integer for all values of s ≥ k. By applying this definition to the bounds
of Lemmata 4.18 and 4.19 we achieve the following result.

Lemma 4.7. Let u ∈ {k + 1, . . . , n}. Then
∑

s≤u ∆sαs ≤ (u− k) · n.

Lemma 4.8. Let {δs}k+1≤s≤n with δs ∈ R be a vertex weight distribution over the strict rounds

graph such that for every u ∈ {k+ 1, . . . n}, ∑s≤u δsαs ≤ (u− k) · n. Then
∑n

s=k+1 δs ≤ π2+6
6 n.

Proof. We will show that
∑n

s=k+1 δsαs is maximized when δs = α−1s · n for every s. Let
{δs}k+1≤s≤n be such that

∑n
s=k+1 δsαs if maximized. Assume by contradiction that there exists

a k + 1 ≤ s ≤ n such that δs < α−1s · n. Let v be the smallest such s and set ε = n− δvαv > 0.
We can then build a different solution γ by setting γs = δs for every s /∈ {v, v + 1}, and setting
γv = δv + εα−1v = α−1v · n > δv and γv+1 = δv+1 − εα−1v+1. Note that for every u ∈ {k + 1, . . . n},∑

s≤u γsαs ≤ (u− k) · n as
(1) for u < v it holds that

∑
s≤u γsαs = (u− k) · n,

(2) for u = v it holds that
∑

s≤u γsαs = (εα−1v )αv + δvαv +
∑

s<u δsαs = (n− δvαv) + δvαv +∑
s<u δsαs = n+ (u− 1− k) · n = (u− k) · n, and
(3) for u ≥ v+1 if holds that

∑
s≤u γsαs =

∑
s≤v−1 δsαs+γvαv+γv+1αv+1+

∑
v+2≤s≤u δsαs =∑

s≤v−1 δsαs + δvαv + εαv+1α
−1
v+1 + δuα

−1
u − εαuα−1u +

∑
v+2≤s≤u δsαs =

∑
s≤u δsαs ≤ (u−k) ·n,

and
Now note that

∑n
s=k+1 γsαs >

∑n
s=k+1 δsαs as the αs values are decreasing in s, which gives

a contradiction to the assumption that δ maximizes
∑n

s=k+1 δsαs. It now follows that

n∑

s=k+1

δs ≤
n∑

s=k+1

α−1s n ≤
∞∑

s−k=1

α−1s n ≤ n
∑

`∈N

1

`2
+ n

∑

`∈N

1

`2 + `
= βn.

where the last equation follows by the fact that
∑

`∈N
1
`2

= π2/6 and
∑

`∈N
1

`2+`
=
∑

`∈N
1
`− 1

`+1 =
1.

Corollary 4.9.
∑n

s=k+1 ∆s ≤ π2+6
6 n
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Theorem 4.10. tck(Fkn) ≤ π2+6
6 n+ 1

Proof. We have
∑n

s=k+1 ∆s =
∑n

s=k+1 t
(s) − t(s+1) = t′ − t(k), which is at most π2+6

6 n by

Corollary 4.9. Setting t(k) = 1, we get that t′ ≤ π2+6
6 n + 1. Lemma 4.12 ensures that Ak

is a cover of [n] for t′, which means that for every x ∈ [n], there exists a i ∈ [k] such that
x ∈ Ot′ti+1(ai). Since mini{ti} = t(k) − 1 = 0, this means that every x ∈ [n] belongs to Ot′1 (ai),

which implies that tck(Fkn) ≤ t′.

4.2 The Lower Bound

We build a lower bound example based on the lower bound for broadcasting on trees. A figure
and analysis of that example can be found in Appendix A, which yields the following result:

Theorem 4.21. tck(T kn ) ≥
⌈
3n−3k

2 − 1
⌉

5 k-Broadcasting on k-rooted Networks

In this section, we study the case where the adversary has to choose a communication network
that has k roots at least in each round. This allows us to enforce not only broadcast, but rather
k-broadcast.

