
Journal of Computer and System Sciences 127 (2022) 91–121
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Renaissance: A self-stabilizing distributed SDN control plane

using in-band communications

Marco Canini a, Iosif Salem b,∗, Liron Schiff c, Elad M. Schiller b, Stefan Schmid d,e

a Computer Science, Université catholique de Louvain, Belgium
b Computer Science and Engineering, Chalmers University of Technology, Sweden
c Akamai, Israel
d Faculty of Computer Science, University of Vienna, Austria
e TU Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 January 2019
Received in revised form 3 December 2021
Accepted 16 February 2022
Available online 24 February 2022

Keywords:
SDN
Distributed control plane
Self-stabilization

By introducing programmability, automated verification, and innovative debugging tools,
Software-Defined Networks (SDNs) are poised to meet the increasingly stringent dependa-
bility requirements of today’s communication networks. However, the design of fault-
tolerant SDNs remains an open challenge. This paper considers the design of dependable
SDNs through the lenses of self-stabilization—a very strong notion of fault-tolerance. In
particular, we develop algorithms for an in-band and distributed control plane for SDNs,
called Renaissance, which tolerate a wide range of failures. Our self-stabilizing algorithms
ensure that after the occurrence of arbitrary failures, (i) every non-faulty SDN controller
can reach any switch (or another controller) within a bounded communication delay (in
the presence of a bounded number of failures) and (ii) every switch is managed by a
controller. We evaluate Renaissance through a rigorous worst-case analysis as well as a
prototype implementation (based on OVS and Floodlight, and Mininet).

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Context and motivation. Software-Defined Network (SDN) technologies have emerged as a promising alternative to the
vendor-specific, complex, and hence error-prone, operation of traditional communication networks. In particular, by out-
sourcing and consolidating the control over the data plane elements to a logically centralized software, SDNs support a
programmatic verification and enable new debugging tools. Furthermore, the decoupling of the control plane from the data
plane, allows the former to evolve independently of the constraints of the latter, enabling faster innovations.

However, while the literature articulates well the benefits of the separation between control and data plane and the
need for distributing the control plane (e.g., for performance and fault-tolerance), the question of how connectivity between
these two planes is maintained (i.e., the communication channels from controllers to switches and between controllers) has
not received much attention. Providing such connectivity is critical for ensuring the availability and robustness of SDNs.

Guaranteeing that each switch is managed, at any time, by at least one controller is challenging especially if control is
in-band, i.e., if control and data traffic is forwarded along the same links and devices and hence arrives at the same ports.

* Corresponding author.
E-mail addresses: marco.canini@acm.org (M. Canini), iosif.salem@gmail.com, iosif@chalmers.se (I. Salem), liron.schiff@guardicore.com (L. Schiff),

elad@chalmers.se (E.M. Schiller), stefan_schmid@univie.ac.at (S. Schmid).
https://doi.org/10.1016/j.jcss.2022.02.001
0022-0000/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2022.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2022.02.001&domain=pdf
mailto:marco.canini@acm.org
mailto:iosif.salem@gmail.com
mailto:iosif@chalmers.se
mailto:liron.schiff@guardicore.com
mailto:elad@chalmers.se
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.1016/j.jcss.2022.02.001

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
In-band control is desirable as it avoids the need to build, operate, and ensure the reliability of a separate out-of-band
management network. Moreover, in-band management can in principle improve the resiliency of a network, by leveraging
a higher path diversity (beyond connectivity to the management port).

The goal of this paper is the design of a highly fault-tolerant distributed and in-band control plane for SDNs. In particular,
we aim to develop a self-stabilizing software-defined network: An SDN that recovers from controller, switch, and link
failures, as well as a wide range of communication failures (such as packet omissions, duplications, or reorderings). As such,
our work is inspired by Radia Perlman’s pioneering work [1]: Perlman’s work envisioned a self-stabilizing Internet and
enabled today’s link state routing protocols to be robust, scalable, and easy to manage. Perlman also showed how to modify
the ARPANET routing broadcast scheme, so that it becomes self-stabilizing [2], and provided a self-stabilizing spanning tree
algorithm for interconnecting bridges [3]. Yet, while the Internet core is “conceptually self-stabilizing”, Perlman’s vision
remains an open challenge, especially when it comes to recent developments in computer networks, such as SDNs, for
which we propose self-stabilizing algorithms.

Fault model. We consider (i) fail-stop failures of controllers, which failure detectors can observe, (ii) link failures, and (iii)
communication failures, such as packet omission, duplication, and reordering. In particular, our fault model includes up to
κ link failures, for some parameter κ ∈Z+ . In addition, to the failures captured in our model, we also aim to recover from
transient faults, i.e., any temporary violation of assumptions according to which the system and network were designed to
behave, e.g., the corruption of the packet forwarding rules changes to the availability of links, switches, and controllers.
We assume that (an arbitrary combination of) these transient faults can corrupt the system state in unpredictable manners.
In particular, when modeling the system, we assume that these violations bring the system to an arbitrary state (while
keeping the program code intact). Starting from an arbitrary state, the correctness proof of self-stabilizing systems [4,5] has
to demonstrate the return to correct behavior within a bounded period, which brings the system to a legitimate state.

The problem. This paper answers the following question: How can all non-faulty controllers maintain bounded (in-band)
communication delays to any switch as well as to any other controller? We interpret the requirements for provable (in-band)
bounded communication delays to imply (i) the absence of out-of-band communications or any kind of external support, and
yet (ii) the possibility of fail-stop failures of controllers and link failures, as well as (iii) the need for guaranteed bounded
recovery time after the occurrence of arbitrary transient faults. These faults are transient violations of the assumptions
according to which the system was designed to behave.

Current implementations assume that outdated rules can expire via timeouts. Using such timeouts, one must guarantee
that the network becomes connected eventually (even when starting from arbitrary timeout values and corrupted packet
forwarding rules). This non-trivial challenge motivates our use of the asynchronous model when solving the studied problem
via a mechanism for in-band network bootstrapping that connects every controller to every other node in the network.

Since we aim at recovering after the last occurrence of an arbitrary transient fault, the construction of a self-stabilizing
bootstrapping mechanism makes the task even more challenging. Our solution combines a novel algorithm for in-band
bootstrapping with well-known approaches for rapid recovery from link-failures, such as conditional forwarding rules [6].
Our analysis uses new proof techniques for showing that the system as a whole can recover rapidly from link and node
failures as well as after the occurrence of the last arbitrary transient fault.

Our contributions. We present an important module for dependable networked systems: a self-stabilizing software-defined
network. In particular, we provide a (distributed) self-stabilizing algorithm for distributed SDN control planes that, relying
solely on in-band communications, recover (from a wide spectrum of controller, link, and communication failures as well
as transient faults) by re-establishing connectivity in a robust manner. Concretely, we present a system, henceforth called
Renaissance,1 which, to the best of our knowledge, is the first to provide:

1. A robust efficient and distributed control plane: We maintain short, O (D)-length control plane paths in the presence of
controller and link (at most κ many) failures, as well as, communication failures, where D ≤ N is the (largest) net-
work diameter (when considering any possible network topology changes over time) and N is the number of nodes in
the network. More specifically, suppose that throughout the recovery period the network topology was (κ + 1)-edge-
connected and included at least one (non-failed) controller. We prove that starting from a legitimate state, i.e., after
recovery, our self-stabilizing solution can:
• Deal with fail-stop failures of controllers: These failures require the removal of stale information (that is related to

unreachable controllers) from the switch configurations. Cleaning up stale information avoids inconsistencies and
having to store large amounts of history data.

• Deal with link failures: Starting from a legitimate system state, the controllers maintain an O (D)-length path to all
nodes (including switches and other controllers), as long as at most κ links fail. That is, after the recovery period the
communication delays are bounded.

2. Recovery from transient faults: We show that our control plane can even recover after the occurrence of transient faults.
That is, starting from an arbitrary state, the system recovers within time O (D2 N) to a legitimate state. In a legitimate

1 The word renaissance means ‘rebirth’ (French) and it symbolizes the ability of the proposed system to recover after the occurrence of transient faults
that corrupt its state.
92

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 1. The system architecture, which is based on self-stabilizing versions of existing network layers. The external building blocks for rule generation and
local topology discovery appear in the dotted boxes. The proposed contribution of self-stabilizing SDN controller and self-stabilizing abstract switch appear
in bold.

state, the number of packet forwarding rules per switch is at most |P C | times the optimal, where |P C | is the number
of controllers. The proposed algorithm is memory adaptive [7], i.e., after the recovery from transient faults, each node’s
use of local memory depends on the actual number, nC , of controllers in the system, rather than the upper bound, NC ,
on the number of controllers in the system.

3. The proposed algorithm is memory adaptive. That is, after its recovery from transient faults, each node’s use of local
memory depends on the actual number of controllers in the system, nC , rather than the upper bound on the number
of controllers in the system, NC . We present a non-memory adaptive variation on the proposed algorithm that recovers
within a period of �(D) after the occurrence of transient faults. This is indeed faster than the O (D2 N) recovery time
of the proposed algorithm. However, the cost of memory use after stabilization can be NC /nC times higher than the
proposed algorithm. Moreover, the fact that the recovery time of the proposed memory adaptive solution is longer is
relevant only in the presence of rare faults that can corrupt the system state arbitrarily, because for the case of benign
failures, we demonstrate recovery within �(D).

While we are not the first to consider the design of self-stabilizing systems which maintain redundant paths also beyond
transient faults, the challenge and novelty of our approach comes from the specific restrictions imposed by SDNs (and in
particular the switches). In this setting not all nodes can compute and communicate, and in particular, SDN switches can
merely forward packets according to the rules that are decided by other nodes, the controllers. This not only changes the
model, but also requires different proof techniques, e.g., regarding the number of resets and illegitimate rule deletions.

In order to validate and evaluate our model and algorithms, we implemented a prototype of Renaissance in Floodlight
using Open vSwitch (OVS), complementing our worst-case analysis. Our experiments in Mininet demonstrate the feasibility
of our approach, indicating that in-band control can be bootstrapped and maintained efficiently and automatically, also in
the presence of failures. To ensure reproducibility and to facilitate research on improved and alternative algorithms, we have
released the source code and evaluation data to the community at [8].

We also discuss relevant extensions to the proposed solution (Section 8.2), such as a combining both in-band and out-
of-band communications, as well as coordinating the actions of the different controllers using a reconfigurable replicated
state machine.

Organization. We give an overview of our system and the components it interfaces in Section 2 and introduce our formal
model in Section 3. Our algorithm is presented in Section 4, analyzed in Section 5, and validated in Section 6. We then
discuss related work (Section 7) before drawing the conclusions from our study (Section 8).

2. The system in a nutshell

Our self-stabilizing SDN control plane can be seen as one critical piece of a larger architecture for providing fault-tolerant
communications. Indeed, a self-stabilizing SDN control plane can be used together with existing self-stabilizing protocols on
other layers of the OSI stack, e.g., self-stabilizing link layer and self-stabilizing transmission control protocols [9,10], which
provide logical FIFO communication channels. To put things into perspective, we provide a short overview of the overall net-
work architecture we envision. Our proposal includes new self-stabilizing components that leverage existing self-stabilizing
protocols towards an overall network architecture that is more robust than existing SDNs. We consider an architecture
(Fig. 1) that comprises mechanisms for local topology discovery and a logic for packet forwarding rule generation. We
contribute to this architecture a self-stabilizing abstract switch as well as a self-stabilizing SDN control platform.

The network includes a set P C = {p1, . . . , pnC } of nC (remote) controllers, and a set P S = {pnC +1, . . . , pnC +nS } of the nS

(packet forwarding) switches, where i is the unique identifier of node pi ∈ P = P C ∪ P S . We denote by Nc(i) ⊆ P (communi-
cation neighborhood) the set of nodes which are directly connecting node pi ∈ P and node p j , i.e., p j ∈ Nc(i). At any given
93

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 2. Abstract SDN switch illustration.

time, and for any given node pi ∈ P , the set No(i) (operational neighborhood) refers to pi ’s directly connected nodes for
which ports are currently available for packet forwarding. The local topology information in No(i) is liable to change rapidly
and without notice. We denote the operational and connected communication topology as Go = (P , Eo), and respectively, as
Gc = (P , Ec), where Ex = {(pi, p j) ∈ P × P : p j ∈ Nx(i)} for x ∈ {o, c}.

Each switch pi ∈ P S stores a set of rules that the controllers install in order to define which packets have to be for-
warded to which ports. In the out-of-band control scenario, a controller communicates the forwarding rules via a dedicated
management port to the control module of the switch. In contrast, in an in-band setting, the control traffic is interleaved
with the data plane traffic, which is the traffic between hosts (as opposed to controller-to-controller and controller-to-switch
traffic): switches can be connected to hosts through data ports and may have additional rules installed in order to correctly
forward their traffic. We do not assume anything about the hosts’ network service, except for that their traffic may traverse
any network link.

