
CBNet: Demand-Aware Tree Topologies for
Reconfigurable Datacenter Networks

Otavio A. de O. Souzaa, Olga Goussevskaiaa, Stefan Schmidb

aComputer Science Department, Universidade Federal de Minas Gerais (UFMG), Rua
Reitor Pires Albuquerque, Belo Horizonte, 31270-901, Minas Gerais, Brazil
bComputer Science Department, University of Vienna, Waehringer Strasse

29, Vienna, 1090, Austria

Abstract

This paper studies the design of demand-aware network topologies: networks

that dynamically adapt themselves toward the demand they currently serve, in

an online manner. While demand-aware networks may be significantly more

efficient than demand-oblivious networks, frequent adjustments are still costly.

Furthermore, a centralized controller of such networks may become a bottleneck.

We present CBNet (Counting-Based self-adjusting Network), a demand-

aware network that relies on a distributed control plane supporting concurrent

adjustments, while significantly reducing the number of reconfigurations, com-

pared to related work. CBNet comes with formal guarantees and is based on

concepts of self-adjusting data structures. We evaluate CBNet analytically and

empirically and we find that CBNet can effectively exploit locality structure in

the traffic demand.

Keywords: Self-adjusting networks, concurrency, online algorithms

1. Introduction

Empirical studies show that communication patterns in datacenters feature

much spatial and temporal structure [1, 2, 3, 4], i.e., traffic is bursty, and traffic

matrices skewed. This structure represents an untapped potential for building

more efficient communication networks: today’s datacenter networks are de-

signed in a manner which is entirely oblivious to the communication pattern.

Preprint submitted to Computer Networks September 27, 2022

In contrast, a demand-aware network, e.g., based on emerging reconfigurable

optical technologies, may self-adjust to better serve the elephant flows in the

network [5, 6, 2, 7, 8, 9, 10].

A key challenge in the design of self-adjusting networks is to strike a balance

between the benefits and costs of reconfigurations: while reconfigurations al-

low to reduce communication costs, by moving frequently communicating nodes

(e.g., top-of-rack switches) topologically closer, such reconfigurations should be

used in moderation: reconfigurations take time and may temporarily lead to

packet loss. A second challenge is related to the collection of data about the

demand and the decision making based on this data: these are two inherent op-

erations in any demand-aware network, but may become an operational bottle-

neck. Furthermore, communication patterns may not be perfectly predictable,

and hence, reconfiguration decisions need to be taken in an online manner.

This paper investigates the algorithmic problem underlying such demand-

aware and self-adjusting networks. In particular, to address the above chal-

lenges, we introduce CBNet, a distributed and concurrent demand-aware net-

work based on tree topologies, which aims to reduce reconfigurations compared

to the state-of-the-art solutions, such as SplayNet [7] and DiSplayNet [11, 12].

CBNet is based on concepts from self-adjusting data structures, and in par-

ticular, CBTrees [13]. CBNet gradually adapts the network topology toward

the communication pattern in an online manner, i.e., without previous knowl-

edge of the demand distribution. At the same time, bidirectional semi-splaying

and counters are used to maintain state, minimize reconfiguration costs and

maximize concurrency.

Contributions. Our main contribution is CBNet, a counting-based self-

adjusting network, which adapts to the unknown traffic pattern in a demand-

aware and online manner, while minimizing reconfiguration costs. CBNet relies

on decentralized and concurrent algorithms and comes with provable (worst-

case) performance guarantees, and also fares well under realistic workloads: we

report on extensive simulations using both real and synthetic workloads, and

find that CBNet can indeed outperform state-of-the-art, by better leveraging

2

locality and reducing costs.

Paper organization. In Section 2 we discuss related work. In Section 3 we

present the model and problem definitions. In Section 4 we present an overview

of CBNet. In Section 5 we describe the concept of counting-based reconfigura-

tion. In Section 6 we present the sequential version of CBNet algorithm, and

in Section 7 we analyze its performance. In Section 8 we present and analyze

the concurrent version of CBNet. In Section 9 we describe the workloads used

in our experiments and analyze them in terms of temporal and non-temporal

locality. In Section 10 we report on simulations, and in Section 11 present our

conclusions.

2. Related Work

Traditionally, network designs rely on static topologies, such as the Clos

topology [14, 15, 16], hypercubic topologies like BCube and MDCube [17, 18],

or expander-based networks [19, 20] in datacenters.

Recently, reconfigurable topologies have received much attention, which come

in two flavors, demand-oblivious e.g. [21, 22, 23] and demand-aware, e.g. [2,

24, 25, 26, 7, 27, 11, 28, 8, 29, 30, 31], or a combination of both, e.g., Cerberus

[32]. Most existing demand-aware architectures rely on an estimation of traffic

matrices [33, 28, 8, 29, 34, 35] which can limit the granularity and reactivity of

the network, but there are also more fine-grained approaches such as [25, 26],

which however rely on a centralized control.

We in this paper are interested in distributed solutions, such as ProjecToR

[2] or DiSplayNet [12] supporting fine-grained reconfiguration. The most closely

related papers to our work are [7, 12, 13], which also rely on concepts from self-

adjusting data structures (see [6] for an overview of this approach). Note that, in

contrast to CBNet, [7] is still centralized, [12] comes with significant adjustment

costs. CBNet extends the concept of a CBTree [13], defined as a counting-based

self-adjusting binary search tree in which, as in splay trees [36], more-frequently

accessed items move closer to the root. Unlike the original splay tree, in which

3

each access moves the accessed item all the way to the root via a sequence of

rotations, accesses in a CBTree do just O(n + n log(m/n) rotations during a

sequence of n operations.

A possible application for CBNet is Reconfigurable Datacenter Networks

(RDCNs). The majority of programmable RDCNs with on-demand reconfigura-

tions use full crossbar, 3D-MEMS-based optical circuit switches (OCS) [37, 38],

or Wavelength Division Multiplexing-based switching [39]. While promising per-

formance results have been demonstrated with various prototypes of demand-

aware reconfigurable networks, today, it is often challenging to experiment with

these technologies, as they are usually based on custom-built prototypes and rely

on tailored hardware and software which is not publicly available. One example

of a framework that supports experimentation and reproducibility is ExReC

[40]. It uses off-the-shelf hardware (such as Polatis Series 6000n 32 × 32 OCS

[41]) for evaluating different hybrid reconfigurable topologies and applications,

such as distributed machine learning training.

3. Model

In this work the objective is to design and formally analyze the performance

of distributed algorithms for self-adjusting networks. The network should con-

nect a set V of n communication nodes (e.g., top-of-rack switches or peers). The

input to the problem is given by a sequence σ of m messages σi(si, di) ∈ V × V

occurring over time, with source s and destination d; m can be infinite. We

denote by bi the time when a message σi is generated, and by ei the time in

which it is delivered. The time between successive requests arrivals is assumed

to be at least one. The sequence σ is revealed over time, in an online manner:

the algorithm does not have any information about the future requests σj at

time t < bj . Moreover, the sequence σ can be arbitrary: in our formal anal-

ysis we consider a worst-case scenario, where σ is chosen adversarially, as to

maximize the cost of a given algorithm.

We will focus on networks based on Binary Search Trees (BST), because trees

4

are a basic graph family and we envision that the self-adjusting links constitute

only a subset of the topology, a usual assumption in such networks [2]. Moreover,

BSTs are locally routable, i.e., dynamic topological changes do not require the

global recomputation of routes. We denote the family of BST networks by T =

T0, T1, . . ., where T0 is an arbitrary BST.

Distributed reconfiguration. In order to minimize the communication

cost and adjust the topology smoothly over time, the tree is reconfigured locally

through rotations that preserve the BST properties. One rotation updates a

constant number of links at constant cost. Accordingly, we will denote the tree at

time (round) t computed by a given distributed algorithm (possibly accounting

for the communication requests σt′ with t′ < t) by Tt ∈ T . From now on, we

use the terms rotation and (local network) reconfiguration interchangeably to

refer to local topological updates in the tree.

