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A B S T R A C T

Emerging optical communication technologies support the dynamic reconfiguration of datacenter network
topologies depending on the traffic they serve. However, to reap the benefits of such demand-aware networks,
control logic that quickly learns and adapts to traffic patterns is required. This paper presents CacheNet, a novel
approach to efficiently control demand-aware networks. CacheNet consists of two components, a demand-aware
links-cache, and a demand-oblivious topology. CacheNet leverages temporal and spatial locality in the traffic
by managing the reconfigurable links of the optical switches as a links-cache. Network traffic, in turn, can be
served either by a link from the links-cache component or by a demand-oblivious topology component. We
study several classic caching algorithms like online LFU and LRU as our caching algorithms, as well as offline
optimal caching as a benchmark, and provide an analytical model which captures their performance benefits
compared to an all demand-oblivious topology. Our analytical results show that based on the hit ratios and
the links-cache size, when considering the average packet delay, our hybrid design outperforms a design that
is based only on demand-oblivious topology. We also evaluate CacheNet empirically, using both synthetic and
real-world traffic traces, confirming the potential of our approach to consider reconfigurable links as a network
of links-cache.
1. Introduction

Traditional datacenter networks have in common that they rely
on a topology which is demand-oblivious, i.e., independent of the
current traffic pattern it serves. Recently, reconfigurable optical tech-
nologies have introduced an intriguing alternative to design datacenter
networks, allowing to dynamically establish shortcuts, depending on
the demand [2–7]. In particular, such reconfigurable links could be
established to support elephant flows or between two racks with signif-
icant communication demands. The potential for such demand-aware
optimizations is high: empirical studies show that traffic features lo-
cality, i.e., traffic matrices are indeed sparse and a small number
of elephant flows can constitute a significant fraction of the data-
center traffic [8–10]. However, designing demand-aware networks is
challenging. Existing architectures, including Helios [2], Eclipse [3,4]
Solstice [5], RE-ACToR [6], and Mordia [7], among others, are based
around creating a schedule of reconfigurations for a snapshot of the
traffic matrix. More specifically, most existing reconfigurable optical
technologies allow to provide dynamic matchings between a set of
endpoints (e.g., top-of-rack switches) [11], and throughput can be
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optimized by cleverly scheduling a sequence of such matchings. This
approach however typically requires centralized data collection and
introduces a non-trivial computational overhead, which may become
a bottleneck in large-scale datacenters.

This paper presents a novel approach to design demand-aware and
self-adjusting networks, which is inspired by the success of leveraging
the locality principle [12] in other computing systems using caching
(e.g., CPU, memory, web caches). That is, rather than aiming to collect
information patterns explicitly, we propose an implicit approach in
which the different optical switches manage their reconfigurable links
as a cache of links. The links in the links-cache serve communication
requests with very low latency and high capacity, and are adjusted in
an online manner, according to the changing demand in the network.

Specifically, we propose CacheNet , a hybrid architecture which con-
sists of both demand-aware links, that can be realized as a distributed
links-cache, and demand-oblivious links. Ideally, the demand-aware
component adjusts to changing network demand patterns to serve
large flows at lower overhead, while the demand-oblivious component
handles any remaining traffic which the links-cache cannot handle (e.g.,
vailable online 17 December 2021
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Fig. 1. Architecture of CacheNet as a two-layer leaf-spine network.
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ll-to-all shuffle traffic). In particular, the demand-oblivious component
f CacheNet relies on RotorNet [13], which has been shown to serve
huffle traffic particularly well; however we note that, in principle, any
ther demand-oblivious network can be used, such as static networks
ased on expander topologies or electrical networks [14]. We provide
formal analysis of CacheNet which allows us to shed light on the

ptimal partition of demand-oblivious and demand-aware links in the
atacenter. We further complement these insights with an empirical
valuation, considering both important synthetic and real-world work-
oads. Our results reveal that CacheNet can greatly benefit from its
ybrid design.

To the best of our knowledge, we are the first to establish a connec-
ion to explore the opportunities of a distributed links-cache to enhance
n otherwise demand-oblivious topology.Furthermore, we believe that
ur approach can benefit other hybrid networks partly relying on a
emand-aware network, such as Cerberus[15]

The rest of the paper is organized as follows, Section 2 introduces
ur hybrid architecture model, combining demand-aware and demand-
blivious topology components. Section 3 presents a mathematical
nalysis of our approach, and Section 4 reports on empirical results
onsidering several real-world traces. We discuss limitations and ex-
ensions in Section 5, we consider related work in Section 6 and finish
ith the conclusions in Section 7.

. CacheNet hybrid architecture model

We consider a hybrid architecture model which will also allow
s navigate different configurations and compare trade-offs between
emand-oblivious and demand-aware networks as a single system
hich combines both. In particular, in this paper, we will use Ro-

orNet [13] as the demand-oblivious network; however, rather than
sing RotorNet directly, as described in this section, we will consider
n extended and abstract view of the original RotorNet, henceforth
enoted as rotor-net . For the demand-aware network, we will use (links-
ache net) LC-net , also described in this section, which is based on our
ovel distributed links-cache approach.

We will simply refer to our hybrid architecture combining rotor-net
nd LC-net , as CacheNet . To this end, we will assume that for the design
f CacheNet , we are given a link budget (or synonymously edge budget)
f 𝑚 edges (optical links) to serve the communication between 𝑛 nodes
2

i.e., possible source or destinations). In a data-center network, sources
nd destinations could be different ToR switches (as in our empirical
races), but more generally they may represent any type of network
odes (e.g., hosts). Each of these edges is assigned to either the rotor-
et component or to the LC-net component. In the following, we will
enote the number of edges assigned to either rotor-net or to the links-
ache as 𝑚𝑟 and 𝑚𝑐 respectably, and 𝑚𝑟 + 𝑚𝑐 = 𝑚. Also note that at all
imes we maintain exactly 𝑚𝑐 edges in the links-cache, even before 𝑚𝑐
nique edges have appeared in the request sequence. We simply place
andom edges which are evicted as other edges need to be added by
he caching algorithm.

In more concrete terms, we would envision the architecture of
acheNet to be that of a two-layer leaf-spine network. With 𝑛 ToRs
witches which compose the leaf layer, each with 𝑘 up-links, which
onnect to 𝑘 spine layer switches. Accordingly, we can assume that
ach switch serves 𝑛 links and therefore 𝑘 = 𝑚

𝑛 . Each subsystem, in
turn, will have the relative part of the total 𝑘 switches; In rotor-net we
have 𝑘𝑟 =

𝑚𝑟
𝑛 switches and LC-net will have 𝑘𝑐 =

𝑚𝑐
𝑛 switches. Similarly

to the edge budget, we can state that our equivalent ‘‘switch budget’’
is 𝑘 = 𝑘𝑟+𝑘𝑐 . A schematic view of our system can be seen in Fig. 1. We
will now first introduce the two subsystems in turn and then describe
CacheNet .