In an in-band setting, control and data plane traffic arrive through the same ports at the switch, which implies a need for
being able to demultiplex control and data plane traffic: switches need to know whether to forward (data) traffic out of an-
other port or (control) traffic to the control module. In other words, control plane packets need to be logically distinguished
from data plane traffic by some tag (or another deterministic discriminator).

Fig. 2 illustrates the switch model considered in this paper. Our self-stabilizing control plane considers a proposal for
abstract switches that do not require the extensive functionality that existing SDN switches provide. An abstract switch can
be managed either via the management port or in-band. It stores forwarding (match-action) rules. These rules are used
to forward data plane packets to ports leading to neighboring switches, or to forward control packets to the local control
module (e.g., instructing the control module to change existing rules). Rules can also drop all the matched packets. The
match part of a rule can either be an exact match or optionally include wildcards.

Maintaining the forwarding rules with in-band control is the key challenge addressed in this paper: for example, these
rules must ensure (in a self-stabilizing manner) that control and data packets are demultiplexed correctly (e.g., using tag-
ging). Moreover, it must be ensured that we do not end up with a set of misconfigured forwarding rules that drop all
arriving (data plane and control plane) packets: in this case, a controller will never be able to manage the switch anymore
in the future.

In the following, we will assume a local topology discovery mechanism that each node uses to report to the controllers
the availability of their direct neighbors. Also, we assume access to self-stabilizing protocols for the link layer (and the
transport layer) [9,10] that provide reliable, bidirectional FIFO-communication channels over unreliable media that is prone
to packet omission, reordering, and duplication.

2.1. Switches and rules

Each switch pi ∈ P S stores a set of forwarding rules which are installed by the controllers (servers) and define which
packets have to be forwarded to which ports. In an out-of-band network, a controller communicates the forwarding rules
via a dedicated management port to the control module of the switch. In contrast, in an in-band setting, the control traffic
is interleaved with the dataplane traffic, and is communicated (possibly along multiple hops, in case of a remote controller)
to a regular switch port. This implies that in-band control requires the switch to demultiplex control and data plane traffic.
In other words, the dataplane of a switch cannot only be used to connect the switch ports internally, but also to connect to
the control module.

In this paper, we make the natural assumption that switches have a bounded amount of memory. Moreover, we assume
that rules come in the form of match-action pairs, where the match can optionally include wildcards and the action part
mainly defines a forwarding operation (cf. Fig. 2).
94

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
More formally, suppose that pi ∈ P S is a switch that receives a packet with psrc ∈ P C and pdest ∈ P , as the packet
source and destination, respectively. We refer to a rule (for packet forwarding at the switch) by a tuple 〈k, i, src, dest, prt ,
j, metadata〉. The fields of a rule refer to pk as the controller that created this rule, prt ∈ {0, . . . , nprt} : nprt ≥ κ + 1 is a
priority that pk assigns to this rule, p j ∈ Nc(i) is a port on which the packet can be sent whenever p j ∈ No(i), and metadata
is an (optional) opaque data value. Our self-stabilizing abstract switch considers only rules that are installed on the switches
indefinitely, i.e., until a controller explicitly requests to delete them, rather than setting up rules with expiration timeouts.

We say that the rule r = 〈k, i, src, dest , prt , j, metadata〉 is applicable for a packet that reaches switch pi and has source
psrc and destination pdest , when r is the rule with the highest prt (priority) that matches the packet’s source and destination
fields, and p j ∈ No(i), i.e., the link (pi, p j) is operational. We say that the set of rules of switch pi , rules(i), is unambiguous,
if for every received packet there is at most one applicable rule. Thus, a packet can be forwarded if there exists only one
applicable rule in the switch’s memory. We assume an interface function myRules() which outputs the unambiguous rules
that a controller pk ∈ P C needs to install to a switch p j ∈ P S , based on pk ’s knowledge of the network’s topology. We
require rules to be unambiguous and offer resilience against at most κ link failures (details appear in Section 2.2.2).

2.1.1. The abstract switch
The main task of switches is to forward traffic according to the rules installed by the controllers. In addition, switches

provide basic functionalities for interacting with the controllers.
While OpenFlow, the de facto standard specification for the switch interface, as well as other suggestions (Forwarding

Metamorphosis [11], P4 [12], and SNAP [13]) provide innovative abstractions with respect to data plane functionality and
means to implement efficient network services, there is less work regarding the control plane abstraction, especially with
respect to fault tolerance.

We consider a slightly simpler switch model that does not include all the functionality one may find in an existing
SDN switch. In particular, the proposed abstract SDN switch only supports the equal roles approach (where multiple “equal”
controllers manage the switch); the master-slave setup usually used by switches [14] is not relevant toward the design of
our self-stabilizing distributed SDN control plane. We elaborate more on the interface in the following.

Configuration queries (via a direct neighbor)
As long as the system rules and operational links support (bidirectional) packet forwarding between controller pi and

switch p j , the abstract switch allows pi to access p j ’s configuration remotely, i.e., via the interface functions manager(j)
(query and update), rules(j) (query and update) as well as Nc(j) (query-only), where manager(j) ⊆ P C is p j ’s set of assigned
managers and rules(j) is p j ’s rule set. Also, a switch p j , upon arrival of a query of a controller pi , responds to pi with the
tuple 〈 j, Nc(j), manager(j), rules(j)〉.

The abstract switch also allows controller pi to query node p j via p j ’s direct neighbor, pk as long as pi knows pk ’s local
topology. In case p j is a switch, pi can also modify p j ’s configuration (via p j ’s abstract switch) to include a flow to pi (via
pk) and then to add itself as a manager of p j . (The term flow refers here to rules installs on a path in the network in a way
that allows packet exchange between the path ends.) We refer to this as the query (and modify)-by-neighbor functionality.

The switch memory management
We assume that the number of rules and controllers (that manage switches) that each switch can store is bounded by

maxRules and maxManagers, respectively. We require that the abstract switch has a way to deal with clogged memory, i.e.,
when the flow table is full, cf. [14], Section B.17.7. Specifically, the abstract switch needs to implement an eviction policy
that gives the lowest priority to rules that were least recently updated. Similarly, we assume that whenever the number
of managers that a switch stores exceeds maxManagers, the last to be stored (or accessed) manager is removed so that a
new manager can be added. We note that these requirements can be implemented using well-known techniques, for details
see [15], Section 2.1.1.

2.2. Building blocks

Our architecture relies on a fault-tolerant mechanism for topology discovery. We use such a mechanism as an external
building block. Moreover, we require a notion of resilient flows. We next discuss both these aspects.

2.2.1. Topology discovery
We assume a mechanism for local neighborhood discovery. We consider a system that uses an (ever running) failure

detection mechanism, such as the self-stabilizing � failure detector [16, Section 6]: it discovers the switch neighborhood by
identifying the failed/non-failed status of its attached links and neighbors. We assume that this mechanism reports the set
of nodes which are directly connecting node pi ∈ P and node p j , i.e., p j ∈ Nc(i).

2.2.2. Fault-resilient flows
We consider fault-resilient flows that are reminiscent of the flows in [17]. The definition of κ-fault-resilient flows con-

siders the network topology Gc and assumes that Gc is not subject to changes. The idea is that the network can forward
the data packets along the shortest routes, and use alternative routes in the presence of link failures, based on conditional
95

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
forwarding rules [6]; these failover rules provide a backup for every edge and an enhancement of this redundancy for the
case in which at most κ links fail, as we describe next.

Let (pr1 , . . . , prn) ∈ Pn be a directed path in the communication network Gc , where n ∈ {2, . . . , |P |}. Given an operational
network Go , we say that (pr1 , . . . , prn) is a flow (over a simple path) in Go , when the rules stored in pr1 , . . . , prn relay
packets from source pr1 to destination prn using the switches in the sequence pr2 , . . . , prn−1 for packet forwarding (relay
nodes). Let Go(k) be an operational network that is obtained from Gc by an arbitrary removal of k links. We say there is a
κ-fault-resilient flow from pi to p j in Gc when for any k ≤ κ there is a flow (over a simple path) from pi to p j in any Go(k).
We note that when considering a communication graph, Gc , with a general topology, the construction of κ-fault-resilient
flows is possible when κ < λ(Gc), where λ(Gc) is the edge-connectivity of Gc (i.e., the minimum number of edges whose
removal can disconnect Gc).

3. Models

This section presents a formal model of the studied system (Fig. 1), which serves as the framework for our correctness
analysis of the proposed self-stabilizing algorithms (Section 5).

We model the control plane as a message passing system that has no notion of clocks (nor explicit timeout mechanisms),
however, it has access to link failure detectors (in a way that is similar to the Paxos model [16,18]). We borrow from [16,
Section 6] a technique for local link monitoring (Section 2.2.1), which assumes that every abstract switch can complete
at least one round-trip communication with any of its direct neighbors while it completes at most � round-trips with
any other directly connected neighbor. In other words, in our analytical model, but not in our emulation-base evaluation,
we assume that nodes have a mechanism to locally detect temporary link failures (e.g., a link may also be unavailable
due to congestion); a link which is unavailable for a longer time period will be flagged as permanent failure by a failure
detector, which we borrow from [16, Section 6]. Apart from this monitoring of link status, we consider the control plane
as an asynchronous system. Note that once the system installs a κ-fault-resilient flow between controller pi ∈ Pc and node
p j ∈ P \ {pi}, the network provides a communication channel between pi and p j that has a bounded delay (because we
assume that there are never more than κ link failures). Moreover, these bounded delays are offered by the data plane while
the control plane is still asynchronous as described above (since, for example, we assume no bound on the time it takes a
controller to perform a local computation).

Self-stabilizing algorithms usually consist of a do forever loop that contains communication operations and validations
that the system is in a consistent state as part of the transition decision. An iteration (of the do forever loop) is said to
be complete if it starts in the loop’s first line and ends at the last (regardless of whether it enters branches). As long as
every non-failed node eventually completes its do forever loop, the proposed algorithm is oblivious to the rate in which this
completion occurs. Moreover, the exact time considerations can be added later for the sake of fine-tuning performances.

3.1. The communication channel model

We are given reliable end-to-end FIFO channels over capacitated links, as implemented, e.g., by [9,10], which guarantee
reliable message transfer regardless of packet omission, duplication, and reordering. After the recovery period of the channel
algorithm [9,10], it holds that, at any time, there is exactly one token pkt ∈ {act, ack} in the channel that is either in transit
from the sender pi ∈ P to the receiver p j ∈ P , i.e., channeli, j = {act} ∧ channel j,i = ∅, or the token pkt is in transit from p j

to pi , i.e., channeli, j = ∅ ∧ channel j,i = {ack}. During the recovery period (after the last occurrence of a transient fault), it can
be the case that the sender sends a message m0 for which it receives a (false) acknowledgment ack0 without having m0 go
through a complete round-trip. However, that can occur at most �comm times, where �comm ≤ 3 for the case of [9,10]. That
is, once the sender sends message m1 and receives its acknowledgment ack1, the channel algorithm [9,10] guarantees that
m1 has completed a round-trip.

When node pi sends a packet, pkt ∈ {act, ack}, to node p j , the operation send inserts a copy of pkt to the FIFO queue
that represents the above communication channel from pi to p j , while respecting the above token circulation constraint.
When p j receives pkt from pi , node p j delivers pkt from the channel’s queue and transfers pkt ’s acknowledgment to the
channel from p j to pi immediately after.

3.2. The execution model

For our analysis, we consider the standard interleaving model [4], in which there is a single (atomic) step at any given
time. An input event can be either a packet reception or a periodic timer triggering pi to resend while executing the do
forever loop. In our settings, the timer rate is completely unknown and the only assumption that we make is that every
non-failing node executes its do forever loop infinitely often.

We model a node (switch or controller) using a state machine that executes its program by taking a sequence of (atomic)
steps, where a step of a controller starts with local computations and ends with a single communication operation: either
send or receive of a packet. A step of the (control module of an) abstract switch starts with a single message reception,
continues with internal processing and ends with a single message send.
96

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
The state of node pi , denoted by si , consists of the values of all the variables of the node including its communication
channels. The term (system) state is used for a tuple of the form (s1, s2, · · · , sn, Go), where each si is the state of node pi
(including messages in transit to pi) and Go is the operational network that is determined by the environment. We define
an execution (or run) R = c0,a0, c1,a1, . . . as an alternating sequence of system states cx and steps ax , such that each state
cx+1, except the initial system state c0, is obtained from the preceding state cx by applying step ax .

For the sake of simple presentation of the correctness proof, we assume that the abstract switch deals with one controller
at a time, e.g., when requesting a configuration update or a query. Moreover, we assume that within a single atomic step,
the abstract switch can receive the controller request, perform the update, and send a reply to the controller.