Bidirectional semi-splaying. Differently from SplayNet [7] and DiS-

playNet [11], where the classical zig, zig-zig and zig-zag splay operations have

been employed exclusively in a bottom-up direction, CBNet leverages bottom-

up and top-down semi-splaying (semi-zigzig and semi-zigzag) operations, first

introduced for splay trees [36] and later adapted for top-down communication

in CBTrees [13]. Besides being simpler to implement in a distributed setting,

the semi-splay operations have a lower communication cost than splaying. Note

that (semi) splaying not only moves a node upwards in the tree, preserving

BST properties, but also roughly halves the depth of every node along the com-

munication path. This halving effect makes splaying efficient in an amortized

sense and is a property not shared by other, simpler rotation heuristics, such as

move-to-root [42].

Time model. We assume that time is divided into synchronous time slots,

in which a message can travel a constant number of hops in the network or a

local reconfiguration might be performed. In order to study concurrency, we

divide the execution time in rounds. Each round is comprised of a constant

number of time slots, in which a local consensus can be reached and one recon-

figuration completed. In a round, multiple (independent) nodes can make local

5

reconfigurations (steps) concurrently. We consider that nodes and communica-

tion between them are reliable and synchronous. In terms of time, we aim to

minimize the makespan:

Definition 1. Time cost: Consider any initial binary tree T0, a sequence of

m messages σ and algorithm A. Makespan(A, T0, σ) = max
1≤i≤m

ei − b1.

3.1. Refined cost model

In CBNet, as messages travel from the source to the destination, rotations

are traded with routing operations. Therefore, we distinguish between the work

needed to forward a message and the work needed to perform local reconfigura-

tions. In practice, the cost of performing a network topology reconfiguration is

typically higher than that of forwarding a message over a communication link.

We assume that routing a message incurs a cost of 1 unit per hop and that a

rotation incurs a cost of R = O(1).

Consider a sequence σ of m messages, an algorithm A, a BST T0, and a

message σi(si, di) ∈ σ. Let us define the reconfiguration cost ωi as the number

of rotations performed by A to deliver σi. The routing cost will be equal to

lei(si, di), the length of the path Pei(si, di) in the resulting tree Tei , i.e., after

σi has been delivered. Note that lei(si, di) is not necessarily one, as in [7, 11],

but is equal to the number of times the message was forwarded along Pbi(si, di),

instead of triggering a rotation. We assume that the value of the routing cost

to deliver a message, even when it is addressed to itself (σi(si, si)), is ≥ 1.

Definition 2. Work cost: Consider any initial binary tree T0, a sequence of

m messages σi(si, di) ∈ σ and algorithm A. We define the total routing cost,

total reconfiguration cost, and total work cost, respectively, as follows:

L(A, T0, σ) =

m∑
i=1

(lei(si, di) + 1),

Ω(A, T0, σ) = R×
m∑
i=1

ωi,

C(A, T0, σ) = L(A, T0, σ) + Ω(A, T0, σ).

6

3.2. Amortized analysis and the potential method

We are interested in the worst-case performance over arbitrary sequences of

operations (rather than individual operations), and hence, conduct an amortized

analysis.

The potential method defines a function that maps a data structure onto a

real-valued, non-negative “potential”. The potential stored in the data structure

may be used to pay for future operations. The potential of the tree at time i

(i.e., the potential of Ti) is represented as ϕ(Ti). In the potential method, the

amortized cost ĉi of an operation i is the actual cost ci plus the increase in

potential δ due to the operation, where δ = ϕ(Ti) − ϕ(Ti−1). This gives us:

ĉi = ci + ϕ(Ti)− ϕ(Ti−1).

The amortized cost and potential function must be defined in order to always

maintain such equivalence. This implies that if the actual cost of and operation

is less than the amortized cost, the potential is increased, and if the cost of an

operation is greater than its amortized cost, the potential is decreased. Using

the definition of ĉi, we can derive the total amortized cost given the actual costs:∑n
i=1 ĉi =

∑n
i=1 ci + ϕ(Tn)− ϕ(T0).

Every time when performing an operation, the node can: (1) pay the actual

work; (2) pay more than the actual work, such that the excess is deposit in

an “account”, i.e., increase the potential; (3) pay less than the actual work,

making withdrawals from the account to cover the deficiency, i.e., decrease the

potential. Moreover, an invariant is maintained: the total number of credits in

the data structure ≥ 0.

We define the amortized cost for CBNet as follows:

Definition 3. Amortized cost: Given a sequence of m messages σ, if C(σi) is

the (time or work) cost of the σi ∈ σ, the amortized cost is defined with respect

to the worst sequence σ and initial tree T0 as: CA = max
σ,T0

1
m

∑
σi∈σ
C(σi).

One last useful concept for the analysis is that of empirical entropy.

Definition 4. Empirical entropy: Given a sequence of m messages σ and

initial tree T0 on n nodes, the empirical entropy is defined with respect to Ŝ as:

7

H(Ŝ) =
n∑

i=1

fs(vi) log
1

fs(vi)
, where Ŝ = {fs(v1), . . . , fs(vn)} are the frequencies

that a node vi ∈ V is a source in σ. Similarly, H(D̂) is defined for the set of

destination frequencies D̂.

4. CBNet overview

State-of-the-art distributed self-adjusting networks, such as SplayNet [7]

and DiSplayNet [12] are based on the self-adjusting binary search trees splay

trees [36]. They gradually adapt the network topology toward the communica-

tion pattern in an online manner. These self-adjusting networks, however, face

challenges when it comes to their application in practice.

Problematic inheritance from data structures. The communication

model underlying SplayNet and DiSplayNet is not entirely distributed nor re-

alistic. They adopt an aggressive reconfiguration strategy: the source and the

destination nodes of each message execute a sequence of bottom-up rotations,

until they meet at their lowest common ancestor (LCA), at which point they

finally exchange the data. Behind this approach lie two problematic assump-

tions: (1) the destination node knows when a message is generated toward it

and starts rotations simultaneously with the source node; and (2) the destina-

tion node travels in the network without carrying any data in order to meet the

source node, so both the source and the destination nodes are locked until the

message is delivered, limiting concurrency.

Less adjustments. CBNet is based on a different, concurrent self-adjusting

data structure, the CBTree [13], in which rotations are traded for routing oper-

ations. CBNet performs rotations infrequently, an amortized subconstant o(1)

per operation, drastically reducing the reconfiguration cost, while preserving

the amortized communication cost guarantees.

More realistic distributed communication. CBNet enables a more

realistic and fully distributed communication model. Bidirectional semi-splaying

and the ability to forward messages allow for the natural behavior of a message

traveling through the network: a message moves bottom-up in the tree when it

8

is navigating towards the root and top-down, otherwise. To the extent of our

knowledge, CBNet is the first message-oriented self-adjusting network.

More concurrency. Frequent network reconfigurations limit the poten-

tial for concurrent execution of self-adjusting networks because rotations might

result in conflicts between concurrent communication requests. By drastically

reducing the number of reconfigurations and by freeing the source and the des-

tination nodes of each message, CBNet scales better with the concurrency level.

5. Communication history through counters

CBNet keeps track of the communication history through counters and

weights, like the CBTree [13]. Each node v ∈ V maintains a local variable ct(v)

that accounts for the number of times v has been the source or the destination

of some communication request: ct(v) = |{σi|σi ∈ σ, v = src(σi)||v = dst(σi),

ei ≤ t}|, and c(v) = cem(v),∀v ∈ V . We define weights as:

Wt(v) =
∑

x∈Tt(v)

ct(x),W (v) = Wem(v),∀v ∈ V, (1)

where em is the time of delivery of the last message σm ∈ σ and Tt(v) is

the subtree rooted at v in time-slot 0 ≤ t ≤ em. In our implementation of

CBNet, nodes maintain only their weights, and the counter value is obtained

as: ct(v) = Wt(v)−Wt(v.l)−Wt(v.r),∀v ∈ V, t ≥ 0, where v.l and v.r are the

left and right children of node v in Tt(v), respectively.