2.1. The demand-oblivious network: Rotor-net

Our demand-oblivious network component builds upon RotorNet ,
proposed in [13]. Since we will make some extensions of this model,
as described in the following, we will refer to our version by rotor-net .

The original RotorNet network is composed of 𝑘 spine switches
and 𝑛 Top-of-Rack (ToR) switches. Each optical switch in the RotorNet
network, henceforth called rotor switch, has 𝑛 input and output ports,
and independently rotates through a set of input–output configura-
tions, or matchings. The set of matchings for each switch is static, and
(pre)scheduled in a round-robin manner. The overall collection of these
matchings, for all switches, allows RotorNet to emulate a complete
graph with 𝑛 nodes, where all 𝑛(𝑛 − 1) possible directed connections
are established at some point during a cycle. The main cost of this
complete graph emulation is the required delay while the network waits
for a connection between the two end points to be established. More
specifically, at each matching, the RotorNet system serves traffic for a
certain amount of time, called the slot time, 𝛿 (i.e., a circuit-hold in

which the configuration is not changed); it takes a further amount of
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Fig. 2. When a request is sent from node 𝐸 to 𝐵 using the network in (a) there is a cache miss. CacheNet will route the packet using rotor-net while also reconfiguring the LC-net
to the network in (b), remove the edge (𝐸,𝐻) and add (𝐸,𝐵). Future packets are now sent on (b).
time to switch between matchings, denoted as the rotor reconfiguration
time, 𝑅𝑟. We denote the total time of these two time periods simply as
𝜏 = 𝛿 + 𝑅𝑟, the slice time. RotorNet ’s main advantages come form its
blivious nature. Since all the matchings and the round-robin schedule
an be calculated in advance, RotorNet does not require a sophisticated

control plane for topology changes. Furthermore, the rotor switch can
be designed to have short reconfiguration times, significantly lower
than demand-aware switches [16], due to the simple nature of a small
set of predefined matchings. Demand-oblivious systems like RotorNet
are very effective in dealing with uniform traffic; however, when
RotorNet is presented with more skewed traffic patterns some links may
be under-utilized. In this paper we will consider an abstract model of
RotorNet which we denote by rotor-net . In a nutshell, rotor-net is simply
a reconfigurable network which cycles periodically through a sequence
of matchings, in a demand-oblivious manner. rotor-net has 𝑚𝑟 links and
is operated by cycling in a round robin manner through all 𝑛(𝑛 − 1)
possible links of the all-to-all directed complete graph. In every time
slot rotor-net connects a set of 𝑚𝑟 links and disconnects the previous
set of 𝑚𝑟 links, until all possible links have been covered in a single
full cycle.1 Every such set is a collection of matchings and the number
of slots that are needed to cover all links is therefore on average given
by 𝑛(𝑛 − 1)∕𝑚𝑟. The average cycle time 𝑐 is given by the slice time 𝜏
multiplied by the number of slots (or slices) in a cycle,

𝑐 = 𝜏
𝑛(𝑛 − 1)

𝑚𝑟
(1)

Since the set of 𝑚𝑟 links is built from 𝑘𝑟 rotor switches, each with
matchings of size 𝑛, we have that 𝑚𝑟 = 𝑛𝑘𝑟 and

𝑐 = 𝜏 𝑛 − 1
𝑘𝑟

(2)

While a link (𝑢, 𝑣) is connected, all packets destined from 𝑢 to 𝑣 are
transmitted, in a single hop with no delay other than the transmission
time denoted as 𝑡. As in [17] we consider symmetric matchings, so
whenever a link (𝑢, 𝑣) is connected in a rotor switch, so is the link (𝑣, 𝑢).

2.2. The demand-aware network: LC-net

In general, demand-aware networks are able to capture different
demand patterns reconfiguring the network to better suite the de-
mand, hence ‘‘demand-aware’’. Our demand-aware network component
is treated as a cache of links and denoted as links-cache net or for short
LC-net . LC-net has a total budget of 𝑚𝑐 links and each link in the links-
cache is either connected and ready to be used for packet transmission,

1 Opera [17] proposed a more smooth transition between these sets. For
implicity we ignore this modification.
3

Algorithm 1 CacheNet packet forwarding
1: Upon a packets from source 𝑢 to destination 𝑣
2: If (𝑢, 𝑣) exists in the links-cache
3: Send packet on the direct link (𝑢, 𝑣)
4: Else ⊳ no such link in the links-cache
5: Wait for rotor-net to reach a matching with (𝑢, 𝑣)
6: Send packet on link in rotor-net (𝑢, 𝑣)
7: Update the links-cache according to a links-cache algorithm 

or it is being reconfigured, and therefore currently unavailable. In order
to capture demand patterns LC-net operates in a similar manner to a
traditional cache, in the sense that when a link (𝑢, 𝑣) is connected (i.e.,
in the links-cache), all packets destined from 𝑢 to 𝑣 are transmitted,
using a single hop with negligible delay (other than the transmission
time 𝑡). We keep the links-cache symmetric such that when a link (𝑢, 𝑣)
is in the links-cache, so is the link (𝑣, 𝑢). When a packet from 𝑢 to 𝑣 is
sent and the corresponding physical link (𝑢, 𝑣) is in the links-cache, we
have a cache hit. In Fig. 2(a) & (b) we can see a simplified example of
the operation of a links-cache. The network has 9 nodes and an edge
budget of 8 and is not fully connected. On the network in Fig. 2(a)
packets could be sent from node 𝐹 to node 𝐴 immediately but not
from node 𝐸 to 𝐵. Assuming that such a connection is needed CacheNet
first forwards packets from 𝐸 to 𝐵 on rotor-net and then reconfigures
LC-net according the caching algorithm. In our example we see that
in Fig. 2(b) the connection (𝐸,𝐻) was removed and the link (𝐸,𝐵)
was added to LC-net , thus allowing immediate communication between
the two nodes. Importantly, the decision of when to reconnect a link
(insert it to the links-cache and remove another link from the links-
cache) is left to a cache replacement policy (a.k.a. caching algorithm).
When a link (𝑢, 𝑣) is removed from the links-cache, and another link
(𝑖, 𝑗) is added, a reconfiguration time of 𝑅𝑐 is incurred. The caching
algorithm at the heart of LC-net is essentially a prediction algorithm, it
predicts which edge is best added to the links-cache. While we test three
caching algorithms, LFU, LRU and (offline) OPT that are explained
later, we note that any prediction algorithm could be used; including
algorithm tailored towards communication networks and interestingly
those based on machine learning.

2.3. The CacheNet system

We assume that all packets are sent either on rotor-net or on LC-
net . When a packet arrives to the CacheNet system, if an appropriate
cached link is available, the packet is sent immediately on that link to its
destination in a single hop (denoted as a cache hit). Otherwise, (denoted
as a cache miss), the packet is sent using rotor-net , and the system’s
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links-cache is updated as necessary. During the reconfiguration time
oth the new and the old links in the links-cache are not usable, and

all messages for those links are transmitted using the alternate rotor-
net system. Algorithm 1 presents the operation of CacheNet . Observe
that whenever a new message arrives to the system, the links-cache is
(potentially) updated according to a cache algorithm . In the current
work this could be either LFU, LRU or OPT, but any other caching
algorithm could be used instead.

