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ABSTRACT

Algorithmic recourse recommendations, such as Karimi et al.’s (2021) causal recourse (CR), inform
stakeholders of how to act to revert unfavorable decisions. However, there are actions that lead to
acceptance (i.e., revert the model’s decision) but do not lead to improvement (i.e., may not revert the
underlying real-world state). To recommend such actions is to recommend fooling the predictor. We
introduce a novel method, Improvement-Focused Causal Recourse (ICR), which involves a conceptual
shift: Firstly, we require ICR recommendations to guide towards improvement. Secondly, we do
not tailor the recommendations to be accepted by a specific predictor. Instead, we leverage causal
knowledge to design decision systems that predict accurately pre- and post-recourse. As a result,
improvement guarantees translate into acceptance guarantees. We demonstrate that given correct
causal knowledge ICRguides towards both acceptance and improvement.

Keywords algorithmic recourse · gaming · causal inference · interpretable machine learning · robustness

1 Introduction

Predictive systems are increasingly deployed for high-stakes decisions, for instance in hiring [Raghavan et al., 2020],
judicial systems [Zeng et al., 2017], or when distributing medical resources [Obermeyer and Mullainathan, 2019].
A range of work [Wachter et al., 2017, Ustun et al., 2019, Karimi et al., 2021] develops tools that offer individuals
possibilities for so-called algorithmic recourse (i.e. actions that revert unfavorable decisions). Joining previous work
in the field, we distinguish between reverting the model’s prediction Ŷ (acceptance) and reverting the underlying
real-world state Y (improvement) and argue that recourse should lead to acceptance and improvement [Ustun et al.,
2019, Barocas et al., 2020]. Existing methods, such as counterfactual explanations (CE; Wachter et al. [2017]) or causal
recourse (CR; Karimi et al. [2021]), ignore the underlying real-world state and only optimize for acceptance. Since ML
models are not designed to predict accurately in interventional environments (i.e. environments where actions have
changed the data distribution), acceptance does not necessarily imply improvement.
Let us consider a simple motivational example. The goal is to predict whether hospital visitors without recent test
certificate are infected with Covid in order to restrict access to tested and low-risk individuals. In the example, the
model’s prediction Ŷ represents whether someone is classified to be infected, whereas the prediction target Y represents
whether someone is actually infected. Target and prediction differ in how they are affected by actions. E.g., intervening
on the symptoms may change the diagnosis Ŷ , but will not affect whether someone is infected (Y ).
Both counterfactual explanations (CE) and causal recourse (CR) only target Ŷ (Figure 1). Therefore, CE and CR
may suggest to alter the symptoms (e.g., by taking cough drops) and thereby may recommend to game the predictor:
Although the intervention leads to acceptance the actual Covid risk Y is not improved.1
One may argue that this is an issue of the prediction model and may adapt the predictor strategically to make gaming
less lucrative than improvement [Miller et al., 2020]. In our example, the model’s reliance on the symptom state
would need to be reduced. However, such strategic adaptions may come at the cost of predictive performance since
gameable variables, like the symptom state, can be highly predictive [Shavit et al., 2020]. Thus, we tackle the problem
by adjusting the explanation.

1In E.1, the case is formally demonstrated.
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Figure 1: Directed Acyclic Graph (DAG) illustrating the perspective on model and data taken by counterfactual
explanations (CE, left) and causal recourse (CR, center) in contrast to improvement-focused recourse (ICR, right). Blue
edges represent the causal links induced by the prediction model, green edges the real-world causal links, gray nodes
the covariates, and the red (yellow) node the primary (secondary) recourse target. CR respects the causal relationships
but only between input features. ICR is the only approach that takes the target Y into account. While CE and CR aim to
revert the prediction Ŷ , ICR aims to revert the target Y .

Contributions We present improvement-focused causal recourse (ICR), the first recourse method that targets improve-
ment instead of acceptance. Since estimating the effects of actions is a causal problem, causal knowledge is required.
More specifically, we show how to exploit either knowledge of the structural causal model (SCMs) or the causal graph
to guide towards improvement (Section 5). On a conceptual level we argue that the individual’s improvement options
should not be limited by an acceptance constraint (Section 4). In order to nevertheless yield acceptance, we show how
to exploit said causal knowledge to design post-recourse decision systems that in expectation recognize improvement
(Section 6), such that improvement guarantees translate into acceptance guarantees (Section 7). On synthetic and
semi-synthetic data, we demonstrate that ICR, in contrast to existing approaches, leads to improvement and acceptance
(Section 8).

2 Related Work

Constrastive Explanations Contrastive explanations explain decisions by contrasting them with alternative decision
scenarios [Karimi et al., 2020a, Stepin et al., 2021]; a well known example are counterfactual explanations (CE) that
highlight the minimal feature changes required to revert the decision of a predictor f̂(x) [Wachter et al., 2017, Dandl
et al., 2020]. However, CEs are ignorant of causal dependencies in the data and therefore in general fail to guide
action [Karimi et al., 2021]. In contrast, the causal recourse (CR) framework by Karimi et al. [2022] takes the causal
dependencies between covariates into account: More specifically, Karimi et al. [2022] use structural causal models or
causal graphs to guide individuals towards acceptance.2 The importance of improvement was discussed before [Ustun
et al., 2019, Barocas et al., 2020], but as of now no improvement-focused recourse method was proposed.

Strategic Classification The related field of strategic modeling investigates how the prediction mechanism incen-
tivizes rational agents [Hardt et al., 2016, Tsirtsis and Gomez Rodriguez, 2020]. A range of work [Bechavod et al.,
2020, Chen et al., 2020, Miller et al., 2020] thereby distinguishes models that incentivize gaming (i.e., interventions that
affect the prediction Ŷ but not the underlying target Y in the desired way) and improvement (i.e., actions that also yield
the desired change in Y ). Strategic modeling is concerned with adapting the model, where except for special cases the
following three goals are in conflict: incentivizing improvement, predictive accuracy, and retrieving the true underlying
mechanism [Shavit et al., 2020].

Robust algorithmic recourse The robustness of CEs and CR has been investigated before [Rawal et al., 2021,
Pawelczyk et al., 2020, Upadhyay et al., 2021, Dominguez-Olmedo et al., 2021, Pawelczyk et al., 2022], yet only with
respect to generic shifts of model and data. Only Pawelczyk et al. [2020] investigate the robustness regarding refits
on the same data. They find that on-the-manifold CEs are more robust than standard CEs. In contrast, we empirically
compare the robustness of CE, CR and ICR with respect to refits on the same data.

3 Background and Notation

Prediction model We assume binary probabilistic predictors and cross-entropy loss, such that the optimal score
function h∗(x) models the conditional probability P (Y = 1|X = x), which we abbreviate as p(y|x). We denote the

2For the interested reader, we formally introduce CR in our notation in A.4.
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estimated score function as ĥ(x), which can be transformed into the binary decision function f̂(x) := [ĥ(x) ≥ t] via
the decision threshold t.

Causal data model We model the data generating process using a structural causal model (SCM)M ∈ Π [Pearl,
2009, Peters et al., 2017]. The modelM = 〈X,U,F〉 consists of the endogenous variables X ∈ X , the mutually
independent exogenous variables U ∈ U , and structural equations F : U → X . Each structural equation fj specifies
how Xj is determined by its endogenous causes and the corresponding exogenous variable Uj . The SCM entails a
directed graph G, where variables are connected to their direct effects via a directed edge.
The index set of endogenous variables is denoted as D. The parent indexes of node j are referred to as pa(j) and
the children indexes as ch(j). We refer to the respective variables as Xpa(j). We write Xpa(j) to denote all parents
excluding Y and (X,Y )pa(j) to denote all parents including Y . All ascendant indexes of a set S are denoted as asc(S),
its complement as nasc(S), all descendant indexes as d(S), and its complement as nd(S).
SCMs allow to answer causal questions. This means that they cannot only be used to describe (conditional) distributions
(observation, rung 1 on Pearl’s ladder of causation [Pearl, 2009]), but can also be used to predict the (average) effect of
actions do(x) (intervention, rung 2) and imagine the results of alternative actions in light of factual observation (x, y)F

(counterfactuals, rung 3).
As such, we model actions as structural interventions a : Π → Π, which can be constructed as do(a) = do({Xi :=
θi}i∈I), where I is the index set of features to be intervened upon. A model of the interventional distribution can be
obtained by fixing the intervened upon values to θI (e.g. by replacing the structural equation fI := θI ). Counterfactuals
can be computed in three steps [Pearl, 2009]: First, the factual distribution of exogenous variables U given the
factual observation of the endogenous variables xF is inferred (abduction) (i.e., P (Uj |XF )). Second, the structural
interventions corresponding to do(a) are performed (action). Finally, we can sample from the counterfactual distribution
P (XSCF |X = xF , do(a)) using the abducted noise and the intervened-upon structural equations (prediction).

4 The Two Tales of Contrastive Explanations

In the introduction we have demonstrated that CE and CR may suggest to game the predictor (i.e. guide towards accep-
tance without improvement). To tackle the issue, we will introduce a new explanation technique called improvement-
focused causal recourse (ICR) in Section 5.
In this section we lay the conceptual justification for our method. More specifically, we argue that for recourse the
acceptance constraint of CR should be replaced by an improvement constraint. Therefore, we first recall that a multitude
of goals may be pursued with contrastive explanations [Wachter et al., 2017] and separate two purposes of contrastive
explanations: contestability of algorithmic decisions and actionable recourse. We then argue that improvement is an
essential requirement for recourse and that the individual’s options for improvement should not be limited by acceptance
constraints.

Contestability and recourse are distinct goals. Contestability is concerned with the question of whether the algorith-
mic decision is correct according to common sense, moral or legal standards. Explanations may help model authorities
to detect violations of such standards or enable explainees to contest unfavorable decisions [Wachter et al., 2017,
Freiesleben, 2021]. Explanations that aim to enable contestability must reflect the model’s rationale for an algorithmic
decision. Recourse recommendations on the other hand need to satisfy various constraints unrelated to the model,
such as causal links between variables [Karimi et al., 2021] or their actionability [Ustun et al., 2019]. Consequently,
explanations geared to contest are more complete and true to the model while recourse recommendations are more
selective and true to the underlying process.3 We believe that the selectivity and reliance of recourse recommendations
on factors besides the model itself is not a limitation but an indispensable condition for making explanations more
relevant to the explainee.