3.3. The network model

We consider a system in which maxRules is large enough to store all the rules that all controllers need to install to any
given switch, and that maxManagers ≥ NC . We assume that |P C | = nC and |P S | = nS are known only by their upper bounds,
i.e., NC ≥ |P C |, and respectively, N S ≥ |P S |. We use these bounds only for estimating the memory requirements per node, in
terms of maxRules and maxManagers, i.e., the maximum number of rules, and respectively, managers at any switch.

Suppose that a κ-fault-resilient flow from pi to p j is installed in the network. The term primary path refers to the path
along which the network forwards packets from pi to p j in the absence of failures. We assume that myRules() returns rules
that encode κ-fault-resilient flows for a given network topology. The primary paths encoded by myRules() are also the
shortest paths in Gc (with the highest rule priority). A rule in myRules() corresponding to k link failures (k-fault-resilient
flow) has the (k + 1)-highest rule priority.

3.3.1. Communication fairness
Due to the presence of faults in the system, we do not consider any bound on the communication delay, which could be,

for example, the result of the absence of properly installed flows between the sender and the receiver. Nevertheless, when a
flow is properly installed, the channel is not disconnected and thus we assume that sending a packet infinitely often implies
its reception infinitely often. We refer to the latter assumption as the communication fairness property. We make the same
assumptions both for the link and transport layers.

3.3.2. Message round-trips and iterations of self-stabilizing algorithms
This work proposes a solution for bootstrapping in-band communication in SDNs. The correctness proof depends on the

nodes’ ability to exchange messages during this bootstrapping. The proof uses the notion of a message round-trip, which
includes sending a message to a node and receiving a reply from that node. Note that this process spans over many system
states.

We give a detailed definition of round-trips as follows. Let pi ∈ P C be a controller and p j ∈ P \ {pi} be a network node.
Suppose that immediately after state c node pi sends a message m to p j , for which pi awaits a response. At state c′ , that
follows state c, node p j receives message m and sends a response message rm to pi . Then, at state c′′ , that follows state c′ ,
node pi receives p j ’s response, rm . In this case, we say that pi has completed with p j a round-trip of message m.

We define an iteration of a self-stabilizing algorithm in our model. Let Pi be the set of nodes with whom pi completes
a message round trip infinitely often in execution R . Suppose that immediately after the state cbegin , controller pi takes a
step that includes the execution of the first line of the do forever loop, and immediately after system state cend , it holds
that: (i) pi has completed the iteration it has started immediately after cbegin (regardless of whether it enters branches) and
(ii) every message m that pi has sent to any node p j ∈ Pi during the iteration (that has started immediately after cbegin)
has completed its round trip. In this case, we say that pi ’s iteration (with round-trips) starts at cbegin and ends at cend .

3.4. The fault model

We characterize faults by their duration, that is, they are either transient or permanent. We consider the occurrence
frequency of transient faults to be either rare or not rare. We illustrate our fault model in Fig. 3.

3.4.1. Failures that are not rare
Transient packet failures, such as omissions, duplications, and reordering, may occur often. Recall that we assume com-

munication fairness and the use of a self-stabilizing link layer (and transport layer) [9,10]. This protocol assures that the
system’s unreliable media, which are prone to packet omission, reordering, and duplication, can be used for providing re-
liable, bidirectional FIFO-communication channels without omissions, duplications or reordering. Note that the assumption
that the communication is fair may still imply that there are periods in which a link is temporarily unavailable. We assume
that at any time there are no more than such κ link failures.

3.4.2. Failures that may occur rarely
We model rare faults to occur only before the system starts running. That is, during the system run, Gc does not change

and it is (κ + 1)-edge connected.
97

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 3. The table above details our fault model and the chart illustrates when each fault set is relevant. The chart’s gray boxes represent the system
execution, and the white boxes specify the failures considered to be possible at different execution parts and recovery guarantees of the proposed self-
stabilizing algorithm. The set of benign faults includes both transient link failures as well as permanent link and node failures.

A permanent link failure or addition results in the removal, and respectively, the inclusion of that link from the network.
The fail-stop failure of node p j is a transient fault that results in the removal of (pi, p j) from the network and p j from
Nc(i), for every pi ∈ Nc(j). Naturally, node addition is combined with a number of new link additions that include the new
node.

Other than the above faults, we also consider any violation of the assumptions according to which the system is assumed
to operate (as long as the code stays intact). We refer to them as (rare) transient faults. They can model, for example, the
event in which more than κ links fail concurrently. A transient fault can also corrupt the state of the nodes or the messages
in the communication channels.

3.4.3. Benign vs. transient faults
We define the set of benign faults to include any fault that is not both rare and transient. The correctness proof of the

proposed algorithm demonstrates the system’s ability to recover after the occurrence of either benign or transient faults,
which are not necessarily rare. Our experiments, however, consider all benign faults and no rare transient faults due to the
computation limitations that exist when considering all possible ways to corrupt the system state (Section 6.1).

3.5. Self-stabilization

We define the system’s task by a set of executions called legal executions (LE) in which the task’s requirements hold. That
is, each controller pi constructs a κ-fault-resilient flow to every node p j ∈ P (either a switch or a controller). We say that a
system state c is legitimate, when every execution R that starts from c is in LE . A system is self-stabilizing [4] with relation
to task LE , when every (unbounded) system execution reaches a legitimate state with relation to LE (cf. Fig. 3). The criteria
of self-stabilization in the presence of faults [4, Section 6.4] requires the system to recover within a bounded period after
the occurrence of a single benign failure during legal executions (in addition to the design criteria of self-stabilization that
require recovery within a bounded time after the occurrence of the last transient fault). We demonstrate self-stabilization
in Section 5.4 and self-stabilization in the presence of faults in Section 5.5.

Self-stabilizing systems require the use of bounded memory, because real-world systems have only access to bounded
memory. Moreover, the number of messages sent during an execution does not have an immediate relevance in the context
of self-stabilization. The reason is that self-stabilizing algorithms can never terminate and stop sending messages, because
if they did it would not be possible for the system to recover from transient faults (cf. [4, Chapter 2.3]). That is, suppose
that the algorithm includes a predicate, such that when the predicate is true the algorithm forever stops sending messages.
Then, a single transient fault can cause this predicate to be true in the starting state of an execution, from which the system
can never recover. The latter holds, because the algorithm will never send any message and yet in the starting system state
any variable that is not considered by the predicate can be corrupted.

3.5.1. Execution fairness
We say that a system execution is fair when every step that is applicable infinitely often is executed infinitely often and

fair communication is kept (both at the link and the transport layer). Note that only failing nodes ever stop taking steps
and thus a violation of the fairness (communication or execution) assumptions implies the presence of transient faults,
which we assume to happen only before the starting system state of any execution. We clarify that fair execution and
communication are weaker assumptions than partial synchrony [19] because they imply unknown upper bounds on relative
processor speeds and message delay.
98

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Algorithm 1: Self-stabilizing SDN, high-level code description for controller pi . Algorithm 2 is a detailed version of this algorithm.

1 Local state: replyD B ⊆ {m(j) : p j ∈ P } has the most recently received query replies;
2 currT ag and prevT ag are pi ’s current and previous synchronization round, respectively;
3 Interface: myRules(G, j, tag): returns the rules of pi on switch p j given a topology G on round tag;

4 do forever begin
5 Remove from replyD B any reply from unreachable (in terms of graph connectivity) senders or not from round prevT ag or currT ag . Also,

remove from replyD B any response from pi and then add a record that includes the directly connected neighbors, Nc(i);
6 if replyD B includes a reply (with tag currT ag) from every node that is reachable (in terms of graph connectivity) according to the accumulated local

topology, G, in replyD B then
7 Store currT ag ’s value in prevT ag and get a new and unique tag for currT ag . By that, pi starts a new synchronization round;

8 foreach switch p j ∈ P S and p j ’s most recently received reply do
9 if this is the start of a new synchronization round then

10 Remove from p j ’s configuration any manager pk or rule of pk that was not discovered to be reachable during round prevT ag;

11 Add pi in p j ’s managers (if it is not already included) and replace pi ’s rules in p j with myRules(G, j, currT ag);

12 foreach p j ∈ P that is reachable from pi according to the most recently received replies in replyD B do send to p j (with tag currT ag) an update
message (if p j ∈ P S is a switch) and query p j ’s configuration;

13 upon query reply m from p j begin
14 if there is no space in replyD B for storing m then perform a C-reset by including in replyD B only the direct neighborhood, Nc(i);
15 if m’s tag equals to currT ag then include m in replyD B after removing the previous response from p j ;

16 upon arrival of a query (with a syncT ag) from p j begin
17 send to p j a response that includes the local topology, Nc(i), and syncT ag

3.5.2. Asynchronous frames
The first (asynchronous) frame in a fair execution R is the shortest prefix R ′ of R = R ′ ◦ R ′′ , such that each controller starts

and ends at least one complete iteration (with round-trips) during R ′ (see Section 3.3.2), where ◦ denotes an operation that
concatenates two executions. The second frame in execution R is the first frame in execution R ′′ , and so on.

3.5.3. Complexity measures
The stabilization time (or recovery period from transient faults) of a self-stabilizing system is the number of asynchronous

frames it takes a fair execution to reach a legitimate system state when starting from an arbitrary one. The recovery period
from benign faults is also measured by the number of asynchronous frames it takes the system return to a legal execution
after the occurrence of a single benign failure.

We also consider the design criterion of memory adaptiveness by Anagnostou et al. [7]. This criterion requires that, after
the recovery period, the use of memory by each node is a function of the actual network dimensions. In our system, a
memory adaptive algorithm has space requirements that depend on nC , which is the actual number controllers rather than
their upper bound, NC . Moreover, when considering non-adaptive solutions, one can achieve a shorter recovery period from
transient faults (Section 8).

For the sake a simple presentation, our theoretical analysis assumes that all local computations are done within a neg-
ligible time that is independent of, for example, the number of messages sent and received during each frame. We do
however consider all network dimensions that are related to the recovery costs (including the number of messages sent and
received during each frame) during the evaluation of the proposed prototype (Section 6).

4. Renaissance: a self-stabilizing SDN control plane

We present a self-stabilizing SDN control plane, called Renaissance, that enables each controller to discover the network,
remove any stale information in the configuration of the discovered unmanaged switches (e.g., rules of failed controllers),
and construct a κ-fault-resilient flow to any other node (switch or controller) that it discovers in the network. For the sake
of presentation clarity, we start with a high-level description of the proposed solution in Algorithm 1 before we present the
solution details in Algorithm 2.

4.1. High-level description of the proposed algorithm

Algorithm 1 creates an iterative process of topology discovery that, first, lets each controller identify the set of nodes
that it is directly connected to; from there, it finds the nodes that are directly connected to them; and so on. This network
discovery process is combined with another process for bootstrapping communication between any controller and any node
in the network, i.e., connecting each controller to its direct neighbors, and then to their direct neighbors, and so on, until it
is connected to the entire reachable network.

Each controller associates independently each iteration with a unique tag [20] that synchronizes a round in which the
controller performs configuration updates and queries. Controller pi also maintains the variables currT ag and prevT ag
(line 2) of the round synchronization procedure, which starts when pi queries all reachable nodes and ends when it receives
99

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
replies from all of these nodes (cf. lines 6–7, as well as, Section 3). Upon receiving a query response, pi runs lines 13–15
and replies to other controllers’ queries in lines 16–17.

A controller pi ∈ P C keeps a local state of query replies (cf. Section 2.1) from other nodes (line 1). These replies allow pi
to accumulate information about the network topology according to which the switch configurations are updated in each
round. The following three basic functionalities of Algorithm 1 are provided by the do-forever loop in lines 4–12, which we
detail below.

4.1.1. Establishing communication between any controller and any other node
A controller pi ∈ P C can communicate and manage a switch p j ∈ P S only after pi has installed rules at all the switches

on a path between pi and p j . This, of course, depends on whether there are no permanent link failures on the path. In
order to discover these link failures, we use local mechanisms for failure detection at each node for querying about the
status of every link (cf. Section 2.2.1). These mechanisms consider any permanent link failure as a transient fault and we
assume that Algorithm 1 starts running only after the last occurrence of any transient fault (cf. Fig. 3). Thus, as soon as
there is a flow installed between pi and p j and there are no permanent failures on the primary path (Section 3), pi and p j
can exchange messages that arrive eventually since it only depends on the temporary availability of the link which supports
the communication fairness assumption (Section 3.3.1).

The above iterative process of network topology discovery and the process of rule installation consider κ-fault-
resilient flows (cf. Section 2.2.2 and myRules() function in Section 3). These flows are computed through the interface
myRules(G, j, tag) (line 3), where G is the input topology, p j is the switch to store these rules, and tag is the tag of
the synchronization round. Once the entire network topology is discovered, Algorithm 1 guarantees the installation of a
κ-fault-resilient flow between pi and p j . Thus, once the system is in a legitimate state, the availability of κ-fault-resilient
flows implies that the system is resilient to the occurrence of at most κ temporary link failures (and recoveries) and pi can
communicate with any node in the network within a bounded time.