For our analysis, we model the traffic as a sequence 𝜎 of communi-
cation events (e.g., IP packet transmissions) 𝜎 = ((𝑠1, 𝑑1, 𝑡1), (𝑠2, 𝑑2, 𝑡2),
𝑠3, 𝑑3, 𝑡3),…), where 𝑠𝑖, 𝑑𝑖 represent the source and destination nodes,

and 𝑡𝑖 represents the time at which transmission of packet 𝜎𝑖 occurred.
Given some edge budget 𝑚 and a traffic pattern 𝜎, our goal is to find

a partition of the edges into 𝑚𝑟 and 𝑚𝑐 such that the performance of the
network is optimized. The optimization result will depend on several
parameters: (i) The demand 𝜎, since certain demand patterns will result
in a better hit ratio; (ii) the system parameters including 𝜏; and (iii) the
reconfiguration times 𝑅𝑟 and 𝑅𝑐 , as these affect the efficiency of rotor-
net and the hit ratio. Further discussion on the reconfiguration times
can be found in Section 5.

In the following, we will study both the hit ratio of basic caching
algorithms and the optimal partition of the total budget 𝑚 (to 𝑚𝑟 and
𝑚𝑐) that will maximize the performance of CacheNet analytically. Our
system has two extreme modes of operation. i) A complete demand-
oblivious network, that is 𝑚𝑐 = 0 and 𝑚𝑟 = 𝑚. We denote this as a
pure rotor-net and the system is essentially the original RotorNet. ii) A
complete demand-aware network, that is a pure caching system where
𝑚𝑐 = 𝑚 and 𝑚𝑟 = 0. We denote this as a pure LC-net . The more common
and non-extreme mode of operation is for both subsystems to have some
non zero edge budget, that is both 𝑚𝑐 ≠ 0 and 𝑚𝑟 ≠ 0. This is the case
which we found to be ideal in our empirical tests, which check settings
from 𝑚𝑐 = 0 and 𝑚𝑟 = 𝑚 to 𝑚𝑐 = 𝑚 and 𝑚𝑟 = 0, allowing us to find the
optimal configuration for the given edge budget 𝑚.

3. Analysis of CacheNet

In this section we continue to outline the theoretical aspects of
CacheNet . In particular we discuss the main metric used to evaluate
CacheNet in this paper, the effectiveness ratio, which is the ratio of
average delay per packet in between CacheNet and pure rotor-net . We
start by analyzing the average delay per packet.

3.1. Average Delay Per Packet, comparing CacheNet to a pure rotor-net

We evaluate the performance of CacheNet on a ToR-to-ToR network,
by analyzing at the average delay for a packet from the moment it
first reached the source ToR, until it arrives at its destination ToR. To
derive a concise formula for this delay we assume all packets are of
the same size and type, and differ only by their timestamps, source
and destination nodes. As mentioned earlier, all packets are transmitted
using direct single hop connections. We note that RotorNet could in
general benefit from 2-hops forwarding, in the form of Valiant routing;
however, in this paper we ignore this feature, since we only examine
the average delay per packet.

We consider the three main elements of the average delay: the
average delay for a packet transmitted on the rotor-net subsystem, the
average delay for a packet transmitted on the LC-net subsystem, and the
cache hit ratio of the hybrid system, denoted as 𝑡𝑟, 𝑡𝑐 and ℎ respectively.

Let us first analyze 𝑡𝑟. Consider a packet to destination 𝑢 that arrives
to the rotor-net from source 𝑣. According to our setup, the packet would
have to wait for a matching which contains the link {𝑢, 𝑣} before it is
transmitted. If the packet is ‘‘lucky’’ this could happen in the next slot,
but in the worst case it could take a whole cycle. If we assume that all
packets are equally likely to arrive during any of the matchings, this
4

h

would mean that on average a message would wait half a cycle time
until it is transmitted. Therefore 𝑡𝑟 is given by

𝑡𝑟 =
𝑐
2
+ 𝑡 = 𝜏

2
𝑛(𝑛 − 1)

𝑚𝑟
+ 𝑡. (3)

The expression for 𝑡𝑐 is straightforward. If a packet is sent from a source
𝑣 to a destination 𝑢 and the link (𝑣, 𝑢) is in the links-cache, it would
llow it to be transmitted directly, along one hop, to its destination,
nd therefore 𝑡𝑐 = 𝑡. Clearly 𝑡𝑟 > 𝑡𝑐 , thus we would always prefer to
end packets to the links-cache whenever possible (i.e., the link is in
he links-cache).

The last component of the average delay is the hit ratio 0 ≤ ℎ ≤ 1,
namely, the fraction of times that a packet arrived when the correct
link is already in the links-cache (and so the packet can be sent using
the cached links). This is the ratio between the number of packets sent
using the links-cache, ℎ𝑐 , and the number of total packets sent, i.e. the
length of the trace |𝜎|:

ℎ =
ℎ𝑐
|𝜎|

, ℎ ∈ [0, 1] (4)

We note that the particular value of ℎ gained from the experimental
results, is implicitly a function of several variables such as the size of
the links-cache 𝑚𝑐 , the reconfiguration delay of links-cache edges 𝑅𝑐
and the trace 𝜎 itself (a sequence of packets). As a result, it cannot
be generally summed into in a simple expression and can take any
value in the range [0, 1]. But, for special cases we reason about its
expected value. Let us begin by defining 𝑈𝜎 to be the set of unique
communicating requests in 𝜎, that is, the set of requests that are active
at least once for the duration of the trace 𝜎. A ratio close to a perfect
hit ratio of 1, can be naively achieved for any trace where the size of
the set of unique communicating edges |𝑈𝜎 |, is smaller than 𝑚𝑐 . In this
case, we do not need to evict any request for the links-cache. That is, if
𝐸𝜎 | ≤ 𝑚𝑐 then the hit ratio ℎ will be very close to 1 for any trace and
or any of our caching algorithms. A value close 0 for ℎ is less likely
n a real setting, unless the links-cache is very small relatively to |𝑈𝜎 |.
heoretically, it might be achieved even for a larger links-cache by an
dversary which always chooses the next request of the trace to be a
ink which is not currently in the links-cache. In a more realistic setting,
ven for an i.i.d and uniformly distributed trace we expect the hit ratio
o converge towards 𝑚𝑐

|𝐸𝜎 |
.2 The hypothesis behind the motivation for

this work is that traces with a large degree of structure would have a
good hit ratio and that trace do have structure. One recent measure of
the amount of structure in a trace is trace complexity [10]: the more
complex the trace is the less structure it has. We conjecture that traces
and traffic that displays low complexity has a higher potential to reach
better hit ratios.

To continue are analysis, we can deduce the average delay per
packet in the CacheNet system 𝐴𝐷(ℎ) as a function of the hit ratio ℎ.
This is the weighted average of the delay of each subsystem.