The problem is very similar to the one studied in the Section 3, and indeed a slight modifi-
cation of the proofs there work for this problem.

5.1 The Upper Bound

By using a technique very similar to Section 3, we will show that whenever we have a set A ⊂ [n]
of size at most k− 1, we can find a process p /∈ A that has broadcast, as long as we have waited
for a large enough number of rounds.

Definition 5.1. Let t be a round. We denote by Rt the set of the roots of Gt.

Recall that |Rt| ≥ k.
The following two lemmata, very similar to Section 3, can be proven by looking at paths

going from a root to a carefully chosen node.

Lemma 5.2. Let t ≤ t′ be rounds, and let x and r be processes such that, r ∈ Rt and r /∈ It′t+1(x).

Then
∣∣∣It′t (x)

∣∣∣ >
∣∣∣It′t+1(x)

∣∣∣.

Proof. We will show that there exists a process y ∈ It′t+1(x) that has an in-neighbor z in Gt such

that z /∈ It′t+1(x). Then, by Transitivity (Lemma 2.4), z ∈ It′t (x). By Monotonicity (Lemma 2.5),

we have that It′t+1(x) ⊂ It′t (x), this will show that
∣∣∣It′t (x)

∣∣∣ >
∣∣∣It′t+1(x)

∣∣∣.
Let us now find such a z. Consider the path from r to x in Gt. Since r /∈ It′t+1(x), and trivially

x ∈ It′t+1(x), this path must include an edge (z, y) such that z /∈ It′t+1(x), y ∈ It′t+1(x).

Lemma 5.3. Let t ≤ t′ be rounds, and let x and r be processes such that r ∈ Rt′, and r ∈
Ot′−1t (x). Then

∣∣∣Ot′t (x)
∣∣∣ >

∣∣∣Ot′−1t (x)
∣∣∣, unless

∣∣∣Ot′−1t (x)
∣∣∣ = n.
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Proof. Let us look at the case
∣∣∣Ot′−1t (x)

∣∣∣ < n. We will show that there exists a process y ∈
Ot′−1t (x) that has an out-neighbor z in Gt′ such that z /∈ Ot′−1t (x). Then, by Transitivity

(Lemma 2.4), z ∈ Ot′t (x). By Monotonicity, we obviously have Ot′−1t (x) ⊂ Ot′t (x), which implies

that
∣∣∣Ot′t (x)

∣∣∣ >
∣∣∣Ot′−1t (x)

∣∣∣.
Let us now find such a z. Since

∣∣∣Ot′−1t (x)
∣∣∣ < n, there exists a process a such that a /∈

Ot′−1t (x). Consider the path from r to a in Gt′ . Since r ∈ Ot′−1t (x), and a /∈ Ot′−1t (x), this path

must include an edge (y, z) such that z /∈ Ot′−1t (x), y ∈ Ot′−1t (x).

We now give a lemma that links the number of in-neighbors of a node to the number of
previous rounds whose root are in-neighbors of said node:

Lemma 5.4. Let x be a process, let t1 ≤ t2 be rounds, and let rt denote a root of Rt for every
t ∈ {t1, . . . , t2}, then it holds that

∣∣{t : t1 ≤ t ≤ t2, rt /∈ It2t1 (x)}
∣∣+ 1 ≤

∣∣It2t1 (x)
∣∣

Proof. Let A = {t : t1 ≤ t ≤ t2, rt /∈ It2t1 (x)}. Then, in particular, for any t ∈ A, we have

rt /∈ It2t+1(x). Then, for all t ∈ a, applying Lemma 5.2, we have
∣∣It2t (x)

∣∣ >
∣∣It2t+1(x)

∣∣. Let k = |A|
and let A = {t(1), . . . , t(k)}, with t(i) < t(i+1) for 1 ≤ i < k. Then by Monotonicity (Lemma 2.5)
it follows that

∣∣It2t1 (x)
∣∣ ≥

∣∣∣It2
t(1)

(x)
∣∣∣ >

∣∣∣It2
t(1)+1

(x)
∣∣∣ ≥

∣∣∣It2
t(2)

(x)
∣∣∣ >

∣∣∣It2
t(2)+1

(x)
∣∣∣ ≥ . . . >

∣∣∣It2
t(k)+1

(x)
∣∣∣ ≥ 1

There are k = |A| inequalities over integers, which concludes the proof.