In the context of recourse, improvement is desirable for model authority and explainee. We consider improve-
ment to be an important normative requirement for recourse, both with respect to explainee and model authority.
Valuable recourse recommendations enable explainees to plan and act; thus, such recommendations must either provide
indefinite validity or a clear expiration date [Wachter et al., 2017, Barocas et al., 2020, Venkatasubramanian and Alfano,
2020]. Problematically, when model authorities give guarantees for non-improving recourse, this constitutes a binding
commitment to misclassification. However, if model authorities do not provide recourse guarantees over time, this
diminishes the value of recourse recommendations to explainees. They might invest effort into non-improving actions

3We do not claim that recourse and contestability always diverge, we only describe a difference in focus. If contesting is
successful it may even provide an alternative route towards recourse.
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that ultimately do not even lead to acceptance because the classifier changed.4 In contrast, improvement-focused
recourse is honored by any accurate classifier. We conclude that, given these advantages for both model authority and
explainee, recourse recommendations should help to improve the underlying target Y .5

Improvement should come first, acceptance second. Taken that we constrain the optimization on improvement,
how to guarantee acceptance remains an open question. One approach would be to constrain the optimization on both
improvement and acceptance. However, a restriction on acceptance is either redundant or, from our moral standpoint,
questionable: If improvement already implies acceptance, the constraint is redundant. In the remaining cases, we can
predict improvement with the available causal knowledge but would withhold these (potentially less costly) improvement
options because of the limitations of the observational predictor. To ensure that acceptance ensues improvement, we
instead suggest to exploit the assumed causal knowledge for accurate post-recourse prediction (Section 6), such that
acceptance guarantees can be made (Section 7).

5 Improvement-Focused Causal Recourse (ICR)

We continue with the formal introduction of ICR, an explanation technique that targets improvement (Y = 1) instead of
acceptance (Ŷ = 1). Therefore we first define the improvement confidence γ, which can be optimized to yield ICR.
Like previous work in the field [Karimi et al., 2020b], we distinguish two settings: In the first setting, knowledge of the
SCM can be assumed, such that we can leverage structural counterfactuals (rung 3 on Pearl’s ladder of causation) to
introduce the individualized improvement confidence γind. In the second setting only the causal graph is known, which
we exploit to propose the subpopulation-based improvement confidence γsub (rung 2).

Individualized improvement confidence For the individualized improvement confidence γind we exploit knowl-
edge of a SCM. SCMs can be used to answer counterfactual questions (rung 3). In contrast to rung-2-predictions,
counterfactuals are tailored to the individual and their situation [Pearl, 2009]: They ask what would have been if
one had acted differently and thereby exploit the individual’s factual observation. Given unchanged circumstances,
counterfactuals can be seen as individualized causal effect predictions.
In contrast to existing SCM-based recourse techniques [Karimi et al., 2022] we include both the prediction Ŷ and the
target variable Y as separate variables in the SCM. As a result, the SCM can be used not only to model the individualized
probability of acceptance, but also the individualized probability of improvement.
Definition 1 (Individualized improvement confidence). For pre-recourse observation xpre and action a we define the
individualized improvement confidence as

γind(a) = γ(a, xpre) := P (Y post = 1|do(a), xpre).

Since the pre-recourse (factual) target Y cannot be observed, standard counterfactual prediction cannot be applied
directly. However, we can regard the distribution as a mixture with two components, one for each possible state of Y .
We can estimate the mixing weights using h∗ and each component using standard counterfactual prediction. Details
including pseudocode are provided in B.1.

Subpopulation-based improvement confidence For the estimation of the individualized improvement confidence
γind knowledge of the SCM is required. If the SCM is not specified, but the causal graph is known instead and there
are no unobserved confounders (causal sufficiency), we can still estimate the effect of interventions (rung 2).
In contrast to counterfactual distributions (rung 3), interventional distributions describe the whole population and
therefore provide limited insight into the effects of actions on specific individuals. Building on Karimi et al. [2020b], we
thus narrow the population down to a subpopulation of similar individuals, for which we then estimate the subpopulation-
based causal effect. More specifically, we consider individuals to belong to the same subgroup if the variables that
are not affected by the intervention take the same values. For action a, we define the subgroup characteristics as
Ga := nd(Ia) (i.e., the non-descendants of the intervened-upon variables in the causal graph).6 More formally, we
define the subpopulation-based improvement confidence γsub as the probability of Y taking the favorable outcome in
the subgroup of similar individuals (Definition 2).

4For instance, in the introductory example, an intervention on the symptom state would only be honored by a refit of the model
on pre- and post-recourse data for the small percentage of individuals who were already vaccinated, as documented in more detail in
E.1. Also, gaming actions may not be robust concerning model multiplicity, as seen in the experiments (Section 8).

5We do not claim that gaming is necessarily bad; it may be justified when predictors perform morally questionable tasks.
6The estimand resembles the conditional treatment effect with Ga being effect modifiers [Hernán MA, 2020].
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Definition 2 (Subpopulation-based improvement confidence). Let a be an action that potentially affects Y , i.e.
Ia ∩ asc(Y ) 6= ∅.7 Then we define the subpopulation-based improvement confidence as

γsub(a) = γ(a, xpreGa
) := P (Y post = 1|do(a), xpreGa

).

The set Ga is chosen for practical reasons. In order to make the estimation more accurate, we would like to condition
on as many characteristics as possible. However, without access to the SCM, one can only identify interventional
distributions for subgroups of the population by conditioning on their (unobserved) post-intervention characteristics
(but not by conditioning on their pre-intervention characteristics) [Pearl, 2009, Glymour et al., 2016]. If we were to
select a subgroup from a post-recourse distribution by conditioning on pre-recourse characteristics that are affected by
a (e.g. strong pre-recourse symptoms), we yield a group that the individual may not be part of (e.g. people with strong
post-recourse symptoms). In contrast, for XGa pre- and post-intervention values coincide, such that we can estimate
γsub: Assuming causal sufficiency, the standard procedure to sample interventional distributions can be applied, only
that additionally Xpost

Ga
:= xpreGa

. Based on the sample γsub can be estimated (as detailed in B.3).
The estimation of γsub does not require knowledge of the SCM, but is less accurate than γind. In the introductory
example, for the action get vaccinated the set of subgroup-characteristics Ga is empty. As such, γsub is concerned with
the effect of a vaccination over the whole population. If we were to observe zip code, a variable that is not affected by
vaccination, γsub would indicate the effect of vaccination for subjects that share the explainee’s zip code. In contrast,
γind also takes the explainee’s symptom state into account.

Optimization problem To generate ICR recommendations, we can optimize Equation 1. We aim to find actions that
meet a user-specified improvement target confidence γ with minimal cost for the recourse seeking individual. The cost
function cost(a, xpre) captures the effort the individual requires to perform action a [Karimi et al., 2020b].
As for CE or CR, the optimization problem for ICR is computationally challenging (B.4). It can be seen as a two-level
problem, where on the first level the intervention targets Ia, and on the second level the corresponding intervention
values θa are optimized [Karimi et al., 2020b]. Since we target improvement, we can restrict Ia to causes of Y .
Following Dandl et al. [2020], we use the genetic algorithm NSGA-II [Deb et al., 2002] for optimization.

argmina=do(XI=θ) cost(a, xpre) s.t. γ(a) ≥ γ. (1)

6 Accurate Post-Recourse Prediction

Recourse recommendations should not only lead to improvement Y but also revert the decision Ŷ . Whether acceptance
guarantees naturally ensue from γ depends on the ability of the predictor to recognize improvements. As follows, we
demonstrate how the assumed causal knowledge can be exploited to design accurate post-recourse predictors. We find
that an individualized post-recourse predictor is required to translate γind into an individualized acceptance guarantee,
but curiously that the observational predictor is sufficient in supopulation-based settings.

Individualized post-recourse prediction If we were to use the optimal pre-recourse observational predictor h∗ for
post-recourse prediction, there would be an imbalance in predictive capability between ML model and individualized
ICR: ICR individualizes its predictions using xpre and the SCM. This knowledge is not accessible by the predictor
h∗, which only makes use of xpost. As such, improvement that was accurately predicted by ICR is not necessarily
recognized by h∗ and γind cannot be directly translated into an acceptance bound. We demonstrate the issue at an
Example in E.3.8
In order to settle the imbalance between ICR and the predictor, we suggest to leverage the SCM not only when
generating individualized ICR recommendations but also when predicting post-recourse, such that the predictor is
at least as accurate as γind. More formally, we suggest to estimate the post-recourse distribution of Y conditional
on xpre, do(a), and the post-recourse observation xpost,a (Definition 3). This post-recourse prediction resembles the
counterfactual distribution, except that we additionally take the factual post-recourse observation of the covariates into
account.

7If a cannot affect Y , we can predict P (Y |xpre, do(a)) = P (Y |xpre) using the optimal observational predictor h∗.
8One may also argue that standard predictive models are not suitable since optimality of the predictor in the pre-recourse

distribution does not necessarily imply optimality in interventional environments (as Example 1, E.1 demonstrates). We can refute
this criticism using Proposition 3, where we learn that ĥ∗ is stable with respect to ICR actions.
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Definition 3 (Individualized post-recourse predictor). We define the individualized post-recourse predictor as

h∗,ind(xpost) = P (Y post = 1|xpost, xpre, do(a))

For SCMs with invertible equations, h∗,ind can be estimated using a closed form solution. Otherwise we can sample
from the counterfactual post-recourse distribution p(ypost, xpost|xpre, do(a)) (as we did for the estimation of γind),
select the samples that conform with xpost and compute the proportion of favorable outcomes (details in B.2).
For the individualized post-recourse predictor, improvement probability and prediction are closely linked (Proposition 1).
More specifically, the expected post-recourse prediction h∗,ind is equal to the individualized improvement probability
γ(xpre, a). We will exploit Proposition 1 in Section 7, where we derive acceptance guarantees for ICR.
Proposition 1. The expected individualized post-recourse score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Subpopulation-based post-recourse prediction Curiously we find that for ICR actions a the optimal observational
pre-recourse predictor h∗ remains accurate: in the subpopulation of similar individuals the expected post-recourse
prediction corresponds to the improvement probability γsub(a) (Proposition 3). This allows us to derive acceptance
guarantees for h∗ in Section 7.
This result is in contrast to the negative results for CR, where actions may not affect prediction and the underlying target
coherently, such that the predictive performance deteriorates (as demonstrated in the introduction, and more formally in
E.1). The key difference to CR is that ICR actions exclusively intervene on causes of Y : Interventions on non-causal
variables may lead to a shift in the conditional distribution P (Y |XS) (where S ⊆ D is any set of variables that allows
for optimal prediction). In contrast, given causal sufficiency, the conditional P (Y |XS) is stable to interventions on
causes of Y .
Proposition 2. Given nonzero cost for all interventions, ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for optimal models the conditional distribution of Y given the variables XS that the model uses
(i.e. P (Y |XS)) is stable w.r.t interventions on causes. Therefore, optimal predictors are intervention stable w.r.t. ICR
actions.
Proposition 3. Given causal sufficiency and positivity9, for interventions on causes the expected subgroup-wide optimal
score h∗ is equal to the subgroup-wide improvement probability γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

Link between CR and ICR: Proposition 2 has further interesting consequences. For CR actions a that only intervene on
causes of Y and that are guaranteed to yield a predicted score ζ in the subpopulation, we can infer that γsub(a) ≥ ζ.
For instance, if acceptance with respect to a 0.5 decision threshold can be guaranteed, that implies improvement with at
least 50% probability. As such, in subpopulation-based settings (1) improvement guarantees can be made for CR if only
interventions on causes are lucrative, and (2) CR can be adapted to also guide towards improvement by a restricting
actions to intervene on causes.