𝐴𝐷(ℎ) = ℎ𝑡𝑐 + (1 − ℎ)𝑡𝑟 = (1 − ℎ) 𝑐
2
+ 𝑡. (5)

Looking at the result for 𝐴𝐷(ℎ), we observe that the average delay per
packet is a linear function of ℎ, so its behavior depends entirely on the
hit ratio. As expected, the better the hit ratio is, the lower the average
delay is.

Finally, we would like to compare our system to a baseline system,
which is completely demand oblivious, the pure rotor-net , with the
same link budget 𝑚 as the total budget of our system. For this pur
rotor-net we get an expected delay of

𝑡∗𝑟 = 𝜏
2
𝑛(𝑛 − 1)

𝑚
+ 𝑡 (6)

2 In short, since by definition an iid uniform trace has no predictability,
he action of any online caching algorithm will not be better than a simple
static links-cache with 𝑚𝑐 arbitrary links. When each new request is chosen

niformly at random from the set 𝐸𝜎 we get that the probability of a cache
it is 𝑚𝑐 .
|𝐸𝜎 |
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Fig. 3. An example of effectiveness plot that shows typical effectiveness and hit ratio curves.
i
t

To compare both systems (CacheNet and pure rotor-net) and see what
improvement can be gained by using CacheNet , we define the effec-
tiveness ratio as the ratio of the average packet delay of both systems,
assuming that 𝑡 is negligible:

Definition 1 (Effectiveness Ratio).

𝜁𝑚(𝑚𝑟, ℎ) =
𝐴𝐷(ℎ)
𝑡∗𝑟

= (1 − ℎ) 𝑚
𝑚𝑟

(7)

The values of the effectiveness ratio can range from 0 to ∞, and
esired values lie in the range 0 to 1. A value less than 1 means that
acheNet improves on the baseline system in our case, pure rotor-net .
e would also note that there is a linear relationship between the

ffectiveness ratio and the hit ratio given 𝑚 and 𝑚𝑟: Higher hit ratios
ead to a lower effectiveness ratio and better performance of our system
or any given switch configuration.

.2. The effectiveness plot

Fig. 3 shows an example of what we call the effectiveness plot. The
lot’s goal is to show the potential benefits of using CacheNet and by
onverting rotor links to cache links. Each such plot considers a specific
race 𝜎 and a link budget 𝑚 (i.e., the total number of links in the
ystem). The 𝑋 axis (logarithmic scale) shows the size of the links-cache,
.e., the 𝑚𝑐 = 𝑘𝑐𝑛 links in the links-cache (recall that a switch has 𝑛
inks). For example when 𝑘𝑐 = 64, the links-cache size is 𝑚𝑐 = 64⋅𝑛 links.
he link budget 𝑚, for each trace is always equal to 128 switches as was
sed in the original RotorNet paper [13], so 𝑚 = 128𝑛. In Section 5.2
nd Table 2 we provide concrete examples for the different traces we
se when we discuss rotor-net scaling in more details.

The effectiveness plot contains three curves. The first curve is the
ffectiveness ratio which is denoted by the blue line. The second curve,
enoted by the red line, is the hit ratio. The third yellow line, is a

‘reference line’’ set to 𝑦 = 1. The 𝑌 axis measures both the hit and
he effectiveness ratios.

The first observation is that the red line for the hit ratio tends to
row monotonically as the number of switches in LC-net increases.
his is expected, since the larger the links-cache is, more requests
an be stored and the likelihood of a cache hit increases. The yellow
‘reference line’’ acts as a useful boundary in each plot. If the value
f the effectiveness ratio is greater than one, e.g. 1.1 it means that
acheNet with the current links-cache size, 𝑚𝑐 = 𝑛𝑘𝑐 , has average
acket delay that is 10% worse than a rotor-net , if the effectiveness
atio is below the line, e.g. 0.9 is means that CacheNet outperforms
pure rotor-net by 10% in the average packet delay. To produce an

ffectiveness ratio curve, the values of the empirical hit ratio are fed
5

nto the formula presented in Eq. 1. Typically, when 𝑘𝑐 is small, close
o 1, the effectiveness ratio will be close to 1 as a CacheNet with a

very small links-cache is very similar to a pure rotor-net . When 𝑘𝑐 is
close to 128, which is similar to a pure LC-net , the effectiveness will
often tend to grow towards ∞, since as we allocate more and more
links to the links-cache component, any miss will result in a substantial
delay for the messages headed towards rotor-net , as is apparent from
Eq. (3) when 𝑚𝑟 approaches 0. An exception to these rules is when
the system arrives at a 100% hit ratio when the number of switches
is less than 128. Finally, when the effectiveness ratio has one global
minimum in the range 𝑘𝑐 ∈ [1…128], it corresponds to the optimal
division of 𝑚𝑟 and 𝑚𝑐 . This could also happen 𝑘𝑐 = 1 or even 𝑘𝑐 = 0
(which is not shown in the figures) when the hit ratio is too low to
allow CacheNet to outperform a pure rotor-net and any number of links-
cache switches. To summarize, the effectiveness plot shows us when our
system outperforms a pure rotor-net . When the effectiveness ratio drops
below the yellow line our CacheNet is better and when it is above it,
pure rotor-net is better.

4. Empirical results

We conducted an extensive evaluation of our proposed approach
and CacheNet in particular. Before presenting our main results, let us
first shortly discuss the dataset we used for our evaluation.

4.1. Datasets

In this work we study traces, as detailed in Table 1. Our dataset
consists of 17 main trace files from five sources, the first three (ML,
Facebook, and HPC) are real world traces, and the others (pFabric, ref-
erence points) are synthetic, generated from a simulation: The largest
dataset was from Facebook datacenter [8]. The set contains three
different data center clusters traces of more than 300M entries each,
of which we used the first 31M. Each entry contains data about packet
size, timestamp, ports, etc, as well as source and destination pods, racks
and IPs. We ordered the entries by an increasing timestamp and extract
the racks IDs, to create our final traces. The three different clusters,
represent three different application types, Hadoop (HAD), a Hadoop
cluster, web (WEB), servers that serve web traffic, and database (DB),
MySQL servers which store user data and serve SQL quarries. A total
of three traces where used from this source;

Another interesting dataset is the traces of two exascale applications
in high performance computing (HPC) clusters [18]: MultiGrid and
MOCFE. These represent several different computational kernels of
different applications, and show the communication pattern between

1024 CPUs.
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Table 1
Traces used in to check hit ratios.

Type Nodes # of entries

Facebook (Rack) DB [8] 324 31M
Facebook (Rack) WEB [8] 157 31M
Facebook (Rack) Hadoop [8] 365 31M
HPC (MultiGrid) [18] 1024 17.9M
HPC (MOCFE) [18] 1024 2.7M
pFabric (load 0.8) [19] 144 30M

Finally, pFabric [19] is a minimalist data center transport design
hich aims to achieve near optimal flow completion times. For our
ork we generated packet traces by running the NS2 simulation script
btained from the authors of the paper. We reproduced the scenario:

‘web search workload’’ with the pFabric design. We analyzed three
acket level traces generated from this simulation, at three different
oad levels, 0.1, 0.5 and 0.8. The greater the load, the greater the
umber of flows in the simulation. In the pFabric simulation flows
rrive according to a Possession process. When a flow arrives the
ource and destination nodes are chosen uniformly at random from a
et of 144 different IDs. The traces in this paper are commonly used
atasets in the literature and are a representative set for a spectrum of
races. They are widely used to describe traffic patterns of HPC [20],
acebook [8,21], and other workloads [10,17]. In general, we note
hat there is a shortage of datasets of this kind, i.e., traffic traces, and
herefore we are limited with our choice of datasets.