4.1.2. Discovering the network topology and dealing with unreachable nodes
Algorithm 1 lets the controllers connect to each other via κ-fault-resilient flows. Moreover, Algorithm 1 can detect

situations in which controller pk /∈ P C is not reachable from controller pi (line 5). The reason is that pi is guaranteed to (i)
discover the entire network eventually, and (ii) communicate with any node in the network. This means that pi eventually
gets a response from every node in the network. Once that happens, the set of nodes that respond to pi equals to the set
of nodes that were discovered by pi (line 6) and thus pi can restart the process of discovering the network (line 7).

The start of a new round (in which pi rediscovers the network) allows pi to also remove information at the switches
that is related to any unreachable controller pk ∈ P C , only when it has succeeded in discovering the network and boot-
strapped communication. We note that, during new rounds (line 9), pi removes information related to pk from any switch
p j (line 10); whether this information is a rule or pk ’s membership in p j ’s management set. This stale information clean-up
eventually brings the system to a legitimate state, as we will prove in Section 5.

Recall that we regard the long-term failure of links (or of more than κ links) as transient faults. After the occurrence
of the last transient fault, the network returns to fulfill our assumptions about the topology Gc , i.e., Gc is (κ + 1)-edge
connected. Then, Algorithm 1 brings the system back to a legitimate state (Section 5). The do-forever loop of Algorithm 1
completes by sending rule and manager updates to every switch that has a reply in replyD B , as well as querying every
reachable node, with the current synchronization round’s tag (lines 12–12).

4.2. Refining the model: variables, building blocks, and interfaces

After the provision of a high-level description of the proposed solution in Algorithm 1, we provide the solution details
in Algorithm 2, which requires more notation, interfaces, and building blocks.

Local variables. Each controller’s state includes replyD B (line 1), which is the set of the most recent query replies, and the
tags currT ag and prevT ag , which are pi ’s current, and respectively, previous synchronization round tags. Each response
m(j) ∈ replyD B can arrive from either a switch or another controller and it has the form 〈 j, Nc(j), manager(j), rules(j)〉,
for p j ∈ P . The code denotes by Nc(j) the neighborhood of p j , by manager(j) ⊆ P C the controllers of p j , and by rules(j) ⊆
{〈k, j, src, dest , prt , z, tag〉: (pk, p j, pz, pdest ∈ P) ∧ (psrc ∈ P C) ∧ prt ∈ {0, . . . , nprt} ∧ tag ∈ tag Domain} the rule set of p j .
Throughout Algorithm 2 and for ease of presentation we refer to the elements of responses and rules using the struct
notation, which is used by the C programming language. We refer to the fields of m = 〈I D, Nc, Mng, rules〉 stated above,
by m.I D = j, m.Nc = Nc(j), m.Mng = manager(j), and m.rules = rules(j). We assume that the size of replyD B is bounded
by maxReplies ≥ 2(NC + N S), hence the local state has bounded size (the factor of 2 is due to responses from the rounds
prevT ag and currT ag).

An internal building block: round synchronization. An SDN controller accesses the abstract switch in synchronized rounds. Each
round has a unique tag that distinguishes the given round from its predecessors. We assume access to a self-stabilizing
algorithm that generates unique tags of bounded size from a finite domain of tags, tag Domain. The algorithm provides a
function called nextT ag() that, during a legal execution, returns a unique tag. That is, immediately before calling nextT ag()
100

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Algorithm 2: Self-stabilizing algorithm for SDN control plane, controller pi ’s code (Algorithm 1’s detailed version with definitions
at Fig. 4).

1 Local state: replyD B⊆{m(j):=〈 j,Nc(j),manager(j),rules(j)〉}p j∈P ;
2 currT ag and prevT ag are pi ’s current and previous tags respectively;
3 Macros: res(x) = {m ∈ replyD B : ∀r∈m.rules r.tag = x} ∪ {〈i, Nc(i), ∅, ∅〉};
4 G(S):=({pk :∃m∈S :(m.I D=k∨pk ∈ m.Nc)}, {(j, k):∃m∈S : (m.I D = j ∧ pk ∈ m.Nc});
5 f usion := res(currT ag) ∪ {m ∈ res(prevT ag) : �m′∈res(currT ag)m′.I D = m.I D};
6 p j →G pk := true if there is a path from p j to pk in G;
7 do forever begin

/* Use replies from reachable senders with prevT ag or currT ag */
8 replyD B ← {m ∈ replyD B : m.I D = k �= i ∧ (∃x∈{currT ag,prevT ag}m ∈ res(x) ∧ pi →G(res(x)) pk} ∪ {〈i, Nc(i), ∅, ∅〉};
9 let (new Round, msg):=(f alse, ∅); /* new Round and msg get defaults */

/* a new round with a new tag; remove replies with tag currT ag */
10 if ∀p�∈G(res(currT ag))(pi →G(res(currT ag)) p� =⇒ ∃m∈res(currT ag)m.I D = �) then
11 (new Round, prevT ag) ← (true, currT ag); currT ag ← nextT ag();
12 replyD B ← replyD B \ res(currT ag);

/* The reference tag is currT ag only when the topology changes */
13 if G(f usion) = G(res(prevT ag)) then let referTag := prevT ag else let referTag := currT ag;
14 foreach p j ∈ P S : ∃m∈res(ref erT ag) m.I D = j do

/* On new rounds, remove unreachable or rule-less managers */
15 let M := {pk ∈ m.Mng : (∃r∈m.rules r.cI D = k)∧ (¬new Round ∨ pi →G(res(prevT ag)) pk)} ∪ {pi};
16 msg←msg∪{(p j ,〈‘delMngr’, k〉):pk∈(m.Mng\M)}∪{(p j ,〈‘addMngr’, i〉)};

/* Remove any p j’s rule related to an unreachable node, pk */
17 msg ← msg ∪ {(p j , 〈‘del AllRules’, k〉) : (∃r∈m.rules r.cI D = k) ∧ pk /∈ M};

/* pi refreshes its rules at switch p j with ref erT ag */
18 msg←msg∪{(p j ,〈‘updateRule’,myRules(G(res(referTag)), j,currT ag)〉)};

/* Send prepared messages to all reachable nodes aggregately */
19 foreach p j : pi →G(f usion) p j do send (〈‘new Round’, currT ag〉) ◦ ©{x.cmd : x ∈ msg ∧ x.sI D = j} ◦ (〈‘query’, currT ag〉) to p j ;

20 upon query reply m from p j begin
/* make space for m (C-reset) and tests m’s tag is prevT ag */

21 if |replyD B ∪ {m}| > maxReplies then replyD B ← {〈i, Nc(i), ∅, ∅〉};
22 if (∃r∈m.rulesr.tag = currT ag) then
23 replyD B ← (replyD B \ {m′ ∈ replyD B : m′.I D = m.I D}) ∪ {m}
24 upon arrival of (• ◦ (〈‘query’, tag〉)) from p j do send 〈i, Nc(i), ⊥, {〈 j, i, ⊥, ⊥, ⊥, ⊥, tag〉}〉 to p j ;

there is no tag anywhere in the system that has the returned value from that call. Given two tags, t1 and t2, we require
that t1 = t2 holds if, and only if, they have identical values. We use these tags for synchronizing the rounds in which the
controllers perform configuration updates and queries. Namely, in the beginning of a round, controller pi ∈ P C generates
a new tag and stores that tag in the variable currT ag ← nextT ag(). Controller pi then attempts to install at every reach-
able switch p j ∈ P S a special meta-rule 〈i, j, ⊥, ⊥, nprt , ⊥, tmetaRule〉, which includes, in addition to pi ’s identity, the tag
tmetaRule = currT ag and has the lowest priority (before making any configuration update on that switch). It then sends a
query to all (possibly) reachable nodes in the network and combines that query with the tag tquery = currT ag . The response
to that query from other controllers p j ∈ P C includes the query tag, tquery . The response to the query from the switch
pk ∈ P S includes the tag tmetaRule of the most recently installed meta-rule that pk has in its configuration. The controller
pi ends its current round once it has received a response from every (possibly) reachable node in the network and that
response has the tag of currT ag .

We note the existence of self-stabilizing algorithms, such as the one by Alon et al. [20], that in fair executions (that
are legal with respect to the self-stabilizing end-to-end communication protocol) provide unique tags within a number of
synchronization rounds that is bounded (by a constant whenever the execution is legal with respect to the self-stabilizing
end-to-end communication protocol). We refer to that known bound by �synch and note that during a legal execution of the
round synchronization algorithm, it holds that controller pi receives only a response message m that matches currT ag , i.e.,
it discards any message with a different tag. Moreover, since during legal executions nextT ag() returns only unique tags, m
and its acknowledgment are guaranteed to form a complete round-trip. Note that we do not require nextT ag() to support
concurrent calls since every controller manages its own synchronization rounds; one round at a time. We note the existence
of other relevant synchronizers, such as the α-synchronizer by Awerbuch et el. [21,4], which have simpler tags than [20].
However, we prefer the elegant interface defined in [20].

Interfaces. Controller pi can send requests or queries to any other node p j (which could be either another controller or a
switch). We detail the switch interface below and illustrate it in Fig. 4.

The controllers send command batches, which are sequences of commands. The special metadata command 〈‘new Round’,
tmetaRule〉 is always the first command and updates the special meta-rule to store tmetaRule . We use it for starting a new
round (where tmetaRule = t is the round’s tag). This starting command could be followed by a number of commands,
such as 〈‘delMngr’, k〉 for the removal of controller pk from the management of switch p j , 〈‘addMngr’, k〉 for the addi-
tion of controller pk from the management of switch p j , and 〈‘del AllRules’, k〉 for the deletion of all of pk ’s rules from
the configuration of switch p j , where pk ∈ P C \ {pi}. The rules’ update is done via 〈‘updateRule’, new Rules〉 and it is the
101

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Symbols and operators: ‘•’ stands for ‘any sequence of values’, () is the empty sequence, ◦ (binary) is the sequence concatenation operator
and © (unary) concatenates a set’s items in an arbitrary order.
Constants: Nc(i) ⊆ P , pi ’s directly connected nodes. maxRules and maxManagers, maximum number of rules and managers, respectively.
maxReplies: maximum size of the set replyD B .
Interfaces: Recall the interface function myRules(G, j, tag), which creates pi ’s rules at switch p j according to G with tag tag (Section 2.2.2).
The interface between controller pi ∈ PC and the abstract switch p j appears in the table below.

Command type Command Switch p j ’s control module action
new round 〈‘new Round’, tmetaRule〉 updates current synchronization tag of the switch

update command

〈‘delMngr’,k〉 deletes pk from manager(j)
〈‘addMngr’,k〉 adds pk in manager(j)

〈‘del AllRules’,k〉 deletes all rules of pk

〈‘updateRule’,new Rules〉 replaces all rules of pi with new Rules

query command 〈‘query’, tquery〉 sends query response m(j) to pi

Local state: A controller’s local state is the set replyD B which stores the most recently received query replies. A query reply m =
〈I D, Nc, Mng, rules〉 includes the respondent’s ID, m.I D ∈ P , its communication neighborhood, m.Nc ⊆ P , its set of managers, m.Mng ⊆ PC ,
and its set of installed rules, m.rules. A rule r = 〈cI D, sI D, src, dest, prt, f wd, tag〉 ∈ m.rules includes the switch’s ID, r.sI D , the ID of the
controller which installed the rule, r.cI D , the source and destination fields, r.src, and respectively, r.dest , the rule’s priority r.prt , the ID of
the neighbor to which the packet should be forwarded, r. f wd, and the rule’s tag, r.tag , where r.sI D, r. f wd, r.dest ∈ P , r.cI D, r.src ∈ PC ,
r.prt ∈ {0, . . . , nprt }, and r.tag ∈ tag Domain. A command record x includes the switch’s ID, x.sI D , and the command, x.cmd; currT ag and
prevT ag are pi ’s current, and respectively, previous synchronization round tags;

Fig. 4. A list of symbols, operators, constants, interfaces and variables in Algorithm 2.

second last command. This update replaces all of pi ’s rules at switch p j (except for the special meta-rule) with the rules
in new Rules. These commands are to be followed by the round’s query 〈‘query’, tquery〉, where tquery = t is the query’s
tag. The switch p j replies to a query by sending m = 〈 j, Nc(j), manager(j), rules(j)〉 to pi , such that the rule set in-
cludes also the special meta-rule 〈i, •, t〉 ∈ rules(j). Whenever p j ∈ P C is another controller, response to a query is simply
〈i, Nc(i), ⊥, {〈 j, i, ⊥, ⊥, ⊥, ⊥, tquery〉}〉 (line 24). Note that controller p j simply ignores all other types of commands. We use
the interface function myRules(G, j, tag) (Section 2.2.2) for creating the packet forwarding rules that controller pi installs
at switch p j when pi ’s current view on the network topology is G in round tag (Fig. 4).