7 Acceptance Guarantees

For the presented accurate post-recourse predictors, improvement guarantees translate into acceptance guarantees
(Proposition 4). The reason is that the post-recourse prediction is linked to γ (Propositions 1 and 3).
Proposition 4. Let g be a predictor with E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a decision threshold t the
post-recourse acceptance probability η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower bounded by the respective
improvement probability:

η(t;xpreS , a, g) ≥
γ(xpreS , a)− t

1− t
.

Proof (sketch): We decompose the expected prediction (γ) into true positive rate (TPR), false negative rate (FNR) and
acceptance rate. By bounding TPR and FNR we yield the presented acceptance bound. The proof is provided in D.4.

9Positivity ensures that the post-recourse observation lies within the observational support [Neal, 2020], where the model was
trained (i.e., ppre(xpost) > 0)).
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Using Proposition 4, we can tune confidence γ and the model’s decision threshold to yield a desired acceptance rate.
For instance, we can guarantee acceptance with (subgroup-wide) probability η ≥ 0.9 given γ = 0.95 and a global
decision threshold t = 0.5 .
Furthermore we can leverage the sampling procedures that we use to compute γ to estimate the individualized or
subpopulation-based acceptance rate η(t;xpreS , a, g) (as detailed in B.1 and B.3). To guarantee acceptance with certainty,
the decision threshold can be set to t = 0.
For the explainee, it is vital that the acceptance guarantee is presented in a human-intelligible fashion. In contrast
to previous work in the field, we suggest to communicate the acceptance guarantee in terms of a probability.10

Furthermore, for subpopulation-based recourse, the set of subgroup characteristics should be transparent. In the hospital
admission example, the subpopulation-based acceptance guarantee could be communicated as follows: Within a group
of individuals that share your zip code, a vaccination leads to acceptance with at least probability η.

8 Experiments

In the experiments we evaluate the following questions, assuming correct causal knowledge and accurate models of the
conditional distributions in the data:

Q1: Do CE, CR and ICR lead to improvement?
Q2: Do CE, CR and ICR lead to acceptance (by pre- and post- post-recourse predictor)?
Q3: Do CE, CR and ICR lead to acceptance by other predictors with comparable test error?11

Q4: How costly are CE, CR and ICR recommendations?

Setup We evaluate CE, individualized and subpopulation-based CR and ICR with various confidence levels, over
multiple runs, and on multiple synthetic and semi-synthetic datasets with known ground-truth (listed below).12 Random
forests were used for prediction, except in the 3var settings where logistic regression models were used. Following
Dandl et al. [2020], we use NSGA-II [Deb et al., 2002] for optimization. For a full specification of the SCMs including
the linear cost functions we refer to C.2. Details on the implementation and access to the code are provided in C.1.

3var-causal: A linear gaussian SCM with binary target Y , where all features are causes of Y .
3var-noncausal: The same setup as 3var-causal, except that one of the features is an effect of Y .
5var-skill: A categorical semi-synthetic SCM where programming skill-level is predicted from causes (e.g. university
degree) and non-causal indicators extracted from GitHub (e.g. commit count).
7var-covid: A semi-synthetic dataset inspired by a real-world covid screening model [Jehi et al., 2020, Wynants et al.,
2020].13 The model includes typical causes like covid vaccination or population density and symptoms like fever and
fatigue. The variables are mixed categorical and continuous with various noise distributions. Their relationships include
nonlinear structural equations.

Results The results are visualized in Figure 2 and provided in tabular form in C.3.

Q1 (Figure 2a): In scenarios where gaming is possible and lucrative (3var-noncausal, 5var-skill and 7var-covid) ICR
reliably guides towards improvement, but CE and CR game the predictor and yield improvement rates close to zero.
For instance, on 5var-skill CE and CR exclusively suggest to tune the GitHub profile (e.g. by adding more commits).
Since the employer offered recourse it should be honored although the applicants remain unqualified. In contrast, ICR
suggests to get a degree or to gain experience, such that recourse implementing individuals are suited for the job.
On 3var-causal, where gaming is not possible, CR also achieves improvement. However, since acceptance w.r.t to a
decision treshold t = 0.5 is targeted, only improvement rates close to 50% are achieved (the expected predicted score
translates into γsub (Proposition 3)).
For subp. ICR, γobs is below γ, because the subpopulation may include individuals that were already accepted
pre-recourse, such that γsub and γobs may not coincide.

Q2 (Figure 2d): All methods yield the desired acceptance rates w.r.t. to the pre-recourse predictor.14 For CE and CR
ηobs is higher than for ICR, and for ind. recourse higher than for subp. recourse. Curiously, although no acceptance

10For CR, the acceptance confidence is encoded in a hyperparameter, as explained in E.2.
11The problem that refits on the same data with similar performance have different mechanism is known as the Rashomon problem

or model multiplicity [Breiman, 2001, Pawelczyk et al., 2020, Marx et al., 2020].
12For ground-truth counterfactuals, simulations are necessary [Holland, 1986].
13The real-world screening model is used to decide whether individuals need a test certificate to enter a hospital. It can be accessed

via https://riskcalc.org/COVID19/.
14ICR holds the acceptance rates from Proposition 4, as analyzed in more detail in C.3.
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CE 1.82 ± 1.09
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ind. ICR 4.26 ± 3.34

subp. ICR 4.20 ± 3.33

(c) Recourse cost (Q4).
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(d) Observed acceptance rates ηobs w.r.t. h∗; for ind.
ICR additionally w.r.t. h∗,ind (Q2).
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(e) Observed acceptance rates for other fits with com-
parable test set performance ηobs,refit (Q3).
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Figure 2: Experimental results for CE, CR and ICR on four datasets over 10 runs on 200 individuals each. For the
probabilistic methods the confidences 0.75, 0.85, 0.9, 0.95 were targeted (for CR: η, for ICR: γ). For CE no slack is
allowed, such that the results correspond to a confidence level of 1.0. Values are reported on a quadratic scale.

guarantees could be derived for the pre-recourse predictor and ind. ICR, we find that both pre- and ind. post-recourse
predictor reliably lead to acceptance.15

Q3 (Figure 2e): We observe that CE and CR actions are unlikely to be honored by other model fits with similar
performance on the same data. This result is highly relevant to practitioners, since models deployed in real-world
scenarios are regularly refitted. As such, individuals that implemented acceptance-focused recourse may not be accepted
after all, since the decision model was refitted in the meantime. In contrast, ICR acceptance rates are nearly unaffected
by refits. The result confirms our argument that improvement-focused recourse may be more desirable for explainees
(Section 4).

Q4 (Table 2c): CR actions are cheaper than ICR actions, since improvement may require more effort than gaming. As
such, CR has benefits for the explainee: For instance, on 5var-skill, CR suggests to tune the GitHub profile (e.g. by
adding more commits), which requires less effort than earning a degree or gaining job experience. Detailed results on
cost are reported in C.3.

In conclusion, ICR actions require more effort than CR, but lead to improvement and acceptance while being more
robust to refits of the model.

9 Limitations and Discussion

Causal knowledge and assumptions Individualized ICR requires a fully specified SCM; Subpopulation-based ICR
is less demanding but still requires the causal graph and causal sufficiency. SCMs and causal graphs are rarely readily
available in practice [Peters et al., 2017] and causal sufficiency is difficult to test [Janzing et al., 2012]. Research on
causal inference gives reason for cautious optimism that the difficulties in constructing SCMs and causal graphs can
eventually be overcome [Spirtes and Zhang, 2016, Peters et al., 2017, Heinze-Deml et al., 2018, Malinsky and Danks,
2018, Glymour et al., 2019].
There are further foundational problems linked to causality that affect our approach: causal cycles, an ontologically
vague target Y (e.g. in hiring), disparities in our data, or causal model misspecification [Barocas and Selbst, 2016,

15Given that the ind. post-recourse predictor is much more difficult to estimate, the pre-recourse predictor in combination with
individualized acceptance guarantees (B.1) may cautiously be used as fallback.
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Barocas et al., 2017, Bongers et al., 2021]. All of these factors are considered difficult open problems and may have
detrimental impact on our, as well as on any other, recourse framework.
Guiding action without causal knowledge is impossible; when causal knowledge is available, our work provides
a normative framework for improvement-focused recourse recommendations. Thus, we join a range of work in
explainability [Frye et al., 2020, Heskes et al., 2020, Wang et al., 2021, Zhao and Hastie, 2021] and fairness [Kilbertus
et al., 2017, Kusner et al., 2017, Zhang and Bareinboim, 2018, Makhlouf et al., 2020] that highlights the importance of
causal knowledge.

Contestability Improvement-focused recourse guides individuals towards actions that help them to improve, e.g.,
it recommends a vaccination to lower the risk to get infected with Covid. If, however, a explainee is more interested
in contesting the algorithmic decision, (improvement-focused) recourse recommendations are not sufficient. Think
of an individual who is denied entrance to an event because of their high Covid risk prediction, which is based on a
non-causal, spurious association with their country of origin16. In such situations, we suggest to additionally show
explainees diverse explanations, which enable to contest the decision. For example, such an explanation could be: if
your country of origin would be different, your predicted Covid risk would have been lower.

10 Conclusion

In the present paper, we took a causal perspective and investigated the effect of recourse recommendations on the
underlying target variable. We demonstrated that acceptance-focused recourse recommendations like counterfactual
explanations or causal recourse may not improve the underlying prediction but game the predictor instead. The problem
stems from predictive, but non-causal relationships, which are abundant in machine learning applications.17

We tackled the problem in the explanation domain and introduced Improvement-Focused Causal Recourse (ICR),
an explanation technique that guides towards improvement of the prediction target and demonstrated how to design
post-recourse predictors such that improvement leads to acceptance. We confirm the theoretical results in experiments.
With ICR we hope to inspire a shift from acceptance- to improvement-focused recourse.