The traces used in our work are of the form 𝜎 = ((𝑠0, 𝑑0, 𝑡0), (𝑠1,
1, 𝑡1), (𝑠2, 𝑑2, 𝑡3),…), where 𝑡𝑖 represents the time at which a transmis-
ion of packet 𝜎𝑖 occurs and 𝑠𝑖, 𝑑𝑖 are the source and destination. In

the Facebook trace this time value comes directly from the timestamps
which is part of the original trace, where each timestamp represents the
second when the message was transmitted. In other traces 𝑡𝑖 represents
he index of the message in the trace, that is 𝑡𝑖 = 𝑖 for all packets.

We consider the performance of three basic cache replacement poli-
cies: Least recently used (LRU), Least-frequently used (LFU), and OPT
(optimal). The OPT policy (a.k.a. Belady’s algorithm) can be obtained
offline and it always discards the item (in our case, a link) that will not
be needed for the longest in the future [22]. We note here that the
reconfiguration times of the links-cache were not taken into account
when evaluating the hit ratios. as the timestamp of the traces is not
at low enough resolution to allow this. The timestamp units of the
Facebook traces are seconds. One second is very large compared to
the reconfiguration time of the slowest reconfigurable optical switches,
which makes the latter irrelevant. Therefore, to maintain uniformity,
we simply assume that the reconfiguration time is zero. Another point
is the computational time of the caching algorithm. Since both LRU and
LFU are very simple algorithms, we assume that no delay is incurred
due to the caching strategy. This might not always be the case, caching
strategies based around more complex prediction methods might have
a non-negligible impact on the delay of the system. This means that
after an event of a cache miss, when a new link is reconfigured (a new
link is added to the links-cache and an old removed), it will be ready for
use by the time a packet with the same source and destination arrives
(unless it was removed from the links-cache by then). This replacement
assumption increases the hit ratios in the results, and therefore, the
results should be viewed as an upper bound on the performance of
CacheNet , further discussion of this can be found in Section 5.3.3

3 We note that, unlike LFU and LRU, OPT is computationally expensive,
nd we hence use an approximation algorithm. Instead of finding the link that
ill appear the latest, from the entire links-cache, we sample 10 links, and test

among those only. This would mean that our OPT is slightly worse than the
actual optimal algorithm.
6

4.2. Simulation setup

To evaluate the hit ratio for different traces, we simulated a links-
cache for each of the caching algorithms and every trace described in
Section 4.1 using Wolfram Mathematica. In each simulation, the links-
cache starts with a random set of links. The simulation then runs over
the entire trace, checking each request if it is part of the current cached
links or not. If it is, the simulation outputs a cache hit; otherwise, it
outputs a cache miss and updates the links-cache according to the tested
cache policy. In turn, when a hit ratio for each trace was found, we
calculated the effectiveness ratio using the formulas found in Section 2.

4.3. Hit ratio results

Let us now look at the hit ratios achieved by our three main cache
algorithms. We would like to see which is better for which trace, and
which traces achieve a better hit ratio overall. Following our setup, it
is clear that a high hit ratio, on a small links-cache with few links, will
improve the performance of CacheNet . Conversely, a low hit ratio may
make CacheNet inefficient. Fig. 4(a) presents the results of running the
OPT caching algorithm. The 𝑋 and 𝑌 axis are represented similarly to
the effectiveness plots, the 𝑥-axis is the links-cache size (𝑚𝑐) is terms of
number of switches of size 𝑛 and the 𝑦-axis is the hit ratio.

Looking at the results we can see that the traces may be divided into
two groups of three. The first group is made of the pFabric and two HPC
traces, and the other are the three Facebook traces. The first group of
traces exhibit very high hit ratios, so high they seem to immediately
reach hit ratios of 99% for links-cache sizes as low as 5 to 10 switches.
This shows that these traces indeed have much structure, that is, a
degree of predictability and order. The three Facebook traces exhibit
lower hit rates, with the WEB trace showing the highest hit ratio and
Hadoop showing the lowest. The Hadoop trace is known to have a
very low degree of structure [8] which can explain the low hit ratio.
Web servers on the other hand are known to exhibit a high degree
of structure [8]. While the OPT policy allows us to investigate some
interesting properties, optimal caching requires an algorithm to ‘‘know
the future’’ which is generally impossible. Fig. 4(b) presents in addition
to OPT the result of LRU and LFU for the DB (database) trace. Both fall
short of the performance of OPT, with LFU performing much better in
this case. We note that LRU is an algorithm which benefits greatly from
bursts of reoccurring elements. The Facebook traces have a 1:30,000
sampling rate [8] so this will likely effect the hit ratio compared to a
complete trace. To emphasize how the structure of the trace effects the
hit ratio we considered also in the figure the performance of the cache
policies on random sequences.

Let 𝜐(𝜎) be a uniform i.i.d. sequence trace with the same sources
and destination set as 𝜎. Such a trace contains no real patterns or
usable structure, and thus is of maximal entropy [23]. Any online
caching algorithm would have poor performance on a uniform trace,
since it cannot take advantage of any type of patterns in the trace,
such as repetition, or the different frequency of certain elements. The
performance of both LRU and LFU should be linear, that is the expected
hit ratio is the same as the size of the links-cache. Clearly the uniform
transformation of the trace causes a significant drop in performance
for all algorithms, in particular LFU and LRU show linear performance.
OPT is better, this is due to it always being able to predict which of
the links is best to remove from the links-cache. It is thus able to take
advantage even of random patterns that appear in the noise. We present
the result for the other traces in Fig. 8. We can clearly see that each
trace other than the Hadoop trace reach a point of saturation, where
the hit ratio reaches 100% and this point is also different for each trace.
Likely this point reached when the network is overprovisioned and each
communicating pair from the trace exists in the caches.