We define the rank of a node as: rt(v) = logWt(v),∀v ∈ V, t ≥ 0, assuming

rt(v) = 0 if Wt(v) = 0. And we define the potential of a network by using the

potential function presented in [13] as:

Φt = Φ(Tt) =
∑
v∈V

rt(v), t ≥ 0. (2)

Local computation of potential change. The potential of the network

starts with the value of zero. It increases over time due to the arrival of new

messages or decreases as a result of a rotation. In order to decide whether a

given message will cause a rotation or will be forwarded, the network potential

9

difference ∆Φt that would result from that rotation has to be computed locally

in time-slot t. Since the network potential is the sum of the ranks of each node

in the tree, and since the ranks of all nodes that do not participate in a rotation

have their ranks unchanged, ∆Φt depends only on the type of rotation (top-

down or bottom-up, semi zig-zig or semi zig-zag) and the rank variation of the

neighboring nodes that would participate in that rotation [13]. If the rotation

has been performed, the weights of the participating nodes are updated to reflect

the change in network potential.

6. Sequential CBNet

When a message enters the network, it moves from the source toward the

destination node by means of two kinds of operations, referred to as routing

steps or rotation steps. Routing steps move the message between nodes while

keeping the network’s topology unchanged. Rotation steps move the message

by restructuring the topology of the network. We define the current node of

a message as the node currently holding the message at a given point in time.

Below we formally define a step.

Definition 5. Stept(σi, xt): Given a message σi(si, di) ∈ σ with begin and

end times bi and ei, respectively, and a BST instance Tt, bi ≤ t ≤ ei, a

step stept(σi(si, di), xt) is an operation performed by the message’s current

node, xt ∈ Pt(si, di), that reduces the message’s distance to its destination

d, while preserving the BST properties of the network. A sequence of steps,

starting at the source node, xbi = si, deliver the message to the destination

node xei = di. Each step can move the message along the path Pt(si, di) in a

bottom-up or top-down direction and can trigger an operation of type rout-

ing (forward(Tt, σi, direction)) or of type rotation (splay(Tt, σi, direction,

splayType)), where splayType ∈ {semi− zigzag, semi− zigzig}.

Since there is no central information accessible to nodes about the network

structure, to determine the direction of a message, each node v ∈ V stores the

identifiers of its direct neighbors in the tree, i.e., its parent (v.p), its left child

10

(v.l), its right child (v.r), as well as the smallest (v.smallest) and the largest

(v.largest) identifiers currently present in the sub-tree rooted at v. With this

information, given the destination identifier, a node x can decide if the message

σi(si, di) must be forwarded to its parent (di ≥ x.smallest and di ≤ x.largest),

its right child (x < di ≤ x.largest), or left child (x.smallest ≤ di < x) in

the tree, where x and di stand for the identifiers of the respective nodes. The

rotation type of the step is determined by the position of the current node

relative to its neighbors and the message’s direction, as defined in [13]. Whether

the step is of type rotation or routing is determined by the network potential

difference that a rotation would cause, as described below.

Algorithm 1: While a message σi(si, di) ∈ σ travels from source to destina-

tion, each current node xt ∈ Tt, bi ≤ t ≤ ei executes the step routine, shown in

Algorithm 1. If the LCAt(si, di) has been reached (lines 2− 3) a weight-update

message is sent in the bottom-up direction, toward the root ρ of the tree. This

update message is a small control message that carries no data and increments

the weights of all nodes v ∈ Pt(LCAt(si, di), ρ) by 2 (1 for si and 1 for di). Note

that it does trigger rotations on its way, like a regular message; we therefore

include it in the work cost analysis of CBNet. Then, the current node decides

upon which type of rotation (line 4) and direction (line 5) to perform. This

decision is based on the relative position of di and the 2-hop neighbors of the

current node. It then computes the network potential difference that the lat-

ter would cause (line 6). All these computations are performed without global

knowledge about the network topology information from two hops ahead in the

path Pt(xt, di) is enough, as described in Section 5.

If the rotation decreases the total potential of the network by more than

a constant δ ∈ (0, 2] (we used δ = 2 in our implementation), then a rotation

is performed, updating the tree topology (lines 7 − 8); otherwise, the topology

remains unchanged and the message is forwarded to the next current node (line

10). Finally, the weights of the nodes that participated in this step and remained

on the path from si to di after the step are incremented by 1 (line 11);

11

6.1. Adaptive CBNet

CBNets have the property that messages follow an expected path length pro-

portional to the entropy of the communication distribution, which is computed

based on the counting history stored by each node. Considering that the re-

quest sequence is infinite in a real network, a long history stored in the counters

might act as a “legacy burden” and slow the rate of reconfigurations, making

CBNet less reactive to temporal locality, especially when the traffic demand

distribution goes through significant changes after a long sequence of requests

[43]. In order for the topology not to become too static, a counter resetting

mechanism should be implemented, so that older requests contribute less to the

current weights used in the potential computations.

To address this problem, we implemented and simulated an adaptive version

of CBNet, to which we refer as Adaptive CBNet. In Algorithm 1, after line 5, a

call is added to function decayWeight() (Algorithm 2). When a sufficiently long

time (timeOut) elapses since the last counter update of a node (timeStamp),

the node’s weight (Wt) is decreased according to an exponential back-off scheme

(line 3). A similar approach has been proposed in the context of CBTrees [13].

7. Sequential CBNet analysis

We use the potential function defined in (2) to amortize actual costs in our

analysis. Consider an initial (arbitrary) BST network instance T0 of n nodes, a

message sequence σ of m requests, a message σi(si, di) ∈ σ generated at time bi

and delivered at time ei. Recall that the amortized cost of a step operation is the

actual cost, plus the increase in potential caused by it: ĉt(stept) = Ct(stept) +

Φ(Tt)−Φ(Tt−1). Therefore, if σi requires of li steps of cost O(1), the actual cost

to fulfill σi is
∑li

t=1 O(1), causing a potential change of
∑li

t=1 Φ(Tt)− Φ(Tt−1).

This summation results in a telescoping series in which all terms cancel except

the first and the last, resulting in amortized cost ĉ(σi) = li+ Φ(Tei)− Φ(Tbi).

We start the analysis with an auxiliary lemma, proved in [13].

12

Algorithm 1 Sequential CBNet stept(σ(si, di), xt) executed by the current

node xt ∈ V of message σi(si, di) in time slot t:

Require: Tt, σi(si, di), δ ∈ (0, 2]

1: Tt+1 ← Tt;

2: if xt = LCAt(si, di) then

3: sendUpdateWeights(Tt, bottom-up, σi);

4: splayType← getSplayType(Tt, σi);

5: direction← getDirection(Tt, σi);

6: ∆Φt ← deltaPhi(Tt, splayType, direction);

7: if ∆Φt < −δ then

8: Tt+1 ← splay(Tt, σi, direction, splayType);

9: else

10: forward(Tt, σi, direction);

11: updateWeights(Tt, splayType, direction);

Algorithm 2 Adaptive CBNet decayWeight() function:

Require: current round t, timeStamp, timeOut

1: if timeOut < t− timeStamp then

2: timeDiff ← (t− timeStamp)/timeOut;

3: Wt ←Wt >> timeDiff ;

4: timeStamp← t;

Lemma 1 (Access Lemma (bottom-up [36] and top-down [13] semi-splays)).

Consider a stept(σi, xt), executed by the current node xt ∈ Tt of rank rt(xt), bi ≤

t ≤ ei, of type rotation with splayType ∈ {semi zig-zig, semi zig-zag}. Let ∆Φt

be the net decrease in the potential of Tt, xt+1 be the new current node of the

message, and rt+1(xt+1) be the rank of the latter, right after stept, respectively.

If the direction of the step is bottom-up, we have that xt+1 = xt.p.p and ∆Φt +

2 ≤ 2(rt+1(xt+1)−rt(xt)). Otherwise, if the direction is top-down, we have that

xt = xt+1.p.p and ∆Φt + 2 ≤ 2(rt(xt)− rt+1(xt+1)).

The first amortized analysis of self-adjusting networks was presented for

13

SplayNet [7]. In Theorem 1 we prove that the amortized routing cost of CBNet

is asymptotically the same as the amortized reconfiguration cost of SplayNet.