4.3. Algorithm details

Algorithm 2 presents the proposed solution with a greater degree of details than Algorithm 1. Algorithm 2 is centered
around a do forever loop, which starts by removing stale information from replyD B (line 8). This removal action includes
refreshing information related to controller pi , which deletes information about any node that is not reachable from pi . The
reachability test uses the currently known information about the network topology, G and the relation →G (line 6) that
tells whether node p j is reachable from controller pi in G , given the information in replyD B .

Algorithm 2 accesses the switch configurations in synchronization rounds. Lines 9–12 manage the start (and end) of
synchronization rounds. When a new round starts, i.e., the condition of the if-statement of line 10 holds, controller pi

marks the start of a new round (new Roundi = true), updates the values of the tags prevT agi and currT agi and clears any
record with tag currT ag of the replies stored in replyD Bi (line 11 and 12).

Algorithm 2 refreshes (and reconstructs) the information about remote nodes (controllers and switches including the
ones that are directly attached to it) by sending queries (line 19) and updating the set of stored replies (line 23). Notice
that controller pi also responds to query requests coming from other controllers (line 24). Algorithm 2 uses these replies
for completing the information about the switches that are directly connected to a remote controller (and thus the other
fields in the response messages are the empty sets).

The heart of Algorithm 2 includes the updates of every switch p j ∈ P S (line 14 to 17). For every switch p j (line 14),
controller pi considers p j ’s stored response 〈 j, Ngbi, Mngi, Ruli〉 for which it prepares a set of commands to be stored in
the set msgi (lines 9, 16, 17, 18 and 19). To that end, pi first calculates the set of managers that p j should have in the
following manner. If this iteration of the do forever loop (lines 7 to 19) is the first one for the round currT agi , the value of
new Roundi is true (line 11); this leads pi to remove any controller pk that is not reachable according to G(res(prevT ag))

(lines 15 to 17). Whenever the iteration is not the first one, pi merely asserts that it is a manager of p j .
Controller pi removes any rules of an unreachable controller pk (line 17) and updates all of its rules at switch p j (line 18)

using the interface function myRules() (line 18) and the reference tag, referTag (line 4 and line 13). The proposed algorithm
selects referTag’s value to be prevT ag during legal executions. During recovery periods, the discovered topology can differ
from that one that is stored with the tag prevT ag . In that case, the algorithm selects currT ag as the reference tag. After
preparing these commands to all the switches, controller pi prepares query commands to all reachable nodes (including
both controllers and switches) and then sends all prepared commands to their designated destinations. Note that each of
these configuration updates are done via a single message that aggregates all commands for a given destination (line 19).
102

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
We note that when a query response arrives at pi , before the update of the response set (line 23), pi checks that there
is sufficient storage space for the arriving response (line 21). If space is lacking, pi performs what we call a ‘C-reset’. Note
that pi stores replies only for the current synchronization round, currT ag .

5. Correctness proof

We prove the correctness of Algorithm 2 by showing that when the system starts in an arbitrary state, it reaches a legit-
imate state (Definition 1) within O (((�comm + �synch))D)[((�comm + �synch)D) · N S + NC]) frames (Theorem 2). Moreover,
we show that when starting from a legitimate state, the system satisfies the task requirements and it is also resilient to a
bounded number of failures (Lemmas 7 and 8).

We refer to the values of variable X at node pi (controller or switch) as Xi , i.e., the variable name with a subscript that
indicates the node index. Similarly, we refer to the return values of function f at controller pk as fk .

Definition 1 (Legitimate system state). State c ∈ R is legitimate with respect to Algorithm 2 when, for every controller pi ∈ P C

and node pk ∈ P \ {pi}, the following conditions hold.

1. 〈k, Nc(k), manager(k), rules(k)〉 ∈ replyD Bi if, and only if, Nc(k), manager(k), and rules(k) are pk ’s neighborhood,
managers, and respectively, set of packet forwarding rules (line 1) as well as pi →G pk (line 6). Moreover, for the case
of controller pk ∈ P C , the task does not require pk to have any managers or rules, i.e., manager(k) = ∅ and rules(k) = ∅.

2. Any controller is the manager of every switch and only these controllers can be the mangers of any switch, i.e., pi ∈
P C ∧ pk ∈ P S ⇐⇒ pi ∈ manager(k).

3. The rules installed in the switches encode κ-fault-resilient flows between controller pi and node pk in the network Gc

(Section 2.2.2).
4. The end-to-end protocol (Section 3.1) as well as the round synchronization protocol (Section 2.2.1) between pi and pk

are in a legitimate state.

5.1. Overview

The proof of Theorem 2 starts by establishing bounds on the number of rules that each switch needs to store (Lemma 1).
The proof arguments are based on the bounded network size and the memory management scheme of the abstract switch
(Section 2.1.1), which guarantees that, during a legal execution, all non-failing controllers are able to store their rules
(Lemma 1). The bounded network size also helps to bound, during a legal execution, the amount of memory that each
controller needs to have (Lemma 2). This proof also bounds the number of C-resets that a controller might take (line 21)
during the period in which the system recovers from transient faults. This is line 14 in Algorithm 1. Note that this bound
on the number of C-resets is important because C-resets delete all the information that a controller has about the network
state.

C-resets are not the only disturbing actions that might occur during the recovery period. The system cannot reach a
legitimate state before it removes stale information from the configuration of every switch. Note that failing controllers
cannot remove stale information that is associated with them and therefore non-failing controllers have to remove this
information for them. Due to transient faults, it could be the case that one controller can remove information that is
associated with another non-failing controller. We refer to these ‘mistakes’ as illegitimate deletion of rules or managers
(Section 5.3). Note that illegitimate deletions occur when the (stale) information that a controller has about the network
topology differ from the actual network topology, Gc . Moreover, due to stale information in the communication channels,
any given controller might aggregate (possibly stale) information about the network more than once and thus instruct more
than once the switch to delete illegitimately the rules of other controllers.

Theorem 1 bounds the number of these illegitimate deletions. It does so by counting the number of possible steps
in which a controller might have stale information about the network and that stale information leads the controller to
perform an illegal deletion. The proof arguments start by considering a starting state in which controller pi ∈ Pc is just
about to take a step that instructs the switches to perform illegitimate deletions. The proof then argues that between any
two such steps, controller pi has to aggregate information about the network in such a way that pi (mistakenly) decides
that it has completed the task of topology discovery. But, this can only happen after receiving a reply from every node
in the preserved topology (Claim 5.1). By induction on the distance k between controller pi ∈ Pc and node p j ∈ P \ {pi},
the proof shows that the information that pi has about p j is correct within k · (�comm + �synch + 1) + 1 times in which
pi instruct the switches to perform an illegitimate deletion, because there is a bounded number of stale information in
the communication channel between pi and p j (Lemma 4). Thus, the total number of illegitimate deletions is at most
D · (�comm + �synch + 1) + 1.

The proof demonstrates recovery from transient faults by considering a period in which there are no C-resets and no
illegitimate deletions (Section 5.4). In such a period, all the controllers construct κ-fault-resilient flows to any other node
in the network (Lemma 5). This part of the proof is again by induction on the distance k between controller pi ∈ Pc and
node p j ∈ P \ {pi}. The induction shows that, within ((�comm + �synch) + 2)k frames, pi discovers correctly its k-distance
103

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
neighborhood and establishes a communication channel between pi and p j . This means that within ((�comm +�synch) +2)D
frames in which there are no C-resets and no illegitimate deletions, the system reaches a legitimate state (Lemma 6).

The above allows Theorem 2 to show that after at most O (((�comm +�synch))D)[((�comm +�synch)D) · N S + NC]) frames
in R , there is a period of O ((�comm + �synch))D) frames in which there are no C-resets and no illegitimate deletions and
thus the system reaches a legitimate state. Lemma 7 shows that, when starting from a legitimate state and then letting a
single link in the network to be added or remove from Gc , the system recovers within O (D) frames. The arguments here
consider that number of frames it takes for each controller to notice the change and to update all the switches. By similar
arguments, Lemma 8 shows that after the addition or removal of at most NC −1 controllers, the system reaches a legitimate
system state within O (D) frames.

5.2. Analysis of memory and message size requirements

Lemmas 1 and 2 bound the needed memory at every node during a legal execution. Recall that we assume that the
switches implement a mechanism for dealing with clogged memory (Section 2.1.1), such that once controller pi ∈ P C re-
freshes its rules on a given switch, that switch never removes pi ’s rules.

Lemma 1 considers an event that can delay recovery, i.e., the removal of a rule at a switch due to lack of space. Lemma 1
bounds the needed memory for every switch, and thus relates to events that can delay recovery, i.e., the removal of a rule
at a switch due to lack of space.

Lemma 1 (Bounded switch memory). (i) Suppose that R is a legal execution of Algorithm 2. A switch needs to let no more than
maxManagers ≥ NC controllers to manage it and (2) no more than maxRules ≥ NC · (NC + N S − 1) · nprt packet forwarding rules.

Proof. Let p j ∈ P S be a switch.
Number of managers. Recall that we assume that maxManagers ≥ NC ≥ |P C |, i.e., the bound is large enough to store all
managers (once all stale information is removed in a FIFO manner that is explained in Section 2.1.1). During a legal execution
R of Algorithm 2, every controller accesses every switch repeatedly (line 19). This way, every pi ∈ P C , is always among the
NC most recently installed controllers at p j ∈ P S .
Number of rules. Recall that a rule is a tuple of the form 〈k, i, src, dest , prt , j, tag〉, where pk ∈ P C is the controller that
created this rule, pi ∈ P S is the switch that stores this rule, psrc ∈ P C and pdest ∈ P are the source, and respectively, the
destination of the packet, prt is the packet’s priority, p j ∈ P is the relay node (i.e., the rule’s action field) and tag is the
synchronization round tag.

To show that there are no more than NC · (NC + N S −1) ·nprt rules that a switch needs to store, recall that each of the NC

controllers psrc ∈ P C constructs κ-fault-resilient flows to every node pdest ∈ P \ {psrc} in the network. Thus, switch pi ∈ P S

might be a hop on the κ-fault-resilient flow between psrc and pdest . That is, there are at most NC · (NC + N S − 1) such flows
that pass via pi , because for each of the NC possible flow sources psrc , there are exactly (NC + N S − 1) destinations pdest .
Each such flow stores at most nprt ≥ κ + 1 rules at pi , i.e., one for each priority. Note that, during a legal execution, each
switch pi ∈ P S stores at most one tag per psrc ∈ P C (line 19). �

Lemma 2 considers an event C-reset, which can delay recovery.

Lemma 2 (Bounded controller memory). (1) Let ax ∈ R be the first step in which controller pi runs lines 20–23 (upon query reply). For
every state in R that follows step ax, node pi stores no more than maxReplies replies in the set replyD Bi . (2) Suppose that R is a legal
execution. Controller pi ∈ P C needs to store, in the set replyD Bi , no more than maxReplies ≥ 2 · (NC + N S) items. (3) Suppose that R
is any execution, which may start in an arbitrary state. Controller pi performs a C-reset at most once in R, i.e., takes a step ax′ ∈ R that
includes the execution of line 21, in which the if-statement condition is true.

Proof. Part (1). We note that pi modifies replyD Bi only in line 8 and line 12 in the do-forever loop (lines 7–19), and in
lines 21 and 23 in the query reply procedure (lines 20–23). In line 8 and line 12, the size of replyD Bi either decreases
(possible only at the first step that pi executes line 8 or line 12) or stays the same. Thus, the rest of this proof focuses only
at lines 21 and 23, where the set replyD Bi increases due to the addition of an incoming reply (line 23).

Let ax′ be the first step in R , in which controller pi executes lines 20–23 due to a message m j that pi receives from node
p j . By line 21, if |replyD Bi ∪ {m j}| > maxReplies holds, then pi performs a C-reset, i.e., sets replyD Bi ← {〈i, Nc(i), ∅, ∅〉},
which implies that |replyD Bi | = 1 after the execution of line 21. Hence, after the execution of line 23 in step ax′ ,
|replyD Bi | < maxReplies holds for the state cx′+1, which follows ax′ immediately. Similarly, since the size of replyD Bi
increases only when pi executes line 23, for every step ax′′ and the system state cx′′+1 that appears in R after cx′+1, it is
true that |replyD Bi | ≤ maxReplies holds in cx′′+1, due to line 21. Thus, for every system state that follows the first step
ax′ ∈ R , it holds that |replyD Bi | ≤ maxReplies.
Part (2). Line 8 removes from replyD Bi any response that its synchronization round tag is not in the set {prevT agi,

currT agi} and line 23 does not add to replyD Bi a response that its synchronization round tag is not currT agi . More-
over, line 12 makes sure that when finishing one synchronization round and then transitioning to the next one, replyD Bi
104

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
includes replies only with synchronization round tags that are prevT agi . Therefore, there are no more than two synchro-
nization round tags that could be simultaneously present in replyD Bi . Moreover, line 8 also removes any response from an
unreachable node, because item 1 of Definition 1 holds in any system state of a legal execution. This further limits the set
replyD Bi to includes response from at most NC + N S nodes. Therefore, |replyD Bi| ≤ 2 · (NC + N S).
Part (3). Suppose that pi does perform a C-reset during R . Once that happens, parts (i) and (ii) of this proof imply that this
can never happen again. �

Lemma 3 demonstrates that the proposed algorithm requires bounded message size.