Computer Networks 204 (2022) 108648C. Griner et al.

h

1

Fig. 4. (a) The hit ratios of OPT for six different traces. (b) Hit ratios on the DB trace using the three different caching algorithms LRU, LFU, OPT, as well as adding the
it ratios for the uniform trace 𝜐(𝜎).
Fig. 5. The effectiveness plot for three traces with link budget set according to Table 2, 𝑚 = 128𝑛.
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4.4. Performance of CacheNet

We address the performance of CacheNet in view of our model.
Fig. 5 presents the effectiveness plot for three traces along with hit
ratio results obtained by using three caching algorithm. Fig. 5(a) of
the DB trace shows an almost best case example for CacheNet . All
tested values for the size of the links-cache 𝑚𝑐 were able to improve on
the performance of rotor-net . With all three algorithms reaching nearly
00% improvement with 𝑚𝑐 of about 70 switches. These results can be

explained as a consequence of a relatively high amount of structure
and the low number of rounds at 1.21 meaning a large budget 𝑚.
Fig. 5(b) shows the results for the Hadoop trace. They present a case
were CacheNet was able to improve on rotor-net , but not nearly as
significantly as for the DB trace. In particular we see that LFU and LRU
were able to reach about 10% improvement with a small links-cache
of about 5 to 10 switches, while the improvement brought by OPT is
more significant at around 20%. This improvement with a small links-
cache seems to be a result of the hit ratio growing at a faster rate in
the beginning of the curve, where the links-cache is small. The growth
rate of the hit ratio then slows down. These results with Hadoop are
surprising, since the Hadoop trace lacks significant structure [8][10],
which should lead to negligible improvement. However, looking at the
hit ratio curves where 𝑥 < 10 the hit ratio seems to grow at a faster rate,
which may indicate some structure that LFU and OPT are able to take
advantage of. This structure could be, for example, the results of a small
subset of links which appear at a higher frequency than the rest of the
links, that are uniformly distributed. LFU would naturally store those
(few) frequent links and gain a better hit ratio. When the size of LFU is
7

t

increased over the size of this subset the gains in the hit ratio become
linear, and as a result, cannot improve the effectiveness ratio. This is
marginally supported by the Hadoop traffic matrix in Fig. 6 where there
seems to be a set of more active links at the lower right corner of the
matrix.

Fig. 5(c) presents an HPC trace of the MultiGrid application [18].
Interestingly the effectiveness plot shows that the hit ratio of LRU
is superior to LFU. However, all three algorithms reach a hit rate
of about 100% with 20 switches. One possible explanation for the
under-performance of LFU is that while the HPC trace distributions are
skewed, they are only skewed in the sense that they are sparse; that
is, only a small part of the possible communicating pairs appear in the
trace. The pairs that do appear in the trace are (relatively) uniformly
distributed. Additionally, the number of these pairs is small enough
such that a links-cache of about 20 switches is able to fully contain it.
This is supported by the traffic matrix of MultiGrid shown in Fig. 6 (b).
The success of LRU indicates burstiness of the sequence which in turn
support the need for cache switches. Fig. 9 presents the effectiveness
plot for three more traces.

4.5. The effect of a smaller edge budget

We so far considered a fixed-size edge budget 𝑚, which was based
on the scaling the formula discussed earlier where 𝑚 = 128𝑛. It may be
nteresting to see the behavior of CacheNet under other, less favorable,
onfigurations of an edge budget. Fig. 7 shows the results of running
ur simulations with three relatively smaller, edge budgets on the DB

race. These edge budgets correspond to a half, a quarter, and an eighth
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Fig. 6. The traffic matrices of Hadoop and MultiGrid.
Fig. 7. The DB trace is considered to study the effect of different edge budgets on the effectiveness ratio, with three different sizes of the links-cache.
of the number of edges in the original budget of 128 switches. We can
see that the results for the DB trace as seen in Fig. 5(a) are promising.
However, these represent an edge budget of 128 switches which require
1.21 rounds to complete a cycle. Removing resources from the system,
and hence reducing the maximum LC-net and rotor-net , will naturally
make CacheNet less effective.

Fig. 7(a) for 𝑚 = 64𝑛, i.e., 64 switches, shows that, while the
results have not been as good as in the original configuration, CacheNet
still reaches an improvement of between 80% − 65%, with LFU being
worse. The optimal switch allocation is fully links-cache. In (b), when
𝑚 = 32𝑛 all algorithms are worse, however LRU now provides no
significant improvement at all, while LRU and OPT provide up to 20%
improvement of the base rotor-net . The optimal switch allocation is now
roughly 16 links-cache switches, that is, half the system, for each of
the caching algorithm. Lastly, in (c) where 𝑚 = 16𝑛 LFU offer only a
minor advantage over the pure rotor-net , with only OPT providing up
to a 10% improvement. The optimal switch allocation is now roughly
8 links-cache switches, again, about half the system. The results show
how removing resources from cache-net impacts the results. Smaller
systems will have a worse performance gain. However, this shows that
even with significantly smaller 𝑚 there is still some gain over the basic
rotor-net . Finally we note that these results do not mean that a cache-net
with a small links-cache would not work. A traffic pattern that enables a
high hit ratio, like a trace with bursts, or skewed traffic should still offer
a good effectiveness ratio, assuming that a suitable cache algorithm
exists, hopefully close to OPT performance.

5. Discussion of assumptions and opportunities

Our empirical results indicate that our approach has potential to
improve the performance of demand-aware networks. However, our
study is still preliminary: on the one hand, our evaluation relies on
several simplifying assumptions whose implications need to be explored
8

further; on the other hand, we have so far focused on most basic algo-
rithms, and we believe that our perspective opens several optimization
opportunities to improve performance further. In the following, we
discuss some of these assumptions and opportunities in more details.

5.1. On the potential of online caching

Our empirical results suggest that for all considered traces, there
is at least some potential for improvement (shown by a effectiveness
ratio lower than 1), while for most traces we actually see a signifi-
cant potential when employing our approach. While this may be an
optimistic view on what we can achieve with our approach, given the
simplifying assumptions made (see also the more detailed discussion
below), our evaluation at least shows that there is structure in the
communication traffic which can be captured with caching, and that
the resulting performance will depend on the specific caching strategy
used. For the Facebook traces in Figs. 5 (a) and (b) we see that LFU
is more effective than LRU, while for the HPC and pFabric traces in
Figs. 5 we see that LRU had the upper hand, yielding very high hit
ratios. In other words, online algorithms can indeed take advantage
of traffic structure and there is potential in augmenting the links-cache
component of CacheNet with a clever caching strategy.

5.2. Scaling of rotor-net

One problem we still face regards the question of how to scale
rotor-net to arbitrarily sized networks. The original RotorNet paper [13]
does not discuss this aspect but relies on a rigid set of switches with a
certain number of ports. However, there are several options to scale
rotor-net . We propose to use the following rule: We begin with the
baseline example from the original paper, a network with 𝑛 = 2048
nodes (ToR) and 128 switches 𝑘 = 128, each with 2048 in-out ports,
and a single matching of size 𝑛 at any slot time. This allows rotor-net
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Fig. 8. Hit ratio results for six different traces, using three caching algorithms, OPT, LRU, LFU.
Fig. 9. The results of the effectiveness ratio and the hit ratio on more traces.
Table 2
Scaling of rotor-net to our traces.