Theorem 1. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and Algorithm 1. Let H(Ŝ) and H(D̂) be the source and destination empirical

entropies of σ, as defined in (4). The amortized routing cost of Algorithm 1

to deliver all messages in σ is LA(CBNet, T0, σ) = O(H(Ŝ) +H(D̂)).

Proof. To bound the routing cost of CBNet, we analyze the number of routing

steps performed to deliver a message σi(si, di) ∈ σ and the respective weight

update message sent from the LCAt(si, di) to the root of the tree (recall from

Section 5 that this update message carries no data but might trigger rotations).

Consider a stept(σi(si, di), xt) that has not caused a rotation in the bottom-up

direction (the top-down direction case is analogous), executed by the current

node xt. Since no rotation was performed during this step, by Algorithm 1,

∆Φt ≥ −δ, δ ∈ (0, 2], ∆Φt being the decrease in total potential of the tree

immediately after the referred step. By Lemma 1, we have that: 2 − δ <

2 + ∆Φt ≤ 2(rt+1(xt+1) − rt(xt)), where xt+1 = xt.p.p and rt+1(xt+1) is the

rank of the new current node after the step. Let δ′ = 1 − δ/2, t = ei, α =

LCAt(si, di) and ρ ∈ V be the root of Tt. Then rt(z)− rt(x) > δ′ for each pair

of consecutive edges (x, y) ∈ Tt and (y, z) ∈ Tt on the (bottom-up) path Pt(s, ρ)

(and analogously on the (top-down) path Pt(α, di)). Let li = ⌊|Pt(si, di) ∪

Pt(α, ρ)|/2⌋. Summing over all li pairs of edges, we have that the sum telescopes

to (rt(ρ)− rt(si)) + (rt(α)− rt(di)) > liδ
′, and:

li <
(rt(ρ)− rt(si)) + (rt(α)− rt(di))

δ′
≤ (rt(ρ)− rt(si)) + (rt(ρ)− rt(di))

δ′

= O

(
log

Wt(ρ)

Wt(si)
+ log

Wt(ρ)

Wt(di)

)
= O

(
log

W (ρ)

c(si)
+ log

W (ρ)

c(di)

)
,∀σi ∈ σ

where W (v) and c(v) are the total weight and count of node v ∈ V , respectively.

The last equality follows from the fact that Wt(v) ≥ ct(v),∀v ∈ Tt, 0 ≤ t ≤ em

(Def. (1)).

Using the fact that W (ρ) = 2m, since each of the m messages in σ increases

two counters in the tree, the source and the destination node’s, by one, we have

14

that the amortized routing cost is

LA(CBNet, T0, σ) =
1

m

m∑
i=1

li

= O

(
1

m

(
m∑
i=1

log
m

c(src(σi))
+

m∑
i=1

log
m

c(dst(σi))

))

= O

 1

m

 n∑
i=1

s(vi) log
m

c(vi)
+

n∑
j=1

d(vj) log
m

c(vj)


= O

 1

m

 n∑
i=1

s(vi) log
m

s(vi)
+

n∑
j=1

d(vj) log
m

d(vj)


= O(H(Ŝ) +H(D̂)),

where s(vi) and d(vi) are the number of times a node vi ∈ V was source and

destination in σ, respectively, and src(σi(si, di)) = si and dst(σi(si, di)) =

di,∀σi ∈ σ. Note that c(vi) ≥ s(vi) and c(vi) ≥ d(vi),∀i ∈ {1 . . . n}.

Having upper bounded the amortized routing cost, we turn our attention to

the reconfiguration cost of CBNet. In Theorem 2 we present a generalization of

the analysis of CBTrees [13], a self-adjusting data structure, for self-adjusting

networks, while keeping the bound on the number of rotations.

Theorem 2. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and Algorithm 1. The total reconfiguration cost incurred by Algorithm 1 to

deliver all messages in σ is Ω(CBNet, T0, σ) = O
(
n log m

n

)
.

Proof. Each rotation performed by Algorithm 1 decreases the total potential of

the tree by at least δ ∈ (0, 2]. The potential decreases only by means of rotations

and cannot be negative, by definition. Hence, the number of rotations, per-

formed by the sequence of all current nodes of each message, is upper bounded

by the sum of potential increases throughout the message sequence σ, i.e., the

total reconfiguration cost (Def. (2)) Ω(CBNet, T0, σ) = O(∆Φ+(σ)). The po-

tential of the network increases when the counters ct(si) and ct(di), 1 ≤ t ≤ em

are incremented upon the delivery of each message σi(si, di) ∈ σ, 1 ≤ i ≤ m,

as well as the weights of the nodes that belong to the path traversed by σi

15

and the respective weight-update message sent toward the root. Let t = ei,

α = LCAt(si, di), ρ ∈ V be the root of the tree instance Tt, and ∆Φ+(σi) be

the network potential increase caused by each message σi ∈ σ, then

∆Φ+(σi) ≤
∑

u∈Pt(si,ρ)∪Pt(di,α)

log (Wt(u) + 2)− logWt(u)

=
∑

u∈Pt(si,ρ)∪Pt(di,α)

log

(
1 +

2

Wt(u)

)
≤

∑
u∈Pt(si,ρ)∪Pt(di,α)

2

Wt(u)
, (3)

We can split the sum in (3) into two sums, from si to ρ and from di to α:

∆Φ+(σi) ≤
∑

u∈Pt(si,ρ)

2

Wt(u)
+

∑
v∈Pt(di,α)

2

Wt(v)
. (4)

As we argued in Theorem 1, for every pair of consecutive edges (x, y), (y, z)

on the path traversed by message σi, Wt(z)/Wt(x) > 2δ
′
, δ′ ∈ (0, 1]. It follows

that 2/Wt(u) for u ∈ Pt(si, ρ) and Pt(di, α) are both geometric series. So

the two summation terms in (4) converge to O(1/Wt(si)) and O(1/Wt(di)),

respectively.

Now consider all communication requests σi ∈ σ. Let v ∈ V be a particular

node in the network. After the k-th time v has been a source or a destination of

some message in σ, its counter becomes ct(v) = k. Thus, the potential increase

due to all communications over v ∈ V is

∆Φ+(σ) =

m∑
i=1

O

(
1

cei(src(σi))
+

1

cei(dst(σi))

)
=

∑
v∈V

∑
j|v=src(σj)||v=dst(σj)

O

(
1

cej (v)

)
=

∑
v∈V

O(log c(v)) = O
(
n log

m

n

)
(5)

where (5) follows from the fact that
∑

v∈V log c(v) is maximized when c(v) =

m/n, ∀v ∈ V .

16

Theorem 3. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and Algorithm 1. The total work cost incurred by Algorithm 1 to deliver all

messages in σ is C(CBNet, T0, σ) = O
(
m log n+ n log m

n

)
.

Proof. The result follows from the Definition 2 of C(A, T0, σ), the bounds

L(CBNet, T0, σ) = O(H(Ŝ) + H(D̂)) (Theorem 1) and Ω(CBNet, T0, σ) =

O
(
n log m

n

)
(Theorem 2), and the fact that the empirical entropy (Definition 4)

is maximized when the source and destination distributions are uniform, i.e., it

is O(log n).

Since the execution of Algorithm 1 is sequential, its time cost has the same

asymptotic upper bound as its total communication cost.

8. Concurrent CBNet

We now turn our attention to the concurrent CBNet implementation and

analysis. Firstly, we highlight some of the assumptions made when modeling

concurrent network communication. In Section 8.1 we explain the main algo-

rithm design principles that we used. In Section 8.2, we prove the liveness of

and analyze the communication cost incurred by the concurrent CBNet.

8.1. Concurrent network reconfiguration

To implement the concurrent CBNet we adopt the design principles of DiS-

playNet [12], which follow an optimistic approach, i.e., conflicts are dealt with

upon occurrence, and can be summarized as follows:

(1)Prioritization: In order to ensure deadlock and starvation freedom, concur-

rent steps are executed according to a priority. Given two messages σi and σj ,

we say that σi has a higher priority than σj if bi < bj ;

(2) Independent clustering: To ensure consistency among concurrent steps,

local independent clusters of nodes that participate in a single step are computed

in a distributed manner. A cluster is formally defined below.