Lemma 3. The message size before and after the recovery period is in O (maxRules log N), and respectively, O (�N log N) bits, where
N = NC + N S and � is the maximum node degree.

Proof. The size of the messages sent differs during and after the recovery period. Algorithm 2 involves messages sent from
a controller to any other node and their subsequent replies to the controller. A message from a controller to a switch is a
set of commands msg initialized to the empty set in line 9. Commands are appended in msg in lines 16, 17, and 18, before
a controller appends two more commands to msg (line 19) and sends it to a switch. We denote with msg16, msg17, msg18
the sets of commands appended to msg in the respective lines. Thus, |msg| = |msg16| + |msg17| + |msg18| + O (log ctag) bits,
where |msgx| refers to the message size due to line x and ctag , is the maximum size of a tag. Note that when using tags
based on the ones in [20], O (log(N)) bits are needed, whereas using the ones by Awerbuch et el. [21,4] requires O (1) bits.

We now calculate the size of each msgx , for each line x mentioned above, following the analysis of the current section.
Recall from Section 2.1 that the size of a single rule is in O (log NC + log N S + log nprt + log ctag) bits, where nprt ≥ � + 1
suffices for expressing all rules. A command in msg16, msg17, and msg18 has size in O (log NC + log N S), O (log NC + log N S),
and respectively, in O ((NC + N S −1)nprt(log NC + log N S + log nprt + log ctag)) bits. During recovery the following hold for the
product of cardinality with command size for each set: |msg16| ∈ O (maxManagers ·(log NC + log N S)), |msg17| ∈ O (maxRules ·
(log NC + log N S)), |msg18| ∈ O ((NC + N S − 1)nprt(log NC + log N S + log nprt + log ctag))). Similarly, during a legal execution
the following hold: |msg16| ∈ O (log NC + log N S)), |msg17| = 0 |msg18| ∈ O ((NC + N S − 1)nprt(log NC + log N S + lognprt +
log ctag))). Summing up, during recovery |msg| ∈ O ((maxRules +maxManagers)(log NC + log N S) +(NC + N S −1)nprt(log NC +
log N S + log nprt + log ctag))) and during a legal execution |msg| ∈ O ((log NC + log N S) + (NC + N S − 1)nprt(log NC + log N S +
log nprt + log ctag))).

We now turn to calculate the message size for a query response. Since the query response of a switch has a larger size
than the one of a controller (by definition), we present only the case of switches. During recovery, a switch query response
has size in O (log N S +�(log N S + log NC) +maxManagers log NC +maxRules(log NC + log N S + log nprt + log ctag)) bits, while
a legal execution the response size is in O (log N S + �(log N S + log NC) + NC log NC + (NC + N S − 1)nprt(log NC + log N S +
log nprt + log ctag)) bits, where � is the maximum degree. �

The proof of Lemma 3 reveals that the proposed solution is communication adaptive [22], because after stabilization the
messages size is reduced.

5.3. Bounding the number of illegitimate deletions

We consider another kind of event that might delay recovery (Definition 2) and prove that it can occur a bounded
number of times. Recall that �comm is the number of frames in which the end-to-end protocol stabilizes (Section 3.1) and
�synch the number of frames in which the round synchronization mechanism stabilizes (Section 4.2).

Definition 2 (Illegitimate deletions). A switch p j performs an illegitimate deletion when it removes a non-failing controller
p� ∈ P C from its manager set (or its rules), due to a command that it received from another controller pk ∈ P C .

Theorem 1 (Bounded number of illegitimate deletions). Let axk ∈ R be the k-th step in which controller pi ∈ P C executes lines 11–12
during execution R. Suppose that R includes at least ((�comm + �synch)D + 1) such axk steps, where D is the network diameter. Let
R ′ be a prefix of R = R ′ ◦ R ′′ that includes the steps a1, . . . , ax(�comm+�synch)D+1 ∈ R ′ and R ′′ be the matching suffix. Controller pi does
not take steps as′k ∈ R ′′ that send a message mk to p j ∈ P S , such that p j performs an illegitimate deletion (Definition 2) upon receiving
mk.

Proof. This proof uses Claim 5.1 and Lemma 4. Theorem 1 follows by the case of k ≥ D for Lemma 4 and then applying Part
(ii) of Claim 5.1.

Claim 5.1. (i) The condition in the if-statement of line 10 holds if, and only if, Vreported = Vreporting , where Vreported = {pk :
∃〈 j,Nc(j),•,rls〉∈replyD Bi ((k = j ∨ pk ∈ Nc(j)) ∧ ∃〈i, jk, •, currT agi〉 ∈ rls)} ∪ {〈i, Nc(i), ∅, ∅〉} and Vreporting = {p j : 〈 j, •, rls〉 ∈
replyD Bi ∧ (∃〈i, jk, •, currT agi〉 ∈ rls)}. (ii) Suppose that every node p j in Gc has sent a response 〈 j, •〉 to pi . Suppose that pi
105

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
stores these replies in replyD Bi together with pi ’s report about its directly connected neighborhood, 〈i, Nc(i), ∅, ∅〉, cf. lines 3 and 8.
In this case, the condition in the if-statement of line 10 holds.

Proof of Claim 5.1. The proof of Part (i). The condition in the if-statement of line 10 is (∀p�: pi →G(resi(currT agi)) p� =⇒
〈�, •〉 ∈ resi(currT agi). When Vreported = Vreporting holds, the following two claims also hold by the definition of these sets
(and vice versa): (a) pi ’s response is in replyD Bi , and (b) for every node p j that was queried with tag currT agi , such that
before the query either p j had a response in replyD Bi or a direct neighbor of p j had a response in replyD Bi , there exists
a response from p j in replyD Bi with rules that have the tag currT agi . Hence, the condition in the if-statement of line 10
is true.
The proof of Part (ii). This is just a particular case in which P = Vreported = Vreporting . �
Lemma 4. Let p jk ∈ P be a node that is at distance k from pi in Gc, such that p j0 , p j1 , . . . , p jk is any shortest path from pi to p jk and
p j0 = pi . Let cxy ∈ R be the system state that immediately follows step axy ∈ {ax1 , . . ., axk·(�comm+�synch)+1 } ⊂ R ′ .

1. Let � > k ·�comm + 1. The system state cx�
is legal with respect to the end-to-end protocol of the channel between pi and p jk , and

it holds that m = 〈 jk, •〉 is a message arriving from p jk through the channel to pi , which is an acknowledgment for pi ’s message
to p jk .

2. Let � > k · (�comm + �synch) + 1. The system state cx�
is legal with respect to the round synchronization protocol between pi and

p jk . That is, for any message m = 〈 jk, •, rls〉 that arrives from the channel from p jk to pi , it holds that m ∈ replyD Bi ∧ ∃r∈rls r =
〈i, jk, •, currT agi〉. Moreover, message m is an acknowledgment of a message m′ that pi has sent to p jk and together m′ and m
form a completed round-trip.

Proof of Lemma 4. We note that the first step, ax1 could occur due to the fact that the system starts in an arbitrary state
in which the condition of the if-statement of line 10 holds, hence the addition of 1 in k · (�comm + �synch). The proof is by
induction on k > 0. That is, we consider the steps in axy ∈ {ax1 , . . . , axk·(�comm+�synch)+1 }.

The base case of k = 1. Claim 5.1 says that the condition in the if-statement of line 10 holds if, and only if, Vreported =
Vreporting , where {〈i, Nc(i), ∅, ∅〉} ⊆ Vreported (line 3). Therefore, for any � > 1, we have that ax�

∈ {ax2 , . . . , axk·(�comm+�synch+1)+1 }
implies that {〈i, Nc(i), ∅, ∅〉} ⊆ Vreporting holds immediately before ax�

.

Claim 5.2. Between axk−1 and axk , a message 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉 arrives from the channel from p jk ∈ Nc(i) to
pi , which pi stores in replyD Bi , where k ≥ 1.

Proof of Claim 5.2. During the step axk−1 , controller pi removes any response 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉
(line 12) and the only way in which 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉 holds immediately before axk is the follow-
ing. Between axk−1 and axk , a message arrives through the channel from p jk ∈ Nc(jk−1) : j0 = i to pi , which pi stores in
replyD Bi (line 23). This is true because no other line in the code that accesses replyD Bi adds that message to replyD Bi (cf.
lines 8, 12, and 23). �
The proof of Part (1). It can be the case the pi sends a message for which it receives a (false) acknowledgment from p j1 , i.e.,
without having that message go through a complete round-trip. However, by �comm ’s definition (Section 3.1), that can occur
at most �comm times.
The proof of Part (2). It can be the case that pi receives message m from p j1 for which the following condition does not hold
in c j1 : m = 〈•, rls〉 ∈ replyD Bi ∧∃r∈rls r = 〈i, jk, •, currT agi〉. However, by �synch ’s definition (Section 2.2.2), that can occur at
most �synch times. The rest of the proof is implied by the properties of the round synchronization algorithm (Section 2.2.2).
The induction step. Suppose that, within more than (�commk + 1) and ((�comm +�synch)k + 1) synchronization rounds from
R ’s starting state, the system reaches a state in which conditions (1), and respectively, (2) hold with respect to some k ≥ 1.
We show that in cx�comm(k+1)+1 and cx(�comm+�synch)(k+1)+1 , conditions (1), and respectively, (2) hold with respect to k + 1.

The proof of Part (1). Claim 5.1 says that the condition in the if-statement of line 10 holds if, and only if, Vreported =
Vreporting . By the induction hypothesis, condition (2) holds with respect to k in cx(�comm+�synch)k+1 and therefore A(k + 1) ∪
{〈i, Nc(i), ∅, ∅〉} ⊆ Vreported , where A(k) = {〈 jk′ , Nc(jk′), •, rls〉 : 1 < k′ ≤ k ∧ ∃r∈rls r = 〈i, jk′ , •, currT agi〉}. Therefore, that fact
that the step ax(�comm+�synch)(k+1)+2 ∈ ax2 . . .axk·(�comm+�synch+1)+1 implies that A(k + 1) ∪ {〈i, Nc(i), ∅, ∅〉} ⊆ Vreporting holds in the
system state that appears in R immediately before the step ax(�comm+�synch)(k+1)+2 . Claim 5.2 implies the rest of the proof.

The proof of Part (2). The proof here follows by similar arguments to the ones that appear in the proof of item (2) of the base
case. �

Part (iii) of Lemma 2 and Theorem 1 imply Corollary 1.

Corollary 1. Any execution R of Algorithm 2 includes no more than NC C-resets (Lemma 2) and ((�comm + �synch)D + 1) · N S
illegitimate deletions (Theorem 1).
106

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
5.4. Recovery from transient faults

In this section we prove that Algorithm 2 is self-stabilizing. Lemma 5 shows that (under some conditions, such as reset
freedom) controller pi eventually discovers the local topology of a switch p jk that is at distance k from pi in the graph
Gc . This means that pi has all the information that its needs for constructing (at least) a 0-fault-resilient flow to p jk and
discover any switch p jk+1 ∈ Nc(p jk) that is at distance k + 1 from pi . Then, Lemma 6 shows that, within a bounded number
of frames, no stale information exists in the system. Theorem 2 combines Corollary 1 and Lemma 6 to show that, within a
bounded number of frames, the system reaches a legitimate state from which only a legal execution may continue.

We start by giving some necessary definitions. Let Gi be the value of G(ref erT agi) (line 13) that controller pi ∈ P C
computes in a step ax ∈ R . We say that there is a path between pi ∈ P and p j ∈ P , when there exist p j0 , p j1 , . . . , p jk ∈ P ,
such that (1) p j0 = pi , (2) p jk = p j , (3) p j1 , . . . , p jk−1 ∈ P S , and (4) the rules installed by a controller p� ∈ P C at the switches
in p j1 , . . . , p jk−1 (and also pi or p j if they are also switches) forward packets from pi to p j as well as from p j to pi (when
the respective links are operational). We say that two nodes pi ∈ P and p j ∈ P can exchange packets, when there is a path
between pi and p j . Moreover, we say that the rules installed in the switches ps ∈ P S facilitate κ-fault-resilient flows between
pi and p j , if at the event of at most κ link failures there exists a path between pi and p j . Let px and p y be two nodes in
P and recall that we assume that every node pz ∈ P has a fixed ordering of its neighbors, i.e., Nc(z) = {pi1 , . . . , pi|Nc (z)| }. We
define the first shortest path between px and p y to be the shortest path between px and p y that includes the nodes with
minimum indices according to the neighborhood orderings (among all the shortest paths between these two nodes).