We now define the rounds graph avoiding some set A, which is the equivalent of the rounds
graph of Section 3, this time being very careful not to choose any process from A being used as
a root for a round.

Definition 5.5. Let A be an arbitrary set of processes with |A| < k. We define the rounds
graph avoiding set A as follows: It contains 2n+

⌈√
2n
⌉

+ |A| nodes, namely

1. one process node representing each process.

2. one round node for each of the first
⌈
(1 +

√
2)n
⌉

+ |A| rounds.

For each round t, let rt be a vertex of Rt \A. The graph contains

1. a directed edge to every round node t from each process node p with p ∈ It−11 (rt).

2. a directed edge from every round node t <
⌈√

2n
⌉

+ |A| to a round node t′ > t if rt ∈
It′−11 (rt′).

We now find a node in the rounds graph that has out-degree n, that is not a node from A.
This node will represent a process that has broadcast.

Lemma 5.6. For any set A of processes with |A| < k, the rounds graph avoiding set A contains
at least one node of out-degree n that is not a node representing a process of A.
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Proof. As in the proof of Lemma 3.5 we apply the pigeonhole principle on the edges, however,
this time we will ignore out-edges from nodes representing processes from A. Let us look at
round t. If t ≤

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least t. Indeed, it has
in-degree:

∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ ∈ It−11 (rt)}
∣∣+
∣∣It−11 (rt)

∣∣
≥ 1 +

∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ ∈ It−11 (rt)}
∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ /∈ It−11 (rt)}

∣∣ = t

where we used Lemma 5.4 for the inequality. Therefore, it has at least t− |A| in-neighbors not
in A. Similarly, if t >

⌈√
2n
⌉

+ |A|, then the round node t has in-degree at least
⌈√

2n
⌉

+ |A|.
Indeed, it has in-degree:

∣∣∣{t′ : 1 ≤ t′ <
⌈√

2n
⌉

+ |A| , rt′ ∈ It−11 (rt)}
∣∣∣+
∣∣It−11 (rt)

∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−11 (rt)}
∣∣∣+
∣∣{t′ : 1 ≤ t′ ≤ t− 1, rt′ /∈ It−11 (rt)}

∣∣

≥ 1 +
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ ∈ It−11 (rt)}
∣∣∣

+
∣∣∣{t′ : 1 ≤ t′ <

⌈√
2n
⌉

+ |A| , rt′ /∈ It−11 (rt)}
∣∣∣ =

⌈√
2n
⌉

+ |A|

where we used Lemma 5.4 for the first inequality. Therefore, it has at least
⌈√

2n
⌉

in-neighbors
not elements of A.

Summing the in-degrees over all the rounds, we get that the number of edges
∣∣EA

∣∣ with no
endpoint in A is at least:

∣∣EA
∣∣ ≥
d√2ne+|A|∑

t=|A|

(t− |A|) + n×
⌈√

2n
⌉

=

⌈√
2n
⌉ (⌈√

2n
⌉

+ 1
)

2
+ n

⌈√
2n
⌉
>
⌈
(1 +

√
2)n
⌉
n

But only the n − |A| nodes representing the processes and the nodes representing the first⌈√
2n
⌉
− 1 + |A| rounds have out-edges among those counted. The pigeonhole principle asserts

then that one of those nodes has an out-degree of at least n.

Lemma 5.7. For any set A of processes with |A| < k, there exists a process z /∈ A that has
broadcast its identifier to everyone after

⌈
(1 +

√
2)n
⌉

+ |A| rounds.