Acknowledgements
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16E.g., due to a spurious association with the causal variable type of vaccine.
17For instance, in hiring, certain keywords in the CV may be associated with qualification, but adding them to the CV does not

improve aptitude [Strong, 2022].
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A Extended Background

As follows, we recapitulate well-known definitions in our notation, provide more detailed background on related work
and recapitulate results that we use in the proofs. Readers who are already familiar with recourse terminology and
d-separation (A.1 and A.2), and who are not interested in more detailed introductions of intervention stability (A.3,
only required for the proof of Proposition 2) or causal recourse (A.4), may skip this section.

A.1 Overview of important terms

An overview of important terms is provided in Table 1.

A.2 d-separation

Two variable sets X,Y are called d-separated [Geiger et al., 1990, Spirtes et al., 2000] by the variable set Z in a graph G
(denoted as X ⊥G Y |Z), if, and only if, for every path p it either holds that (i) p contains a chain i→ m→ j or a fork
i← m→ j where m ∈ Z or (ii) p contains a collider i→ m← j such that m and for all of its descendants n it holds
that m,n 6∈ Z. Given the causal Markov property, d-separation in a causal graph implies (conditional) independence in
the data [Peters et al., 2017].

A.3 Generalizability and intervention stability

For Proposition 2, we leverage necessary conditions for invariant conditional distributions as derived in [Pfister et al.,
2021]. The authors introduce a d-separation based intervention stability criterion that is applied to a modified version of
G. For every intervened upon variable Xl an auxiliary intervention variable, denoted as Il, is added as direct cause of
Xl, yielding G∗. The intervention variable can be seen as a switch between different mechanisms. A set S ⊆ {1, . . . , d}
is called intervention stable regarding a set of actions if for all intervened upon variables Xl (where l ∈ I total) the
d-separation I l ⊥G∗ Y |XS holds in G∗. The authors show that intervention stability implies an invariant conditional
distribution, i.e., for all actions a, b ∈ A with Ia, Ib ⊆ I total it holds that p(ya|xS) = p(yb|xS) (Pfister et al. [2021],
Appendix A).

A.4 Causal recourse

ICR is closely related to the CR framework [Karimi et al., 2020b, 2021], but differs substantially in its motivation and
target. In order to allow for a direct comparison we briefly sketch the main ideas and the central CR definitions in our
notation. Like ICR, CR aims to guide individuals to revert unfavorable algorithmic decisions (recourse). Therefore,
they suggest to search for cost-efficient actions that lead to acceptance by the prediction model. Actions are modeled as
structural interventions a : Π→ Π, which can be constructed as a = do({Xi := θi}i∈I), where I is the index set of
features to be intervened upon [Karimi et al., 2021]. The conservativeness of the suggested actions can be adjusted
using the hyperparameter γLCB , that determines the adaptive threshold thresh(a) and thereby how many standard
deviations the expected prediction shall be away from the model’s decision threshold t. In order to accommodate
different levels of causal knowledge, two probabilistic versions of CR were introduced [Karimi et al., 2020b]: While
individualized recourse assumes knowledge of the SCM, subpopulation-based CR only assumes knowledge of the
causal graph.

Table 1: Overview of important terms and their meanings.

term meaning

explainee individual for whom the explanation is generated, e.g. loan applicant
model authority decision-making entity, e.g. credit institute
recourse action of the explainee that reverts unfavorable decision
acceptance desirable model prediction (Ŷ = 1)
improvement (yield) desirable state of the underlying target (Y = 1)
gaming yield acceptance without improvement, e.g. treating the symptoms
pre-/post-recourse before/after implementing recourse recommendation
contestability the explainee’s ability to contest an algorithmic decision
robustness of recourse probability that recourse is accepted despite model/data shifts
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Individualized recourse Individualized recourse predicts the effect of actions using structural counterfactuals [Karimi
et al., 2021], which require a full specification of the SCM.

Given a function that evaluates the cost of actions (cost(a, xpre)), the optimization goal for individualized causal
recourse is given below. The adaptive threshold thresh bounds the prediction away from the decision threshold.18

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t. E[ĥ(xpost)|do(a), xpre] ≥ thresh(a)

with thresh(a) := 0.5 + γLCB

√
Var[ĥ(xpost,a)]

Subpopulation-based recourse: If no knowledge of the SCM is given, counterfactual distributions cannot be
estimated and consequently individualized recourse recommendations cannot be computed. Subpopulation-based CR is
based on the average treatment effect within a subgroup of similar individuals [Karimi et al., 2020b]. More specifically
individuals belong to the same group if the non-descendants nd(I) of intervention variables (which ceteris paribus
remain constant despite the intervention) take the same value. The subpopulation-based objective is given below.

a∗ ∈ argmin
a∈A

cost(a, xpre) s.t. EXd(I)|do(XI=θ),xpre
nd(I)

[ĥ(xprend(I), θ,Xd(I))] ≥ thresh(a).

18Further constraints have been suggested, e.g., xpost,a ∈ Plausible or a ∈ Feasible [Laugel et al., 2019, Ustun et al., 2019,
Mahajan et al., 2020, Dandl et al., 2020, Karimi et al., 2021].
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B Estimation and Optimization

As follows we provide detailed explanations of the proposed estimation procedures. First, we explain how to sample
from the individualized post-recourse distribution, which allows us to estimate the individualized improvement and
acceptance rates (γind and ηind, B.1). Based on the same sampling mechanism we can also estimate the individualized
post-recourse prediction h∗,ind (B.2). Then we explain how to sample from the subpopulation-based post-recourse
distribution, which allows us to estimate the subpopulation-based improvement and acceptance rates (γsub and ηsub,
B.3). Furthermore, we provide details on optimization (B.4) and demonstrate that the optimal observational predictor
h∗ can also be estimated using the SCM (B.5).

B.1 Estimation of the individualized improvement confidence γind and individualized acceptance rate ηind

We recall that γind is the counterfactual probability of the underlying target Y taking the favorable outcome, and ηind

the counterfactual probability of the prediction Ŷ taking the favorable outcome. In order to estimate γind and ηind we
first sample covariates and target from the counterfactual post-recourse distribution and then compute the proportion of
favorable outcomes for Y and Ŷ in the sample.
In general, sampling from counterfactual distributions based on a SCM is performed in three steps (Section 3, [Pearl,
2009]).

1. Abduction: The exogenous noise variables are reconstructed from the observations, i.e., p(uY,D|xpre) is
estimated.

2. Intervention: The intervention do(a) on the SCM M is performed by replacing the respective structural
equations fIa := θIa , yieldingMdo(a).

3. Prediction: The abducted noise variables are sampled from p(uY,D|xpre) and passed through the model
Mdo(a) to sample from the counterfactual distribution P (Y post, Xpost|xpre, do(a)).

Given knowledge of the SCM, the challenge is to sample the exogeneous variables from p(uY,D|xpre) (abduction). As
follows we explain the abduction in two steps. First, we explain how we can abduct uj for variables for which both the
node xj and all parents (x, y)pa(j) are observed, which we refer to as the standard abduction case. Then we factorize
the abduction of the joint p(uY,D|xpre) into several components which can be reduced to said standard abduction case.
The sampling procedure is summarized in Algorithm 1.

B.1.1 Recap: Standard abduction

If for a node uj both the node (x, y)j and the parents (x, y)pa(j) are observed, we can apply standard abduction. The
standard abduction procedure depends on the type of structural equation and exogenous noise distribution.
Given invertible structural equations, observation of xj , xpa(j) determines uj . More specifically, uj can be reconstructed
using

uj = f−1(xj ;xpa(j)).

For instance, for additive structural equations fj(uj ;xpa(j)) = g(xpa(j)) + uj , the inversion is given by
f−1
j (xj ;xpa(j)) = xj − g(xpa(j)).

In our experiments we also included binomial variables with a sigmoidal (non-invertible) structural equation. More
specifically, the structural equations are defined as xj = [σ(l(xpa(j))) ≤ uj ] with Uj ∼ Unif(0, 1). Here σ refers to
the sigmoid function and l to some linear combination. [cond] evaluates to 1 when the condition is true and otherwise
to 0. Intuitively, σ(l(xpa(j))) can be seen as a nonlinear activation function which determines the probability of the
node being activated (xj = 1). uj acts as a dice, where values ≤ σ(l(xpa(j))) imply xj = 1 and vice versa.
For those variables, if xj = 1, we know that uj ≤ σ(l(xpa(j))) and vice versa, such that we can abduct Uj as follows
(and can therefore sample uj):

P (Uj |xj ;xpa(j)) =

{
Unif(0, σ(l(xpa(j)))), for xj = 1
Unif(σ(l(xpa(j))), 1), for xj = 0

As we will see in the next section, our estimation procedure can be flexibly extended to SCMs with different types of
structural equations, as long as a procedure to sample from the abducted exogneous noise variable for the standard case
(where parents and the node itself are observed) is available.
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Algorithm 1: Sampling from the individualized post-recourse distribution
Data: pre-recourse observation xpre, action a (where do(a) := do(XIa := θ)), sample size M , structural causal

modelM with structural equations fj , observational predictor h
Result: sample from p(ypost, xpost|xpre, do(a))
getMdo(a) by updating fi(xpa(i);ui) := θi for i ∈ Ia ;
for m in (0, ...,M − 1) do

sample y′ from Binomial(h(xpre)) ;
for j in D do

sample u(m)
j from p(uj |(x, y′)j , (x, y′)pa(j)) . comment: leveraging standard abduction;

end
sample u(m)

Y from p(uY |y′, xpa(Y )) ;
compute (xpost, ypost)(m) = fMdo(a)

(u(m)) ;
end

B.1.2 Factorization of p(u|x)

We have demonstrated how to abduct individual nodes in the standard setting where the corresponding endogenous
variable and its parents are observed.
As follows we demonstrate how to sample from the joint distribution of the exogenous variables given an observation of
X (and without observing Y ). Therefore, we show that p(u|x) can be seen as a mixture of two distributions, one for
each possible state y′ of Y . In order to sample from it, we (1) need to sample y′ from the mixing distribution p(y|x)
and (2) given y′, sample from the respective abducted noise variable p(u|y′, x).

p(u|x)
law tot. prob.

=
∑

y′∈{0,1}

p(u, y′|x)
cond. prob.