Lemma 5. Let pi ∈ P C be a controller and p jk ∈ P be a node in P that is at distance k from pi in Gc, such that p j0 , p j1 , . . . , p jk is the
first shortest path from pi to p jk and p j0 = pi in Gc. Suppose that C-resets (Lemma 2) and illegitimate deletions (Theorem 1) do not
occur in R. For every k ≥ 0, and any system state that follows the first ((�comm + �synch) + 2)k frames from the beginning of R, the
following hold.

1. 〈 jk, Nc(jk), manageri(jk), rulesi(jk)〉 ∈ resi(prevT agi), where Nc(jk), manageri(jk), and rulesi(jk) are p jk ’s neighborhood,
managers, and respectively, rules that pi has received from p jk . Moreover, for the case of controller p jk ∈ P C , it holds that
manager(jk) = ∅ ∧ rules(jk) = ∅.

2. pi ∈ manager jk (jk).
3. the rules in rules j0(j0), rules j1 (j1), . . . , rules jk (jk) facilitate packet exchange between pi and p jk along p j0 , p j1 , . . . , p jk (when

the respective links are operational).
4. The end-to-end protocol as well as the round synchronization protocol between pi and p jk are in a legitimate state.

Proof. The proof is by induction on k.
The base case. Claims 5.3, 5.4, and 5.5 imply that the lemma statement holds for k = 1.

Claim 5.3. Within one frame from R’s beginning, the system reaches a state in which condition (1) is fulfilled with respect to pi and
any node that is in pi ’s distance-1 neighbors in Gc.

Proof of Claim 5.3. During the first frame (with round-trips) of R , controller pi starts and completes at least one iteration
in which it sends a query (line 19) to every node p j1 ∈ P that is in pi ’s distance-1 neighborhood in Gc (this includes both
switches, as we explain in Section 2.1.1, as well as other controllers, which respond according to line 24). Moreover, during
that first frame, p j1 receives that query and replies to pi (lines 20-23) within one step (Section 3.2). Thus, the first part of
condition (1) is fulfilled, because controller pi then adds (or updates) the latest (query) replies that it received from these
neighbors to replyD Bi . The second part of condition (1) is implied by the first part of condition (1) and by line 24. �
Claim 5.4. Within two frames from the beginning of R, the system reaches a state in which conditions (2) and (3) are fulfilled with
respect to pi and any node that is in pi ’s distance-1 neighbors in Gc.

Proof of Claim 5.4. This proof uses Claim 5.3 to prove this claim by first showing that within one frame from the beginning
an execution in which condition (1) holds, the system reaches a state in which conditions (2) and (3) are fulfilled with
respect to pi and any node p j ∈ Nc(i). This indeed implies that conditions (2) and (3) are fulfilled within two frames of R
for pi ’s direct neighbors.

Let R∗ be a suffix of R such that in R∗ ’s stating system state, it holds that condition (1) is fulfilled with respect to pi and
any node that is in pi ’s distance-1 neighbors in Gc . During the first frame (with round-trips) of R∗ , controller pi starts and
completes at least one iteration (with round-trips) in which it is able to include pi in p j ’s manager set, manager j(j) (line 15
to 17) and to install rules at p j ∈ Nc(i) (line 18). We know that this installation is possible, because pi is a direct neighbor
of p j ∈ Nc(i) (Section 2.1.1). Once these rules are installed, the packet exchange between pi and p j ∈ Nc(i) is feasible. This
implies that conditions (2) and (3) are fulfilled within one frame of R∗ (and two frames of R) for pi ’s direct neighbors. �
Claim 5.5. Within ((�comm +�synch) +2) frames from the beginning of R, the system reaches a state in which condition (4) is fulfilled
with respect to pi and any node that is in pi ’s distance-1 neighbors in Gc.
107

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Proof of Claim 5.5. Since conditions (2) and (3) hold within two frames with respect to k = 1, controller pi and p j1 can
maintain an end-to-end communication channel between them because the network part between pi and p j1 includes all
the needed flows. By �comm ’s definition (Section 3.1), within �comm frames, the system reaches a legitimate state with re-
spect to the end-to-end protocol between pi and p j1 . Similarly, by �synch ’s definition (Section 2.2.2), within �synch frames,
the system reaches a legitimate state with respect to the round synchronization protocol between pi and p j1 . Thus, condi-
tion (4) holds within ((�comm + �synch) + 2) frames from R ’s beginning. �
The induction step. Suppose that, within ((�comm + �synch) + 2)k frames from R ’s starting state, the system reaches a state
cx ∈ R in which conditions (1), (2), (3) and (4) hold with respect to k. We show that within (�comm + �synch) + 2 frames
from cx , the system reaches a state in which the lemma’s statements hold with respect to k + 1 as well.
Showing that, within one frame from cx , processor pi knows all of its distance-(k + 1) neighbors. This part of the proof
starts by showing that within one frame from cx , execution R reaches a state, such that pi →Gi p j holds for every
distance-(k + 1) neighbor of pi in Gc . The system state cx encodes (packet forwarding) rules that allow pi to exchange
packets with its distance-k neighbors in Gc (since by the induction hypothesis, conditions (3) and (4) hold with respect to k
in cx). Moreover, pi stores in res(prevT agi) replies from pi ’s distance-k neighbors in Gc (since by the induction hypothesis,
condition (1) holds for k in cx). The latter implies that pi knows, as part of Gi in cx , all of its distance-(k + 1) neighbors,
{pk : ∃〈 j, Nc(j), •〉 ∈ resi(prevT agi) ∧ (k = j ∨ k ∈ Nc(j, prevT agi))}, since every reply of a distance-k neighbor, p j∗ , in Gc
(which resi(prevT agi) stores in cx) includes p j∗ ’s neighborhood.
Condition (1) holds with respect to k + 1 within ((�comm + �synch) + 2)k + 1 frames. Using the above we show that, within
one frame from cx , controller pi ∈ P C queries all of its distance-(k + 1) neighbors (line 19), receives their replies, and stores
them in replyD Bi (lines 20–23), i.e., 〈 jk+1, Nc(jk+1), manageri(jk+1), rulesi(jk+1)〉 ∈ resi(currT agi) for every distance-(k +1)

neighbor p jk+1 of pi in Gi . Recall that cx encodes rules that let pi to forward packets with its distance-k neighbors in Gc
(condition (3) holds for k in cx). By the query-by-neighbor functionality (Section 2.1.1), every such distance-k neighbor
reports on its direct neighbors (that include pi ’s distance-(k + 1) neighbors), which implies that it forwards the query
message to pi ’s distance-(k + 1) neighbor as well as the reply back to pi . Therefore, within ((�comm + �synch) + 2)k + 1
frames, the system reaches a state, cx′ , in which condition (1) holds with respect to k + 1.
Conditions (2) to (3) hold with respect to k + 1 within ((�comm + �synch) + 2)k + 2 frames. The next step of the proof is to
show that within one frame from cx′ , the system reaches the state cx′′ in which conditions (2) and (3) hold with respect
to k + 1 (in addition to the fact that condition (1) holds). By the functionality for querying (and modifying)-by-neighbor
(Section 2.1.1) and for every switch p j that is a distance-(k + 1) neighbor of pi in Gc , it holds that between cx′ and cx′′ : (a)
pi adds itself to the manager set manager(j) of p j (line 15 to 17), and (b) pi installs its rules in p j ’s configuration (line 18).
(We note that for the case p j is another controller, there is no need to show that conditions (2) and (3) hold.)
Condition (4) holds for k + 1 within ((�comm + �synch) + 2)(k + 1) frames. The proof is by similar arguments to the ones
that appear in the proof of Claim 5.5.

Thus, conditions (1), (2), (3), and (4) hold for k + 1 within ((�comm + �synch) + 2)(k + 1) frames in R and the proof is
complete. �

Lemma 6 bounds the number of frames before the system reaches a legitimate system state.

Lemma 6. Let R = R ′ ◦ R ′′ be an execution of Algorithm 2 that includes a prefix, R ′ , of (�comm + �synch) + 2)D + 1 frames that has
no occurrence of C-resets or illegitimate deletions. (1) Any system state in R ′′ is legitimate (Definition 1). (2) Let ax ∈ R ′′ be a step that
includes the execution of the do-forever loop that starts in line 8 and ends in line 19. During that step ax, the value of msgi , which pi
sends to p j ∈ P in line 19, does not include the record 〈‘delMngr’, •〉 nor the record 〈‘del AllRules’, •〉, i.e., no deletions, whether they
are illegitimate or not, of managers or rules. (3) No controller pi takes a step in R ′′ during which the condition of line 21 holds, which
implies that pi performs no C-reset during R ′′.

Proof. When comparing the conditions of Definition 1 and the conditions of Lemma 5, we see that Lemma 5 guaran-
tees that within (�comm + �synch) + 2)D frames the system reaches a state calmost Saf e ∈ R ′ in which all the conditions of
Definition 1 hold except condition 2 with respect to controllers p j /∈ P C that do not exist in the system (and their rules
that are stored by the switches). From condition 1 of Definition 1, we have that at each controller pi ∈ P C , it holds that
G(res(currT agi)) = G(f usioni) = Gc . This implies that pi can identify correctly any stale information related to p j and re-
move it from configuration of every switch (see line 14 to 18) that is in the system during the round that follows calmost Saf e ,
which takes one frame because condition 1 of Definition 1 holds. This means that within (�comm +�synch) + 2)D + 1 frames
the system reaches a legitimate state in which all the conditions of Definition 1 hold and thus R ′′ is a legal execution, i.e.,
the first part of the lemma holds. Part (2) of this lemma is implied by the fact that there is no controller p j /∈ P C that the
controller pi ∈ P C needs to remove from the configuration of any switch during the legal execution R ′′ . Part (3) is implied
by Part (3) of Lemma 2 and the fact that R ′′ is a legal execution. �
Theorem 2 (Self-Stabilization). Within ((�comm + �synch) + 2)D + 1)[((�comm +�synch)D + 1) · N S + NC + 1] frames in R, the
system reaches a state csaf e ∈ R that is legitimate (Definition 1). Moreover, no execution that starts from csaf e ∈ R includes a C-reset
nor illegitimate deletion of managers or rules.
108

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Proof. In this proof, we say that an execution Radm is admissible when it includes at least ((�comm + �synch) + 2)D + 1
frames and no C-reset nor an illegitimate deletion. Let R be an execution of Algorithm 2. Let us consider R ’s longest possible
prefix R ′ , such that R ′ does not include any sub-execution that is admissible, i.e., R = R ′ ◦ R ′′ . Recall that by Corollary 1 the
prefix R ′ has no more than ((�comm +�synch)D + 1) · N S + NC C-resets or illegitimate deletions. By the pigeonhole principle,
the prefix R ′ has no more than ((�comm + �synch) + 2)D + 1)[((�comm + �synch)D + 1) · N S + NC + 1] frames. By Lemma 6,
R ′′ does not include C-resets nor deletions of managers or rules, and the system has reached a safe state, which is csaf e . �
5.5. Returning to a legitimate state after topology changes

This part of the proof considers executions in which the system starts in a state c′ , that is obtained by taking a system
state csaf e that satisfies the requirements for a legitimate system state (Definition 1), and then applying a bounded number
of failures and recoveries. We discuss the conditions under which no packet loss occurs when starting from c′ , which is
obtained from csaf e and (i) the events of up to r link failures and up to � link additions (Lemma 7), as well as, (ii) the
events of up to r controller failures and up to � controller additions (Lemma 8).

Lemma 7. Suppose that c′ is obtained from a legitimate system state csaf e by the removal of at most r links and the addition of at
most � links (and no further failures), and R is an execution of Algorithm 2 that starts in c′. It holds that no packet loss occurs in R
as long as r ≤ κ and � ≥ 0. For the case of r ≤ κ ∧ � ≥ 0 recovery occurs within O (D) frames, while for the case of r > κ bounded
communication delays can no longer be guaranteed.

Proof. We consider the following cases.
The case of r ≤ κ and � = 0. Suppose that a single link e has failed, i.e., it has been permanently removed from Gc , in
a state c′ that follows a legitimate system state csaf e . Say that e is included either in a primary path �0 in Go(0) or in
one of the alternative paths of �0, �k in Go(k), where k > 0, for a controller pi (cf. definitions of the function myRules()
and the graphs Go(k) in Section 2.2.2). For every such case, since e’s failure occurs after a legitimate state, communication
is maintained when at most κ − 1 links (other than e) are non-operational. Let s be the index in {0, 1, . . . , κ} for which
e ∈ �s . Due to the construction of the paths �k , k ∈ {0, 1, . . . , κ}, in the computation of the function myRules() in pi , if
s = 0, then each alternative path �k before e’s failure is now considered as path �k−1, for k ∈ {1, . . . , κ}. Otherwise, if s �= 0,
the paths �k remain the same for k ∈ {0, . . . , s − 1} and each path �k is now considered as the alternative path �k−1 for
k ∈ {s + 1, . . . , κ}. In both cases, a new path �κ is computed and installed in the switches if that is possible due to the
edge-connectivity of Gc , and if that is not the case, the rules installed in the network’s switches facilitate (κ − 1)-fault-
resilient flows between every controller and every other node in the network. The recovery time is at most 1 frame (if e
belongs to some path �k), since the removal of link e occurs after a legitimate state and all nodes in the network can be
reached by every controller pi ∈ P C .