17

Definition 6. Cluster Kt(σi, xt): Consider the set of links (v, w) ∈ Tt that

would be modified as a result of a rotation executed by a stept(σi, xt). The

parent node v of each such link belongs to a set of nodes that is referred to as

the cluster Kt(σi, xt). In each cluster, the current node of the respective step,

xt ∈ Tt, is the only node that can perform a step, even if it is decided that it

will be of type routing; the other nodes in the cluster are locked in round t.

Figure 1 illustrates the concurrent execution of 3 non conflicting clusters.

(a) Bottom-up and top-down steps

W

W

YZ

X

Z

Z

Y

X

W

X

Y

(b) Splay type determines clusters

W

W

Y

X

Z

X

W

X

Y

Z

Y Z

(c) Rotations are performed (d) Messages made progress

Figure 1: Three concurrent not conflicting clusters: (a)-(b) blue and yellow nodes participate

in bottom-up steps with current nodes x, green nodes participate in a top-down step with

current node z. (c)-(d) Three rotations occurred in parallel, and the three messages have

made progress in the tree while staying at the same current nodes.

18

8.2. Analysis of concurrent execution

In the concurrent scenario, the analysis of CBNet is more challenging than

in the sequential setting, because there is only guarantee that the message with

the highest priority has consecutive progress towards the destination. For the

remaining messages, the consecutive progress can be interrupted, resulting in

several consecutive progress sequences. An interruption can cause the message

to travel through a different path.

The proof of liveness of CBNet follows the same lines as that of DiSplayNet

[11], due to the prioritization rule and the independent clustering approach.

We now turn our attention to the analysis of the communication cost of the

concurrent version of CBNet. Firstly, we introduce the concept of a conflict

between a pair of concurrent steps.

Definition 7. Conflict: Consider a sequence of messages σ and two mes-

sages σi = {si, di} ∈ σ and σj = {sj , dj} ∈ σ, such that σi has higher pri-

ority, i.e., i < j. Moreover, consider two steps stepti(σi, xti), bi ≤ ti ≤ ei

and steptj (σj , xtj), bj ≤ tj ≤ ej with the respective clusters Kti(σi, xti) and

Ktj (σj , xtj). We say that a conflict occurs in the concurrent execution of σ if

ti = tj and Kti(σi, xti)∩Ktj (σj , xtj) ̸= ∅. A conflict can be of type pause, if both

steps are of type routing, or of type bypass if the higher-priority stepti(σi, xti)

is of type rotation.

Note that only a bypass can generate a work cost overhead in the network,

given that it reconfigures the network topology in the local neighborhood of the

current node carrying a message, whereas a pause can generate only a time cost

overhead.

Theorem 4. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and the concurrent CBNet algorithm (CCBNet). The total reconfiguration

cost incurred by CCBNet to deliver all messages in σ is

Ω(CCBNet, T0, σ) = O
(
n log

m

n

)
.

19

Proof. As has been shown in Theorem 2, the number of rotations performed by

CBNet is upper bounded by the maximum network potential increase during

the execution of σ, which is determined by the total number of messages in σ

and is independent of the order or time in which each request σi ∈ σ is generated

or delivered. Given that concurrent CBNet applies the same rule to perform a

rotation as the sequential CBNet, the total reconfiguration cost of concurrent

CBNet has the same upper bound as in the sequential execution.

Theorem 5. Consider any initial BST T0, a sequence of m messages σi ∈ σ and

the concurrent CBNet algorithm (CCBNet). The total routing cost incurred

by CCBNet to deliver all messages in σ is

L(CCBNet, T0, σ) = O
(
m log n+ n2 log

m

n

)
.

Proof. Since only a bypass can generate additional work to deliver a message in

σ, and a bypass is associated with at least one rotation, the routing cost overhead

due to concurrency is bounded by the total number of rotations in the concurrent

execution of σ, multiplied by the additional routing cost incurred by the lower-

priority messages that have been bypassed, which is O(n) per bypassed message,

in the worst case. The result follows by adding the concurrency overhead to the

total sequential routing cost (see Theorem 1 and Def. (3)).

Theorem 6. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and the concurrent CBNet algorithm (CCBNet). The total work cost incurred

by CCBNet to deliver all messages in σ is

C(CCBNet, T0, σ) = O
(
m log n+ n2 log

m

n

)
.

Proof. The result follows from Theorems 1, 4 and 5.

20

In Theorem 7 we provide a worst-case upper bound on the time cost of

concurrent CBNet.

Theorem 7. Consider any initial BST T0, a sequence of m messages σi ∈ σ

and the concurrent CBNet algorithm (CCBNet). The makespan of concurrent

CBNet to deliver all messages in σ is

Makespan(CCBNet, T0, σ) = O
(
m log n+ n2 log

m

n

)
.

Proof. We know that at least one message (of the highest priority) is deliv-

ered without being paused or bypassed at a time in the concurrent execution of

CBNet. This implies that the makespan is upper bounded by the total commu-

nication cost of the concurrent execution, proved in Theorem 6.

Comparison to related work. The bounds on work and time costs of

concurrent CBNet are a significant improvement compared to the cost of DiS-

playNet [11], which has worst-case total work and time costs quadratic in the

number of messages:

C(DiSplayNet, T0, σ) = O(m(m+ n) log n).

9. Workload traces

In this work, before running each experiment, we measure and classify the

locality of the input in terms of its temporal and non-temporal components.

Measuring locality. To measure the locality of reference present in a

workload, we use the definition of trace complexity, introduced in [1], which

leverages only randomization and data compression operations. The amount

of locality present in a workload can be measured based on the entropy of the

communication sequence. The concept of entropy is related to the amount of

information or the ability to compress the data. Intuitively, workloads with a

21

low locality structure tend to have random sequences of communication pairs

and, consequently, a low data compression rate. High-locality sequences tend to

have a specific structure between requests that allows for better compression. It

is possible to identify and measure the locality present in the dataset leveraging

only randomization and data compression operations.

Given a sequence of communication requests σ, we generate two transfor-

mations: Γ(σ), comprised of a sequence of requests where the relative order of

requests is shuffled, and temporal relationships are lost; and U(σ), a sequence

of requests of the same size and domain, but collected from a uniform distribu-

tion, removing the non-temporal locality as a result. The temporal complexity

of a trace is given by the ratio between the entropy C(σ) contained in the se-

quence σ and the entropy contained in the temporal transformation C(Γ(σ)):

T (σ) = C(σ)
C(Γ(σ)) . Similarly, the non-temporal component of a trace is given by

the ratio of the entropy of the temporal transformation Γ(σ) to the entropy of

the uniform sequence U(σ): NT (σ) = C(Γ(σ))
C(U(σ)) . The entropy C(·) can be mea-

sured through the size of the compressed file. Note that T,NT ∈ [0, 1], since

C(σ) ≤ C(Γ(σ)) ≤ C(U(σ))).

Definition 8. Trace complexity [1]: The complexity of a workload σ is given

by the product of temporal and non-temporal complexity: Ψ(σ) = T (σ)×NT (σ).

Note that Ψ(σ) = C(σ)
C(Γ(σ)) ×

C(Γ(σ))
C(U(σ)) , and therefore Ψ(σ) = C(σ)

C(U(σ)) .

In Table 1 we list the attributes of all workloads used in our experiments. In

Figure 2 we compare these workloads using a graphical representation on a two-

dimensional plane. The x and y-axis represent the temporal and non-temporal

components, respectively. At each point, the area of the circle corresponds to the

trace complexity value Ψ(·). Note that the lower the temporal or non-temporal

complexity of a trace, the higher its temporal and non-temporal locality.

In the following, we group the workloads (listed in Table 1) according to

their trace complexity and discuss their main characteristics.

High non-temporal and low temporal locality (ProjecToR and

Skewed): The ProjecToR workload [46] describes the distribution of communi-

22

Figure 2: Trace map of all workloads used in the experiments. The x and y axes represent the

temporal and non-temporal components, respectively, and the area of each circle corresponds

to the trace’s complexity, defined in (8).

cation probability between 8, 367 pairs of nodes in a network of 128 nodes (top

of racks), running map-reduce and systems storage operations. We sampled a

sequence of 10, 000 independent and identically distributed requests (i.i.d.) in

time and repeated each experiment 30 times. The Skewed workload corresponds

to an artificial sequence of 10, 000 communication requests in a network of 1024

nodes, using the method from [1]. The non-temporal locality component was

produced using the Zipf distribution.