=
∑

y′∈{0,1}

p(u|y′, x)p(y′|x) (2)

The binomial mixing distribution p(y|x) can be obtained and sampled from by leveraging the cross-entropy optimal
predictor h∗ (which can for instance be derived from the SCM, see B.5). In order to sample from p(u|y′, x) we leverage
the Markov factorization, which allows us to sample each component independently using the standard abduction
procedure described above.

p(u|x, y′)
d-sep.

= P (uY |xpa(Y ), y
′)

∏
k∈ch(Y )

P (uk|xk, xpa(k), y
′)

∏
k 6∈ch(Y )

P (uk|xk, xpa(k)). (3)

The overall procedure is summarized in Algorithm 1.

B.1.3 Estimation of γind and ηind

Given the procedure to sample from the individualized post-recourse distribution we can estimate γind by taking the
mean over the samples taken for Y post. Similarly, for each sample for Xpost we can compute the prediction ŷpost
using either h ≥ t or hind ≥ t. By taking the mean over all sampled predictions ŷpost we can estimate the respective
acceptance probability η(t;xpre, a, h) or η(t;xpre, a, hind).

B.2 Estimation of the individualized post-recourse prediction

We continue to show how the individualized post-recourse prediction can be estimated. We recall that h∗,ind is

h∗,ind(xpost;xpre, a) = P (Y post = 1|xpost, xpre, do(a)).

We can estimate h∗,ind by leveraging the procedure to sample from the post-recourse covariate distribution (Algorithm
1). More specifically, we draw samples (y′, x′) from P (Y post, Xpost|do(a), xpre) and keep those that conform with
xpost (i.e., x′ = xpost). Within the subsample, we compute the proportion of samples for which y′ = 1 to estimate
p(ypost|xpre, xpost, do(a)). In more formal terms, we approximate Eq. 4 using rejection sampling and Monte Carlo
integration [Koller and Friedman, 2009].
If the structural equations are invertible19 or the nodes are categorical the procedure is tractable, since many or all

19Meaning that the abducted joint distribution has point mass probability for two configurations, one for each possible state of Y .
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Algorithm 2: Estimating h∗,ind

Data: pre-recourse observation xpre, action a, sample size M , structural causal modelM, observational predictor
h, m = 0

Result: ĥind(xpost;xpre, do(a))
while m < M do

sample (x′, y′) using Alg. 1 and xpre, a,M, h;
if x′ = xpost then

m = m+ 1; store y′ as y′(m) ;
end

end
ĥind(xpost) = 1

M

∑M
m=1 y

′(m)

samples conform with xpost. Otherwise the estimation may become intractable. We see the application of likelihood
weighting or MCMC as promising directions and refer interested readers to Koller and Friedman [2009].
In addition to the sampling-based procedure we also derive a closed-form solution for settings with invertible structural
equations, which is provided in Proposition 5, Eq. 5.

Proposition 5. In general, the individualized post-recourse predictor can be estimated as

p(ypost|xpre, xpost, do(a))

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (4)

Given invertible structural equations, the individualized post-recourse prediction function reduces to

p(ypost|xpost, xpre, do(a))

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1
do(a)(y

′, xpost)|xpre, do(a))
.

(5)

B.3 Estimation of the subpopulation-based improvement confidence γsub and the subpopulation-based
acceptance rate ηsub

As follows we detail how to estimate γsub and ηsub. We focus on actions a that potentially affect Y , meaning that they
intervene on causes of Y .20

In order to estimate γsub and ηsub we sample (x′, y′) from the subpopulation-based post-recourse distribution. Given a
sample from the subpopulation-based post-recourse distribution we can estimate γsub and ηsub by taking the respective
sample means.
We explain the sampling procedure in two steps: We first recall how causal graphs can be leveraged to sample
interventional distributions, and then explain why we can apply the procedure to sample from the subpopulation-based
post-recourse distribution.

Recap: Sampling interventional distributions leveraging a causally sufficient causal graph G Given a causal
graph G (that fulfills the global Markov property), the joint distribution P (X,Y ) can be reformulated using the Markov
factorization, which makes use of the d-separations in the graph.

p(x, y) = p(y|xpa(y))
∏
j∈D

p(xj |(x, y)pa(j))

As a consequence, we can sample from the joint distribution by sampling each component given its respective parents.
In order to ensure that the parents for each node have been sampled already, the graph is traversed in topological order,
starting with the root node and ending with the sink nodes [Koller and Friedman, 2009].
Given that causal sufficiency (no unobserved confounders) and the principle of independent mechanisms hold, the same

20Actions that do not affect Y trivially do not lead to improvement. The respective probability of Y = 1 can be estimated using
the optimal observational predictor.
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Y Y

Figure 3: Causal graph GIa visualizing the subpopulation-based post-recourse setting, including the prediction target Y
(light blue), intervened-upon variables Ia (red), the subgroup characteristics Ga (cyan) and the descendants Γ that shall
be resampled (dark blue). Ia indicates that incoming edges to Ia were removed. Right: Causal graph GIaGa

where
incoming edges to Ia and outgoing edges from Ga were removed. We observe that in this manipulated graph Ga is
d-separated from Γ. Thus, according to the second rule of do-calculus, for Ga intervention and conditioning coincide.

Algorithm 3: Sampling from the subpopulation-based post-recourse distribution
Data: pre-recourse observation xpre, action a with Ia ∩ asc(Y ) 6= ∅ (do(a) := do(XIa := θ)), sample size M ,

causal graph G, conditional distributions P (Xj |Xpa(j)) for j ∈ Γ with Γ := {r : r ∈ asc(Y ) ∧ r ∈ d(I)}
Result: sample from p(y, xΓ|do(a), xGa)
for m← 0 to M do

Γsorted ← topologicalsort( Γ;Gdo(a)) . sort such that causes precede effects ;
for j in Γsorted do

sample (x, y)
post,(m)
j ∼ P ((X,Y )j |(X,Y )pa(j) = (x, y)postpa(j)) ;

end
end

procedure can also be applied when sampling from interventional distributions of the form p(x, y|do(a)) by leveraging
the so-called truncated factorization. The intervened upon nodes are not sampled from their parents, but fixed to the
values θa. The remaining nodes Γ are sampled as before:

p((x, y)Γ|do(a)) =
∏
j∈Γ

p((x, y)j |(x, y)pa(j)∩Γ, θpa(j)∩Ia)

with Γ := D\Ia

Sampling from the subpopulation-based post-recourse distribution using G We recall that for actions a that
potentially affect Y the subpopulation-based post-recourse distribution is defined as

P (Y post, Xpost|do(a), Xpost
Ga

= xpreGa
). (6)

As we will see, the previously described sampling procedure can be applied. Therefore we apply the second rule of do-
calculus to show that in Equation 6 conditioning on xGa is equal to intervening do(XGa = xGa). More specifically, if
we remove all outgoing edges fromXGa

and all incoming edges to Ia, thenXGa
andXΓ with Γ := D\Ia∩Ga = d(Ia)

are d-separated, meaning that conditioning and intervention are equivalent (Figure 3).

P ((Y,X)postΓ |do(a), Xpost
Ga

= xpreGa
)

= P ((Y,X)postΓ |do(a), do(Xpost
Ga

= xpreGa
))

As follows we can leverage the procedure to sample interventional distributions to sample from the subpopulation-based
post-recourse distribution. The procedure is illustrated in Algorithm 3.

B.3.1 Learning the conditional distributions P (Xj |xpa(j))

In this work we assume that we have prior knowledge that allows us to sample from the components of the factorization
(P (Xj |xpa(j)), e.g. available if we know the SCM).
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If the conditional distributions are not known, they can be learned from observational data; depending on
which assumptions about distribution and functional can be made, different techniques may be employed. For
categorical variables the problem reduces to standard supervised learning with cross-entropy loss. For linear
Gaussian data, the conditional distribution can be estimated analytically from the covariance matrix [Page Jr,
1984]. A variety of estimation techniques exist for continuous settings with nonlinearities [Bishop, 1994, Bash-
tannyk and Hyndman, 2001, Sohn et al., 2015, Trippe and Turner, 2018, Winkler et al., 2019, Hothorn and Zeileis, 2021].

B.4 Optimization

Like the optimization problems for CE [Wachter et al., 2017, Tsirtsis and Gomez Rodriguez, 2020] or CR [Karimi
et al., 2020b], the optimization problem for ICR is computationally challenging. It can be seen as a two-stage problem,
where in the first stage the intervention targets Ia, and in the second stage the corresponding intervention values θa
are optimized [Karimi et al., 2020b]. For the selection of intervention targets Ia alone 2d

′
combinations exist, with

d′ ≤ d being the number of causes of Y . We jointly optimize the intervention targets and the intervention values using
a genetic algorithm called NSGA-II [Deb et al., 2002]. For mixed categorical and continuous data, previous work in the
field [Dandl et al., 2020] suggests to use NSGA-II in combination with mixed integer evaluation strategies [Li et al.,
2013]. The exact hyperparameter configurations are reported in C.3.

B.5 Estimation of the optimal observational predictor h∗ using the SCM

Instead of leveraging supervised learning with cross-entropy loss, we can factorize the optimal observational predictor
as shown in Proposition 6 and then leverage the SCM for the estimation.
Proposition 6. The optimal observational predictor can be factorized into conditional distributions of nodes given
their parents (using the Markov factorization). More specifically, we yield

p(y|x) =
p(x, y)

p(x)
=

p(x, y)∑
y′∈{0,1} p(x, y)

(7)

M.f.
=

p(y|xpa(j))
∏
j∈D p(xj |(x, y)pa(j))∑

y′∈{0,1} p(y
′|xpa(j))

∏
j∈D p(xj |(x, y′)pa(j))

(8)

=
p(y|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y)∑

y′∈{0,1} p(y
′|xpa(j))

∏
j∈ch(y) p(xj |xpa(j), y′)

. (9)

It remains to show how the conditional distribution p(xj |xpa(j)) of a node given its parents can be estimated. Generally
it holds that

p(xj |xpa(j)) (10)

law tot. prob.
=

∫
Uj
p(xj |xpa(j), uj)p(uj |xpa(j))du (11)

SCM, uj ⊥ xpa(j)
=

∫
Uj

[f(xpa(j), uj) = xj ]p(uj)du. (12)

The integral can be approximated using Monte Carlo integration: we can sample from p(uj), compute the respective
x̃j = fj(xpa(j), ũj) and compute the proportion of cases where xj = x̃j . If Xj and Uj are continuous, this may require
huge sample sizes to converge.
Furthermore, we may be able to leverage assumptions about fj to derive a closed form solution. If fj is invertible, the
integral reduces to p(xj |xpa(j)) = p(Uj = f−1

j (xj , xpa(j))). For binary nodes with xj := [σ(l(xpa(j))) ≤ uj ] and
Uj ∼ Unif(0, 1), we directly see that p(xj |xpa(j)) = σ(l(xpa(j))).
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C Details on Experiments

In this section we provide additional details on the experiments. More specifically, we explain which open-source
libraries we use, how to access our code and how to reproduce the results in C.1. We formally introduce the synthetic and
semi-synthetic datasets that we used in our experiments in C.2 and the corresponding figures. Details on hyperparameters,
models as well as detailed results are reported in C.3 and the corresponding tables.

