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Abstract
Models have evolved from mere pictures supporting human understanding and communication to sophisticated knowledge
structures processable by machines and establish value through their processing capabilities. This entails an inevitable need
for computer-understandable modeling languages and causes formalization to be a crucial part in the lifecycle of engineering
a modeling method. An appropriate formalism must be a means for providing a structural definition to enable a theoretical
investigation of conceptual modeling languages and a unique, unambiguous way of specifying the syntax and semantics of an
arbitrary modeling language. For this purpose, it must be generic and open to capturing any domain and any functionality. This
paper provides a pervasive description of the formalismMetaMorph based on logic andmodel theory—an approach fulfilling
the requirements above formodelingmethod engineering. The evaluation of the formalism is presented following three streams
of work: First, two evaluative case studies illustrate the applicability of MetaMorph formalism concept by concept on the
modeling language ProVis from the domain of stochastic education and the well-known Entity-Relationship language.
ProVis as well as ER comprise only a few objects and relation types but with high interconnection and expressive power and
are therefore considered interesting specimens for formalization. Second, a comprehensive juxtaposition of MetaMorph to
three other formalization approaches based on different foundational theories is outlined concept by concept to underpin the
formalism design. Third, an empirical evaluation has been performed, assessing the usability and adequacy of the formalism
within a classroom assessment. The results allow for conclusions on the completeness, intuitiveness, and complexity as well
as on interdependencies with engineers’ skills.
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1 Formalization in conceptual modeling

Conceptual modeling methods are an established approach
for representing complex information in a clear and unam-
biguous way. Once meant as a means for understanding and
communication between humans [44], the field of appli-
cation of modeling methods was considerably broadened.
Nowadays,models are considered as processable, exploitable
knowledge structures [6] and are supported by diverse func-
tionality such as simulation, transformation, or reasoning,
going beyond amere visual representation of information [3].
This amplifies the value of models and implies an imminent
need for technical support for model processing and hence,
results in the requirement for the formalization of modeling
languages as processing functionality has to be considered
on the language level.
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For a couple of years now, the research community in
conceptual modeling started an endeavor to collate and struc-
ture the extensive knowledge stack on conceptual modeling
from practical and theoretical investigations and compose
them into a sound and generally accepted basis of conceptual
modeling research, i.e., a precision of the notion of involved
concepts [13,23,28,38,41], a systematization the research
field [13,14,52], building a comprehensive theory of concep-
tual modeling [53,57], as well as a research agenda for CM
[49,56]. The goal is to strengthen the sovereign research field
of conceptual modeling detached from a concrete domain,
e.g., information systems engineering or enterprise mod-
eling, and enhance the maturity of the field of conceptual
modeling as a science. These considerations regularly postu-
late the need for an investigation of the formal foundations of
conceptual modeling [4,14,27,56]. A mature comprehension
of the research field includes a concise analysis of the for-
mal, structural nature of conceptual modeling languages and
targets an integrative formal foundation providing answers
to the question: What exactly is a conceptual modeling lan-
guage from a formal, structural point of view? This allows
for the study of modeling languages and their properties and
characteristics on a level of formality similar to database the-
ory and database normalization.

A formalism in the above sensemust comprise the relevant
concepts of languages and provide an integrative founda-
tion open for affiliation of any progression in conceptual
modeling, whether advanced concepts or sophisticated func-
tionality. It must be generic and admit the formalization of
anymodeling language designed using the prevalent building
blocks of conceptual modeling. A domain-specific or even
language-specific formalism might meet the needs of a pre-
cise, computer-processable specification but does not provide
a formal foundation for the investigation of the structural
nature of modeling languages in general. It also multiplies
the amount of work if the development of a formalism has to
be done for each domain or language individually.

Also, for practicing conceptual modeling, a maturation of
the scientific field and a suitable formal foundation are ben-
eficial. With a more thorough knowledge base, a commonly
accepted, well-founded formal notion, and a common use
and practice of modeling, the quality of modeling methods
increases, and the design and development of languages pro-
fessionalizes and becomes more sustainable. An elaborate
formal foundation unifying the groundwork of conceptual
modeling methods makes it easier to connect models and
languages and build the big picture of a system under study
as an ensemble of a whole suite of models. It serves prac-
titioners as a toolbox providing established approaches and
methods, e.g., for language interleaving and consistency or
model transformation [16].

This positive effect on the practice of conceptual model-
ing, of course, can only be achieved if the application of the

formalism is not a barrier but an encouragement to method
engineers. The formalismmust be intuitive to use and reason-
able in terms of effort. The practitioner’s experience justifies
or dissents the quality and adequate compliance of the for-
malism to the character of conceptual modeling languages
as utilized by engineers working in diverse domains con-
tributing various perspectives and expectations on conceptual
modeling.

The considerations above led us to the proposition of four
concrete requirements for an appropriate formalism [16]: (1)
it has to be complete regarding the general building blocks of
a language, (2) it must comply with the linguistic character
of modeling languages, (3) it must be generic in a way that
it admits the formalization of any language, and (4) it must
provide an integrative formal foundation offering canonical
tools for the advancements in conceptual modeling research.

In an exhaustive literature review, we could not find a suit-
able approach meeting all these requirements, see Sect. 3.
Therefore, we intended to close this gap and developed the
MetaMorph formalism comprehensively presented in [16].
The objective of the paper at hand is to complement the
theoretical considerations of this prior work on the poten-
tial of MetaMorph with a thorough evaluation both from
an analytical perspective—by conducting case studies and
contrasting it to existing approaches—and from an empiri-
cal perspective—by gathering feedback from practitioners.
This evaluation is guided by the research questions of the
appropriateness of the chosen structural foundation and the
appropriateness for the needs and intuition of practitioners.
We demonstrate the applicability of MetaMorph to full-
fledged modeling languages rather than presenting specific,
downscaled examples. Furthermore, we provide a detailed
juxtaposition to three other approaches with diverse founda-
tional theories andoutline the benefits anddrawbacks of these
foundations. Finally, we discuss an empirical evaluation of
MetaMorph conducted within a classroom assessment to
analyze the practical applicability, adequacy, and intuitive-
ness of the formalism. We intend to fortify by this evaluation
the appropriacy of our formalism. Furthermore, the paper
serves as guidance for others formalizing their own model-
ing method. The paper at hand extends our contribution [18]
presented at the EMMSAD 2021 conference.

The remainder of this paper is structured as follows: In
Sect. 2we give amore detailed discussion of notion and back-
ground of formalization in conceptual modeling. Section3
summarizes the results of related work toMetaMorph and
introduces and discusses existing formalization approaches,
establishing the foundation for thework performed. In Sect. 4
the definitions of formal modeling languages and models are
introduced, andweprovide a discussion of themeta2concepts
included in MetaMorph. In Sect. 5, the formalism is eval-
uated by applying it to the modeling methods ProVis from
the area of stochastic education and the Entity-Relationship
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modeling language, illustrating all aspects of the definition.
Sect. 6 presents a detailed juxtaposition of MetaMorph to
three existing approaches, i.e., the FDMM formalism [21],
graph grammars [26], and the FORMULA formalism [30]. In
Sect. 7 we provide insights into the empirical assessment per-
formed, summarized in Sect. 8, that identifies lessons learned
from case studies and the empirical evaluation. Finally, in
Sect. 9 we give an outlook on the limitations, future develop-
ment, and research objectives concerning MetaMorph.

2 Problem discussion and background

2.1 Domain-specific conceptual modeling and
agility

Besides the established standardized and general-purpose
languages, such as the Unified Modeling Language (UML)
and theBusiness ProcessModel andNotation (BPMN),mod-
eling has proven beneficial in a variety of domains such
as mechanical engineering or enterprise modeling. Formal-
ization is especially important in the light of the emergent
practice of agile development of these domain-specific mod-
eling languages (DSML) [22,32] that provide the distinct
vocabulary for a domain. Domain-specific languages rely on
a fast evolution as novel developments on conceptual and
technical level need to be reflected. This permanent evolution
once was the reason for the development of metamodeling
concepts and platforms to allow for an adaption of the by
then static metamodels [35] and is underpinned by the ongo-
ing creation of new domain-specific modeling languages. In
the OMiLAB community [47] alone, 45 new methods have
been created in the last 6 years and presented in two books:
[36,37]. The requirement of the adaption of existing mod-
eling methods to the needs of an organization or individual
project even triggered a whole research subfield of concep-
tual modeling called situational method engineering [29].
This evolution calls for the support of linking and extending
existing languages and for identifying suitable processing
algorithms and exposes the need to establish a generic for-
malism of conceptual modeling languages. An established
common practice on how to specify, formalize and develop
modeling languages unambiguously will support the compa-
rability, reusability, and modularizability of the results.

Furthermore, the design process of a modeling method
benefits from a maturation of the formal basics, as a for-
malization of languages leads to a clear-up of inaccuracies
and might reveal misconceptions. Formalization may cause
an adaption of language design because it enforces a con-
clusive walk-through of its conceptionalization. This, in the
further course, enables the identification of frequently occur-
ringweaknesses in the design and the establishment of design
guidelines and paradigms for the development process.

A process model for DSML development is proposed in
the Agile Modeling Method Engineering (AMME) lifecycle
[32], see Fig. 1. The need for formal, computer-processable
modeling languages is reflected in the AMME lifecycle by
stating formalization as an integral phase in the development
of a modeling method. The formalization phase targets the
refinement and precise specification of a modeling language
using an appropriate formalism to support implementations
across various metamodeling platforms. A common way
of formalizing modeling methods allows for a platform-
independent yet computer-processable specification of these
languages. This implies that the formalized representation
of the modeling method could enable algorithmic solutions
to support the design, development, and deployment of the
modeling method on the tool level, e.g., using platform-
specific translators to transform the platform-independent
specification to a platform-specific implementation. A for-
malism bridging the gap from method design to method
implementation in the AMME lifecyclemust be as generic as
the framework itself: the formalismmust not be restrictive in
its domain of application or the supported functionality and
serves as a tool in the process of agile method development.

2.2 Notion of formalism

According to the need for a formal foundation grounded on
a suitable structural theory, the notion of formalism used
throughout this paper goes beyond the usually named unam-
biguity of specifications [4]. We expect a formalism to be
based on a suitable formal, structural theory canonically
reflecting the constructs of conceptual modeling. Such a
foundation offers means to investigate the features of model-
ing languages defined as structures according to the theory,
thereby offering a whole knowledge stack and methods to
approach them. This strong requirement distinguishes our
approach from other attempts considering a formalism as
means to provide a formal syntax for the specification of
languages, e.g., the Meta-Object Facility (MOF) standard.

More specifically, the difference is as follows: A formal-
ism is able to capture the underlying structure of a conceptual
modeling method, whereas a formal syntax system offers
only a unique way of specification. This can be compared to
the concept of a graph and the diverse methods for recording
a graph, e.g., in a graphical manner, as an adjacent matrix,
etc. The underlying concept of a graph is the actual notion
carrying the semantics of the structure. The different ways
of specification do not provide these semantics in themselves
and give nomeans to investigate the underlying formal struc-
ture. This also implies that a formalism in our sense always
contains a (at least one) formal syntax stemming from the
underlying theory, as the structure has to be recorded in a
way.
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Fig. 1 The AMME lifecycle of modeling methods [32]

2.3 Contextualization of our approach

Figure2 contextualizes our approach to provide a formal def-
inition space for modeling methods. Besides the layer of
formalization,we position the layers of a formal specification
as described above and the layer of formal implementation
in a concrete platform-specific representation. This position-
ing is introduced in line with the triptych allegory proposed
by Mayr and Thalheim [41]. Within their work, they define
conceptual modeling as a tripartite consisting of an encyclo-
pedic dimension to base definitional semantics in an ontology
or concept space, a language dimension to clarify the defini-
tion of the language vocabulary, and the conceptual modeling

dimension in between as a mediation layer. Our formalism
is located in the language dimension, taking the language
engineering perspective.

3 Related work

We use the triptych of conceptual modeling [41] to delin-
eate our formalism from existing approaches with differ-
ent purposes. We acknowledge that in the encyclopedic
dimension, there exist various elaborate attempts to for-
malization, like the KL-ONE family [5], Description Logic
[2], or approaches using conceptual graphs to formalize

Fig. 2 Layers of Formalization:
Definition in [16], Specification
in [21] and Implementation in
[1]
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design concepts [33,58]. Also, the approaches postulating
ontology-driven conceptual modeling, e.g., [25], themselves
profoundly formalized, have to be ascribed to this dimension.
They, on principle, start with a domain conceptualization
(and its formalization) and consider modeling languages as a
posteriori artifacts derived from a domain ontology (prefer-
ably via an isomorphism). Indeed modeling languages are
assumed to be formal languages with vocabulary, but it is
out of scope to give a closed, concise definition of a formal
modeling language with all its components and to investigate
its characteristics.

According to the conceptual modeling research frame-
work [14] the approach at hand has to be located in the
dimension Formalize working on the level of Conceptual
Modeling Languages and Metamodeling Languages. In con-
trast to that, we have to delineate our formalism from the
various attempts addressing the formalization of a specific
modeling language. These attempts mostly aim at support-
ing a concrete domain, purpose, or functionality and do not
provide means to define arbitrary languages, and to offer
a structural investigation. Examples of formalisms for con-
crete modeling languages are the OSM-logic for modeling
time-dependent system behavior [12], or the SAVE method
for simulating IoT systems [11]. Other approaches targeting
the formalization of particular aspects of conceptual model-
ing, such as a formalization of multi-level modeling in [8],
explicitly exclude language engineering perspective from
their focus and practice conceptual modeling formalization
completely independent of linguistic considerations central
to the paper at hand.

In the generic considerations on conceptual modeling
from [27] and [46] a variety of mathematical concepts
are used to describe the structure of different aspects and
components of modeling languages. Henderson-Sellers [27]
introduces morphisms, functions, relations, and power sets.
Olivé [46] concludes each chapter with a summary of con-
tents recorded in logical notion. The intention of both works
is to give a precise and formal outline of notions in concep-
tual modeling but not to give a closed definition of modeling
languages and models. They do not aim at a comprehensive
formalism and a common procedure of formalization.