High temporal and low non-temporal locality (PFabric, Bursty):

The traces of PFabric [44] were generated by executing simulation scripts in

NS2. We sample a sequence of m = 1, 000, 000 requests from a network of 144

nodes. The Bursty workload was generated artificially with m = 10, 000 and

n = 1024, using the method from [1].

High temporal and non-temporal locality (HPC [45]): This work-

load consists of high-performance computing applications, such as solutions to

23

Table 1: Workload dataset parameters

Scenario Parameters Values

(n, m) (128, 10,000)

ProjecToR[2] i.i.d. Ψ(σ) = (T (σ), NT (σ)) (0.997, 0.467)

(n,m) (1024, 10,000)

Skewed (T (σ), NT (σ)) (1, 0.4)

PFabric[44] : (n,m) (144, 1,000,000)

Trace 0.5 (T (σ), NT (σ)) (0.431, 0.986)

Trace 0.8 (0.489, 1.0)

(n,m) (1024, 10,000)

Bursty (T (σ), NT (σ)) (0.4, 1)

HPC[45] : (n,m) (1024, 1,000,000)

Multigrid (0.535, 0.820)

Nekbone (T (σ), NT (σ)) (0.731, 0.825)

Mocfe (0.725, 0.724)

(n,m) (159, 1,000,000)

Facebook[3] (T (σ), NT (σ)) (1.0, 0.904)

(n,m) (128, 10,000)

Splay Tree std 1.6

Data Structure (T (σ), NT (σ)) (1.0, 0.817)

(n, m) (128, 1,000,000)

ProjecToR ×2 (T (σ), NT (σ)) (0.998, 0.557)

ProjecToR ×4 (0.995, 0.604)

Poisson equations. We collected 1, 000, 000 requests for a network of 1024 nodes.

Low locality (Facebook and Splay Tree Data Structure): The Face-

book [3] trace consists of real Fbflow1 packets collected from the production

clusters A of Facebook. The per-packet sampling is uniformly distributed

with rate 1:30000, flow samples are aggregated every minute, and node IPs

are anonymized. We processed the data as follows. Firstly, we removed all

1Network monitoring system that samples packet headers from Facebook’s machine fleet.

24

inter-cluster or intra-rack requests, keeping only inter-rack requests within the

same cluster. Then, we globally sorted the requests by timestamp. Finally, we

mapped the anonymized IPs to a consecutive value range starting at 0. This re-

sulted in a sequence of 1, 000, 000 requests, originated in a 24-hour time window,

in a network comprised of 159 nodes. The Splay Tree Data Structure workload

consists of an artificial request sequence with m = 10, 000 and n = 128, where

each message’s destination is the root node of the BST, and the source is chosen

randomly, following a normal distribution with std = 1.6.

Legacy burden (ProjecToR × 2,×4): In order to simulate a scenario

where a long history of request counting becomes a burden to dynamic self-

adjusting, we partitioned the simulation timeline into “epochs” with distinct

traffic distributions. We created two workload traces comprised of 1, 000, 000

requests. ProjecToR × 2 is comprised of two parts. The first and the second

half of the request sequence were sampled from ProjecToR’s distribution. In the

second half of the sequence, the ids of the nodes were shuffled. ProjecToR × 4

was generated similarly, but with four epochs.

10. Simulations

All our experiments were performed using the Sinalgo simulation platform [47],

which provides a network abstraction for message passing in a synchronous com-

munication model.

To space the requests in time and make the timestamp sequences more real-

istic, we used a Poisson distribution with λ = 0.05 to determine the time of the

entrance of each message in the network. We made empirical measurements of

the total routing and reconfiguration work and the time required for different

communication patterns. In all experiments, we assumed that the reconfigura-

tion cost of one step equals the cost of forwarding a message through one link,

i.e., R = 1 unit. Note that, in reality, the cost of a reconfiguration is typically

much higher than the routing cost, resulting in a significantly higher reduction

in total work cost of CBNet than depicted in the simulation plots.

25

Table 2 lists all the algorithms implemented in our experiments.

Table 2: Simulated algorithms

Baseline Description

CBN Concurrent CBNet

SCBN Sequential CBNet

AD1-AD4 Adaptive CBNet (timeOut ∈ {30, 100, 500, 1000} rounds)

BT A balanced static BST, with no reconfigurations. This baseline

corresponds to the optimum topology when all pairs of nodes

are equally likely to communicate;

OPT An optimal static BST, computed using the dynamic program

presented in [7]. Like in the BT, there is no reconfiguration

cost, but only routing cost. This baseline requires prior knowl-

edge of the request distribution. Note that, since OPT is not a

dynamic optimum, it might present a higher routing cost than

the dynamic baselines in some scenarios;

SN Our implementation of SplayNet [7]. Note that SplayNet is

not fully distributed, since messages are scheduled sequentially,

which would require a global scheduler.

DSN Our implementation of DiSplayNet, a concurrent version of

SplayNet, which is slightly different and more realistic than

the one in [11]. We implemented a 3-way handshake procedure

for the source and destination nodes of each message to start

rotating toward their LCA simultaneously;

SCBN A sequential version of CBNet. Like SplayNet, it is not entirely

distributed and serves as a reference to assess the benefits of

concurrent reconfigurations.

10.1. Results

We structure our discussion according to the type of locality of the workloads.

26

High non-temporal locality (ProjecToR and Skewed): In Figures

3a and 3b we analyze the work cost, which is comprised of the reconfiguration

(rotations) and message forwarding (routing) components. In both ProjecToR

and Skewed workloads, CBNet performed less (almost no) rotations compared

to other self-adjusting networks and the least amount of total work among all

baselines except for OPT, due to the low temporal locality of these workloads.

The difference in work between BT and OPT is coherent with the presence of

non-temporal locality in the traces, as shown in both plots. Compared to BT,

it is possible to see that CBNet took advantage of the non-temporal locality

present in both workloads, bringing the network closer to the optimal static

tree configuration (OPT). CBNet and SCBN had similar total work costs to

that of DSN and SN. However, unlike the latter, where most of the work is due

to reconfiguration, CBNet performed routing steps almost exclusively, which

supports our analytical results.

Figures 4a and 4b present the results in terms of makespan and throughput.2

Note that we did not include the static networks, as there is no defined time

model for them. The first point that we highlight is the higher throughput

and lower makespan of the two concurrent versions of self-adjusting networks

(CBN and DSN) compared to their sequential counterparts (SCBN and SN),

showing that they took advantage of opportunities for parallelism. The second

point is the superior performance of CBNet (CBN) compared to DiSplayNet

(DSN). This is due to the way CBNet transmits messages. Unlike DSN, where

both the source and destination nodes must be dedicated exclusively to a single

communication request, CBNet does not lock the destination nodes, so they are

able to work on other messages in parallel.

Figures 5a and 5b show the number of concurrent clusters (defined in 6) per

round of simulation as a histogram. The main difference between CBNet and

DSN is that the former presented significantly less rounds with a single cluster.

2Differently from work, throughput is the number of messages delivered per round. Figures

4 and 7 show a smoothed version of the throughput histogram (kernel density estimate).

27

High temporal locality (PFabric and Bursty): In the PFabric and

Bursty workloads, the communication matrix is close to uniform, and conse-

quently, the total work of BT and OPT is almost the same, as can be seen

in Figures 3c and 6b. Among all the algorithms, DiSplayNet had the best

performance in terms of total work, showing how well this algorithm exploits

temporal locality (especially repeated consecutive requests) by performing rota-

tions aggressively. For Bursty, DSN performed even less total work than OPT.

In contrast, since CBNet takes into account the entire communication history of

the nodes to perform reconfigurations, which makes it less reactive to temporal

locality of the workload, CBNet approached the OPT, which in turn approached

the BT (balanced BST) work cost.