Trace FB-DB FB-WEB FB-HAD HPC pFabric RotorNet

Nodes 155 325 365 1024 144 2048
Switches 128 128 128 128 128 128
Ports/switch 155 325 365 1024 144 2048
Rounds 1.21 2.56 2.85 8 1.125 16

to complete a cover of all matchings within at most 16 matchings per
switch and an average cycle time of 𝑐 = 𝜏 𝑛−1

𝑘 (recall that 𝜏 is the
lice time) and 𝑚𝑟 = 𝑛𝑘). We denote 𝑛−1

𝑘 as the (average) rounds in
a cycle time. We will assume that the number of switches is constant
at 𝑘 = 128. Following this rule, a network with 𝑛 = 1024 nodes uses
128 switches each with 1024 ports, which allows us to cover all links
within 8 rounds. We note that using this scaling scheme, all networks
have the same number of switches, however, each switch scales with
the network, with smaller networks having smaller switches. This rule
can be applied to any network with a particular 𝑛. Table 2 shows the
result when applied to the traces we used in this work; it shows the
number of nodes, rotor-net switches, ports in each switch, and average
number of rounds to cover all links using these switches. Note that the
9

number of rounds is not necessarily an integer: it represents the average
value.

5.3. Dealing with higher reconfiguration times

While conceptually our approach is more general, in our evaluation,
we made the simplifying assumption that the links-cache can be updated
upon each packet. Although technology is improving fast [24], this is
not feasible yet as reconfiguration times are still too high. However, we
believe that even with a slower reconfiguration time and/or accounting
only for a sample of all messages, the links-cache component could
still profit from a smart caching and prediction algorithm, albeit with
a naturally lower hit ratio. To this end, it may be also interesting
to consider more general notions of requests (consisting of certain
amounts of packets) and studying a combination of both LRU and LFU,
where some part of the links-cache functions with different policies like
in [25].

More specifically, recall that we defined 𝑅𝑐 to be the reconfiguration
time of an edge in the links-cache, and 𝑅𝑟 is the reconfiguration time of
an edge in rotor-net . While 𝑅𝑐 has not been used directly in our models’

main results, it remains an important consideration when designing
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CacheNet . Let us consider how the reconfiguration times relate to the
erformance of CacheNet , and in particular how 𝑅𝑟 relates to 𝑅𝑐 . In our
odel the values of 𝑅𝑐 and 𝑅𝑟 are any positive real number; practically,

heir values depend on the available switching technology.
The main advantage of the rotor-net system is the low reconfigura-

ion time which is a result of, mainly, the use of a predetermined set
f possible matchings per each switch. This apparent lack of flexibility
esults in reconfiguration times of about 𝑅𝑟 = 20𝜇𝑠. This is much
aster than an all-to-all dynamic MEMS switch which can have a
econfiguration time of an order of magnitude greater, in the range of
𝑐 = 15 − 20 ms [26] (which is typical of such optical switches [16]).

While it may seem that in this work we use 𝑅𝑐 = 0, this is inaccurate.
n a system where 𝑅𝑐 = 0 all packets could be sent using a direct
ink, while we wait at least for the next packet to arrive for the
econfiguration to take effect; otherwise packets are routed using rotor-
et . We believe this rule emulates a case where changes are made not
or each packet, which is unrealistic, but for example, for each large
low. The actual transmission time of a large flow is far longer then
he reconfiguration time of 𝑅𝑐 = 20 ms, meaning that until the next
low arrives, the network would have already reconfigured to include a
irect link for it. Furthermore, trying to account for the reconfiguration
ime of real world optical switches in our simulations would be futile,
s the traces are captured and sampled at a resolution of 1 s. In a more
ractical implementation of CacheNet we hope to use switches such as
he MEMS switch to realize our links-cache. In the simplest manner,
henever an edge is removed and a new is added to the links-cache the

witch will change one of its connections. The longer reconfiguration
imes could be dealt by using a less strict cache policy. Edges do not
ave to necessarily change for each cache miss (or hit), they could,
or example, change every constant number of misses, or only change
fter 𝑅𝑐 period of time. This will allow the system to handle slow
econfiguration speeds perhaps at cost of performance. We leave the
xact details of the impact of a slower cache to future work.

.4. Simplifying assumptions in our analysis

For our analysis, we made several simplifying assumptions. While
e understand our analysis as a first step and we leave a more general
nalysis for future work, we discuss some of the main limitations in the
ollowing.

hroughput: It would be nice to analytically evaluate throughput.
owever, while the relation between the average packet delay and

hroughput is not tight, lower values of the former should, in general,
lso imply better throughput. In particular, CacheNet aims to transmit
ore traffic via direct links, which not only lowers the average path

ength between active nodes but also decreases delays caused due to
ongestion and queues. Since in CacheNet all packets are sent using a

single hop, CacheNet has a very high bandwidth efficiency. In CacheNet
we could lower latency by trading bandwidth efficiency in two places.
First, at the links-cache, we could use multi-hop routing on the network
induced from links-cache itself. Second, at the rotor-net element we
could modify it to use multi-hop routing much like in the original Opera
and RotorNet papers. We explore these ideas further in this section.

Multi-hop routing: RotorNet uses two-hop routing for load balanc-
ing [13]. We assume no blocking occurs due to full queues and that no
two hop routing, where a packet is sent immediately over two hops on
the current matching, is possible. Under these assumption and model a
scheme that uses two two-hop routing would only increase the average
delay per packet as all packets are already sent immediately when the
correct matching is present, sending the packet to another node would
only increase delay, if we have to wait for the next matching.. We
therefore modeled rotor-net as a system where packets are transmitted
along single-hop paths only. Future iterations of CacheNet that would
also model congestion and throughput, may use multi-hop routing
10

in the links-cache or rotor elements. Nodes which are not directly t
connected could be connected through a two hop path. This will allow
CacheNet to send traffic along short paths, without a reconfiguration
penalty and without the latency involved in using the rotor-net system.

his might require us to update routing table partially after each change
o links-cache, or use preconfigured routing tables for the rotor-net
lement.

ecentralized control: We believe the concept of a links-cache nat-
urally lends itself for a more decentralized control. It is possible to
allow each ToR switch to choose which edge to remove from, and add
into, its own links-cache using only locally gathered statistics. Based
on these statistics switches may locally coordinate which mutual links
to establish based on different metrics, much like in this paper where
we consider recency and frequency. While in our simulations, we still
leverage centralized information (which gives an upper bound on the
potential), it will be interesting to fully make use of decentralization.

Queuing delays: Finally, our current model does not take into account
the queuing delays due to either congestion or reconfiguration time.
Such consideration would be very important for CacheNet when it
progress towards a more complete model.