When assessing the formalizations in the language dimen-
sion of the triptych, existing approaches can be categorized
according to the underlying theory they apply, typically
graph theory (e.g., KM3 by Jouault and Bezivin [31], graph
grammars [26], or a formalization of MOF based on graph
morphisms byWeisemöller and Schürr [59]), set theory (e.g.,
FDMM introduced by Fill et al. [21], or a set-theoretic for-
malization of Ecore/EMOF proposed by Burger [7, 2.3.2]) or
logic (examples below). All these theories provide concepts
for the concrete structural behaviour of language constructs.
In the evaluation of the applicability of these theories, we can
recognize that neither graph theory nor set theory does justice

to the linguistic character of modeling languages. They do
not provide canonical counterparts for the definition of the
instantiation relation between language (or alphabet) and lan-
guage instance, i.e., the model, an essential characteristic of
modeling languages. Indeed, not all of the named approaches
aim at a formalism as we defined it. The goal of FDMM, for
example, is simply to provide a formal syntax. To underpin
the divergent suitability for modeling language formaliza-
tion, we present a detailed juxtaposition of four exemplifying
approaches of the different theories in Sect. 6.

Surveying scientific literature for a suitable structural the-
ory for conceptual modeling reveals increasing attention
for logic: modeling languages comprise all characteristics
of formal languages [13,23,46,48,55]. Formal languages, as
defined in mathematical logic, canonically reflect the promi-
nent characteristics ofmodeling languages, i.e., the linguistic
character providing a vocabulary and the instantiation rela-
tion between the meta-layer and the model-layer, and they
provide a rich knowledge base about their properties. Based
on these results, we consider modeling languages as a sub-
class of formal languages.

In their investigation of formal foundations of domain-
specific languages, Jackson and Sztipanovits [30] introduce
term algebras to handle models. They adopt the notion of for-
mal languages with a signature and an alphabet for modeling
languages. Nevertheless, they mostly abandon the notion of
conceptual modeling in the formalism. Amodel is defined as
a set of terms without explicating the equivalents of its con-
stituents, i.e., objects, relations, and attributes. This hampers
the applicability to classical language engineering projects
as there is no direct procedure to define object and relation
types, attributes, etc. Therefore, the approach lacks the levels
of metamodel and model central to conceptual modeling.

Semeráth et al. [50] propose a method to transform mod-
eling languages to first-order logic for model validation with
SAT and SMT solvers. Unfortunately, the approach does not
contain a comprehensive definition of formal modeling lan-
guages in first-order logic (FOL), but it provides a description
of transforming EMF metamodels to FOL, giving a glimpse
of a possible formalization procedure.

Telos [40,45] builds on the premise that the concepts of
entities and relations are omitted and replaced by proposi-
tions constituting the knowledge base. Knowledge in Telos
is represented as a set of sentences in the formal language.
Again, the approach diverges from the core constituents of
conceptual modeling. In our approach, on the other hand,
we do not adopt the transformation of models into proposi-
tions but rather directly deal with the ubiquitous concepts of
objects and relations and an instantiation hierarchy between
models and metamodels.

In his work on the theory of conceptual models, Thal-
heim [55] describes modeling languages as being based on
a signature � comprising a set of sentences expressed with
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elements of� constraining the language. Models are defined
as language structures satisfying the sentences. We go one
step further and concretely point out how to capture the core
concepts of a modeling language in a signature � to unify
the method of formalizing a language. This then enables us
to investigate the class of formal modeling languages, com-
pare formalized languages, reuse components and develop
generic methods independent of a concrete language.

To accomplish the requirements of conceptual model-
ing languages, the formalization approachMetaMorphwas
developed and presented in [15], and refined in [16]. This for-
malism comprises the core meta2concepts as outlined in [39]
and [46]. WithMetaMorphwe are able to describe concep-
tual modeling languages as a subclass of formal languages
and approach them with established tools and methods from
mathematical logic and model theory.

4 Conceptionalization of theMETAMORPH
formalism

To establish a definition of formal modeling languages, we
first have to examine what concepts have to be included in
this definition.We, therefore, use a survey conducted byKern
et al. [39] investigating six established metamodeling plat-
forms for the incorporated concepts in the corresponding
meta2models. The approach at hand consolidates all con-
cepts detected in at least half of the platforms: object types,
relation types (binary), attributes (multi-value), inheritance
or specialization (for object types), and a constraint language.

An object type is an abstraction of a set of elements in
a domain with equal features, constraints, and relationships.
Classification defines an instantiation relation between object
type and object. Specialization (sometimes called inheri-
tance) is a relation between a super- and a subtype where
the subtype inherits the defining properties of the supertype
and owns some additional ones. Relation types are similar to
object types abstractions of a set of connections between ele-
ments in a domain carrying the same features and constraints
with the specific feature of being existentially dependent
on the linked objects. They have an arity, i.e., a number of
elements connected by the relation. Attributes are means to
capture single features of an object- or relation type and hold
a concrete value on model level. The value belongs to the
value domain of the attribute, i.e., the admissible set of possi-
ble manifestations an attribute might have. Constraints allow
defining conditions for the concepts mentioned above, which
have to be fulfilled in a model.

These language components mainly coincide with the
building blocks mentioned in Olivé’s book on conceptual
modeling of information systems [46] and are therefore
endorsed both from the viewpoint of technical realization as
well as from the theoretical viewpoint. Concepts for future

integration are specialization of relations, n-ary relations,
model types [39], and derived types [46]. The principal
integrability of MetaMorph was demonstrated by incor-
porating the concept of power types outlined in [16].

In the following, we replicate the definition for a for-
mal modeling language as well as for a model formulated
in a concrete modeling language. This definition is based
on [15] and was refined in [16]. We use typed (also called
sorted) first-order predicate logic and build on the mathe-
matical background of model theory. The basics of FOL and
model theory can be found in textbooks on logic or mathe-
matics for computer science, e.g., [9,20].

Definition 1 A (formal) modeling language L consists of a
typed signature � = {S,F ,R, C} and a set C of sentences
in L for the constraints, where:

– S is a set of types, which can be further divided into three
disjoint subsets SO , SR , and SD for object types, relation
types and data types;

– The type setSO is strictly partially orderedwith order
relation<O⊆ SO ×SO to indicate the specialization
relation between the corresponding object types;

– The type set SD can contain simple types T for value
domains of single-value attributes, or product types
T′ = T1 × T2 × · · · × Tn and unions thereof for
value domains of n-ary multi-value attributes (n >

1), where the i-th value is of typeTi ∈ SD ∪SO ∪SR ;

– F is a set of typed function symbols such that:

– For each relation typeR inSR there exist two function
symbols FR

s and FR
t with domain types R ∈ SR and

codomain type Os,Ot ∈ SO assigning the source
and target object types to a relation;

– For each single-value attributeA of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a simple type in
SD or an element in SO or SR assigning the simple
data type or referenced object type or relation type to
the attribute;

– For each multi-value attribute A of an object or rela-
tion type T there exists a function symbol FA with
domain type T and codomain type a product type in
SD or unions thereof;

– R is a set of typed relation symbols;
– C is a set of typed constants to specify the possible values

ci of a simple type T ∈ SD of the attributes;
– The set C is a set of sentences in L constraining the
possible models, also called the constraints or postulates
of the language.

Notice that relation types are defined as independent mod-
eling elements with two function symbols to specify their
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source and target object instead of defining them as tuples of
object elements. This is motivated by the relevance assigned
to relations as information carriers in models. Furthermore,
this allows for attributes on relations as well as multiple rela-
tions between the same two object elements.

When defining attributes, existing language specifications
often refer to basic data types and enumerations, such as in
programming. This attempt is generalized in the definition at
hand by introducing attribute-value types. They are meant to
name the whole range of possible values of an attribute. The
concrete values possibly adopted by an attribute are defined
as constants assigned to the corresponding attribute value
type. An example for this is the value type N with con-
stants 1, 2, 3, . . . or the value type gender and constantsmale,
female, other.

Constraints are an integral part of MetaMorph. This
means we do not need any additional syntax such as, e.g.,
OCL to formalize the restrictions but have the expressive
power of predicate logic at our disposal.

When interpreting modeling languages as formal lan-
guages, we get a canonical definition for models as structures
of a concrete language.

Definition 2 A model M of a language L with typed signa-
ture � = {S,F ,R, C} is an L-structure conforming to the
language constraints C, i.e.,M consists of

– A universe U of typed elements respecting the type hier-
archy, that is

– For each T in S there exists a set UT ⊆ U and U =
⋃

T∈S UT;
– All sets UT for T ∈ SO ∪ SR have to be pairwise

disjoint except for sets UO1 and UO2 with O1,O2 ∈
SO where O1 <O O2. In this case UO1 must be a
subset of UO2 , i.e., UO1 ⊆ UO2 ;

– All sets UT with T = T1 × T2 × · · · × Tn a product
type in SD consist of tuples (x1, x2, . . . xn) ∈ UT1 ×
UT2 × · · · × UTn ;

– An interpretation of the function symbols in L, i.e., for
each function symbol F ∈ F with domain type T1 ×
· · ·×Tn and codomain typeT a function f : UT1 ×· · ·×
UTn → UT;

– An interpretation of the relation symbols in L, i.e., for
each relation symbol R ∈ R with domain type T1 ×
· · · × Tm a relation r ⊆ UT1 × · · · × UTm ;

– For each simple type T ∈ SD and constant C ∈ C of type
T an interpretation c ∈ UT;

– For each constraint φ in C the modelM satisfies φ, i.e.,
M |� φ.

Note that the specification of a model using the definition
above is a supplementary way of representation to the usual

graphicalway of recording amodel.An advantage of this rep-
resentation is the completeness of information. This means
that also attribute values are concretely specified, a detail that
is often not visible in a graphical model.

The design of a modeling language is part of the lan-
guage engineer’s craftsmanship and is not prescribed by the
formalism. The semantic analysis and construction of lan-
guage concepts are up to the discretion of the language
engineer, who has to determine the intrinsic notion of the
domain. An ontological founded perspective might assist in
this task, e.g., using the ontology-driven conceptual model-
ing approach based on the Unified Foundational Ontology
(UFO) [25]. UFO was initially presented in [24] where the
correspondence between UFO concepts and the core con-
cepts in conceptual modeling also constitutingMetaMorph
are outlined (object types =̂ universals, relation types =̂ rela-
tion universals or relator universals, attributes =̂ properties,
and attribute domains =̂ quality dimensions [24, 6.3]).

To illustrate the definitions of formal modeling languages
and models and show the feasibility of MetaMorph, we
illustrate its application on two extensive case studies in the
following sections.

5 Two case studies—proof of concept

In the following,wepresent two case studies that demonstrate
the procedure of formalizing a modeling language concept
by concept. The languages are formalized to their full extent
without reducing them to small, illustrating examples. This
proves the capability of MetaMorph for complete formal-
ization, not restricting to selective parts of a language.

We chose for the case studies the Entity-Relationship
modeling language [10] and the modeling language ProVis
from stochastic education [17]. Both of them are expressive,
powerful tools comprising only a couple of semantically
rich concepts and a row of sophisticated constraints. This
makes them perfect examples for formalization. Of course,
also languages with an extensive number of concepts can be
formalized with MetaMorph, e.g., BPMN or UML. Full
formalizations of such languages are mostly created for the
purpose of computer-processing but not for human consump-
tion, as the complete signatures become vast. Nevertheless,
a formalized modeling language record usually exceeds a
natural language specification document in conciseness and
precision. Also, the formalization of huge models is not pri-
marily meant for human utilization as it lacks the primary
benefit of visual models, the graphical (two-dimensional)
depiction of a system under study. The graphical and the
formal representation of a model are two different ways of
representing the same circumstance, both with different mer-
its, easy comprehensibility for the first one, and completeness
and precision for the second one. These considerations make
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exhaustive languages desirable to be formalized to become
computer-processable but rather unsuitable for case studies
aiming at a deeper understanding and demonstration of the
presented formalism for language engineers.

Further case studies demonstrating concrete assets of our
formalism are an excerpt of UML class and sequence dia-
grams, the Petri Net Modeling language, as well as a simple
process modeling language in [15,16].

5.1 Formalizing the PROVISmodeling language

In this case study, we use as demonstration language Pro-
Vis—Probability Visualized, a language for digitizing the
visualization methods tree diagrams and unit squares for
stochastic education. The language was designed and imple-
mented for the use in Austrian schools at the secondary level.
For a detailed description of the language and the mathemat-
ical background see [17].

The metamodel of ProVis is shown in Fig. 3 using the
notation of CoChaCo [34]. This language contains only a
few object and relation types, but each of them carries a
lot of information in interdependencies and functionality.
Therefore, ProVis provides an interesting specimen for for-
malization.

In Fig. 4 we see examples of a unit square (a) and a tree
diagram (b). A unit square is an object on its own, whereas

a tree diagram is a construct constituted from several events
(rectangles) and transitions (arrows) between them.

Unit squares deal with the occurrence of characteristics in
a cohort, each of them with two possible values. An example
of characteristics are the smoking behavior and nationality
with values smoker/non-smoker and Austria/Germany in the
population of Austria and Germany. Another example is the
gender and graduation with values male/female and master’s
degree/doctoral degree in the cohort of graduates at Univer-
sity of Vienna in 2019 from Fig. 4a. The frequencies of these
values are depicted in the unit square, both as numbers and
encoded in the size of the rectangles, each rectangle corre-
sponding to one possible combination of value combinations,
e.g., Austrian smokers or male doctoral graduates. Besides
the size also the height and width of the four rectangles carry
information about the relative proportion of subgroups to
each other and to the whole cohort. The difference in heights
of the upper rectangles (depicted in green in Fig. 4) is an indi-
cator of the dependence of the characteristics. Unit squares
are, therefore, a type of diagramwith highly condensed infor-
mation captured in its graphical appearance.

Tree diagrams can be used as probability trees to model
processes, as well as frequency trees to model partitions. An
example of the former one are classical multi-level random
experiments with events such as the urn problem (drawing
balls from an urn with black and white balls), each draw
depicted in one level, each level making up a partial event.

Fig. 3 The metamodel of ProVis
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Fig. 4 Number of graduations (master’s and doctoral degree) at the University of Vienna in 2019

In probability trees, we depict the probabilities of multi-level
events (e.g., drawing a white ball three times in a row) and
the conditional probabilities of transitions between two levels
(e.g., drawing a white ball after drawing a black one). With
knowledge about the partial events of the different levels, the
tree can be fully determined.

An example of a frequency tree is the partition of the
cohort of graduates at the University of Vienna according to
the type of degree and gender, as depicted in Fig. 4b. In a
frequency tree, we depict (absolute or relative) frequencies
of subgroups of the cohort under study with a concrete char-
acteristic. According to the metamodel, tree diagrams are
constituted from events and transitions, which fits the con-
cept of a probability tree. For frequency trees, the notation of
events might be unlikely but this kind of trees also serves as
a mediator between frequencies and probabilities: The rel-
ative frequency of a characteristic can be interpreted as the
probability of the event of choosing a member of the cohort
with this characteristic in a random sample.