Proof. Build the rounds graph avoiding A. We know that in that graph, there is a node y
of degree at least n, that is not a process node representing A. Define z as follows: (1) If y
represents a process, let z be that process. It follows that z /∈ A. (2) If y represents a round t,
let z be the root rt, which is not in A by definition of the graph. We will show in either case
that z must have broadcast before

⌈
(1 +

√
2)n
⌉

+ |A| rounds.
Let t1 < . . . < tn be the rounds y has out-edges to. By definition, and in both cases (1)

and (2), this means z ∈ Iti−11 (rti) which is equivalent to rti ∈ Oti−11 (z) for every i ∈ [n]. By

Lemma 5.3, we thus have, for every i ∈ [n], that
∣∣Oti1 (z)

∣∣ >
∣∣∣Oti−11 (z)

∣∣∣. Then:

∣∣Otn1 (z)
∣∣ >

∣∣Otn−11 (z)
∣∣ ≥

∣∣∣Otn−1

1 (z)
∣∣∣ >

∣∣∣Otn−1−1
1 (z)

∣∣∣ ≥ . . . ≥
∣∣Ot11 (z)

∣∣ >
∣∣∣Ot1−11 (z)

∣∣∣ ≥ 0

We have n strict inequalities over non-negative integers, the largest one must be at least n,
which implies that z has broadcast.
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This naturally leads to an upper bound for the k-broadcasting on k-rooted networks:

Theorem 5.8. t∗k(Rkn) ≤
⌈
(1 +

√
2)n
⌉

+ k − 1

Proof. By contradiction, assume that the set A of elements that have broadcast after⌈
(1 +

√
2)n
⌉

+ k − 1 rounds is smaller than k and apply Lemma 5.7 to find a process not in A

that has broadcast in time less than
⌈
(1 +

√
2)n
⌉

+ |A| rounds, contradicting the assumption.

5.2 The Lower Bound

We build a lower bound example based on the lower bound for broadcasting on trees. A figure
and analysis of that example can be found in Appendix A, which yields the following result:

Theorem 5.9. t∗k(Rkn) ≥
⌈
3n−9k

2 + 2
⌉

6 Related Work

Broadcasting, gossiping, and other information dissemination problems have been studied by the
distributed computing community for decades already [13]. Most classic literature on network
broadcast considers a static setting, e.g., where in each round each node can send information to
one neighbor [14]. This model has also been explored in the context of gossiping, e.g., by Fraig-
niaud and Lazard [11]. Kuhn, Lynch and Oshman [15] explore the all-to-all data dissemination
problem (gossiping) in an undirected dynamic network, where processes do not know beforehand
the total number of processes and must decide on that number. Ahmadi, Kuhn, Kutten, Molla
and Pandurangan [2] study the message complexity of broadcast in an undirected dynamic set-
ting, where the adversary pays up a cost for changing the network. Broadcast has also been
studied in dynamic communication networks which evolve randomly, e.g., by Clementi et al. [5],
and in the radio network model [10], just to give a few examples.

A closely related yet different problem to broadcasting is the consensus problem. Our model
builds up on the heard-of model first introduced by Charron-Bost and Schiper [4], where authors
prove results for the solvability of consensus also considering oblivious message adversaries.
Among other results, they give a log n upper bound for nonsplit graphs, which are graphs
for which every pair of nodes has a common in-neighbor. This would result in an n log n upper
bound for rooted trees when combining it with the result of Charron-Bost, Függer and Nowak [3].
Függer, Nowak, and Winkler [12] prove that the time complexity of broadcast is a lower bound for
consensus time. A general characterization of oblivious message adversaries on which consensus
is solvable, based on broadcastability, has been presented by Coulouma, Godard and Peters
in [6]. A time complexity analysis has further been studied by Winkler, Rincon Galeana, Paz,
Schmid, and Schmid [17]. Another similar problem is agreement, considered by Santoro and
Widmayer [16], where only a k-majority should agree on a value, as opposed to everyone for
consensus. Afek, Gafni, Rajsbaum, Raynal and Travers [1] studied a generalization to consensus
that is k-set consensus, where each node has to decide on a value such that all the nodes together
do not decide on more than k different values.