C.1 Implementation

The code relies of efficient tensor calculations with numpy [Harris et al., 2020], pytorch [Paszke et al., 2019] and
jax [Bradbury et al., 2018]. For named dataframes we use pandas [pandas development team, 2020]. For plotting
we rely on matplotlib [Hunter, 2007] and seaborn [Waskom, 2021]. We use the evolutionary optimization library
deap [Fortin et al., 2012] and NSGA-II [Deb et al., 2002] to solve the combinatorial optimization problem.21 In order
to speed up the computation, we cache queries and results for the improvement confidence using functools.cache.
For continuous variables the intervention can be rounded to a specified number of digits to increase the probability of
reusing a cached result (with neglectable loss of precision).22

All code is publicly available via https://github.com/gcskoenig/icr. The repository contains the user-friendly
python package icr, which we use in our experiments to generate and evaluate recourse. Furthermore, the scripts
for the experiments, the scripts for the visualization of the results as well as a README.md with instructions for the
installation of all dependencies are contained in the repository, such that the experiments are reproducible.

C.2 Synthetic and Semi-Synthetic Datasets

3var-causal and 3var-noncausal are abstract, synthetic settings. 5var-skill is inspired by Montandon et al. [2021], who
use GitHub profiles to detect the role of a developer. In our SCM we model senior-level skill as a binary variable which
is caused by programming experience and the education degree. The skill is causal for GitHub metrics such as the
number of commits, the number of programming languages and the number of stars. The 7var-covid dataset is inspired
by Jehi et al. [2020]. The following variables are introduced: population density D, flu vaccination VI , number of
covid vaccination shots VC , deviation from average BMI B, whether someone is free of covid disease C, whether
the individual has influence I , appetite loss SA, fever SFe and fatigue SFa. The corresponding structural equations,
noise distributions and causal graphs are provided in Figure 4 (3var-causal), 5 (3var-noncausal), 6 (5var-skill) and
7 (7var-covid). A pairplot for each dataset is presented in Figure 8. In our notation σ is the sigmoid function, N the
Gaussian distribution, Cat a categorical distribution, Unif the uniform distribution, Bern a Bernoulli distribution and
GaP a Gamma-Poisson mixture. [cond] is 1 when the condition is met and 0 if not. As a consequence variables with
[Z ≤ U ] and U ∼ Unif(0, 1) are bernoulli distributed with Bern(Z).

C.3 Detailed Results

In this section we report all experimental results in tabular form. More specifically, the results for 3var-causal are
reported in Table 2, for 3var-noncausal in Table 3, for 5var-skill in Table 4 and for 7var-covid in Table 5. For each
experiment we report the specified confidence γ (or η for CR), as well as the observed improvement rate γobs, the
observed acceptance rate ηobs, the observed acceptance rate by the individualized post-recourse predictor ηindiv.

obs , the
observed acceptance rate on refits ηrefit

obs and the average recourse cost for individuals who were rejected and whom were
provided with a recourse recommendation. A visual summary of the results is provided in Section 8.

In order to enable a more direct comparison of the CR and ICR targets, we equalize the optimization thresholds for ICR
and CR. More specifically, for CR we require the (individualized or subpopulation-based) acceptance probability to be
≥ η, and for ICR we require the (individualized or subpopulation-based) improvement probability to be ≥ γ, where
γ = η.23 Furthermore, in order to be able to estimate the effects of recourse actions, CR assumes causal sufficiency,
meaning that there are no two endogeneous variables that share an unobserved cause. If the target variable Y is
exogeneous then any causal model with more than one endogeneous direct effect of Y violates the assumptions. In
order to enable an application of CR on datasets with more than one effect variable we assume knowledge of the SCM

21We also implemented abduction based on probabilistic inference. Thereby we rely on on pyro [Bingham et al., 2018] for
discrete inference and numpyro [Phan et al., 2019] for MCMC inference of continuous variables. For our experiments we used the
analytical formulas presented in B

22All packages are open source. For detailed license information we refer to the respective package websites.
23A short comment on the choice of a non-adaptive threshold can be found in E.2.
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X1 X2

X3

Y

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U2, U2 ∼ N(0, 1)

X3 := X1 +X2 + U3, U3 ∼ N(0, 1)

Y ∼ [σ(X1 +X2 +X3) ≤ UY ] , UY ∼ Unif(0, 1)

(b) Structural Equations

Figure 4: SCM for 3var-causal. The cost function is given as cost(a) = δ1 + δ2 + δ3, where δ is the vector of absolute
changes to the intervened upon variables. E.g., for do(a) = do(X1 = x′1), δ1 = |x′1 − x1| and δ2 = δ3 = 0

X1X2

Y

X3

(a) Causal graph

X1 := U1, U1 ∼ N(0, 1)

X2 := X1 + U1, U1 ∼ N(0, 1)

Y := [σ(X1 +X2) ≤ UY ] , UY ∼ Unif(0, 1)

X3 := X1 +X2 + Y + U3, U3 ∼ N(0, 0.1)

(b) Structural Equations

Figure 5: SCM for 3var-noncausal with cost(a) = δ1 + δ2 + δ3.

experience E degree D

senior-level skill S

nr commits GC nr languages GL nr stars GS

(a) Causal graph

E := UE ;UE ∼ GaP (8, 8/3)

D := UD;UD ∼ Cat(0.4, 0.2, 0.3, 0.1)

S := [σ(−10 + 3E + 4D)) ≤ US ] ;US ∼ Unif(0, 1)

GC := 10E(11 + 100D) + UGC
;UGC

∼ GaP (40, 40/4)

GL := σ(10S) + UGL
;UGL

∼ GaP (2, 2/4)

GS := 10S + UGS
;UGS

∼ GaP (5, 5/4)

(b) Structural Equations

Figure 6: SCM for 5var-skill with cost(a) = 5δE + 5δD + 0.0001δGC
+ 0.01δGL

+ 0.1δGS .

density Dflu vacc VIcovid shots VCBMI B

covid-free C

appetite SAfever SFefatigue SFa

(a) Causal graph

D := UD;UD ∼ Γ(4, 4/3)

VI := UVI
;UVI

∼ Bern(0.39)

VC := UVC
;UVC

∼ Cat(0.24, 0.02, 0.15, 0.59)

B := UB ;UB ∼ N(0, 1)

C :=
[
σ(−(D − 3− VI − 2.5VC + 0.2B2)) ≤ UC

]
;

UC ∼ Unif(0, 1)

SA := [σ(−2C) ≤ USA
] ;USA

∼ Unif(0, 1)

SFe := [σ(5− 9C) ≤ USFe
] ;USFe

∼ Unif(0, 1)

SFa :=
[
σ(−1 +B2 − 2C) ≤ USFa

]
;

USFa
∼ Unif(0, 1)

(b) Structural Equations

Figure 7: SCM for 7var-covid with cost function cost(a) = δD + δVI
+ δVC

+ δB + δSA
+ δSFe

+ δSFa
.
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(a) Pairplot for 3var-causal.
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(b) Pairplot for 3var-noncausal.
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(c) Pairplot for 5var-skill.
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Figure 8: Pairplots for the SCMs.
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Table 2: Results for 3var-causal.

3var-causal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.41 0.09 1.00 0.00 - - 0.60 0.20 3.08 0.41

ind. CR 0.75 0.47 0.10 1.00 0.00 - - 0.70 0.10 2.46 0.37
ind. CR 0.85 0.44 0.08 1.00 0.00 - - 0.72 0.12 2.39 0.25
ind. CR 0.90 0.47 0.09 1.00 0.00 - - 0.72 0.14 2.36 0.35
ind. CR 0.95 0.49 0.07 1.00 0.00 - - 0.67 0.10 2.44 0.31

subp. CR 0.75 0.46 0.11 0.86 0.04 - - 0.64 0.14 2.66 0.41
subp. CR 0.85 0.43 0.08 0.93 0.02 - - 0.69 0.14 2.64 0.32
subp. CR 0.90 0.45 0.09 0.96 0.02 - - 0.70 0.15 2.73 0.42
subp. CR 0.95 0.48 0.09 0.98 0.01 - - 0.64 0.14 2.86 0.41

ind. ICR 0.75 0.79 0.06 0.98 0.02 1.0 0.0 0.96 0.03 3.27 0.50
ind. ICR 0.85 0.86 0.03 1.00 0.01 1.0 0.0 0.97 0.02 3.82 0.30
ind. ICR 0.90 0.90 0.02 1.00 0.01 1.0 0.0 0.98 0.03 3.70 0.31
ind. ICR 0.95 0.95 0.01 1.00 0.00 1.0 0.0 0.99 0.01 4.08 0.24

subp. ICR 0.75 0.75 0.04 0.93 0.04 - - 0.90 0.04 3.34 0.49
subp. ICR 0.85 0.87 0.03 0.98 0.01 - - 0.96 0.02 4.05 0.29
subp. ICR 0.90 0.89 0.02 0.99 0.01 - - 0.97 0.02 3.87 0.25
subp. ICR 0.95 0.94 0.02 1.00 0.00 - - 0.99 0.01 4.22 0.28