All in all, both model types are highly sophisticated con-
structs bearing a lot of informationwith only a fewbasic input
parameters. They are loaded with precisely defined depen-
dencies between their features and graphical appearance.
Changing one value automatically implies the adjustment of
all other values. Capturing these dependencies and the den-
sity of information in a concise manner results in an efficient
tool to apply the method. Therefore, it is of high interest to
formalize the ProVis modeling language.

Figure4 presents the number of master’s and doctoral
graduations at theUniversity of Vienna in 2019 depending on
the gender1. This example reveals that although nearly 70%

1 www.univie.ac.at/en/about-us/at-a-glance/facts-folders/

of masters graduates are female (1762 female : 823 male) the
rate of females finishing a doctoral program is with around
45% much lower (189 female : 229 male). If we assume that
these proportions are similar over the last few years, we can
conclude that females finish their academic career after a
master’s degree more often than males.

In the following, we will outline the formalized mod-
eling language ProVis concept by concept as appearing
in Definition 1. In the full-fledged language, both visual-
ization methods—tree diagrams and unit squares—offer to
work with absolute frequencies as well as with probabili-
ties/relative frequencies. In the case study, we restrict unit
squares to absolute frequencies and tree diagrams to proba-
bilities/relative frequencies. We do that to reduce the number
of attributes but do not lose the expressivity of the formal-
ization.

5.1.1 Object types

From the metamodel, we see that there are three object types
UniSquare (US), Event (E), and PartialEvent (PE). These
types constitute the types in SO

SO = {UnitSquare,Event,PartialEvent}.

There is no specialization relation between these types:
<O= {}.

5.1.2 Relation types

The metamodel contains only one relation type Transi-
tion (Tr)
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SR = {Transition}

to connect the nodes in tree diagrams. According to Defini-
tion 1 we have to specify two function symbols FTr

s and FTr
t

indicating source and target types to Transition. From the
metamodel, we see that this relation type connects elements
of type Event with other elements of type Event

FTr
s : Transition → Event,

FTr
t : Transition → Event.

5.1.3 Attributes

In the following, wewill demonstrate how to define attributes
and their value domains.We start with single-value attributes
and then show how to use product types to define multi-value
attributes.
Single-value Attributes A unit square is a graphical represen-
tation of a 2 × 2 contingency table with two characteristics
A and B, each of which has two values A1, A2, and B1, B2,
respectively. In Fig. 4, characteristic A is the type of degree,
and characteristic B is the gender. A concrete combination of
characteristic values is the number of male graduates with a
master’s degree (A1B1). The unit square is built up by the four
frequencies, one for each possible combination of attribute
values: A1B1, A1B2, A2B1, A2B2. Each of them points to
an amount, i.e., a natural number including 0. To capture the
attribute-value domain and possible attribute values in the
language, we have to introduce a value type in SD called N0.
The possible values of this type, i.e., constants in C of type
N0, are 0, 1, 2, 3, . . . with their usual semantics.

N0 ∈ SD, C ⊃ {0, 1, 2, ...} of type N0.

With this, we can define the four attributes via function
symbols mapping the element of type Unit Square (US) to
the attribute value in N0 (attributes abs. Frequ. Val. Ai AND
B j in the metamodel):

Fabs
A1B1

: US → N0, Fabs
A2B1

: US → N0,

Fabs
A1B2

: US → N0, Fabs
A2B2

: US → N0.

Also, the absolute numbers of a single value, e.g., the
number of all female graduates, as well as the size of the
whole cohort, are of interest (attributes abs. Frequ. Value Ai

and total Frequency in the metamodel). We deduce five more
function symbols:

Fabs
A1

: US → N0, Fabs
A2

: US → N0,

Fabs
B1

: US → N0, Fabs
B2

: US → N0,

Fabs
total : US → N0.

For the construction of the visual appearance of a unit
square, it is essential to know the conditional frequency of
B1 given A1 (B1|A1 in short), etc. (e.g., the percentage of
females under all doctoral graduates). This is dependent on
the absolute frequencies (the absolute frequency of female
doctoral graduates divided by the number of all doctoral grad-
uates) and evaluates to a value between 0 and 1.We specify a
new attribute value type Percentage and add all real numbers
in [0; 1] to the constants in C:

Percentage ∈ SD, C ⊃ [0; 1] of type Percentage.

With this type,we are able to define the required attributes:

Fcond
B1|A1

: US → Percentage, Fcond
B2|A1

: US → Percentage,

Fcond
B1|A2

: US → Percentage, Fcond
B2|A2

: US → Percentage.

Another important feature of a unit square is the measure
of association (attribute Measure of Association in the meta-
model). This value gives a measure for the dependency of the
two characteristics A and B and is calculated by subtracting
the conditional frequency B1|A2 from B1|A1. Graphically it
is the difference in the heights of the upper left and upper
right rectangles in the square. It evaluates to a value between
-1 and 1. A value considerably different from 0 indicates a
dependency between the characteristics.

Again, we need a new attribute-value type. We call it R

and give it the usual semantics known from math classes:

R ∈ SD, C ⊃ (−∞;∞) of type R.

With this value domain, we are now able to define the
function symbol for the attribute measure of association:

Fass : US → R

and thereby complete the formalization of unit squares.
Trees are built up from their single events, depicted by col-

ored rectangles and transitions visualized as arrows between
them. The types Event and Transition both contain only
one attribute representing their relative frequency/probability
and conditional probability, respectively (in the metamodel
attributes rel. Frequ./Probability and conditional Probabil-
ity). The corresponding function symbols look as follows:

F prob
E : E → Percentage, F prob

T r : Tr → Percentage.

We do not include free text attributes in the formalized
language. This is done because the automatic processing of
a model requires a machine to understand the semantics of
each value. This is only the case when we neatly define the
possible values in the attribute-value type. Natural language
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descriptions do not qualify for semantic processing. Never-
theless, to cover the usual practices of method engineers, the
future research agenda of the proposed formalism Meta-
Morph also includes free text variables.
Multi-value Attributes The last object type for which we
have to define the attributes is the type PartialEvent. A
partial event is a single-stage event, for example, the sec-
ond throw, when you roll a dice three times. It can contain
several subevents, each of which has a probability (attribute
Subevents in the metamodel). The partial event of rolling a
dice includes following six subevents: rolling a 1, rolling a
2, . . ., rolling a 6. Each of these subevents has probability
1/6. This is an example of a multi-value attribute, as a tuple
of several values is mapped to the modeling element. For
this, we introduce new product types (Percentage)i for an i-
valued attribute. A partial event may contain arbitrary many
subevents, so we have to build the union of all of these prod-
uct types and introduce a new attribute value type Subevents
for it:

Subevents =
⋃

i

Percentagei .

This means that the corresponding attribute points to an
(arbitrary dimensioned) array of probabilities, i.e., the men-
tioned subevent of rolling a single dice corresponds to the
6-dimensional tuple ( 16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) for the probabilities

of all six possible outcomes. The attribute results in a func-
tion symbol

Fsub
P E : PartialEvent → Subevents.

5.1.4 Additional symbols

Often we need additional symbols to be able to formulate
constraints on our modeling languages. In this case study, we
need the symbols of the usual addition, subtraction, division
(all function symbols), and order relation on natural numbers
to be able to define the dependency between conditional and
absolute frequencies, the measure of association, etc.:

+N0 : N0 × N0 → N0 in F , −N0 : N0 × N0 → R in F ,

/N0 : N0 × N0 → R in F , <N0⊂ N0 × N0 inR.

Furthermore, we want a construct for paths on trees, i.e.,
directed sequences of connected events. To realize this, we
introduce a relation symbol:

Path ⊂ Event × Event.

This construct is needed to ensure with constraints the tree
like structure of tree diagrams. The usual behavior of paths
will be specified in the next section.

5.1.5 Constraints

Modeling languages carry constraints to ensure that only
semantically meaningful models are created. These con-
straints are mostly not depicted in graphical metamodels and
have to be added to a language specification by other means.
InMetaMorph, they are an integral part of language defini-
tion and can be defined in logical sentences using first-order
logic.

We split constraints into two categories: restrictive ones
that confine the creation, connection, and attribution of mod-
els and constructive ones that impose some dependencies
between elements and values. The latter can be understood
as automatically derived values or instances.

To ease the differentiation between language definition
and language instantiation, we use capital letters for the
symbols of the language signature and lowercase letters for
interpretations of the symbols on the model level.
Constructive Constraints: On tree diagrams, we have two
constraints defining how the Path relation is deduced from
connected elements. To be exact, it is the transitive closure
of the relation type Transition (each transition makes up a
path (1), and if there exists a path from x to y and one from
y to z, then also from x to z (2)) .

∀t ∈ Transition, x, y ∈ Event

( f Trs (t) = x ∧ f Trt (t) = y �⇒ Path(x, y)) (1)

∀x, y, z ∈ Event

(Path(x, y) ∧ Path(y, z) �⇒ Path(x, z)) (2)

A third constraint is given by the multiplication rule, also
called the path rule in math class. This rule states how the
probability of a compound event x can be calculated from
the preceding transition and event, t and f Trs (t), in the tree
diagram (e.g., the percentage of the male doctoral graduates
derived from the conditional frequency of the incoming tran-
sition and the relative frequency of all doctoral graduates).

∀x ∈ E, t ∈ Tr ( f Trt (t) = x �⇒
f prob
E (x) = f prob

T r (t) · f prob
E ( f Trs (t))) (3)

On unit squares, we obtain a couple of calculation rules.
The absolute frequency of characteristic values A1, A2, B1,

B2 are fully dependent on the frequencies of value combi-
nations, e.g., the number of all doctoral graduates A2 is the
sum of male doctoral graduates A2B1 and female doctoral
graduates A2B2.

∀x ∈ US ( f abs
A1

(x) = f abs
A1B1

(x) + f abs
A1B2

(x)) (4)

∀x ∈ US ( f abs
A2

(x) = f abs
A2B1

(x) + f abs
A2B2

(x)) (5)

∀x ∈ US ( f abs
B1

(x) = f abs
A1B1

(x) + f abs
A2B1

(x)) (6)
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∀x ∈ US ( f abs
B2

(x) = f abs
A1B2

(x) + f abs
A2B2

(x)) (7)

Also, the frequency of the whole cohort can be calculated
by summing up the numbers of all subgroups.

∀x ∈ US ( f abs
total(x) = f abs

A1B1
(x) + f abs

A1B2
(x)

+ f abs
A2B1

(x) + f abs
A2B2

(x)) (8)

Four more constructive constraints are given by the
conditional frequencies Bi |A j , which also can be auto-
matically calculated according to the definition f (X |Y ) =
f (XY )/ f (Y ).

∀x ∈ US( f cond
B1|A1

(x) = f abs
A1B1

(x)/ f abs
A1

(x)) (9)

∀x ∈ US( f cond
B2|A1

(x) = f abs
A1B2

(x)/ f abs
A1

(x)) (10)

∀x ∈ US( f cond
B1|A2

(x) = f abs
A2B1

(x)/ f abs
A2

(x)) (11)

∀x ∈ US( f cond
B2|A2

(x) = f abs
A2B2

(x)/ f abs
A2

(x)) (12)

Finally, themeasure of association f ass can be calculated.
It is given by the difference in the heights of the upper left
and right rectangle in the unit square

∀x ∈ US( f ass(x) = f cond
B1|A1

(x) − f cond
B1|A2

(x)) (13)

Restrictive Constraints: The most prominent restrictive con-
straints are cardinality constraints. Tree diagrams allow at
most one incoming relation to an element of type Event.
This is specified in Equation (14). Similar to that, constraints
of higher cardinality can be defined. Furthermore, a tree can-
not contain circles. This is specified using the Path relation
(15).

∀x, y ∈ Transition( f Trt (x) = f Trt (y) �⇒ x = y) (14)

∀x ∈ Event(¬Path(x, x)) (15)

Tomake sure that the Path relation exclusively reflects the
concatenated relation elements of type Transition, we need
a further constraint. For brevity we use the abbreviation xty
for relation t of type T, x being the source FTs (r) and y being
the target FTt (r) of t):

∀x, y ∈ E ∃z ∈ E, t ∈ Tr (Path(x, y)

�⇒ xty ∨ (xtz ∧ Path(z, y))) (16)

5.1.6 The complete formalized language PROVIS

In summary, we collect all the symbols constituting the lan-
guage ProVis:

� = {S,F ,R,C},S = SO ∪ SR ∪ SD

SO = {UnitSquare,Event,PartialEvent},<O= {}

SR = {Transition},
SD = {N0, R, Percentage, Subevents =

⋃

i

Percentagei },

F = {FTr
s : Transition → Event,

FTr
t : Transition → Event,

Fabs
A1B1

: US → N0, Fabs
A2B1

: US → N0,

Fabs
A1B2

: US → N0, Fabs
A2B2

: US → N0,

Fabs
A1

: US → N0, Fabs
A2

: US → N0,

Fabs
B1

: US → N0, Fabs
B2

: US → N0,

Fabs
total : US → N0, Fass : US → R,

Fcond
B1|A1

: US → Percentage, Fcond
B2|A1

: US → Percentage,

Fcond
B1|A2

: US → Percentage, Fcond
B2|A2

: US → Percentage,

F prob
E : Event → Percentage,

F prob
T r : Transition → Percentage,

Fsub
P E : PartialEvent → Subevents,

+N0 : N0 × N0 → N0, −N0 : N0 × N0 → R,

/N0 : N0 × N0 → R},
R = {Path ⊂ Event × Event,<N0⊂ N0 × N0},
C = {0, 1, 2, ...} of type N0 ∪ [0; 1] of type Percentage
∪(−∞;∞) of type R.