In this paper, we have studied the broadcasting problem on directed dynamic networks, with
an adversary that can choose the communication network at each round among rooted trees.
Zeiner, Schwarz, and Schmid [18] give a n log n upper bound to our exact problem by using
graph-theoretic reasoning. They also give a

⌈
3n−1

2

⌉
− 2 lower bound by providing an explicit

example. They further show that under an adversary that can only choose rooted trees with a
fixed number of leaves or internal nodes, broadcast time is linear.

19



There has also been interest in a problem variant which only differs in the pool of networks
the adversary can choose a network from for each communication round. Függer, Nowak, and
Winkler [12] give an O(log log n) upper bound if the adversary can only choose nonsplit graphs.
Combined with the result of Charron-Bost, Függer, and Nowak [3] that states that one can
simulate n− 1 rounds of rooted trees with a round of a nonsplit graph, this gives the previous
O(n log logn) upper bound for broadcasting on trees. Dobrev and Vrto [8, 7] give specific results
when the adversary is restricted to hypercubic and tori graphs with some missing edges.
Bibliographic note: an announcement of this work has been presented at ACM PODC 2022 [9].

7 Conclusion

In this paper, we considered an innovative version of the classic broadcast problem where pro-
cesses communicate across a dynamically changing network, as it often arises in practice (e.g.,
due to interference). Like in the static setting, the broadcast problem on dynamic networks is
related to consensus and leader election: broadcast is a prerequisite for consensus, and hence, the
time complexity of broadcast is a lower bound for the consensus and leader election complexity.

Our main contribution is a proof that the broadcast time is at most linear in this setting,
which is asymptotically optimal. We further presented several natural generalizations of our
model and result.

Our work opens several avenues for future research. In particular, it will be interesting to
study the broadcast time also in non-adversarial environments where graphs evolve according to
a random process (e.g., due to random node movements). It will also be interesting to further
explore the implications of our methods on the closely related consensus problem.
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[14] Juraj Hromkovič, Ralf Klasing, Burkhard Monien, and Regine Peine. Dissemination of
information in interconnection networks (broadcasting & gossiping). In Combinatorial net-
work theory, pages 125–212. Springer, 1996.

[15] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
513–522. ACM, 2010.

[16] Nicola Santoro and Peter Widmayer. Time is not a healer. In Burkhard Monien and Robert
Cori, editors, STACS 89, 6th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Paderborn, FRG, February 16-18, 1989, Proceedings, volume 349 of Lecture Notes in
Computer Science, pages 304–313. Springer, 1989.

[17] Kyrill Winkler, Hugo Rincon Galeana, Ami Paz, Stefan Schmid, and Ulrich Schmid. The
time complexity of consensus under oblivious message adversaries. In 14th Innovations in
Theoretical Computer Science (ITCS), 2023.

[18] Martin Zeiner, Manfred Schwarz, and Ulrich Schmid. On linear-time data dissemination in
dynamic rooted trees. Discret. Appl. Math., 255:307–319, 2019.

21



A Omitted Proofs

A.1 Basic Tools

Lemma 2.3. Let t, t′ ≥ 0, x, y ∈ [n]. Then x ∈ Ot′t (y)⇔ y ∈ It′t (x).

Proof. If t > t′+1, the equivalence is empty. If t = t′+1, then x ∈ Ot′t (y)⇔ x = y ⇔ y ∈ It′t (x).
If t ≤ t′, x ∈ Ot′t (y)⇔ (y, x) ∈ Gt ◦ . . . ◦Gt′ ⇔ y ∈ It′t (x).

Lemma 2.4 (Transitivity). Let t, t′, t′′ ≥ 0, and x, y, z ∈ [n]. We have the following properties:
i. If y ∈ Ot′t (x) and z ∈ Ot′′t′+1(y), then z ∈ Ot′′t (x).

ii. If x ∈ It′t (y) and z ∈ Ot′′t′+1(y),then z ∈ Ot′′t (x).

iii. If x ∈ It′t (y) and y ∈ It′′t′+1(z), then z ∈ Ot′′t (x).