Table 3: Results for 3var-noncausal

3var-noncausal γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.17 0.03 0.98 0.04 - - 0.67 0.15 2.28 0.26

ind. CR 0.75 0.25 0.03 1.00 0.00 - - 0.70 0.13 2.28 0.21
ind. CR 0.85 0.24 0.02 1.00 0.00 - - 0.73 0.13 2.29 0.17
ind. CR 0.90 0.24 0.04 1.00 0.00 - - 0.71 0.11 2.24 0.16
ind. CR 0.95 0.23 0.04 1.00 0.00 - - 0.73 0.12 2.18 0.32

subp. CR 0.75 0.22 0.03 0.91 0.03 - - 0.63 0.15 2.18 0.12
subp. CR 0.85 0.19 0.03 0.95 0.02 - - 0.67 0.15 2.33 0.21
subp. CR 0.90 0.19 0.03 0.97 0.01 - - 0.65 0.14 2.42 0.19
subp. CR 0.95 0.19 0.03 0.99 0.01 - - 0.69 0.14 2.26 0.32

ind. ICR 0.75 0.77 0.03 0.93 0.02 0.79 0.03 0.93 0.02 2.16 0.11
ind. ICR 0.85 0.86 0.02 0.99 0.01 0.90 0.02 0.99 0.01 2.51 0.08
ind. ICR 0.90 0.91 0.03 1.00 0.00 0.94 0.01 1.00 0.00 3.00 0.08
ind. ICR 0.95 0.96 0.02 0.98 0.07 0.98 0.01 0.98 0.08 3.32 0.16

subp. ICR 0.75 0.69 0.03 0.77 0.05 - - 0.76 0.05 2.11 0.20
subp. ICR 0.85 0.82 0.03 0.93 0.02 - - 0.92 0.02 2.42 0.11
subp. ICR 0.90 0.89 0.03 0.98 0.01 - - 0.97 0.01 2.86 0.13
subp. ICR 0.95 0.94 0.02 0.97 0.10 - - 0.96 0.12 3.19 0.15
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Table 4: Results for 5var-skill

5var-skill γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 0.76 0.14 1.34 1.28

ind. CR 0.75 0.00 0.00 1.00 0.00 - - 0.86 0.11 0.27 0.28
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.81 0.14 0.24 0.20
ind. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.00
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.16 0.11 0.03

subp. CR 0.75 0.00 0.00 1.00 0.00 - - 0.85 0.11 4.06 4.97
subp. CR 0.85 0.00 0.00 1.00 0.00 - - 0.80 0.15 0.24 0.19
subp. CR 0.90 0.00 0.01 1.00 0.00 - - 0.70 0.15 0.10 0.01
subp. CR 0.95 0.00 0.00 1.00 0.00 - - 0.66 0.15 0.12 0.04

ind. ICR 0.75 0.94 0.02 0.94 0.02 0.94 0.02 0.94 0.02 4.95 5.32
ind. ICR 0.85 0.94 0.01 0.93 0.02 0.94 0.01 0.93 0.02 9.80 0.27
ind. ICR 0.90 0.96 0.02 0.96 0.02 0.96 0.02 0.96 0.02 10.38 0.23
ind. ICR 0.95 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 11.23 0.21

subp. ICR 0.75 0.93 0.01 0.93 0.02 - - 0.93 0.01 4.72 5.08
subp. ICR 0.85 0.94 0.01 0.94 0.01 - - 0.94 0.02 9.74 0.17
subp. ICR 0.90 0.96 0.01 0.96 0.01 - - 0.96 0.01 10.46 0.53
subp. ICR 0.95 0.97 0.01 0.97 0.01 - - 0.97 0.01 10.88 0.21

Table 5: Results for 7var-covid

7var-covid γ / η γobs. ± ηobs. ± ηindivid.obs. ± ηrefit
obs. ± ∅ cost ±

CE - 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.60 0.12

ind. CR 0.75 0.01 0.00 1.00 0.00 - - 0.99 0.01 0.56 0.02
ind. CR 0.85 0.00 0.00 1.00 0.00 - - 0.99 0.00 0.55 0.02
ind. CR 0.90 0.00 0.00 1.00 0.00 - - 1.00 0.00 0.55 0.03
ind. CR 0.95 0.00 0.00 1.00 0.00 - - 0.99 0.01 0.54 0.07

subp. CR 0.75 0.01 0.01 0.92 0.02 - - 0.91 0.02 0.52 0.03
subp. CR 0.85 0.00 0.01 0.97 0.01 - - 0.96 0.01 0.75 0.40
subp. CR 0.90 0.00 0.00 0.98 0.01 - - 0.98 0.01 0.55 0.03
subp. CR 0.95 0.00 0.00 0.99 0.01 - - 0.98 0.01 0.51 0.07

ind. ICR 0.75 0.81 0.03 0.81 0.03 0.82 0.04 0.81 0.03 1.26 0.02
ind. ICR 0.85 0.85 0.03 0.85 0.03 0.86 0.03 0.85 0.03 1.14 0.44
ind. ICR 0.90 0.89 0.03 0.89 0.03 0.90 0.02 0.89 0.03 1.61 0.02
ind. ICR 0.95 0.95 0.01 0.95 0.01 0.95 0.01 0.95 0.01 1.97 0.06

subp. ICR 0.75 0.61 0.04 0.61 0.04 - - 0.61 0.04 1.06 0.03
subp. ICR 0.85 0.73 0.03 0.73 0.03 - - 0.73 0.03 1.09 0.34
subp. ICR 0.90 0.81 0.04 0.81 0.04 - - 0.81 0.04 1.42 0.05
subp. ICR 0.95 0.90 0.03 0.90 0.03 - - 0.90 0.03 1.73 0.06
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including Y for CR as well and draw ground-truth interventional samples from the SCM instead of identifying the
interventional distribution from observational data.

For 3var-causal and 3var-noncausal we configured NSGA-II to optimize over 600 generations with a population size of
300, for 5var-skill and 7var-covid 1000 generations with 500 individuals were used. For all experiments the crossover
probability was 0.3 and the mutation probability 0.05. For all settings continuous variables were rounded to 1 decimal
point. For the 3 variable settings a standard sklearn LogisticRegression was used, for the refits without penality.
For the nonlinear dataset a RandomForestClassifier with max depth 30, 50 estimators and balanced subsampling
was applied. The experimental results were computed on a Quad core Intel Core i7-7700 Kaby Lake processor. For
each setting, the experiments took between 24 to 48 hours.

26



Improvement-Focused Causal Recourse (ICR)

D Proofs

As follows we provide the full proofs for Propositions 1 - 5.

D.1 Linking individualized prediction with γind, Proof of Proposition 1

Proposition 1. The expected individualized post-recourse score is equal to the individualized improvement probability
γind(xpre, a) := P (Y post = 1|xpre, do(a)), i.e.

E[ĥ∗,ind(xpost)|xpre, do(a)] = γind(a).

Proof: It holds that
E[h∗,ind(xpost)|xpre, do(a)]

= E[E[Y |xpre, xpost]|xpre, do(a)]

total exp.
= E[Y |xpre, do(a)]

= γind(a).

D.2 Intervention stability w.r.t. ICR actions, Proposition 2

Proposition 2. Given nonzero cost for all interventions, ICR exclusively suggests actions on causes of Y . Assuming
causal sufficiency, for any optimal predictor the conditional distribution of Y given the variables that the model uses
XS (i.e. P (Y |XS)) is stable w.r.t interventions on causes. Therefore, optimal predictors are intervention stable w.r.t.
ICR actions.

Proof: We prove the statement in six steps.

ICR only intervenes on causes: The goal of meaningful recourse is to improve Y with minimal cost. Only interventions
on causes alter Y . Consequently, actions on non-causes of Y would not be suggested by meaningful recourse.

Given causal sufficiency, a graph G and an endogenous Y , the set of endogeneous direct parents, direct effects and
direct parents of effects are the minimal d-separating set SG: Standard result, see e.g. Peters et al. [2017], Proposition
6.27.

The set SG∗ in the augmented graph G∗ coincides with SG: The minimal d-separating set contains direct causes, direct
effects and direct parents of direct effects. Il is never a direct cause of Xl. Also, since Il has no endogenous causes, it
cannot be a direct effect. Furthermore, since we restrict interventions to be performed on causes, Il cannot be a direct
parent of a direct effect.

SG is intervention stable: As follows, all intervention variables are d-separated from Y in G∗ by SG . Therefore SG is
intervention stable. An example is given in Figure 9.

Then also the markov blanket is intervention stable: Since d-separation implies independenceMB(Y ) ⊆ SG . Therefore,
if XT ⊥ Y |XMB(Y ) then also XT ⊥ Y |SG . If any element s ∈ SG it holds that s 6∈MB(Y ), then it must hold that
Xs ⊥ Y |XMB(Y ). Therefore, if XT ⊥ Y |XMB(Y ), Xs then also XT ⊥ Y |XMB(Y ) and therefore any independence
entailed by SG also holds for MB(Y ). Since Pfister et al. [2021] only require the independence that is implied by d-
separation in their invariant conditional proof, the same implication holds for the MB(Y ). As follows, P (Y |XMB(Y ))
is invariant with respect to interventions on any set of endogenous causes.

Then any superset of the markov blanket is intervention stable: We prove the statement by contradiction. The markov
blanket d-separates the target variable Y from any other set of variables. If adding a set of variables S1 to the markov
blanket would open a path to any other set of variables S2, then it would hold that S := S1 ∪ S2 is not d-separated from
Y (P (Y |MB(Y )) = P (Y |MB(Y ), S1, S2) 6= P (Y |MB(Y ), S1) = P (Y |MB(Y )))

D.3 Linking observational prediction and γsub, Proposition 3

Proposition 3. Given causal sufficiency and positivity24, for interventions on causes the expected subgroup-wide
optimal score h∗ is equal to the subgroup-wide improvement probability γsub(a) := P (Y post = 1|do(a), xpreGa

), i.e.

E[ĥ∗(xpost)|xpreGa
, do(a)] = γsub(a).

24Positivity ensures that the post-recourse observation lies within the observational support , where the model was trained (i.e.,
ppre(xpost) > 0), [Neal, 2020]).
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Figure 9: A schematic drawing illustrating under which interventions I1, . . . , I8 the Markov blanket (double circle) is
intervention stable. In this setting, we consider the intervention variables to be independent treatment variables: We
would like to know how the different actions influence the conditional distribution, irrespective of how likely they are to
be applied. Therefore, they are modeled as parent-less variables. Green indicates intervention stability, red indicates no
intervention stability. Orange indicates intervention stability of non-causal variables. Dotted variables are not observed.
Left: Since all endogenous variables are observed, MBO(Y ) is stable w.r.t. interventions on every endogenous cause of
Y (Proposition 3). Right: Unobserved variables (X2, X8) open paths between interventions on causes and Y .

Proof: The proposition follows from Proposition 2. More specifically

E[h∗(xpost,a)|xpreG , a] = E[E[Y |xpost,a]|xpreG , a]
total exp.

= E[Y |xpreG , a]
def. γsub

= γsub(a). (13)

D.4 Acceptance Bound, Proof of Proposition 4

Proposition 4. Let g be a predictor with E[g(xpost)|xpreS , do(a)] = γ(xpreS , a). Then for a decision threshold t the
post-recourse acceptance probability η(t;xpreS , a) := P (g(xpost) > t|xpreS , do(a)) is lower bounded:

η(t;xpreS , a) ≥
γ(xpreS , a)− t

1− t
.