Furthermore we accumulated 16 constraints:
∀t ∈ Transition, x, y ∈ Event

( f Trs (t) = x ∧ f Trt (t) = y �⇒ Path(x, y)) (1)

∀x, y, z ∈ Event

(Path(x, y) ∧ Path(y, z) �⇒ Path(x, z)) (2)

∀x ∈ E, t ∈ Tr ( f Trt (t) = x �⇒
f prob
E (x) = f prob

T r (t) · f prob
E ( f Trs (t))) (3)

∀x ∈ US ( f abs
A1

(x) = f abs
A1B1

(x) + f abs
A1B2

(x)) (4)

∀x ∈ US ( f abs
A2

(x) = f abs
A2B1

(x) + f abs
A2B2

(x)) (5)

∀x ∈ US ( f abs
B1

(x) = f abs
A1B1

(x) + f abs
A2B1

(x)) (6)

∀x ∈ US ( f abs
B2

(x) = f abs
A1B2

(x) + f abs
A2B2

(x)) (7)

∀x ∈ US ( f abs
total(x) = f abs

A1B1
(x) + f abs

A1B2
(x)

+ f abs
A2B1

(x) + f abs
A2B2

(x)) (8)

∀x ∈ US( f cond
B1|A1

(x) = f abs
A1B1

(x)/ f abs
A1

(x)) (9)

∀x ∈ US( f cond
B2|A1

(x) = f abs
A1B2

(x)/ f abs
A1

(x)) (10)

∀x ∈ US( f cond
B1|A2

(x) = f abs
A2B1

(x)/ f abs
A2

(x)) (11)

∀x ∈ US( f cond
B2|A2

(x) = f abs
A2B2

(x)/ f abs
A2

(x)) (12)

∀x ∈ US( f ass(x) = f cond
B1|A1

(x) − f cond
B1|A2

(x)) (13)

∀x, y ∈ Transition( f Trt (x) = f Trt (y) �⇒ x = y) (14)

∀x ∈ Event(¬Path(x, x)) (15)

∀x, y ∈ E ∃z ∈ E, t ∈ Tr (Path(x, y)

�⇒ xty ∨ (xtz ∧ Path(z, y))) (16)

123



MetaMorph: formalization of domain-specific conceptual modeling methods

We see here that the whole language ProVis with its
numerous attributes and dependencies can be comprehen-
sively captured in a highly concise manner in a couple of
lines. Nevertheless, it provides the full power of deducing
information about conditional frequencies and dependencies
of characteristics, as well as probabilities and frequencies of
compound events. The formalized language is, therefore, an
extremely precise, concise, and efficient tool for the deploy-
ment of themodelingmethod and exceeds the use of a natural
language specification in these terms.

5.1.7 Formalizing graphical models

Female graduates at the University of Vienna: We formal-
ize the example presented in Fig. 4. First of all, we define
the universes of elements of all types. There is one element
grads of typeUnit Square and seven elements of typeEvent
constituting the tree diagram. For reasons of uniqueness, we
renamed the events in the last row of the tree diagram.

UU S = {grads},UP E = {},
UE = {graduates, masters, doctors, m Masters,

f Masters, m Doctors, f Doctors}.

The tree furthermore contains six relation elements of type
Transition:

UT r = {t1, t2, t3, t4, t5, t6}.

For the six relation elements of type Transition we have
to concretize the source and target values:

f Trs (t1) = graduates, f Trt (t1) = masters,

f Trs (t2) = graduates, f Trt (t2) = doctors,

f Trs (t3) = masters, f Trt (t3) = m Masters,

f Trs (t4) = masters, f Trt (t3) = f Masters,

f Trs (t5) = doctors, f Trt (t5) = m Doctors,

f Trs (t6) = doctors, f Trt (t6) = f Doctors.

The base attribute values, i.e., the conditional frequencies
of transitions, needed in the tree diagram in Fig. 4 right are
the following:

f prob
E (graduates) = 1, f prob

T r (t1) = 0.861,

f prob
T r (t2) = 0.139, f prob

T r (t3) = 0.318,

f prob
T r (t4) = 0.682, f prob

T r (t5) = 0.548, f prob
T r (t6) = 0.452

The multiplication rule (constraint (3)) allows for the cal-
culation of the relative frequencies of the events using the
conditional frequencies of the transitions ( f prob

E ( f Trt (t)) =

f prob
T R (t) · f prob

E ( f Trs (t))):

f prob
E (masters) = 1 · 0.861 = 0.861,

f prob
E (doctors) = 1 · 0.139 = 0.139,

f prob
E (m Masters) = 0.861 · 0.318 ≈ 0.274,

f prob
E ( f Masters) = 0.861 · 0.682 ≈ 0.587,

f prob
E (m Doctors) = 0.139 · 0.548 ≈ 0.076,

f prob
E ( f Doctors) = 0.139 · 0.452 ≈ 0.063.

The four base attribute values of the given unit square
grads look as follows (in this example A1B1 = # male mas-
ters graduates, A2B1 = # male doctoral graduates, A1B2 =
# female masters graduates, A2B2 = # female doctoral grad-
uates):

f abs
A1B1

(grads) = 823, f abs
A2B1

(grads) = 229,

f abs
A1B2

(grads) = 1762, f abs
A2B2

(grads) = 189.

With the constructive constraints from Sect. 5.1.5 we
derive automatically the frequencies of the different char-
acteristics and the frequency of the whole cohort (in this
example A1= # master’s degrees, A2= # doctoral degrees,
B1= # male graduates, B2= # female graduates):

f abs
A1

(grads) = 823 + 1762 = 2585,

f abs
A2

(grads) = 229 + 189 = 418,

f abs
B1

(grads) = 823 + 229 = 1052,

f abs
B2

(grads) = 1762 + 189 = 1951.,

f abs
total(grads) = 823 + 229 + 1762 + 189 = 3003.

For the conditional probabilities Bi |A j we calculate with
constraint (9)–(13) ( f cond

Bi |A j
(x) = f abs

A j Bi
(x)/ f abs

A j
(x)):

f cond
B1|A1

(grads) = 823/2585 = 0.318,

f cond
B1|A2

(grads) = 229/418 = 0.548,

f cond
B2|A1

(grads) = 1762/2585 = 0.682,

f cond
B2|A2

(grads) = 159/418 = 0.452.

Also, the measure of association can be deduced automat-
ically:

f ass(grads) = 0.318 − 0.548 = −0.23.

Its value differs considerably from 0 and therefore indicates
a dependency between gender and graduation.

This concludes the full formalization of the example from
Fig. 4.
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Fig. 5 Partial events concerning blood groups and rhesus factor

Distribution of Blood Groups in Austria: We also want to
demonstrate the formalization of partial events. This is done
using the example of the distribution of blood groups and
rhesus factor in Austria2 shown in Fig. 5. There, we see two
examples of partial events representing the probabilities of
having blood group O, A, B, or AB and the probabilities of
being of positive- or negative rhesus factor.

The universe of partial events therefore is

UP E = {bloodGroups, rhesus Factor}.

The multi-value attribute

Fsub
P E : PartialEvent → Subevents =

⋃

i

Percentagei

maps the two elements to the two tuples:

f sub
P E (bloodGroups) = (0.37, 0.41, 0.15, 0.07)

for the relative frequencies of the four blood groups and

f sub
P E (rhesus Factor) = (0.81, 0.19)

for the relative frequencies of positive and negative rhesus
factor.

From these details and the fact that the two partial events
are independent of each other, we can construct a tree dia-
gram depicted in Fig. 6. With the postulated constraints of
the multiplication rule (3), we can furthermore calculate the
probabilities of the compound event, having blood group A
with positive rhesus factor, etc., revealing that the most fre-
quent blood combination in Austria is A+ (33.2%) whereas
the rarest one is AB− (1.3%). The formalization of the tree
diagram in Fig. 6 is not outlined here.

2 www.gesundheit.gv.at/labor/laborwerte/blutgruppenserologie-
transfusion/blutgruppenuntersuchung1-kh

5.2 Formalizing the Entity-Relationshipmodeling
language

To show the domain-independence of MetaMorph and
complete the demonstration of all the concepts comprised
in the formalism we complement the case study on Pro-
Vis with the application of MetaMorph to the well-known
Entity-Relationship (ER) modeling language. Initially intro-
duced by Chen in 1976 [10] nowadays, there are several
variants of the language with slight semantic and notational
differences, e.g., different handling of non-binary relation-
ships. We follow the introduction to ER from [51, 7.5] using
the famous Chen-notation and derive the metamodel of the
ER language depicted in Fig. 7. The Chen-notation includes
an additional modeling concept for relationships (the dia-
monds), while other notation systems depict relationships
only via arrows. This led us to design the metamodel with a
supertype for Entities and Relationships to facilitate the def-
inition of connections between them. Similar to ProVis the
ER language is characterized by its simplicity. It contains
only a few concepts by offering a high expressivity in the
resulting models.

In ER models, the concepts entity (“a “thing” which can
be distinctly identified” [10, p.10]) and relationship (“an
association among entities” [10, p.10]) are used to model
data structures and express the associations and dependen-
cies between entities. Thereby, relationships usually connect
two entities, but also non-binary relationships are permit-
ted. Both concepts can be further enriched with information
via attributes that might function as unique identifiers for an
entity. Furthermore, cardinality constraints can be used to
refine the numerical relationship between entities, e.g., one-
to-one, one-to-many, etc. These concepts build the core of the
ER language. Furthermore, the advanced concepts of weak
entities and composite attributes are introduced to meet the
subtle requirements of data modeling.

Weak entities are a special subtype of entities that do not
contain sufficient information for a unique identifier. They are
dependent on related entities, such that the combination of
objects allows for the unique identification of theweak entity.
The related entity is called the identifying or owning entity.
Weak entities can be connected to more than one other object
but need at least one connection to an identifying entity. In
a model, the relationship object connecting the weak entity
with the identifying entity is notationally marked. According
to [51] the participation of the weak entity in the identifying
relation must be total, i.e., the maximum and minimum car-
dinality must be set to 1. Attributes of weak entities can play
the role of a discriminator, i.e., a value that, in combination
with the identifier of the owning entity, uniquely identifies
the weak entity.

Composite attributes allow for the handling of attributes
with complex structures, e.g., addresses. An address might
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Fig. 6 Distribution of blood
groups and rhesus factor in
Austria

Fig. 7 Metamodel of the ER language according to [51]

be captured in a composite attribute constituted of the single
attributes street, city, state, and zip-code.

5.2.1 Object types

The object types Entity (En), Relationship (Re), and
Attribute (Attr) represent the core of the ER modeling lan-
guage. Furthermore, we include an abstract supertype ER
Concept for Entity and Relationship to allow for the omni-
directional connection of instances of the two subtypes and
the relation to attributes of both.We also include the concepts
of Weak Entity (WE), a subtype of Entity, and Compos-
ite Attribute (CA), subtype of Attribute. Weak entities are
designed as their own object type to admit specific attributes
not relevant for entities in general. Composite attributes are
designed as their own object type so that we can define the
Composition relation between them.

These types constitute the sorts in SO

SO = {ER Concept (ERC),Entity (En),

Weak Entity (WE),Relationship (Re),

Attribute (Attr),Composite Attribute (CA)}

We outlined several specialization dependencies between
those types:

<O= {(Entity, ER Concept),

(Relationship, ER Concept),

(Weak Entity, Entity),

(Composite Attribute, Attribute)}

5.2.2 Relation types

For the relations of the main concepts, we introduce rela-
tion typesConnection (Con) and hasAttribute (HA) to link
entities with relationships and attributes with ER-elements,
respectively.

SR ⊇ {Connection (Con),HasAttribute (HA)}
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Toallow for the linking of entities and relationships in both
directions we define Con as a relation type from elements of
type ER Concept to ER Concept.

FCon
s : Connection → ER Concept,

FCon
t : Connection → ER Concept.

With this construction, it is irrelevant if the entity is source
or target or if the relationship is target or source of the Con
element.

In some notation conventions, some cardinality con-
straints (e.g., one-to-one) are also reflected in the “direction”
of the connection element, but this interferes with the
(domain independent) conception of the direction of a rela-
tion being the order of drawing (from source to target). This
conception of direction does not allow for a change caused
by a change in attribute values. A precise way of capturing
cardinality mappings is the definition of minimum and max-
imum cardinality via attributes, see 5.2.3.

With the relation type HA we intend to link entities or
relationships to their attributes:

FHA
s : HasAttribute → ER Concept,

FHA
t : HasAttribute → Attribute.

The additional possibility of collating single attributes to
a composite attribute further requires an additional relation
type called Composition (Comp):

SR ⊇ {Composition (Comp)},
FComp

s : Composition → Attribute,

FComp
t : Composition → Composite Attribute.

5.2.3 Attributes

In the following, we will outline the attributes and their
domains of the ER modeling language.
Single-value Attributes The ER language comprises several
attributes for specifying cardinalities or determining the fea-
tures of concrete concepts, e.g., attributes being the primary
key. Similar to the ProVis language, also in ER models, the
relation elements do have attributes, which affirms the design
of MetaMorph defining relation types as their own entities
instead of pairs of object elements.

To be able to specify minimal cardinalities, we need a
domain containing all natural numbers starting from 0. For
the max cardinalities, we additionally admit ∞ to indicate
no upper boundary. We, therefore, get a value domain type:

SD ⊇ {N∞}

with constants:

C ⊇ {0, 1, 2, ...,∞} of type N∞.

The cardinality attributes for the relation typeConnection
can now be specified:

FCon
minCar : Connection → N∞,

FCon
maxCar : Connection → N∞.

Wewill later constrain the minimal cardinality to be unequal
to ∞.

The feature of attributes being primary key, discriminator
of a weak entity, or multi-valued, and the feature of rela-
tionships being identifying for a weak entity are designed as
boolean values with constants true and false:

SD ⊇ {Bool}
C ⊇ {true(t), f alse( f )} of type Bool.

With this domain, we are able to define the characteristics
mentioned earlier via attributes assigning a boolean value
true (the Attribute element is a discriminator for the weak
entity) or false (theAttribute element does not have the role of
a discriminator for the connected weak entity) to an element
of type Attr or Re.

F Attr
K ey : Attribute → Bool,

F Attr
Discrim : Attribute → Bool,

F Re
I dent : Relationship → Bool.

Multi-value Attributes We furthermore define an attribute
identifying the owning entity set to a weak entity. According
to [51] this can also be another weak entity and need not be a
single element. Therefore, the owning entity set is a subset of
all elements of typeEn. To capture this in a value domain, we
have to work with the powerset of entities named Entities:

SD ⊇ {Entities = ℘(Entity)}.

The reference of a weak entity to its owning entity or set
of entities is therefore captured in the attribute pointing to a
(potentially singleton) set of entities:

F W E
owner : Weak Entity → Entities.

This owning entity is uniquely defined by the behavior of
neighboured relations of type Con, and objects of type Re
and En.
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5.2.4 Additional symbols

For the definition of constraints, we have to introduce two
relation symbols well-known in mathematics. The first one
is the usual order relation on natural numbers to ensure the
proper behavior of the cardinality attributes. The second one
admits the containment check of an entity in a set of entities,
i.e., an element in the powerset Entities = ℘(Entity).

R = {≤N∞⊆ N∞ × N∞, ∈En⊆ En × ℘(En)},

5.2.5 Constraints

Similar to the case study on ProVis, the constraints of the ER
modeling language are not contained in the graphical meta-
model in Fig. 7. The constraints in the following are deduced
from the textual description given in [51] without the inten-
tion to evaluate correctness or completeness. Our objective
is to demonstrate the formalization of a given specification
and to point to possible inconsistencies or shortcomings that
might turn up during formalization. Again we divide the con-
straints into restrictive and constructive ones, whereby, in this
case, the restrictive ones are the majority.
Restrictive Constraints: Due to the design decision of the
abstract classERConceptweneed several constraints ensur-
ing ERC to be abstract (17) and to ensure alternation of En
and Re as endpoints of relations of type Con (18–19).