Proof. ii. and iii. will follow from i. and Lemma 2.3, so we only prove i..
Since y ∈ Ot′t (x), this means Ot′t (x) 6= ∅. Therefore, t ≤ t′ + 1. If t = t′ + 1, we have that

Ot′t (x) = {x} ⇒ y = x, and thus z ∈ Ot′′t (x). We will then only need to consider the case t ≤ t′.
Similarly, since z ∈ Ot′′t′+1(y), we have that Ot′′t′+1(y) 6= ∅ and thus t′ + 1 ≤ t′′ + 1. If t′ = t′′,

we have that Ot′′t′+1(y) = {y} thus z = y and therefore z ∈ Ot′′t (x). Hence we only need to
consider the case t ≤ t′ ≤ t′′ − 1.

In that last case, we know that (x, y) is an edge in Gt ◦ . . . ◦ Gt′ and (y, z) is an edge in
Gt′+1◦. . .◦Gt′′ . By definition of a product graph, this means that (x, z) is an edge in Gt◦. . .◦Gt′′ ,
and thus that z ∈ Ot′′t (x).

Lemma 2.5 (Monotonicity). If in each round, all nodes have a self-loop, then for any t1 ≤ t2
and t3 ≤ t4, for any process x we have:

i. It3t2 (x) ⊆ It4t1 (x).

ii. Ot3t2 (x) ⊆ Ot4t1 (x).

Proof. Let us first consider the case t2 > t3 + 1. Then It3t2 (x) = Ot3t2 (x) = ∅ and the result is

trivial. Similarly, if t2 = t3 + 1, then It3t2 (x) = Ot3t2 (x) = {x}, and then either t1 = t4 + 1 which

means It4t1 (x) = Ot4t1 (x) = {x}, or t1 ≤ t4, and then x has a self-loop in Gt for every t1 ≤ t ≤ t4,
which implies x ∈ Ot4t1 (x) and x ∈ It4t1 (x).

Let’s now consider the case t2 ≤ t3. Let y ∈ It3t2 (x) (respectively z ∈ Ot3t2 (x)). Then edge
(y, x) ((x, z)) is in graph Gt2 ◦ . . . ◦ Gt3 . Since all rounds have self-loops, we clearly have that
edge (y, y) ((x, x)) is in the graph Gt1 ◦ . . . ◦ Gt2 . Similarly, edge (x, x) ((z, z)) is in graph
Gt3 ◦ . . . ◦ Gt4 . This shows that (y, x) ((x, z)) is in graph Gt1 ◦ . . . ◦ Gt4 and thus y ∈ It4t1 (x)

(z ∈ Ot4t1 (x)).

A.2 Broadcasting on Trees

A.2.1 The Lower Bound

The lower bound for this problem, due to Zeiner, Schwarz and Schmid [18] can be seen in
Figure 5. The sequence of graphs in that example do not achieve broadcast before

⌈
3n−1

2

⌉
− 2

rounds. This examples proves the theorem:

Theorem 3.7. t∗(Tn) ≥
⌈
3n−1

2 − 2
⌉
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Figure 5: The lower bound example for the broadcasting on trees problem [18]. [G]ba means that
network G is the communication graph for all rounds between a and b (inclusive).

t′ = tn

1
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3
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5

...

n

pn−1

tn−1

pn−2

tn−2

pn−3

tn−3

pn−4

tn−4

· · ·

· · ·

Figure 6: Main idea of the proof for the upper bound on covering on k-forests. An edge from
process x in column t1 to process y in column t2 means that x ∈ It2−1t1

(y) (unless t2 = t′ where
we don’t require the offset). We start with a cover of size n at t′ then go back in time, finding
a smaller cover at every step. After the first step, we don’t need to cover 1 and 3 anymore,
because if we reach pn−1 before round t(n−1), we also reach 1 and 3 before round t′, by going
through pn−1.
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A.3 Covering on k-Forests

A.3.1 The Upper Bound

Lemma 4.19. Let s ≥ k + 1. If s − k is odd, we have
∑

v:(s,v)∈E w(s, v) = ( s−k+1
2 )2. If it is

even, we have
∑

v:(s,v)∈E w(s, v) = ( s−k2 )2 + s−k
2 .