In Figures 4c and 7b we can see that, in terms of makespan and through-

put, however, CBNet performed as well as DiSplayNet, or better, despite the

unfavorable trace complexity of the PFabric and Bursty workloads. This shows

that CBNet achieved higher parallelism, which can be confirmed by the cluster

distribution depicted in Figures 5c and 8b. Note that due to the artificially high

temporal locality in the Bursty workload, where the request sequence is com-

prised of long consecutive request repetitions, the execution becomes sequential

at some nodes, limiting opportunities for concurrency.

High non-temporal and temporal locality (HPC): Similarly to the

Bursty scenario (3c), DSN and SN performed the least amount of work, even

less than OPT, for the HPC Mocfe and Multigrid traces (Figure 6a). Since

OPT and BT presented similar values, we can conclude that the non-temporal

locality is low, resulting in higher work cost for CBNet and SCBN. Nevertheless,

CBNet achieved the best makespan and throughput due to higher parallelism,

as shown in Figure 7a and confirmed by Figure 8a, which shows that the number

of rounds with ≤ 2 concurrent clusters was almost 10× higher for DSN for the

Mocfe and Multigrid traces.

Low locality (Facebook and Splay Tree Data Structure): The results

for the Splay Tree Data Structure (Figures 3d, 4d, 5d) and Facebook workloads

(Figures 6c, 7c, 8c) were similar for all metrics. Due to the lack of both spatial

28

and temporal locality, DSN and SN performed significantly more work among

all baselines, more even than the balanced static network (BT), while CBNet

performed similarly to OPT, as shown in Figures 3d and 6c. This is due to the

lack of spatial locality. For these request sequences, the balanced tree is in fact

the optimal topology, so CBNet performed almost no rotations after converging

to BST. DSN and SN, however, performed rotations along the entire simulation,

due to the lack of temporal locality.

As shown in Figures 4d and 7c, CBNet and SCBN obtained the best results

in terms of throughput and makespan. Interestingly, the execution of DSN

was sequential for the Slay Tree Data Structure scenario (Figures 4d), which is

due to the fact that all requests originate from the root node, preventing any

parallelism, as can also be seen in Figure 5d (all DSN rounds had ≤ 1 clusters).

Adaptive CBNet (ProjecToR ×2 and ×4): Finally, we evaluated the

performance of Adaptive CBNet in two scenarios, where the demand was com-

prised of a concatenation of time periods with distinct distributions. We simu-

lated the decayWeights() function (Algorithm 2) with increasing timeout values

(timeOut ∈ {30, 100, 500, 1000} rounds). We refer to each configuration as AD1,

AD2, AD3, and AD4, respectively.

In Figure 9, we observe that CBNet performed more total work than DSN,

especially for ProjecToR ×4, due to the high “legacy burden” of this request

sequence. Moreover, AD1 performed significantly less work than CBNet and

slightly less work than DSN in both scenarios. In ProjecToR ×2, AD2, AD3,

and AD4 did not show great advantage compared to CBNet. For ProjecToR

×4, however, all four versions of AD outperformed the non-adaptive CBNet.

This demonstrates that the “legacy burden” of the counting-based self-

adjusting approach can be mitigated by a counter resetting scheme, in exchange

of slightly higher number of rotations. This increase in reconfiguration cost,

however, was insignificant, when compared to the aggressive reconfiguration

approach of DSN.

29

(a) ProjecToR (↓↓↓ T (σ)/↑↑ NT (σ)) (b) Skewed (↓↓↓ T (σ)/↑↑↑ NT (σ))

(c) Bursty (↑↑↑ T (σ)/↓↓↓ NT (σ)) (d) Splay Tree (↓↓↓ T (σ)/↑ NT (σ))

Figure 3: Work cost for synthetic workload traces (m = 10, 000)

11. Conclusion

We presented CBNet, a self-adjusting network that relies on a fully decen-

tralized control plane and significantly reduces adjustment costs, compared to

prior work. Despite its concurrent nature, CBNet comes with formal guarantee.

In this work, we used a synchronous distributed system model. CBNet as-

sumes a consistent and communication-closed round structure provided by the

distributed system (i.e., if a message is sent by a node, it will be delivered to the

receiver node in the same round). While a large number of solutions to problems

in distributed computing assume lock-step rounds, real-world distributed sys-

tems are usually not perfectly synchronous. In practice, message loss is present

as a result of job dropping by a real-time scheduler or an unreliable communi-

cation channel. There are several ways to generate round structures in various

different systems and failure models, e.g., [48]. One way to overcome this issue

is to build a synchronous round abstraction atop the imperfect communication

30

(a) ProjecToR (b) Skewed

(c) Bursty (d) Splay Tree

Figure 4: Throughput and makespan for synthetic workload traces (m = 10, 000)

system, using a synchronizer [49]. The real-time performance of an atop running

synchronous algorithm depends on the performance of the synchronizer, as well

as on the assumptions w.r.t. delay bounds and fault probability distribution.

While our contribution is still theoretical in nature, we believe that it consti-

tutes an interesting step forward toward practical self-adjusting networks. Our

work opens interesting avenues for future research. In particular, it will be inter-

esting to further analyze the optimal trade-off between the benefits and the costs

of adjustments. It will also be interesting to generalize the network topology

beyond trees and consider implications on network and transport layers.

Acknowledgments

This research work was supported by CAPES, CNPq, Fapemig, and the

European Research Council (ERC), grant agreement No. 864228 (AdjustNet),

Horizon 2020, 2020-2025.

31

(a) ProjecToR (b) Skewed

(c) Bursty (d) Splay Tree

Figure 5: Synthetic workloads (m = 10, 000): number of concurrent clusters per round

References

[1] C. Avin, M. Ghobadi, C. Griner, S. Schmid, On the complexity of traffic

traces and implications, in: Proc. ACM SIGMETRICS, 2020.

[2] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,

G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, D. Kilper, Projec-

tor: Agile reconfigurable data center interconnect, in: Proceedings of the

2016 ACM SIGCOMM Conference, ACM, 2016, pp. 216–229.

[3] A. Roy, H. Zeng, J. Bagga, G. Porter, A. C. Snoeren, Inside the social

network’s (datacenter) network, in: ACM SIGCOMM Computer Commu-

nication Review, Vol. 45, ACM, 2015, pp. 123–137.

[4] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of

data center traffic: measurements & analysis, in: Proc. 9th ACM Internet

Measurement Conference (IMC), 2009, pp. 202–208.

32

(a) HPC (↑↑ T (σ)/↑ NT (σ))

(b) PFabric (↑↑↑ T (σ)/↓↓↓ NT (σ)) (c) Facebook ↓↓↓ T/ NT

Figure 6: Real-system workload traces (m = 1, 000, 000): total work cost

[5] S. Kandula, J. Padhye, P. Bahl, Flyways to de-congest data center net-

works, Proc. ACM HotNets (2009).

[6] C. Avin, S. Schmid, Toward demand-aware networking: A theory for self-

adjusting networks, in: ACM SIGCOMM Computer Communication Re-

view (CCR), 2018.

[7] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, Z. Lotker,

Splaynet: Towards locally self-adjusting networks, IEEE/ACM Transac-

tions on Networking (ToN) 24 (3) (2016) 1421–1433.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, A. Vahdat, Helios: a hybrid electrical/optical

switch architecture for modular data centers, ACM SIGCOMM Comp.

Comm. Review 41 (4) (2011) 339–350.

33

(a) HPC

(b) PFabric (c) Facebook

Figure 7: Real-system workload traces (m = 1, 000, 000): throughput and makespan

[9] C. Avin, K. Mondal, S. Schmid, Demand-aware network designs of bounded

degree, in: Proc. International Symposium on Distributed Computing

(DISC), 2017.

[10] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,

H. Shah, A. Tanwer, Firefly: A reconfigurable wireless data center fabric

using free-space optics, in: ACM SIGCOMM Computer Communication

Review, Vol. 44, ACM, 2014, pp. 319–330.

[11] B. Peres, O. Souza, O. Goussevskaia, S. Schmid, C. Avin, Distributed self-

adjusting tree networks, in: Proc. IEEE INFOCOM, 2019.