∀x ∈ ERC ∃e ∈ En, r ∈ Re (x = e ∨ x = r) (17)

�e, e′ ∈ En, c ∈ Con (FCon
s (c) = e ∧ FCon

t (c) = e′) (18)

�r , r ′ ∈ Re, c ∈ Con ( f Con
s (c) = r ∧ f Con

t (c) = r ′) (19)

The relation type Connection linking entities with rela-
tionships carries the information about minimum and maxi-
mum cardinalities in two attributes. Thereby, the min value
must not be equal to ∞, and the max value must not be
smaller than the min value:

∀c ∈ Con( f Con
minCar (c) �= ∞) (20)

∀c ∈ Con( f Con
minCar (c) ≤N∞ f Con

maxCar (c)) (21)

An element r of type Relationship must be related to
at least two elements of type Entity. This is equivalent to
two relation objects of type Connection linked to r , as these
connections necessarily link r to entities. It suffices to define
this constraint for outgoing connections as we define Con to
be omnidirectional, see constraint (33):

∀r ∈ Re ∃c, c′ ∈ Con

( f Cons (c) = r ∧ f Cons (c′) = r ∧ c �= c′) (22)

By allowing more than two relation elements of type Con
the ER language allows for modeling non-binary relation-
ships. Unfortunately, in [51] cardinality mappings in this
complex case are only discussed in terms of the “direction”
of a Con element (in the sense of a notational convention,
see 5.2.2). This lacks a precise definition of the semantics of
explicit min and max constraint values as well as concrete
requirements regarding semantically and syntactically valid
models. Therefore, we cannot postulate adequate constraints
to ensure the proper behavior of ER models with non-binary
relationships. This shows that the formalization process can
reveal conceptual shortcomings of a non-formal natural lan-
guage specification.

An element of type Attribute must be connected to an
entity or relationship element (i.e., an element of type ER
Concept) or to a composite attribute but not to both at the
same time. It is either target of a relation object of type
HasAttribute or of an relation object of type Composition.

∀a ∈ Attr ∃h ∈ HA , c ∈ Comp

(( f HAt (h) = a ∨ f Comp
s (c) = a)∧

¬( f HAt (h) = a ∧ f Comp
t (c) = a)) (23)

Furthermore, an element of type Attribute has at most
one relation of type Comp and at most one relation of type
HA.

∀a ∈ Attr h, h′ ∈ HA ( f HAt (h) = a ∧ f HAt (h′) = a

�⇒ h = h′) (24)

∀a ∈ Attr c, c′ ∈ Comp ( f Comp
s (c) = a ∧ f Comp

s (c′) = a

�⇒ c = c′) (25)

Each composite attribute is related to at least one attribute,
i.e., has at least one incoming relation object of type Com-
position:

∀x ∈ CA ∃c ∈ Comp ( f HAt (c) = x) (26)

To ensure the proper behavior of weak entities, we need
a couple of restrictions on models. To shorten the following
constraints we introduce the abbreviation ecr for e an entity,
c a connection, r a relationship, and c connecting e and r :
ecr := ( f Cons (c) = e ∧ f Cont (c) = r).

All weak entities are connected to at least one identifying
relationship, and its participation in this relationship is total,
i.e., themin andmax cardinality constraints of the connection
are both equal to 1.

∀w ∈ WE ∃r ∈ Re , c ∈ Con (wcr ∧ f Re
I dent (r) = true∧

f Con
minCar (c) = 1 ∧ f Con

maxCar (c) = 1) (27)
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At the same time, a relationship can only be identifying
when it is connected to a weak entity.

∀r ∈ Re ∃w ∈ WE , c ∈ Con

( f Re
I dent (r) = t �⇒ wcr) (28)

We also have to restrict the attribute of owning entities af
a weak entity w. If an element belongs to the set of owning
elements of w it must be connected to w via an identifying
relation.

∀w ∈ WE , e ∈ En∃r ∈ Re , c ∈ Con

(e ∈En f W E
owner (w) �⇒ wcr ∧ f Re

I dent (r) = t) (29)

For attributes, we need the following constraints: An
attribute can only be a discriminator when it is connected
to a weak entity (30), it cannot be key and discriminator at
the same time (31), and we do not admit situations, in which
a weak entity has a key attribute (32).

∀a ∈ Attr ∃w ∈ WE , h ∈ HA ( f Attr
Discrim(a) = t �⇒

( f HAs (h) = w ∧ f HAt (h) = a)) (30)

∀a ∈ Attr (¬( f Attr
K ey (a) = t ∧ f Attr

Discrim(a) = t)) (31)

�w ∈ WE , a ∈ Attr , h ∈ HA

( f HAs (h) = w ∧ f HAt (h) = a ∧ f Attr
K ey (a) = t) (32)

Constructive Constraints:To factuallymake theConnection
relation type omnidirectional, we add to each relation object
r the inverse relation object pointing from the target of r to
the source of r :

∀x, y ∈ ERC c ∈ Con ∃c′ ∈ Con

(( f Cons (c) = x ∧ f Cont (c) = y) �⇒
( f Cons (c′) = y ∧ f Cont (c′) = x)) (33)

The reverse connection must expose the same cardinali-
ties:

∀c, c′ ∈ Con (( f Cons (c) = f Cont (c′) ∧ f Cont (c) = f Cons (c′))
�⇒ ( f Con

minCar (c) = f Con
minCar (c

′)
∧ f Con

maxCar (c) = f Con
maxCar (c

′))) (34)

We defined an attribute F W E
owner mapping a weak entity to

the set of identifying or owning entities. This information
can be automatically derived from the constellation of rela-
tionships and entities. Thus, we are able to deduce this set of
entities automatically via a constructive constraint:

∀w ∈ WE , r ∈ Re , e ∈ En , c, c′ ∈ Con

(( f Re
I dent (r) = true ∧ wcr ∧ ec′r ∧ w �= e)

�⇒ e ∈En f W E
owner (w)) (35)

5.2.6 The complete formalized ER language

In summary, we collect all the symbols constituting the ER
language.

� = {S,F ,R, C},S = SO ∪ SR ∪ SD

SO = {ER Concept (ERC),Entity (En),

Weak Entity(WE),Relationship (Re),

Attribute (Attr),Composite Attribute (CA)},
<O= {(Entity, ER Concept),

(Relationship, ER Concept), (Weak Entity, Entity),

(Composite Attribute, Attribute)}
SR = {Connection (Con),HasAttribute (HA),

Composition (Comp)},
SD = {N∞, Bool,Entities = ℘(Entity)},
F = {FCon

s : Connection → ER Concept,

FCon
t : Connection → ER Concept,

FHA
s : HasAttribute → ER Concept,

FHA
t : HasAttribute → Attribute,

FComp
s : Composition → Attribute,

FComp
t : Composition → Composite Attribute,

FCon
minCar : Connection → N∞,

FCon
maxCar : Connection → N∞,

F Attr
K ey : Attribute → Bool, F Attr

Discrim : Attribute → Bool,

F Re
I dent : Relationship → Bool,

F W E
owner : Weak Entity → Entities},

R = {∈En⊆ En × ℘(En), ≤N∞⊆ N∞ × N∞},
{0, 1, 2, ...,∞} of type N∞
∪ {true(t), f alse( f )} of type Bool.

Furthermore, we accumulated 19 constraints. Again we
use the abbreviation ecr for e an entity, c a connection, r a
relationship, and c connecting e and r : ecr := ( f Cons (c) =
e ∧ f Cont (c) = r).

∀x ∈ ERC ∃e ∈ En, r ∈ Re (x = e ∨ x = r) (17)

�e, e′ ∈ En, c ∈ Con ( f Con
s (c) = e ∧ f Con

t (c) = e′) (18)

�r , r ′ ∈ Re, c ∈ Con ( f Con
s (c) = r ∧ f Con

t (c) = r ′) (19)

∀c ∈ Con( f Con
minCar (c) �= ∞) (20)

∀c ∈ Con(FCon
minCar (c) ≤N∞ FCon

maxCar (c)) (21)

∀r ∈ Re ∃c, c′ ∈ Con

( f Cons (c) = r ∧ f Cons (c′) = r ∧ c �= c′) (22)
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∀a ∈ Attr ∃h ∈ HA , c ∈ Comp

(( f HAt (h) = a ∨ f Comp
s (c) = a)∧

¬( f HAt (h) = a ∧ f Comp
t (c) = a)) (23)

∀a ∈ Attr h, h′ ∈ HA ( f HAt (y) = h ∧ f HAt (z) = h′

�⇒ h = h′) (24)

∀a ∈ Attr c, c′ ∈ Comp ( f Comp
s (c) = a ∧ f Comp

s (c′) = a

�⇒ c = c′) (25)

∀x ∈ CA ∃c ∈ Comp ( f HAt (c) = x) (26)

∀w ∈ WE ∃r ∈ Re , c ∈ Con (wcr ∧ f Re
I dent (r) = true∧

f Con
minCar (c) = 1 ∧ f Con

maxCar (c) = 1) (27)

∀r ∈ Re ∃w ∈ WE , c ∈ Con

( f Re
I dent (r) = t �⇒ wcr) (28)

∀w ∈ WE , e ∈ En∃r ∈ Re , c ∈ Con

(e ∈En f W E
owner (w) �⇒ wcr ∧ f Re

I dent (r) = t) (29)

∀a ∈ Attr ∃w ∈ WE , h ∈ HA ( f Attr
Discrim(a) = t �⇒

( f HAs (h) = w ∧ f HAt (h) = a)) (30)

∀a ∈ Attr (¬( f Attr
K ey (a) = t ∧ f Attr

Discrim(a) = t)) (31)

�w ∈ WE , a ∈ Attr , h ∈ HA

( f HAs (h) = w ∧ f HAt (h) = a ∧ f Attr
K ey (a) = t) (32)

∀x, y ∈ ERC c ∈ Con ∃c′ ∈ Con

(( f Cons (c) = x ∧ f Cont (c) = y) �⇒
( f Cons (c′) = y ∧ f Cont (c′) = x)) (33)

∀c, c′ ∈ Con (( f Cons (c) = f Cont (c′) ∧ f Cont (c) = f Cons (c′))
�⇒ ( f Con

minCar (c) = f Con
minCar (c

′)
∧ f Con

maxCar (c) = f Con
maxCar (c

′))) (34)

∀w ∈ WE , r ∈ Re , e ∈ En , c, c′ ∈ Con

(( f Re
I dent (r) = true ∧ wcr ∧ ec′r ∧ w �= e)

�⇒ e ∈En f W E
owner (w)) (35)

Similar to the last case study, the ERmodeling language is
comprehensively captured in a highly concise manner, pro-
viding the full information of this data modeling language.
This is again proof of the formalism being an extremely
precise, concise, and efficient tool for the deployment of
modeling methods.

5.2.7 Formalizing graphical models

We formalize the example presented in Fig. 8 and start
with specifying the universes of elements of the types Entity
and Relationship. There are three elements of type Entity:
Department, Employee, and Dependent, the last one being a
weak entity, and two elements of type Relationship has and

works_in:

UEn = {Department, Employee, Dependent},
UW E = {Dependent},URe = {has, works_in}.

Merging these sets results in the universe of elements of
the abstract supertype ERC:

UE RC = {Department, Employee, Dependent,

has, works_in}.

We obtain a nesting of universes of elements

URe ⊆ UE RC ⊇ UEn ⊇ UW E .

These objects are connected via eight relation elements of
type Con (to each line the relation in both directions accord-
ing to constructive constraint (33)):

UCon = {c1, c′
1, c2, c′

2, c3, c′
3, c4, c′

4}

with the following source and target elements:

f Cons (c1) = Dependent, f Cont (c1) = has,

f Cons (c′
1) = has, f Cont (c′

1) = Dependent,

f Cons (c2) = Employee, f Cont (c2) = has,

f Cons (c′
2) = has, f Cont (c′

2) = Employee,

f Cons (c3) = Employee, f Cont (c3) = works_in,

f Cons (c′
3) = works_in, f Cont (c′

3) = Employee,

f Cons (c4) = Department, f Cont (c4) = works_in,

f Cons (c′
4) = works_in, f Cont (c′

4) = Department .

One of the two elements of type Relationship, has, is an
identifying one:

f Re
I dent (works_in) = f alse, f Re

I dent (has) = true.

From the model, we read the following cardinality con-
straints on the connections:

f Con
minCar (c1) = f Con

minCar (c
′
1) = 1

f Con
maxCar (c1) = f Con

maxCar (c
′
1) = 1

f Con
minCar (c2) = f Con

minCar (c
′
2) = 0

f Con
maxCar (c2) = f Con

maxCar (c
′
2) = ∞

f Con
minCar (c3) = f Con

minCar (c
′
3) = 1

f Con
maxCar (c3) = f Con

maxCar (c
′
3) = 1

f Con
minCar (c4) = f Con

minCar (c
′
4) = 1

f Con
maxCar (c4) = f Con

maxCar (c
′
4) = ∞
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Fig. 8 ER model depicting a
data model of employee
dependencies

The constructive constraint (35) allows for the automatic
derivation of the set of owning entities (in ℘(Entity)) of the
weak entity Dependent:

f W E
owner (Dependent) = {Employee}

The model contains nine elements of type Attribute, one
of them is a Composite Attribute:

UAttr = {Employee_I D(E I ), Salary,

Name, Relation, Department_I D(DI ),

Address, Street, City, Z I P},
UC A = {Address}.

The assignment of these Attribute elements to entities
and relationships is done via elements in the universe of the
hasAttribute relation type.

UH A = {ha1, ha2, ha3, ha4, ha5, ha6}.
f HAs (ha1) = Dependent, f HAt (ha1) = Name,

f HAs (ha2) = Dependent, f HAt (ha2) = Relation,

f HAs (ha3) = Employee, f HAt (ha3) = E I ,

f HAs (ha4) = Employee, f HAt (ha4) = Salary,

f HAs (ha5) = Department, f HAt (ha5) = Department_I D,

f HAs (ha6) = Department, f HAt (ha6) = Address.

The compound attributeAddress is composedof three sim-
ple Attribute elements.

UComp = {co1, co2, co3}.
f Comp
s (co1) = Street, f Comp

t (co1) = Address,

f Comp
s (co2) = City, f Comp

t (co2) = Address,

f Comp
s (co3) = Z I P, f Comp

t (co3) = Address.