Proof. If s− k is odd, let ` be such that s− k = 2`+ 1:

∑

v:(s,v)∈E

w(s, v) =
∑

v:(s,v)∈E

2v − k − s =
∑

v:v≤s≤2v−k
2v − k − s =

∑

(s+k)/2≤v≤s

2v − k − s

but then s− k ≡ s− k + 2k mod 2, so s+ k is also odd, and
⌈
s+k
2

⌉
= `+ k + 1, therefore:

∑

v:(s,v)∈E

w(s, v) =
∑

`+k+1≤v≤2`+k+1

2v − k − 2`− k − 1 =
∑

0≤v≤`
2v + 1

= 2
`(`+ 1)

2
+ `+ 1 =

s− k − 1

2

s− k + 1

2
+
s− k + 1

2

If s− k is even, let ` be such that s− k = 2`:

∑

v:(s,v)∈E

w(s, v) =
∑

v:(s,v)∈E

2v − k − s =
∑

v:v≤s≤2v−k
2v − k − s =

∑

(s+k)/2≤v≤s

2v − k − s

Therefore:

∑

v:(s,v)∈E

w(s, v) =
∑

`+k≤v≤2`+k
2v − k − 2`− k =

∑

0≤v≤`
2v = 2

`(`+ 1)

2
=
s− k

2

s− k + 2

2

A.3.2 The Lower Bound

Our lower bound for this problem is very similar to the lower bound in Figure 5. The lower bound
specific for this problem can be found in Figure 7. This lower bound is essentially “trapping”
k− 1 vertices each in its own 1-vertex tree, and repeating the strategy for the lower bound with
i vertices for broadcasting on trees on the last tree. Since none of the first k − 1 vertices can
communicate with the others, cover is only achieved when broadcast is achieved on the last tree.
Setting i = n− k + 1, we get a lower bound for the Covering on k-forests of

⌈
3n−3k

2 − 1
⌉
:

Theorem 4.21. tck(T kn ) ≥
⌈
3n−3k

2 − 1
⌉

A.4 k-Broadcasting on k-Rooted Networks

A.4.1 The Lower Bound

The lower bound for this problem is based on the lower bound for broadcasting on trees, in the
Figure 5.

Theorem 5.9. t∗k(Rkn) ≥
⌈
3n−9k

2 + 2
⌉
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Figure 7: The lower bound example for the Covering on k-Forests problem. [G]ba means that
network G is the communication graph for all rounds between a and b (inclusive). Each of the
vertices i+ 1, . . . , i+ k − 1 is isolated in every round.
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Figure 8: The lower bound example for the Covering on k-Forests problem. [G]ba means that
network G is the communication graph for all rounds between a and b (inclusive). Ka

k is the
complete graph that replaces vertex a from the example is Figure 5. Ka

k → y (respectively
y → Ka

k ) means that an edge is inserted from every x ∈ Ka
k to y (respectively from y to every

x ∈ Ka
k ). Similarly, Ka

k → Kb
k means that an edge is inserted from every x ∈ Ka

k to every
y ∈ Kb

k.

Proof. The graph for this lower bound can be found in Figure 8. The idea is to reduce the
k-broadcasting problem to the broadcast problem. More specifically, we use the sequence of
networks from the lower bound of Figure 5 with i vertices for broadcasting on trees, while
replacing each of the 3 vertices that act as root in the three networks of Figure 5 by k fully
connected vertices, i.e. k vertices such that everyone points to the other k − 1. Then k-cover is
only achieved when broadcast is achieved on the original networks. Setting i = n − 3k + 3, we
get a lower bound for the k-broadcasting on k-rooted networks of

⌈
3n−9k

2 + 2
⌉
.
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