Proof: Positivity (ppre(xpost) > 0) is necessary for subpopulation-based ICR since only then we can assume that the
model is actually optimal for any input that it receives. The problem is discussed in more detail in Hernán MA [2020],
Neal [2020].

As follows we denote ĥ∗ as the random variable indicating the predictions of the post-recourse predictors described in
Section 5.
From Propositions 1 and 3, for both individualized and subpopulation-based post-recourse predictors we know that

E[ĥ(xpost,a)∗|xpreS , do(a)] = γ(xpreS , a).

We decompose the expected prediction

γ(xpreS , a) = E[ĥ∗|xpreS , a] (14)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t]P (ĥ∗ ≤ t)
∣∣∣
xpre
S ,a

(15)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t](1− P (ĥ∗ > t))
∣∣∣
xpre
S ,a

(16)

= E[ĥ∗|ĥ∗ > t]P (ĥ∗ > t) + E[ĥ∗|ĥ∗ ≤ t]− P (ĥ∗ > t)E[ĥ∗|ĥ∗ ≤ t]
∣∣∣
xpre
S ,a

(17)

= E[ĥ∗|ĥ∗ ≤ t] + P (ĥ∗ > t)
(
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

)∣∣∣
xpre
S ,a

(18)

which can be reformulated to yield the acceptance rate η:

γ − E[ĥ∗|ĥ∗ ≤ t]
E[ĥ∗|ĥ∗ > t]− E[ĥ∗|ĥ∗ ≤ t]

∣∣∣∣∣
xpre
S ,a

= P (ĥ∗ > t|xpreS , a) = η(xpreS , a). (19)
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It holds that E[ĥ∗,ind|ĥ∗ ≤ t] = FNR(t) and E[ĥ∗|ĥ∗ > t] = TPR(t).

We can show that E[ĥ∗|ĥ∗ ≤ t] ≤ t:
0 ≤ FNR(t|xpreS , a) (20)

= P (Y a,post = 1|h∗ ≤ t, xpreS , a) (21)

= E[Y a,post|h∗ ≤ t, xpreS , a] (22)

= E[E[Y a,post|xpost,a]|h∗ ≤ t, xpreS , a] (23)

= E[h∗|h∗ ≤ t, xpreS , a] (24)
≤ t (25)

and analog that 1 ≥ TPR(t) ≥ t. Therefore

η(t, xpreS , a) =
γ − FNR(t)

TPR(t)− FNR(t)

∣∣∣∣
xpre
S ,a

≥
γ(xpreS , a)− FNR(t)

1− FNR(t)
≥
γ(xpreS , a)− t

1− t
. (26)

D.5 Individualized post-recourse prediction, proof of Proposition 5

Proposition 5. In general, the individualized post-recourse predictor can be estimated as

p(ypost|xpre, xpost, do(a)) (27)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈{0,1}

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (28)

Given binary decision problems with invertible structural equations, the individualized post-recourse prediction function
reduces to

p(ypost|xpost, xpre, do(a)) (29)

=
p(U−I = f−1

do(a)(y
post, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1
do(a)(y

′, xpost)|xpre, do(a))
. (30)

Proof: It holds that

p(ypost|xpre, xpost, do(a))
def. cond.

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(31)

(32)

We can reformulate the conditional distribution p(ypost, xpost|xpre, do(a)) as two parts, one that describes the probabil-
ity of a state of the context given xpre, and one that describes the probability of a post-recourse state xpost, ypost given
a certain noise state u and do(a).

p(ypost, xpost|xpre, do(a)) (33)

marginal.
=

∫
U
p(ypost, xpost, u|xpre, do(a))du (34)

chain rule
=

∫
U
p(ypost, xpost|u, xpre, do(a))p(u|xpre)du (35)

(y, x)post ⊥ xpre|u
=

∫
U
p(ypost, xpost|u, do(a))p(u|xpre)du. (36)

In combination we yield

p(ypost|xpre, xpost, do(a)) (37)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∫
Y
(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
)
dy′

(38)

=

∫
U p(y

post, xpost|u, do(a))p(u|xpre)du∑
y′∈0,1

(∫
U p(y

′, xpost|u, do(a))p(u|xpre)du
) (39)
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For a setting with invertible structural equations this reduces to

p(ypost|xpost, xpre, do(a)) (40)

=
p(ypost, xpost|xpre, do(a))

p(xpost|xpre, do(a))
(41)

=
p(U−I = f−1(ypost, xpost)|xpre, do(a))∑

y′∈{0,1} p(U−I = f−1(ypost, xpost)|xpre, do(a))
. (42)

where −I is the index set for variables that have not been intervened on (since the noise terms for the intervened upon
variables are isolated variables in the interventional graph).
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E Misc

E.1 Negative Result: Algorithmic recourse is neither meaningful nor robust

In the introduction we claimed that CR recommendations [Karimi et al., 2020b, 2021] may not lead to improvement.
Now, we formally demonstrate the case on the Covid hospital admission example (Figure 1) which we extend with the
full structural causal model (Example 1). Furthermore, we show that CR is not robust to refits of the model on mixed
pre- and post-recourse data. All code is publicly available via https://anonymous.4open.science/r/icr-aaai/
README.md.

Example 1. Let V indicate whether someone is fully vaccinated, Y indicate whether someone is free of Covid and S
whether someone is asymptomatic. The data is generated by the following structural causal model (SCM) entailing the
causal graph depicted in Figure 1:

V := UV , UV ∼ Bern(0.5) (43)
Y := V + UY mod 2, UY ∼ Bern(0.09) (44)
S := Y + US mod 2, US ∼ Bern(0.05) (45)

For prediction, a sklearn logistic regression model is fit on 2000 samples, yielding ĥ with βv ≈ 3.7, βs ≈ 5.1,
β0 ≈ −4.3. Visitors are allowed to enter the hospital if ĥ < 0.5. Intervening on (flipping) V and S costs 0.5 and 0.1
respectively.

Lack of improvement: Given a decision threshold of 0.5, the model admits everyone without symptoms (S = 1),
irrespective of their vaccination status V . Therefore, in order to revert rejections (S = 0), both individualized and
subpopulation-based CR suggest removing the symptoms S (do(S = 1), for instance by taking cough drops). However,
since they only treat the symptoms S, the actual Covid risk Y is unaffected: none of the recourse-implementing
individuals actually improve. We say the predictor is gamed.

Lack of robustness: For individuals who implement recourse the association between symptom state S and Covid
risk Y is broken. Thus, the predictive power of the model for recourse-seeking individual drops from ≈ 95 percent
pre-recourse to ≈ 5 percent post-recourse.25 A refit of the model on a mix pre- and post-recourse data (2000 samples
each) yields ĥ with βV ≈ 4.1, βS ≈ 3.3, β0 ≈ −4.8. Since the association between symptom state and disease status is
broken post-recourse, the new model rejects individuals if they are not vaccinated, irrespective of their symptom state.
For that reason, recourse recommendations that were designed for the original model only lead to acceptance by the
refitted model for those individuals who happened to be vaccinated anyway.
The example demonstrates that CR recommendations are prone to gaming the predictor and therefore may neither lead
to improvement nor be robust to model refits.

E.2 Interpretability of improvement confidence γ

Counterfactuals are concerned with changing the inputs to the model such that the model prediction changes in the
desired way. Since the prediction function is deterministic and accessible, the post-recourse prediction can be determined
exactly.
In contrast CR and ICR deal with the effects of real-world interventions on real-world variables. As such, the effects of
recourse actions on the covariates (and the underlying prediction target) cannot be determined exactly. Therefore both
CR and ICR have to deal with uncertainty.
CR deals with this uncertainty by phrasing the optimization objective for CR in terms of an expectation over the
prediction distribution and by using an action-adaptive confidence threshold. This threshold thresh bounds the
expected prediction away from the model’s decision threshold (e.g. t = 0.5). Using the conservativeness parameters,
the user can roughly steer how far the expected prediction shall be away from the decision boundary.
In contrast, ICR deals with the uncertainty by letting the user specify the confidence γ, which can be intuitively
interpreted as improvement probability (whereas the expected prediction cannot be interpreted as acceptance probability).
A lower-bound on the acceptance probability for a combination of γ and t is given in Proposition 4. Furthermore, we
can estimate the individualized and subpopulation-based acceptance rates for a specific situation (a, xpre) as detailed in
B.1 and B.3. The human-interpretable improvement and acceptance confidences are vital for the explainee to make an
informed decision.
In order to allow a direct comparison of the methods, we rephrase the CR objective to optimize the acceptance
probability η in our experiments.

25The previously wrongly-rejected individuals are correctly classified after implementing recourse.
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E.3 Imbalance between standard predictors and individualized ICR recommendations

In Section 6 we argued that there is an imbalance in predictive capability between (optimal) observational predictors
and the pre-recourse SCM (which used to predict γind). We illustrate the problem on a simple example.
Example 2. Let there be a three variable chain X1 → Y → X2 where at every step the value is incremented by
one with 50% chance and the maximum value is set to 2 (X1 := U1, Y := X1 + UY , X2 := min(2, Y + U2) where
U1, U2, UY ∼ Bern(0.5)). Let us assume a factual observation xpre = (0, 2) and action a = do(X1 = 1) yielding
xpost = (1, 2). For the observation xpre = (0, 2) we can infer that UY must have been 1, since two increments are
needed to get from 0 to 2. However, from the post-intervention observation xpost = (1, 2) we cannot infer where the
increment happened (UY or U2). As a consequence, an optimal predictive model that only has access to xpost would
predict that ypost for xpost = (1, 2) could be 1 or 2 with equal likelihood. In contrast, with access to xpre and the
SCM we can infer that ypost = 2 since UY = 1.

In the above example, given knowledge of the SCM, the pre-intervention observation xpre and the performed action a
we can already abduct UY perfectly and therefore correctly determine the post-intervention state of Y (even without
access to the post-intervention observation xpost). In contrast, with the post-recourse observation alone it is impossible
to reconstruct UY and therefore impossible to determine the post-intervention state of Y .26 In the context of ICR this
means that the observational predictor’s post-recourse predictions are not directly linked with γ: they may not honor the
implementation of actions with γind = 1. As a consequence, we suggested to use the SCM for post-recourse prediction
in Section 6.

26The optimal pre-recourse predictor ĥ∗(xpost) predicts 0.5 for both y = 1 and y = 2.
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