OnlyEI andDI are primary keys andName is the discrim-
inator for the weak entity Dependent. For all other elements
in UAttr the attributes f Attr

K ey and f Attr
Discrim are set to false:

f Attr
K ey (Name) = f alse, f Attr

Discrim(Name) = true,

f Attr
K ey (Relation) = f alse, f Attr

Discrim(Relation) = f alse,

f Attr
K ey (E I ) = true, f Attr

Discrim(E I ) = f alse,

f Attr
K ey (Salary) = f alse, f Attr

Discrim(Salary) = f alse,

f Attr
K ey (DI ) = true, f Attr

Discrim(DI ) = f alse,

f Attr
K ey (Address) = f alse, f Attr

Discrim(Address) = f alse,

f Attr
K ey (Street) = f alse, f Attr

Discrim(Street) = f alse,

f Attr
K ey (City) = f alse, f Attr

Discrim(City) = f alse,

f Attr
K ey (Z I P) = f alse, f Attr

Discrim(Z I P) = f alse.

This concludes the formalization of the model in Fig. 8.

6 Juxtaposition of formalization approaches
on different underlying structural theories

In this section, we outline an in-depth juxtaposition of the
MetaMorph formalism to three other approaches using dif-
ferent underlying structures. With this comparison, we want
to corroborate the choice of logic to be well suited for cap-
turing the characteristics of conceptual modeling languages
and also to demonstrate the difference of our approach using
formal languages, to be more precise model theory [9], to
other implementations based on logic. We proceed with the
comparison concept by concept. As candidates for the juxta-
position, we choose FDMM, a representative for a formalism
based on set theory, Graph Grammars, a representative based
on graph theory, and FORMULA, a representative based on
logic besides MetaMorph.
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6.1 The approaches

MetaMorphThe formalism in the current versionwas intro-
duced in [16] and presented in Sect. 4 of this paper. It is based
on logic and formal languages, to be more precise, on many-
sorted model theory.
FDMM The Formalism for Describing ADOxx Meta Mod-
els and Models [21], FDMM in short, uses set theory to
capture the components of modeling languages. It comes
with a definition of metamodels and models, although its
purpose restricts to providing a formal specification syn-
tax for domain-specific modeling languages implemented on
ADOxx.
Graph Grammars To outline the differences between logic-
based and graph-based approaches, we consider the employ-
ment of graph grammars to define domain-specific modeling
languages as introduced in [26, Chap. 10] and neatly for-
malized in [19]. Thereby, this approach does not introduce
a dedicated, closed definition of a modeling language and
frequently allows for different implementations to address
different requirements, e.g., relations as pairs of vertices or
as own elements with source and target assignment, admit-
ting parallel edges.
FORMULA The language called Formal Modeling Using
Logic Analysis [30], FORMULA in short, comprises a for-
mal specification language for DSMLs and a tool offering a
proof engine. It builds upon a definition of domain-specific
modeling languages based on logic, to be more precise, on
universal algebras. The definition of modeling languages and
models in this approach does not detail the concrete for-
malization of object and relation types, attributes, etc., but
we found a specification and transformation of MINIMOF
sketching the concrete realization of these components (at
least one possibility).

6.2 Juxtaposition of concepts

To begin with, we outline the notion of modeling languages
and metamodels of the different approaches and describe the
formal constructs corresponding to them. Then we will go
into detail and examine the formalisms concept by concept.

6.2.1 Modeling languages andmetamodels

The concrete usageof the termsmodeling language andmeta-
model show slight differences in the four approaches.

InMetaMorph we define modeling languages as formal
languages consisting of a signature comprising types/sorts
(in this section we use the term sort for a better distinction
to type as used in conceptual modeling) for object types,
relation types, and attribute domains, function and relation
symbols, and a set of constraints. Amodel is expressed using
a modeling language. A metamodel describes the syntax of

a modeling language and is instantiated in a model. The
metamodel is itself a model expressed in a metamodeling
language. In [16] we introduced the metamodeling language
M2FOL expressed using MetaMorph.

FDMM targets the formalization of metamodels that are
means to capture the syntax. A metamodel in FDMM is a
5-tuple of modeltypes, an order relation on the set of object
types, two functions to map attributes to their domain (sub-
set of object types) and range (subset of modeltypes, object
types, and data types), and a function card constraining the
number of attribute values. In this formalism, the term mod-
eling language is not used.

In graph grammars, the counterpart of a metamodel is an
attributed type graph, i.e., a graph constituted of (object and
relation) types as vertices, source and target assignments,
and inheritance (specialization) as edges between these ver-
tices. A model instantiating a metamodel is then a graph
labeled with the types of the type graph (i.e., with a structure-
preserving mapping to the type graph). Furthermore, type
graphs are enriched with constraints via graph constraints
and forbidden patterns. This approach furthermore offers a
quite different, rather constructive perception of modeling
languages, namely as graph languages comprising initial
valid graphs/models and admissible graph transformations.
By applying these transformations, all valid models of the
language can be constructed.

In the FORMULA approach, a domain-specific language
consists of a domain capturing the syntax of the DSML and
interpretations, i.e., mappings of models of the domain to
models in other domains. The domain is a 4-tuple of the two
signatures ϒ,ϒC (comprising function symbols and arities),
an alphabet � and a set of constraints. Thereby, ϒ contains
function symbols for object and relation types, as well as
for attributes. ϒC is the constraints signature extending ϒ

and is not relevant in this comparison. The alphabet � con-
tains names or identifiers for the modeling elements. Models
are then subsets of the universal algebra. That is, all terms
are possibly derived by concatenating function symbols and
terms. For our juxtaposition, we do not consider the interpre-
tationmappings betweenmodels and restrict to the definition
of language syntax in the so-called domain. Similar to the
MetaMorph formalism FORMULA also defines a formal
metamodeling language Dmeta .

6.2.2 Model types

Model types are a means to group object and relation types
in different combinations to allow for the creation of mod-
els with different views within the same language, e.g., the
UML comprises class diagrams, sequence diagrams, etc.
FDMM supports this concept and the reuse of object types
and attributes in different model types by defining a model
type as a set of object types, a set of data types, and a set of
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attributes. This leads to a certain degree of complexity, as the
same objects or attributes can behave differently in different
model types.

The approaches of MetaMorph, Graph Grammars, and
FORMULA do not comprise model types and treat them as
different languages. Still, the interleaving of different lan-
guages (or model types), including tight consistency rules
following the idea of a single underlying model, can be
addressed with MetaMorph, see [16, 5.2].

6.2.3 Object types

In MetaMorph an object type defines a type (also called a
sort) in the signature of the formal language. The set of sorts
for object types forms an ordered subset of all sorts. Amodel,
i.e., an L-structure, then contains a universe of elements to
each sort (the so-called interpretation of the sort).

There is no set-theoretic concept corresponding to object
types in FDMM. Object types are referred to as their own
concept. There is no closer description of this concept besides
that the set of all object types in a metamodel holds an order
relation. This reveals the shortcoming of set theory to not
offer the expressive power needed to capture the semantics
of types in modeling languages.

In graph grammars, object types T are encoded as vertices
in type graphs (∼= metamodel). Objects of type T in a model
are vertices in the instance graph “labeled” with the type T .
This is realized by a mapping of the instance graph to the
type graph, see 6.2.8.

In FORMULA, an object type T can be represented by
a unary function symbol f . Applying the function symbol
f (obj) to amodeling element obj in the alphabet� indicates
that the modeling element obj is of type T .

6.2.4 Relation types

In MetaMorph, relation types form a subset of sorts, and
each relation type R furthermore defines two function sym-
bols pointing from the sort corresponding to R to the sorts
of object types employed as source and target of R.

FDMM considers relation types as special object types
with two attributes dedicated to the assignment of elements
connected by the relation.

In graph grammars, the range of possible realizations
extends from (ordered or unordered) edges as pairs of vertices
for binary, simple (non-parallel) relations to autonomous
elements connected by edges to a source and a target ver-
tex for multigraphs (admitting parallel edges). In the type
graph, they are represented as vertices with two edges to the
source- and target type. Graph grammars furthermore offer
the prospect of n-ary relations realized as hypergraphs.

In the FORMULA approach, relation types can be
encoded as ternary function symbols in the signature ϒ . The

arguments of the function are the name of the relation (an ele-
ment in the alphabet �), the source and the target (any terms
in the term algebra), i.e., relations are considered binary.

In summary, all four approaches admit multiple relations
of the same type between the same two elements.

6.2.5 Specialization

Specialization is also termed inheritance in someapproaches.
MetaMorph introduces specialization on object types

but not on relation types. Specialization imposes an order
relation on the sorts for object types indicating a containment
relation between the corresponding universes of elements in
an instance model of the language.

FDMMalso includes an order relation on the set of “object
types” indicating the inheritance.As relation types are treated
as a subgroup of object types, they can also inherit from other
types.

In graph grammars, a type graph can be equipped with
inheritance relations between types. To realize the proper
behavior of this relation, the procedure of an (abstract or
concrete) closure of the type graph is described [19]. Amodel
is then an attributed instance graph typed over the closure of
the original type graph. We did not find any restriction of
specialization for object types.

Although the concept of specialization appears in the
metamodeling language Dmeta of the FORMULA approach,
we could not detect its realization in the signature of a
domain.

6.2.6 Attributes and value domains

MetaMorph defines attributes as mappings of the attributed
element—objects or relations—to the value domain of the
attribute. This can be a constant value, another modeling
element—object or relation—multiple values at once, or even
a complex construct comprising several of the possibilities
just mentioned. This is done using so-called product types,
i.e., cartesian products of simple types. For constant value
types and values, the signature comprises a subset of sorts
and constants dedicated to a concrete sort.

In FDMM, amodel type comprises sets of “attributes” and
offers “data types”. Similar to object types, there is no corre-
sponding concept from set theory for these terms. Attributes
canbemapped to data types aswell as object types, andmodel
types. In contrast to MetaMorph, the FDMM approach
introduces a standalone element in the formalism represent-
ing an attribute instead of a mapping to the attribute value.
An attribute can therefore be assigned to many object types
or model types, but its domain and range are fixed globally.
It is named as the task of the engineer to care for a fur-
ther structure of a “data set” and enrich it in some way with
concrete values. The cardinality function of a metamodel
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assigns a minimal and maximal amount of possible values to
an attribute. Attributes are therefore used as multi-valued.

In graph grammars, there are again two ways of specify-
ing attributes. One way is to add to the graph a function per
attribute pointing to the attribute’s value domain deviating
from graph theory. Another possibility is to create possi-
ble attribute values as own data vertices and to introduce
an “attributing edge” between an object or relation and the
data for the concrete assignment. This somehow blows up
the graph with elements usually considered subordinate for
the model. By adding more than one attributing edge per
attribute, a multi-value attribute can be realized. All in all,
both ways show that graph theory does not offer a straight-
forward way to introduce attributes.

In the FORMULA approach, attributes can be specified as
binary function symbols relating a modeling element with a
concrete attribute value. The value domains of attributes are
limited to bool, string, and enum, whereas for the enumer-
ation, the possible values have to be specified. This hints at
the perception of attributes being single-valued.

6.2.7 Constraint language

In principle, any type of logic can be used to encode con-
straints for possible interpretations of a formal language
signature. ForMetaMorph, we choose first-order logic due
to its expressivity and the familiarity of most engineers with
FOL. Given a signature and a set of constraints, the core
subject of model theory, basis of MetaMorph, is to find
interpretations of the signature that fulfill these constraints,
i.e., valid models.

The FDMM approach does not comprise a method to cap-
ture constraints on a metamodel.

GraphGrammars offer twomethods to encode constraints.
One of them is to graphically specify forbidden patterns
(negative constraints). The second one specifies conditional
constraints using logical quantifiers on graph snippets to
ensure the required constellations. With this type of con-
straint, one can also ensure the existence of a concrete pattern
(positive constraints).

Similar to MetaMorph, the logic-based approach FOR-
MULA canonically encompasses a constraint language. To
meet the needs of the theorem prover, Horn Logic was cho-
sen.

6.2.8 Instantiation

In MetaMorph we make use of the canonical correspon-
dence of instantiation between the metamodel and the model
and the relation of a formal language L with signature �

and an L-structure interpreting the signature. Also, special-
ization as containment of universes is canonically realizable
with order-sortedmodel theory and containment of universes.

FDMM defines instantiation between the metamodel and
an instance model as a mapping of model types to sets of
model instances and functions, taking object types to collec-
tions of objects, as well as data types to the data objects. In
terms of set theory, this is a function like any other, there-
fore not inherently offering the semantics of the instantiation
dependency between type and instance.

In graph grammars, an instance graph conforms to a type
graph if there is a mapping of the instance graph to the type
graph that preserves the graph structure. In contrast toFDMM
and the concept of instantiation, this function points from
instance- to meta-level and brings along a constraint for the
proper behavior of themapping. Still, the constructs of a type
graph, instance graph, and the function from the latter to the
former preserving the graph structure are not congruent to the
semantics of metamodel instantiation. Structure-preserving
mappings between graphs are too general for instantiation.

In the FORMULA approach, we have to build the uni-
versal algebra of the signature ϒ and the alphabet �. The
universal algebra is the set of all possible terms (elements in
the alphabet and function symbols applied to the alphabet and
other terms). The set of possible models is then a subset of
the power set of the universal algebra, namely those subsets
complying with the well-formedness rules. Notice that this
approach differs from model theory used inMetaMorph as
the signature is not interpreted. This means that there are no
concrete objects in a language structure, and the terms are
uninterpreted, i.e., f (x) is a term standing for itself and is
not mapped to another element in the algebra. The possible
elements in a model are already “named” in the alphabet �.

6.2.9 Model

A model in the MetaMorph formalism is an L-structure
conforming to the constraints of the language, i.e., a structure
comprising a universe of elements for each sort and interpre-
tations of the function- and relation symbols in � on these
universes, such that all constraints of the language are ful-
filled.

In FDMM, a model is a 5-tuple consisting of the three
mappings described above (6.2.8) and triples of an object ele-
ment, an attribute element, and the concrete attribute value,
as well as an assignment of model instances to a set of these
instances. This complexity arises as object types and attribute
types can be reused in different model types.

In graph grammars, models of a language are so-called
typed, attributed instance graphs with a structure-preserving
mapping to the type graph that fulfill all the language con-
straints.

The FORMULA formalism defines a model as a subset
of the universal algebra, i.e., a subset of all possible terms.
These terms must fulfill the language constraints.

123



V. Döller et al.

6.3 Summary and résumé

The results of the comparison are collated in Table1. Sum-
marized, this comparison confirms the choice of formal
languages and model theory.