5.5. Other caching algorithms

In this work we have only explored three caching algorithms, only
two of which, LRU and LFU are truly online. What are the potentials
of other different algorithms? How significantly can we improve the
performance of CacheNet? In fact, despite being a frailly simple algo-
rithm it is well known that LRU has good performance grantees. LRU is
worse than the optimal algorithm by no more than a factor of 𝐾, where

is the cache size. In fact no other online paging (caching) algorithm
an achieve a better competitive ratio than 𝐾 [27,28]. Of course, this
efers to the worst possible case and does not mean there is no room
or improvement. Our addition of the OPT algorithm was meant to give
n upper bound on the best possible performance on any algorithm.
ndeed, there were some cases shown in our evaluation where LRU
as very different from OPT in terms of performance. In the future
e hope to utilize more advance caching algorithms. An interesting
venue for research could be the development of caching algorithms
ith an AI predictor component, some similar work, which tries to
se a neural network to reduce prediction errors are already being
eveloped [29]. In our setting an AI algorithm might work using some
einforcements learning technique, where the algorithms learns which
dges are the worst to evict in an online manner, perhaps similarly to
eepConf [30]. The AI algorithm will only evict edges which are the

least bad’. However, we would also point out that LRU and LFU have
he benefit of being simple and quick, this might not be true for more
omplex algorithms. This parameter could be important in the setting
f communication networks, where requests need to be served quickly.

.6. Using Opera

In this paper we use a network based upon RotorNet. Recently a
ore advanced version of RotorNet has been released, Opera [17].
ne of the main differences between RotorNet and Opera is the use of
xpanders to send delay-sensitive small flows over several hops. Our
ork explores the average delay per packet and so we do not deal
ith flows explicitly, nor do we explicitly model multi-hop routing.
owever, we can still try and consider how would the results change

if at all) if we used Opera instead of RotorNet. Opera sends a portions
f its traffic on an expander, which exists at any point as a union of
atchings, with no further delay other than the transmission time. If we

ontinue with our assumption that the transmission time is essentially
ero we can conclude that the average delay of a system similar to
acheNet that uses Opera instated of RotorNet will have an average
acket delay 𝑡𝑜 that is a factor 𝛽 smaller than the delay of our system 𝑡𝑟

hat is 𝑡𝑜 = 𝛽𝑡𝑟, where 𝛽 is the fraction of packets which belong to small
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t
a

flows. Assuming that all packets are of the same size, 𝛽 would equal
the amount of bytes which belong to small flows. Looking at the Opera
paper we see that 𝛽 should typically be close to 1, therefore the change
should be minor. But what would change if 𝛽 is significantly smaller
han 1? We can calculate the effectiveness ratio again for Opera such
s in Definition 1, but fully replacing rotor-net with Opera. Recall that

we assume that the transmission time 𝑡 tend to zero.

𝜁𝑚(𝑚𝑟, ℎ) =
ℎ𝑡𝑐 + (1 − ℎ)𝑡𝑜

𝑡∗𝑜
=

ℎ𝑡𝑐 + 𝛽(1 − ℎ)𝑡𝑟
𝛽𝑡∗𝑟

=
ℎ𝑡 + 𝛽(1 − ℎ) 𝜏2

𝑛(𝑛−1)
𝑚𝑟

+ 𝑡

𝛽 𝜏
2
𝑛(𝑛−1)

𝑚 + 𝑡
= (1 − ℎ) 𝑚

𝑚𝑟
(8)

This means that when measuring the effectiveness ratio, 𝛽 will
cancel out, leaving us with the same results. To clarify, we point out
that the overall performance of CacheNet will improve if it uses Opera,
however, the effectiveness ratio remains the same.

6. Related work

CacheNet builds upon several innovative technologies recently de-
veloped to improve datacenter networks. We will organize our review
of related works according to the types considered in this paper: static
and dynamic, where the latter is further subdivided into demand-
oblivious (such as rotor-net) and demand-aware (such as cache-net).
Most existing datacenter designs rely on static topologies. The Clos
topologies and multi-rooted fat-trees are the most widely deployed
datacenter networks, and come in different flavors [31–33]. Recently,
modular hypercubic networks have received much attention [34,35]
as well as expander-based networks [36,37]. An innovative alternative
to static topologies has been introduced by Mellette et al. In their
first work, RotorNet [13], a scalable optical datacenter network de-
sign (circuit-based), the authors show that very high bandwidth can
be provided by actually emulating a full-mesh network, dynamically
reconfiguring the circuit switches constituting the datacenter. RotorNet
is a hybrid design and serves low-latency traffic over a static network.
In a follow up work, Opera [17], the authors improve upon RotorNet
by presenting a rapid and deterministic reconfiguration scheme which
ensures that at any moment in time, the network implements an
expander graph while over time, bandwidth-efficient single-hop paths
are provided between all racks. The networks discussed above have in
common that their topology does not depend on the current demand.
In contrast, the goal of demand-aware networks is to exploit specific
structure in the workload, which is motivated by several interesting
measurement studies. Indeed, traffic matrices are known to be sparse
and skewed [8,10,38], and traffic can be bursty over time [39,40].
Recently, Avin et al. [10] presented a methodology to measure the spa-
tial and temporal locality of datacenter traffic, Other existing empirical
studies all confirm that traffic patterns in datacenters are often sparse
and skewed [8,41]. They hence should contain locality which cache
algorithms can exploit.

Existing demand-aware networks can be classified according to
the granularity of reconfigurations. Solutions such as OSA [42] or
DANs [43], among other, are more coarse-granular and e.g., rely
on a (predicted) traffic matrix. Solutions such as ProjecToR [41],
MegaSwitch [44], Eclipse [3], Helios [2], Mordia [7], C-Through [45]
or SplayNets [46] as can be seen in the survey [16] are more fine-
granular and support per-flow reconfiguration and decentralized re-
configurations. Due to the increased reconfiguration time experienced
in demand-aware networks, many of these solutions additionally rely
on a fixed network. For example, ProjecToR always maintains a ‘‘base
mesh’’ of connected links that can handle low-latency traffic while it
opportunistically reconfigures free-space links in response to changes
in traffic patterns. To given another example, OSA allows to reserve
some circuit-switch ports specifically to ensure connectivity for low-
latency traffic. MegaSwitch could support low-latency traffic in a
11
similar manner. While our work tries to use simple caching algorithms
to optimize the network towards network traffic, other works such as
xWeaver [47] and DeepConf [30] use various deep learning methods
to study the traffic pattern in data center networks

The framework and model of this work are inspired from [48]
where the authors gave a general model for demand-aware networks.
However, the current work takes one step towards more concrete
research, offering architecture and algorithms and using real data to
evaluate the demand-aware network.

However, we are not aware of any work exploring the opportunities
of a distributed links-cache to enhance an otherwise demand-oblivious
topology. Furthermore, while prior work primarily relied on ad-hoc
methodologies, we are not aware on any formal and unifying model
which allows us to analytically quantify to which extent demand-aware
cache links are optimally combined with demand-oblivious links.

7. Conclusion

In order to efficiently leverage locality in reconfigurable datacenter
networks, we proposed to extend a demand-oblivious network topology
with a distributed links-cache. Our solution, CacheNet , also allows us
to study how to optimally partition a network into demand-oblivious
and demand-aware topology components, supporting both analytical
and empirical evaluations. We understand our work as a first step and
believe that it opens several interesting avenues for future research. In
particular, it will be interesting to explore additional and alternative
link caching algorithms, and extend our model to include additional
types of links, such as static links. More generally, it will be interesting
to explore the implications of reconfigurable optical networks on other
layers of the network stack, in particular, on routing and congestion
control.
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