[12] B. Peres, O. A. d. O. Souza, O. Goussevskaya, C. Avin, S. Schmid, Dis-

tributed self-adjusting tree networks, IEEE Tran. on Cloud Computing

(2021).

34

(a) HPC

(b) PFabric (c) Facebook

Figure 8: Real-system workloads (m = 1, 000, 000): Number of concurrent clusters per round

[13] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, R. E. Tarjan, The cb tree:

A practical concurrent self-adjusting search tree, Distrib. Comput. 27 (6)

(2014) 393–417.

[14] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center

network architecture, in: ACM SIGCOMM Comp. Comm. Review, Vol. 38,

ACM, 2008, pp. 63–74.

[15] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,

S. Boving, G. Desai, B. Felderman, P. Germano, et al., Jupiter rising:

A decade of clos topologies and centralized control in google’s datacenter

network, ACM SIGCOMM Comp. Comm. Review 45 (4) (2015) 183–197.

[16] V. Liu, D. Halperin, A. Krishnamurthy, T. Anderson, F10: A fault-tolerant

35

Figure 9: Adaptive CBNet (AD1-AD4: timeOut ∈ {30, 100, 500, 1000} rounds): total work

engineered network, in: USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI), 2013, pp. 399–412.

[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,

S. Lu, Bcube: a high performance, server-centric network architecture for

modular data centers, Proc. ACM SIGCOMM Computer Communication

Review (CCR) 39 (4) (2009) 63–74.

[18] H. Wu, G. Lu, D. Li, C. Guo, Y. Zhang, Mdcube: a high performance

network structure for modular data center interconnection, in: Proc. ACM

CONEXT, 2009, pp. 25–36.

[19] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, A. Singla, Beyond

fat-trees without antennae, mirrors, and disco-balls, in: Proc. ACM SIG-

COMM, 2017, pp. 281–294.

[20] A. Singla, C.-Y. Hong, L. Popa, P. B. Godfrey, Jellyfish: Networking data

centers, randomly, in: Proc. USENIX Symposium on Networked Systems

Design and Implementation (NSDI), Vol. 12, 2012, pp. 17–17.

[21] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.

Snoeren, G. Porter, Rotornet: A scalable, low-complexity, optical datacen-

ter network, in: Proc. ACM SIGCOMM, 2017, pp. 267–280.

[22] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, G. Porter,

36

Expanding across time to deliver bandwidth efficiency and low latency,

arXiv preprint arXiv:1903.12307 (2019).

[23] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,

F. Karinou, S. Lange, K. Shi, B. Thomsen, et al., Sirius: A flat datacenter

network with nanosecond optical switching, in: Proc. ACM SIGCOMM,

2020, pp. 782–797.

[24] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen,

Y. Chen, Osa: An optical switching architecture for data center networks

with unprecedented flexibility, IEEE/ACM Transactions on Networking

22 (2) (2014) 498–511.

[25] C. Avin, S. Schmid, Renets: Statically-optimal demand-aware networks, in:

Proc. SIAM Symposium on Algorithmic Principles of Computer Systems

(APOCS), 2021.

[26] J. Kulkarni, S. Schmid, P. Schmidt, Scheduling opportunistic links in two-

tiered reconfigurable datacenters, in: 33rd ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA), 2021.

[27] C. Avin, A. Hercules, A. Loukas, S. Schmid, rdan: Toward robust demand-

aware network designs, in: Information Processing Letters (IPL), 2018.

[28] S. B. Venkatakrishnan, M. Alizadeh, P. Viswanath, Costly circuits, sub-

modular schedules and approximate carathéodory theorems, Queueing Sys-

tems 88 (3-4) (2018) 311–347.

[29] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing,

Y. Fainman, G. Papen, A. Vahdat, Integrating microsecond circuit switch-

ing into the data center, SIGCOMM Comput. Commun. Rev. 43 (4) (2013)

447–458.

[30] A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, Proteus: a topol-

ogy malleable data center network, in: Proc. ACMWorkshop on Hot Topics

in Networks (HotNets), 2010.

37

[31] E. Feder, I. Rathod, P. Shyamsukha, R. Sama, V. Aksenov, I. Salem,

S. Schmid, Lazy self-adjusting bounded-degree networks for the matching

model, in: Proc. IEEE Conference on Computer Communications (INFO-

COM), 2022.

[32] C. Griner, J. Zerwas, A. Blenk, S. Schmid, M. Ghobadi, C. Avin, Cer-

berus: The power of choices in datacenter topology design (a throughput

perspective), in: Proc. ACM SIGMETRICS, 2022.

[33] L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, S. Zhong, Enabling

wide-spread communications on optical fabric with megaswitch, in: Pro-

ceedings of the 14th USENIX Conference on Networked Systems Design

and Implementation, NSDI’17, USA, 2017, pp. 577–593.

[34] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,

M. Kozuch, M. Ryan, c-through: Part-time optics in data centers, ACM

SIGCOMM Computer Communication Review 41 (4) (2011) 327–338.

[35] C. Avin, K. Mondal, S. Schmid, Demand-aware network design with mini-

mal congestion and route lengths, in: Proc. IEEE INFOCOM, 2019.

[36] D. Sleator, R. Tarjan, Self-adjusting binary search trees, Journal of the

ACM (JACM) 32 (3) (1985) 652–686.

[37] J. Zerwas, W. Kellerer, A. Blenk, What you need to know about optical

circuit reconfigurations in datacenter networks, in: The 33nd International

Teletraffic Congress (ITC 33), 2021.

[38] M. Wang, Y. Cui, S. Xiao, X. Wang, D. Yang, K. Chen, J. Zhu, Neural

network meets dcn: Traffic-driven topology adaptation with deep learning,

Proc. ACM Meas. Anal. Comput. Syst. 2 (2) (2018).

[39] L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, S. Zhong, Enabling

wide-spread communications on optical fabric with megaswitch, NSDI’17,

2017, p. 577–593.

38

[40] J. Zerwas, C. Avin, S. Schmid, A. Blenk, exrec: Experimental framework

for reconfigurable networks based on off-the-shelf hardware.

[41] Polatis Series 6000, www.polatis.com, [Online; accessed 10-May-2022].

[42] B. Allen, I. Munro, Self-organizing binary search trees, J. ACM 25 (4)

(1978) 526–535.

[43] O. A. d. O. Souza, O. Goussevskaia, S. Schmid, Cbnet: Minimizing adjust-

ments in concurrent demand-aware tree networks, in: IEEE Int. Parallel

and Distributed Processing Sym. (IPDPS), 2021, pp. 382–391.

[44] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

S. Shenker, Pfabric: Minimal near-optimal datacenter transport, in: Proc.

ACM Conference on SIGCOMM, 2013, p. 435–446.

[45] U. DOE, Characterization of the doe mini-apps., https://portal.nersc.

gov/project/CAL/overview.htm, accessed 11-February-2020 (2016).

[46] Projector dataset, www.microsoft.com/en-us/research/project/

projector-agile-reconfigurable-data-center-interconnect (2016).

[47] D. C. Group, Sinalgo - simulator for network algorithms, http://disco.

ethz.ch/projects/sinalgo, accessed 10-Jan-2020 (2007).

[48] O. Bakr, I. Keidar, Evaluating the running time of a communication round

over the internet, in: PODC, ACM, 2002, pp. 243–252.

[49] B. Awerbuch, Complexity of network synchronization, J. ACM 32 (4)

(1985) 804–823.

39

www.polatis.com
https://portal.nersc.gov/project/CAL/overview.htm
https://portal.nersc.gov/project/CAL/overview.htm
www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
http://disco.ethz.ch/projects/sinalgo
http://disco.ethz.ch/projects/sinalgo

	Introduction
	Related Work
	Model
	Refined cost model
	Amortized analysis and the potential method

	CBNet overview
	Communication history through counters
	Sequential CBNet
	Adaptive CBNet

	Sequential CBNet analysis
	Concurrent CBNet
	Concurrent network reconfiguration
	Analysis of concurrent execution

	Workload traces
	Simulations
	Results

	Conclusion