Set theory lacks correspondents for crucial concepts in
conceptual modeling like object types. As the single goal of
FDMM is to offer a specification language without a further
investigation of the formal kernel of conceptual modeling
this weakness of its structural basis has no consequences.
Nevertheless, the absence of a constraint language makes
an exhaustive and complete apprehension of a modeling
language impossible. Also, the omnipresent definition of
mappings between sets of vague concepts not matching the
semantics of conceptual modeling notion questions the suit-
ability of set theory for providing accurate concepts.

Graph grammars are well suited to represent the graphical
box-and-line-like appearance of models. In addition to that,
this approach adds a lot of structure to vertices and edges of
graphs to include also those concepts of conceptual model-
ing going beyond the box-and-line structure. In the case of
attributes and inheritance, this is not a straightforward pro-
cess and leads to cumbersome additions making use of other
structural theories like algebra and logic. Therefore,we doubt
that graphs are best suited for the task of formalizing model-
ing languages to their full extent.

The logic-based approach FORMULA serves well the
purpose of formalizing the complete syntax of a modeling
language in a straight manner, but it also shows some imprac-
ticalities. The (one-dimensional) concatenation of function
symbols and terms does not intuitively reflect the two-
dimensional nature of models. Furthermore, it lacks in the
version at hand a suitable method to implement inheritance
and to define attribute value domains in an adequately free
manner. These value domains can become quite complex,
e.g., the methods of a class in UML class diagrams comprise
input parameters and return values.

MetaMorph, the formalism presented in this paper, cov-
ers the most prominent concepts constituting conceptual
modeling languages. Logic, formal languages, and model
theory offer a straightforward method to canonically capture
the semantics of types, attributes, and instantiation and also
provides meaningful methods to address advanced concepts
and practices like power types and language interleaving, see
[16]. Our approach does not cover all aspects of modeling
languages yet, e.g., specialization on relation types, model
types, or derived types. Still, the results achieved so far are
encouraging that the definition of formalmodeling languages
at hand thoroughly serves the purpose and holds the potential
for further advancement according to the needs of conceptual
modeling research.

7 Empirical assessment

To evaluate the suitability of MetaMorph also from the
practical perspective and to prevent alienation from prac-
titioners’ intuition and needs, it is important to involve
language engineers for feedback on the formalism design. As
mentioned before a formalism is only useful for practicing
language engineering if it adequately reflects the character-
istics of modeling languages in a domain-independent way
and if its application is intuitive and reasonable in terms of
effort. Only then can it support practitioners in their work
and contribute to the maturation of the scientific field.

To achieve this involvement of practitioners, we con-
ducted an empirical assessment with newly trained language
engineers at university. The formalism, as introduced in
Sect. 4, was provided to a group of students in the course
“Metamodeling” at the University of Vienna. Students were
asked to formally define their own domain-specific language
developed throughout the course and assess the capabilities
provided by the formalism.

In the following subsections, the underlying research
questions for this evaluation, the methodology used, and the
results are discussed.

7.1 Research questions for empirical assessment

The goal of the empirical research is to assess and evaluate
the use of MetaMorph together with language engineers to
get feedback on the adequacy and usability of the formalism
and further refine the provided constructs. Feedback received
influences the development in an iterative manner.

The research questions established for the empirical
assessment are introduced below:

1. Does the formalism adequately reflect conceptual mod-
eling languages?
Objective Completeness. Evaluate whether the formal-
ism provides all required concepts to define a language
and model from a practitioner’s perspective.
Subquestions Is the formalism complete on metamodel
level? Is the formalism complete on model level? Does
MetaMorph comprise irrelevant concepts?

2. Does the application of the formalism appear intuitive to
language engineers?
Objective Intuitiveness. Evaluate whether the concepts
are fairly intuitive for language engineers, fit their con-
ception of modeling languages, and can be applied in a
practical project.

3. Does the formalization of a modeling language have
influence on the modeling language design?
Objective Design. Evaluate whether the formalization
requirement changes design decisions.
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4. How do language engineers experience the complexity of
learning the formalism? Do they experience a difference
in the complexity to formalize the different aspects of a
language or a model?
ObjectiveComplexity. Evaluate the learning effort to gain
expertise in usingMetaMorph and the difficulty to for-
malize different concepts.

5. Do the skills of the language engineer influence the expe-
rienced difficulty of using MetaMorph?
Objective Skill. Impact of skills/competencies of the user
on the application of the formalism.

6. How much time does it take a language engineer to for-
malize small to medium-sized languages?
ObjectiveUsability. Evaluate the time needed for formal-
ization as well as influence factors on the duration.
Subquestions Does the language size influence the time
needed for formalization? Does the experienced diffi-
culty influence the time needed for formalization?

7. How can language engineers be assisted to successfully
apply MetaMorph?
Objective Support Requirements. Evaluate the need for
support. E.g., does an interactive introduction have a pos-
itive influence on the use of MetaMorph?

These research questions address different qualities of
MetaMorph:

RQ1 and RQ2 evaluate the adequacy of the construction
of the formalism from a practitioner’s view. This includes
the completeness of concepts to define a modeling language
in real-world cases, as well as the appropriate congruence
and conformity to the characteristics of conceptual modeling
languages becoming apparent in an intuitive application. An
adequate formalism must not compel the language engineer
to an intricate line of thinkingbut encourage a straightforward
formalization process.

Usability is addressed by RQ4 and RQ6 by evaluating the
experienced complexity in applying the formalism as well
as the effort needed to formalize a complete language. Also,
the intuitive handling of the formalism (RQ2) contributes
to convenient usability. This allows for conclusions on the
efficiency and satisfaction of usingMetaMorph for formal-
ization.

RQ5 and RQ7 furthermore aim to assess the required
background and minimal pre-knowledge for a successful
application of the formalism and to determine suitable
assistance in the form of materials and training options to
optimally support the user. From this, we can learn how to
improve usability for future users of MetaMorph.

7.2 Methodology and evaluation setup

As a methodological baseline, the assessment design in
Wohlin et al. [60] was selected using a questionnaire to gain
insights into the participants’ experience with the formalism.

7.2.1 Choice of cohort

For the conduction of the assessment we decided to work
with newly trained language engineers from the University
of Vienna. The benefits of acquiring participants for the eval-
uation directly at a university course teaching metamodeling
are manifold: First, these courses are attended by a decent
number of potential participants, and the students are directly
accessible for personal interaction. This simplifies the orga-
nization and the support of participants. An acquisition of
participants by calls via mailing lists would complicate the
administration of an introduction session and usually results
in a low answer rate.

Second, students coming directly from a training in lan-
guage engineering have similar preconditions and provide
us with directly comparable feedback. They are on the same
level of knowledge about language engineering and are unbi-
ased regarding a domain and existing formalisms already
used. This eliminates the necessity to profoundly consider
their background of research and possible influences on the
feedback.

Third, the languages designed in the university course are
approximately same sized. Therefore we can exclude the lan-
guage dimension as a reason for possible differences in effort
and investigate alternative reasons.

We asked the participants to formalize self-designed
methods.This prevents unnecessary difficulties in the formal-
ization process arising from the need to become acquainted
with a new language. As students formalized their own lan-
guage, they are well aware of the concepts, semantics, and
constraints, as well as the design process. Therefore, they
also have the ability to recognize possible weaknesses and
potential improvements of the design revealed in the formal-
ization process.

Of course, these novices don’t have the same expertise
with language engineering as scientists and practitionerswho
have spent significant timewith the development and applica-
tion of modeling languages. The assessment conducted does
not claim to be complete, and we are striving for the feed-
back of experienced engineers. In our opinion, such feedback
can be collectedmore efficiently in direct collaborations than
in unilateral questionnaires. To obtain this, we plan to con-
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duct various projects on formalization in the setting of the
OMiLAB [47] together with experts who bring their own
modeling methods. Currently planned are collaborations on
the Scene2Model method [43] and the Dig4Biz method [54].
Nevertheless, the perspective of a novice is also important
since the formalism should not be comprehensible only to
advanced engineers.

7.2.2 Setup and execution

The course “Metamodeling” within the master’s program of
“Business Informatics” at the University of Vienna in the
summer term of 2021 was selected as the environment to
perform the above study. Participation was optional, and 27
students participated in the assessment. As an incentive, 7
points of the course were offered to participants who com-
pleted the tasks outlined individually and seriously.

Students were informed that the evaluation is conducted
optional and anonymized to prevent feedback motivated
by social desirability. Correctness was no requirement for
receiving full points, and the students were aware that their
experience with the formalism was relevant to the study, not
the correctness or completeness of the outcome. Therefore,
students had no incentive to collaborate or copy from col-
leagues.

Thewritten description of amodeling language developed
in advance within a group project was utilized as input for the
assessment. This implies that all participants already had (a)
learned about the foundation of metamodeling and language
design, (b) applied it practically on a self-selected case, and
(c) did not implement this case on a metamodeling platform
yet.

From a methodological viewpoint, the assessment was
scheduled in four phases:

1. Introduction to MetaMorph
As a warm-up, the participants received an introduction
to MetaMorph, starting with a recap on sorted logic
and a detailed explanation of the formalization on lan-
guage and model level. This theoretical introduction was
accompanied with a practical, interactive demonstration,
applyingMetaMorph to Petri Nets as discussed in [15]
and to ProVis as presented in Sect. 5.1. Additionally, as
a reading assignment, the students received background
literature [18] acting as a walk-through for their own for-
malization process.
The introduction was offered to all participants to give
them the background required for the rating of intu-
itiveness and completeness of the formalism. As a
consequence, no control group for a comprehensive
comparison of results is available. Therefore for the com-
parison required in research question 7, we used those

participants that could not join the introduction as a proxy
for a control group.

2. Formalization Case
During this phase, the participants were asked to for-
malize the modeling language that they had designed as
part of the course assignments. The design had been per-
formed in groups (4–5 team members per group). The
formalization assignment was an individual task per-
formed by every participant. As a support instrument,
the participants received a prepared document template
with the required logical symbols for the subsets of the
signature to support the task. The participants were given
two weeks to submit the results.

3. Evaluation and Feedback
As a concluding phase, participants were asked to fill out
an online questionnaire about their experience during the
formalization phase. The participants had two weeks to
reflect and provide their feedback.

4. Analysis of Feedback
The feedback given by students was anonymized and
filtered for deficient inputs. The data evaluation was con-
ducted using the statistical programming language R.

7.2.3 Participant demographic

Twenty-seven students volunteered to participate in the
assessment. Thirteen had completed their bachelor’s degree
at the faculty of computer science of theUniversity ofVienna,
and the rest joined the master’s program from other uni-
versities. Several of them had completed their studies in
business-related programs and degrees at the University of
Vienna or somewhere else.

As an initial step, the participants were asked to perform
a self-assessment of their pre-knowledge in modeling, meta-
modeling, and predicate logic as ameans to contextualize the
results of the evaluation phase. Figure9 shows the results of
the self-assessment graphically.

On a scale from 1 (best) to 6 (worst), they rated their skills
in modeling and predicate logic as slightly positive (Mean
3.04 and 3.04 respectively) and their skills in metamodeling
as slightly negative (Mean 3.68).

For the evaluation, 2 participants had to be excluded due
to missing or incomplete formalization results (Phase 2 of
the empirical study); 4 students did not attend the introduc-
tion session (Phase 1) and worked solely with the provided
documents.

7.2.4 Limitations of empirical assessment

For the empirical validation of the formalism, we identified
beforehand the following limitations.
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Fig. 9 Self-assessment: Skills in modeling, metamodeling, and logic,
1=best, 6=worst

– Small number of participants: as an assessment, only a
limited number of participantswas selected to participate.
Extension to a larger group would elevate the data set and
potentially provide further insights.

– Participant skill level: the evaluation was performed with
students and not metamodeling experts.

– Self-assessment of skills within a university course is
potentially not objective.

– Online setting: Doing the formalization via an online sys-
temwas rather laborious because of the necessity to write
logical symbols in a digital document (whichwas also cri-
tiqued by students). This was necessary due to the online
format of the course.

– Social bias: Although the evaluation of the feedback was
anonymized and optional, still, a subliminal bias towards
the social desirability of favorable answers might emerge
for some students.

As such, the assessment organized in the course metamod-
eling provides initial insights to continuously improve the
concepts contained, identify issues early in the design pro-
cess, and inform future releases.

7.3 Results

The results of the evaluation phase are discussed in the fol-
lowing, based on the results submitted by participants. The
research questions (RQ) are discussed and recommendations
from the evaluation are deduced for each question.

RQ 1 Does the formalism adequately reflect conceptual
modeling languages?

Completeness on metamodel level: Does the formalism
provide all the concepts needed to formalize a modeling lan-
guage?

Answers collected: 4% (1) No, 20% (5) central concepts and
almost all others are covered, 76% (19) Yes
Missing concepts mentioned by “central concepts” voters
are:

– Concepts for areas or regions with spatial extension (2x)
– Maps or concepts for spatial modeling (1x)
– Functionality (1x)

Disclaimer: the “no” vote results from a misunderstanding
of the participant as he/she did not formalize all concepts of
the language designed.
Conclusions: The coverage of concepts in the formalism is
satisfactory. Mentioned missing concepts are related to spa-
tial modeling, which concerns the general applicability of the
formalism as a domain-specific concept.
Completeness on model level: Does the formalism provide
all the concepts needed to formalize a model?
Answers collected: 96% (24) Yes, 4% (1) No
Missing concepts mentioned by “No” voters are:

– Notation

Conclusions: The coverage of concepts in the formalism is
satisfactory. Notation, and more specifically graphical nota-
tion, is considered a secondary artifact for formalization.
Does MetaMorph comprise irrelevant concepts? (80%
(20) No, 20% (5) Yes)
Mentioned irrelevant concepts of languages:

– Multi-value attributes (4x)
– Additional symbols (1x)
– Some specific concepts of students’ languages

Conclusions:Several participants seemulti-value attributes
as superfluous and argue that the same result can be achieved
with single-value attributes, even though they are indeed nec-
essary for some languages, see, e.g., the example of ProVis
presented in the paper at hand.

RQ 2 Does the application of the formalism appear intu-
itive to language engineers?

The participants provided feedback on whether the appli-
cation is intuitive, therefore assessing the usability of it in
concrete projects. Figures10 and 11 provide a graphical
representation of the results (1=best, 6=worst, Mean: 2.84,
Median:3, Standard Deviation: 1.179)

80% (20) of participants rate the intuitiveness as rather
positive to very positive (range 1–3). No one rated absolutely
negative (6).
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Fig. 10 Ratings of intuitiveness, 1=best, 6=worst

Fig. 11 Ratings of intuitiveness,
boxplot, 1=best, 6=worst

Conclusions: We see this as positive feedback that Meta-
Morph can be applied practically.

RQ 3Does the formalization of amodeling language have
influence on the modeling language design?

36% (9) of students mentioned that they had to explicate
further details of their language to be able to completely
formalize it, whereas 64% (16) already specified all details
before and had a fully determined language as input.

Details that had to be (re-)designed during the formaliza-
tion include:

– Constraints (4x)
– Value domains (2x)
– Attributes (5x)
– Relation types (2x)

44% (11) of the participants reworked their language
design due to new considerations coming up in the formaliza-
tion process,whereas 56%(14) did not see the need for design
changes in their languages. Participants who re-designed
mentioned that the formalization triggered inspiration to
reflect the current design and rework it (e.g., identified short-
comings in the design, superfluous attributes).
Conclusions:The process of formalization can trigger design
re-considerations and reveal shortcomings in the initial
design before it comes to the implementation phase.

Fig. 12 Experienced
complexity to learn
MetaMorph, 1=best, 6=worst

Fig. 13 Experienced complexity by concept type, 1=best, 6=worst

RQ 4 How do language engineers experience the com-
plexity to learn the formalism? Do they experience a
difference in the complexity to formalize the different
aspects of a language or a model?

The experience of learning the formalism and its inherent
complexity in understanding and applying the concepts is
considered slightly positive (Min 1, Max 6, Mean: 3.24,
Median:3, Standard Deviation: 1.268). Figure12 provides a
graphical representation of this outcome.

Nevertheless, there are extensive differences in the diffi-
culty to formalize the different concepts, see Fig. 13.

The concepts easiest to formalize are object- and relation
types; the hardest is the formulation of constraints. In addi-
tion, models are not easy to formalize for participants.
Conclusions: The complexity of learning the formalism is
rated slightly positive. The complexity to apply Meta-
Morph to constraints andmodels is rated rather high to high.
This evaluation is interpreted as a need to further extend
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introductions and tutorials and potentially realize support
tools/methods for MetaMorph.

RQ 5 Do the skills of the language engineer influence the
experienced difficulty of using METAMORPH?

The aspect of skill and competencies is addressed by this
research question. A high, significant correlation (0.42,
p=0.036) between the self-assessed skills in metamodeling
and the experienced complexity to learnMetaMorph could
be identified. Figure14 shows the results graphically.

Regarding the experienced complexities, the following
observations apply:

– A significant correlation (0.48, p=0.015) between the
self-assessed skills in metamodeling and the experienced
difficulty to formalize models can be found.

– There is a significant correlation (0.41, p=0.04) between
the self-assessed skills in predicate logic and the experi-
enced difficulty to formalize models.

– There are no other considerable significant correlations
between skills and experienced difficulties.

Table 2 Numbers of object types, relation types, attributes, constraints
of participants’ languages

1: 2: 3: 4:
Number of object types relation types attributes constraints

Min 2 1 1 2
Max 16 8 70 13
Mean 8.4 4.12 18.56 6.2
Median 8 3 15 6

Fig. 14 Correlation: complexity of learning MetaMorph and skill
self-assessment in metamodeling

Fig. 15 Assessment of time
effort related to formalization

– Interestingly, there is also no significant correlation
between skills in predicate logic and the difficulty to for-
malize constraints (0.30, p= 0.1396).

Conclusions: A better basis in metamodeling leads to an eas-
ier acquisitionof the formalism.Good skills in predicate logic
can help in some aspects of the formalism founded in logic
(models) but not in others (constraints).

RQ 6 How long do language engineers need to formalize
small to medium-sized languages?

The participants were asked for the duration of the formal-
ization process. 50% of the participants spent between 4 to
8 hours with the formalization (Min 2, Max 14, Mean: 5.94,
Median: 5.5, Standard Deviation: 2.844), see Fig. 15. The
objective of this research question relates to the effort for
formalization and influence factors thereon.

Influence of language size: Does the language size have
an influence on the time needed for formalization?
In Table2 the language sizes split into concepts are shown.
The assessment data shows that in the responses by partici-
pants, there is no correlation between time and the number of
concepts of the language(-0.095, p=0.65), which implies that
the formalization effort is not directly related to the number
of constructs designed.
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Fig. 16 Correlation: Complexity of attributes and time effort

Fig. 17 Introduction Assessment, 1 = very helpful, 6 = not required

Influence of complexity: Does the experienced difficulty
have an influence on the time needed for formalization?
Drilling down into the data of the evaluation, we can rec-
ognize that the experienced difficulty to formalize value
domains and attributes influences the time. Figure16 shows
that the experienced complexity has a significant correlation
(0.49, p=0.013) towards time effort spent, whereas no other
concept has a noteworthy influence.
Conclusions: The aptitude of the engineer, i.e., a low experi-
enced complexity, has a bigger influence on the time needed
for formalization than the actual language size.

RQ 7 How can language engineers be assisted to success-
fully apply METAMORPH? Does an interactive introduc-
tionhaveapositive influenceon theuseof METAMORPH?

The essence of this research question is to assess whether a
guided walk-through and tooling are required to understand
and apply the formalism.

Those who attended rated the helpfulness of the introduc-
tion according to Fig. 17 (1 = very helpful, 6 = not required,
Mean: 2.48, Median 2).

4 of the 25 participants did not attend the introductory
session on MetaMorph and used solely the definitions and

Fig. 18 Complexity to learnMetaMorph split into attendees and non-
attendees of introduction, 1=best, 6=worst

Table 3 Mean values of intuitiveness and experienced complexity of
different concepts compared between attendees and non-attendees of
the introduction

Mean Attendees Non attendees

Complexity to learn MetaMorph 3.10 4

Intuitiveness 2.86 2.75

Complexity of object-

and relation types 1.95 3.25

Complexity of attribute

domains and attributes 2.76 3.25

Complexity of constraints 4.05 4.75

Complexity of models 3.29 5

examples from [16] and [18] to learn the formalism inde-
pendently. Therefore the assessment results of this group are
contrasted with those participating in Phase 1 of the assess-
ment targeting the question of whether the introduction had
an influence on the experienced complexity and intuitiveness.
The results show that participants attending the introductory
session found it easier to learn the formalism (see Fig. 18),
but there is nearly no difference in the rating of intuitiveness
(see Table3). Several concepts we experienced less complex
after attending the introduction. These are object- and rela-
tion types, and models whereas we consider an impact for
those elements where the difference in the mean is larger
than 1.

The above result is substantiated by the responses to the
question of what means would elevate the application and
use of the formalism. The result shows the need for extended
background knowledge in logic (56%, 14), better knowledge
in metamodeling (32%, 8), and the need for additional prac-
tice and examples (84%, 21).
Conclusions: To support language engineers in applying
MetaMorph sophisticated training material, video tutori-
als, and interactive training are highly recommended.
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7.4 Overall conclusion

In summary, we draw the following conclusions for the qual-
ities of MetaMorph:

Regarding adequacy, the results indicate that the for-
malism meets the needs of practitioners. Those concepts
mentioned as irrelevant, i.e.,multi-valued attributes and addi-
tional concepts, appear to be necessary as soon as we intend
to formalize sophisticated languages like ProVis or UML.
The estimation as irrelevant might stem from the inexpe-
rience of novices. This is also indicated by RQ5, showing
that a better knowledge of metamodeling results in an eas-
ier acquisition of the formalism. The intuitiveness comes off
well, even better than the difficulty of learning the formal-
ism and the complexity to formalize the different concepts.
Altogether we are encouraged that the foundation and design
of MetaMorph are suitable and conformant to the structure
of modeling languages also from the practitioner’s view. The
intuitiveness is independent of an interactive introduction,
which is an indicator to be thoroughly fitting to participants’
intuition.

According usability we recognize that the complexity to
get acquainted withMetaMorph and the complexity to for-
malize different concepts is rated slightly positive and less to
rather hard. Thereby, the experienced complexity has a big-
ger influence on the time needed for formalization than the
actual language size. This is a strong indicator of the need
for more elaborate, supportive material and training options
so that users are helped to overcome the initial obstacle of
complexity. This could probably lead to a solid improvement
of time effort needed for formalization. This is also backed
by the feedback on the introductory lecture, that 76% rated
very helpful to rather helpful, and that those not participating
in the introduction rated the difficulty to learn MetaMorph
higher than those participating.

The case study, as well as empirical work, has impacted
the development of the formalism, discussed in the following
section as lessons learned during this research iteration of
MetaMorph.

8 Lessons learned

From the extensive case studies presented in this paper and
from previous formalization projects, as well as from the
empirical assessment, we can record four recurring observa-
tions.

The most salient observation is that the expressiveness
and complexity of a language are captured in the concepts
commonly considered subsidiary to object types, namely
relation types, attributes, and constraints, rather than in the
object types themselves. Although object types are the most
prominent element in a metamodel, the relation types and the

“hidden” constructs of attributes and constraints do a better
job of capturing processable semantics of models. This is
reflected in the higher effort of formalizing these concepts
according to Definition 1 and is underpinned by a number
of case studies on expressive modeling languages with few
object types but intricate constraints, e.g. Petri Nets [15], ER
diagrams and ProVis, or complexmulti-value attributes, e.g.
ProVis and UML class diagrams [16]. Also, the results from
the empirical evaluation, research question 4 back this claim.

Furthermore, we observe that constraints can be deployed
for two opposing purposes. The first one is a restrictive one,
i.e., limiting the set of valid model constructs. The second
one is a constructive one, i.e., enforcing the existence of
additional modeling elements or determining attribute val-
ues. Examples of the first type are cardinality constraints or
the restrictions for tree-like structures without circles. Exam-
ples for the second type are rules for attribute values like the
numerous dependencies of frequencies in unit squares or the
execution time of whole processes depending on the single
tasks. In this sense, the constructive usage can be seen as a
generating functionality of a language.

The third observation concerns the interrelationship of the
graphical and the formalized representation of a model. Of
course, the spatial appearance is a crucial point for human
comprehension in conceptual modeling but is mostly omit-
ted in the formalized representation of amodel. Nevertheless,
spatial arrangement and formalization can have a pertinent
mutual impact. In the case study on ProVis, the graphi-
cal manifestation of a unit square is highly dependent on
the attributes of conditional probability determined by the
numerous constructive constraints. In contrast to that, in
UML sequence diagrams, the vertical ordering of messages
from a lifeline determines the anteriority and posteriority of
messages, which definitely has to be captured in a formalized
model.

Evaluating the empirical assessment, we made our last
observation concerning the impact of the formalization pro-
cess on design decisions. 44% of participants mentioned that
they reworked the language design due to new considera-
tions. The reasons mentioned were insufficient preciseness
in attribute definition or a need for further constraints. This
firstly underpins the importance of formalization in the lan-
guage development process and secondly complies with the
first observation as it again reveals that it is the “subsidiary”
concepts that bear the expressive power of a language and
therefore require more consideration than the object types.

9 Conclusion, limitations, and outlook

The paper at hand gives a pervasive description of our formal-
ismMetaMorph proposed in [15] and [16] and illustrates its
adequacy and usability by applying it to two extensive case
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studies, by comparing the approach to formalisms with sim-
ilar goals, and by collecting feedback from student language
engineers in an empirical assessment.

For the case studies, we chose the modeling method Pro-
Vis – Probability visualized – from the domain of stochastic
education and the well-known Entity-Relationship language.
The distinguishing feature of both languages is the low
amount of object and relation types but high interconnectiv-
ity of concepts and their attributes. This makes them highly
interesting specimens for formalization. Conducting the case
studies, the formalization of all language concepts is shown
step by step.

To underpin the appropriateness of formalism design, we
gave a detailed juxtaposition of MetaMorph with three
other formalization approaches based on different founda-
tional theories, i.e., set theory, graph theory, and logic. In
this comparison, we determine the strengths and drawbacks
of the different structural theories for conceptual modeling.

The empirical assessment was conducted to get feed-
back from users of the formalism and evaluate adequacy
and usability. More specifically, we collect data about the
completeness, intuitiveness, experienced complexity of the
formalism, and the impact on language design. Furthermore,
we investigate dependencies between skills of a language
engineer and the experienced complexity, as well as depen-
dencies between the skills and the experienced difficulty to
learnMetaMorph.We also gather information about the time
needed for formalization as the possibility for supporting the
use of the formalism. The results are encouraging and allow
for an adjusted research agenda for future improvements of
MetaMorph and assisting tools. To conclude, we summa-
rize some lessons learned from the empirical assessment and
all case studies conducted so far.

The proposed formalism MetaMorph aims at closing
the gap and providing a suitable tool for the phase of for-
malization in the AMME lifecycle of modeling methods and
building a bridge between the informal method design and
the platform-specific method implementation. By providing
a generic and complete formalism like the one proposed, we
enable an investigation of the class of formalized modeling
languages as a subclass of all formal languages. Further-
more, being complete and unambiguous, the formalization of
modeling languages can serve as the single source of speci-
fication. This specification can then be translated to arbitrary
metamodeling platforms. This is a step towards automatizing
the AMME lifecycle of modeling-method engineering.

In the current version, the MetaMorph formalism is
subject to several limitations. Firstly, the definition indeed
comprises solely the most common concepts of a modeling
language, i.e., object types, binary relation types, attributes
(single- and multi-valued), constraints, and specialization of
object types. Advanced concepts like n-ary relations or part-
hood are not yet covered.We are permanently working on the

enhancement of the formalism and have already proved the
integrability of such concepts on the example of specializa-
tion on the model level in the form of the power type pattern
[16].

Secondly, the formal foundation of many-sorted model
theory complies properly with conceptual modeling lan-
guages but indeed implicates a higher level of complexity
in comparison to, e.g., set theory. Many modeling practition-
ers are not familiar with this advanced topic in mathematical
logic. For this reason, we collected data in the empirical eval-
uation on the most suitable training material to adjust to the
needs of the users. On the other hand, several formaliza-
tion tasks could be automated as the formalized modeling
language or model is usually meant to be consumed by a
computer, not by a human. The creation of a prototype of
a translator to (metamodel) platform-specific code is on our
research agenda.

Thirdly, although functions to alter and work on models
are a crucial point formodel value,MetaMorph and all other
formalisms known to the authors do not admit the specifica-
tionof algorithmsonmodels. This is an essential shortcoming
and one of the research projects receiving special attention on
the future agenda. It was initially contemplated as an outlook
in [16].

A final point on the research agenda is the potential
of logic- and model theory for contributing concepts and
methods beneficial for conceptual modeling. We intend to
investigate the subclass of conceptual modeling languages in
the class of formal languages as defined in logic and approach
well-known research topics in conceptualmodelingwith new
tools from logical model theory.
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