Note that if e is not part of any flow, then its failure has no effect in maintaining bounded communication delays. By
extension of the argument above, bounded communication delays can be maintained when at most κ link failures occur.
That is, in the worst case when exactly κ link failures occur, bounded communication delays are maintained due to the
existence of the κ th alternative paths and the assumption that no further failures occur in the network.
The case of r = 0 ∧ � > 0. A link addition can violate the first shortest path optimality, thus in this case all paths should
be constructed from scratch. Since, the link addition occurs after a legitimate state, no stale information exists in the
system, and no resets or illegitimate deletions occur. Hence, by Lemma 5 (for k = D) within 2D frames it is possible to
(re-)build the κ-fault containing flows throughout all nodes in the network and reach a legitimate system state (since the
edge-connectivity cannot decrease with link additions).
The case of r ≤ κ and � > 0. Note that by the first case, bounded communication delays are maintained, since r ≤ κ . Since �
links are added in Gc , the controllers require O (D) frames to install new paths (by Lemma 5), even though the connectivity
of Gc might be less than κ + 1 (but for sure at least 1). Hence, bounded communication delays are guaranteed in this case,
given that no more failures occur.
The case of r > κ . In this case, we do not guarantee bounded communication delays. This holds, due to the fact that the
removal of more than κ edges might break connectivity in Gc , which makes the existence of alternative paths for r > κ link
failures impossible. �
Lemma 8. Suppose that c′ is obtained from a legitimate system state csaf e by the removal of at most r nodes and the addition of at
most � nodes (and no further failures), and R is an execution of Algorithm 2 that starts in c′ . It holds that no packet loss occurs in R if,
and only if, Gc remains connected (and NC ≥ 1 ∧ N S ≥ 1), and in this case the network recovers within O (D) frames. For the case of
r > 0 ∧ � = 0 bounded communication delays can no longer be guaranteed.

Proof. We study the following cases.
The case of r > 0 and � = 0. The removal of a switch p j is equivalent to the removal of all the links that are adjacent to
p j . Since the edge-connectivity is at least κ + 1, the minimum degree of every node in Gc is at least κ + 1. Thus, a switch
removal (equiv. removal of at least κ + 1 links) would violate the assumption of at most κ link failures, possibly violating
109

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
connectivity or affecting all the alternative paths between two endpoints in the network. In this case, Algorithm 2 can only
guarantee that the controllers will install κ̃ -fault-resilient flows, where 0 ≤ κ̃ ≤ κ .

The case of removing a controller pi can be handled by Algorithm 2 if we assume that the communication graph Gc
stays (at least) (κ + 1)-edge-connected after removing pi . In that case, each controller pi′ can discover the removal of pi
and delete it from replyD Bi′ in 1 frame, and then, in the subsequent frame, pi′ can delete pi ’s rules from rules j(j) and pi
from manager j(j), for every switch p j . Hence, within 2 frames the system recovers to a legitimate state, since the existing
rules of the other controllers stay intact.
The case of r = 0 and � > 0. We assume that if controller or switch additions occur (including their adjacent links) after a
legitimate state, the new node is initialized with empty memory. That is, replyD Bi is empty if a new controller pi is added,
and manager j(j) = rules j(j) = ∅ if a new switch p j is added. Note that the new node should not violate the assumption of
Gc ’s edge-connectivity being at least κ + 1. In both cases, and similarly to link additions, the first shortest path optimality
might be violated and hence (as in the case of link additions) a period of 2D frames is needed (Lemma 5) to (re-)build the
κ-fault-resilient flows (since no stale information exists, and no resets or illegal deletions occur).
The case of r > 0 and � > 0. Let G ′

c be Gc after the removal of at most r nodes and the addition of at most � nodes. If G ′
c is

κ̃-edge-connected, where 1 < κ̃ ≤ κ , then bounded communication delays in the occurrence of at most κ̃ link failures can
be guaranteed by following the arguments of Section 5.4 for κ = κ̃ . �
6. Evaluation

In order to evaluate our approach, and in particular, to complement our theoretical worst-case analysis as well as study
the performance in different settings, we implemented a prototype using Open vSwitch (OVS) and Floodlight. To ensure
reproducibility and to facilitate research on improved and alternative algorithms, the source code and evaluation data are
accessible via [8]. In the following, we first explain our expectations with respect to the performance (Section 6.1) and
discuss details related to the implementation of the proposed solution (Section 6.2) before presenting the setup of our
experiments (Section 6.3). In particular, we empirically evaluate the time to bootstrap an SDN (after the occurrence of
different kinds of transient failures), the recovery time (after the occurrence of different kinds of benign failures), as well
as the throughput during a recovery period that follows a single link failure (Section 6.4). For the reproducibility sake, the
source code and evaluation data can be access via [8].

6.1. Limitations and expectations

We study Renaissance’s ability to recover from failures in a wide range of topologies and settings. We note that the
scope of our work does not include an empirical demonstration of recovery after the occurrence of arbitrary transient faults,
because such a result would need to consider all possible starting system states. Nevertheless, we do consider recovery after
changes in the topology, which Section 3.4 models as transient faults. However, in these cases, we mostly consider a single
change to the topology, i.e., node or link failure (after the recovery from any other transient fault).

The basis for our performance expectation is the analysis presented in Section 5. Specifically, we use Lemmas 5, 7
and 8 to anticipate an O (D) bootstrap time and recovery period after the occurrence of benign failures. Recall that, for
the sake of simple presentation, our theoretical analysis does not consider the number of messages sent and received
(Section 3.5.3), which depends on the number of nodes in the case of Renaissance. Thus, we do not expect the asymptotic
bounds of Lemmas 5, 7 and 8 to offer an exact prediction of the system performance since our aim in Section 5 is merely
to demonstrate bounded recovery time. The measurements presented in this section show that Renaissance’s performance is
in the ballpark of the estimation presented in Section 5.

6.2. Implementation

In this evaluation section, we demonstrate Renaissance’s ability to recover from failures without distinguishing between
transient and permanent faults, as our model does (Fig. 3), because there is no definitive distinction between transient and
permanent faults in real-world systems. Moreover, our implementation uses a variation on Algorithm 2. The reason that
we need this variation is that this evaluation section considers changes to the network topology during legal executions,
whereas our model considers such changes as transient faults that can occur before the system starts running.

In detail, Algorithm 2 installs rules on the switches using two tags, which are currT ag and prevT ag (line 2). That is,
as the new rules for currT ag are being installed, the ones for prevT ag are being removed. Our variation uses a third
tag, beforePrevTag, which tags the rules in the synchronization round that preceded the one that prevT ag refers to. When
Renaissance installs new rules that are tagged with currT ag , it does not remove the rules tagged with prevT ag but instead,
it removes the rules that are tagged with beforePrevTag. This one extra round in which the switches hold on to the rules
installed for prevT ag ’s synchronization round allows Renaissance to use the κ-fault-resilient flows that are associated with
prevT ag for dealing with link failures (without having them removed, as Algorithm 2 does). The above variation allows
us to observe the beneficial and complementary existence of the mechanisms for tolerating transient and permanent link
failures, i.e., Renaissance’s construction of κ-fault-resilient flows, and respectively, update of such flows according to changes
reported by Renaissance’s topology discovery.
110

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 5. Bootstrap time for the networks using 3 controllers. The network diameters are 4, 5, 8, 10 and 11 (left to right order).

6.3. Setup

We consider a spectrum of different topologies (varying in size and diameter), including B4 (Google’s inter-datacenter
WAN based on SDN), Clos datacenter networks and Rocketfuel networks (namely Telstra, AT&T and EBONE). The relevant
statistics of these networks can be found in Table 8. The hosts for traffic and round-trip time (RTT) evaluation are placed
such that the distance between them is as large as the network diameter. The evaluation was conducted on a PC run-
ning Ubuntu 16.04 LTS OS, with the Intel(R) Core(TM) i5-457OS CPU @ 2.9 GHz (4x CPU) processor and 32 GB RAM. The
maximum transmission unit (MTU) for each link in the Mininet networks were set to 65536 bytes.

Paths are computed according to Breadth First Search (BFS) and we use OpenFlow fast-failover groups for backup paths.
We introduce a delay before every repetition of the algorithm’s do forever loop as well as between each interval in which
the abstract switch discovers its neighborhood. In our experiments, the default delay value was 500 ms. However, in an
experiment related to the bootstrap time (Fig. 7), we have varied the delay values.

The link status detector (for switches and controllers) has a parameter called �, similar to the one used in [16, Section
6]. This threshold parameter refers to scenarios in which the abstract switch queries a non-failing neighboring node without
receiving a query reply while receiving � replies from all other neighbors. The parameter � can balance a trade-off between
the certainty that node is indeed failing and the time it takes to detect a failure, which affects the recovery time. We have
selected � to be 10 for B4 and Clos, and 30 for Telstra, AT&T and Ebone. We observed that when using these settings the
discovery of the entire network topology always occurred and yet had the ability to provide a rapid fault detection.

6.4. Results

We structure our evaluation of Renaissance around the main questions related to the SDN bootstrap, recovery times, and
overhead, as well as regarding the throughput during failures.

For illustrating our data in Figs. 5–6 and 9–14, we use violin plots [23]. In these plots, we indicate the median with a
white dot. The first and third quartiles are the endpoints of a thick black line (hence the white dot representing the median
is a point on the black line). The thick black line is extended with thin black lines to denote the two extrema of all the
data (as the whiskers of box plots). Finally, the vertical boundary of each surface denotes the kernel density estimation
(same on both sides) and the horizontal boundary only closes the surface. We ran each experiment 20 times. For the case
of violin plots, we used all measurements except the two extrema. For the case of the other plots, we dismissed from the
20 measurements the two extrema. Then, we calculated average values and used them in the plots.

6.4.1. How efficiently Renaissance bootstraps an SDN?
We first study how fast we can establish a stable network starting from empty switch configurations. Towards this end,

we measure how long it takes until all controllers in the network reach a legitimate state in which each controller can
communicate with any other node in the network (by installing packet-forwarding rules on the switches). For the smaller
networks (B4 [24] and Clos [25]), we use three controllers, and for the Rocketfuel networks [26,27] (Telstra, AT&T and
EBONE), we use up to seven controllers.
Bootstrapping time. We are indeed able to bootstrap in any of the configurations studied in our experiments. Lemma 5
predicts an O (D) bootstrap time when starting from an all-empty switch configuration; that prediction does not consider
111

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 6. Bootstrap time for Telstra (T), AT&T (A) and EBONE (E) for 1 to 7 controllers.

Fig. 7. Bootstrap time for B4, Clos, Telstra, AT&T and EBONE using seven controllers, as a function of query intervals. Recall that the task delay in the
added time between any repetition of the algorithm’s do forever loop as well as each interval in which the abstract switch discovers its neighborhood. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Network Nodes Diameter
B4 12 5
Clos 20 4
Telstra 57 8
AT&T 172 10
EBONE 208 11

Fig. 8. The number of nodes and diameter of the studied networks.

the number of nodes, as explained above. Note that in such executions, no controller sends commands that perform (illegit-
imate) deletions before it discovers the entire network topology and thus no illegitimate deletion is ever performed by any
controller. In terms of performance, we observe that the recovery time grows (Fig. 5) as the network dimensions increase
(diameter and number of nodes). It also somewhat depends on the number of controllers when experimented with the
larger networks (Fig. 6): more controllers result in slightly longer bootstrap times. We note that the recovery process over
a growing number of controllers follows trades that appear when considering the maximum value over a growing number
of random variables. Specifically, when an abstract switch updates its rules, the time it takes to update all of the rules that
were sent by many controllers can appear as a brief bottleneck.
112

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 9. Communication cost per node needed from a maximum loaded global controller to reach a stable network. Note that we divide the number of
messages by the number of iterations it takes to converge.

Fig. 10. Recovery time after fail-stop failure for a controller.

Note that the shown bootstrap times only provide qualitative insights: they are, up to a certain point, proportional to
the frequency at which controllers request configurations and install flows (Fig. 7). Specifically, the rightmost peaks in the
charts are due to the congestion caused by having task delays that overwhelm the networks. These peaks rise earlier for
networks with an increasing number of switches. This is not a surprise because the proposed algorithm establishes more
and longer flows in larger networks and thus uses higher values of network traffic as the number of nodes becomes larger.
Communication overhead. The study of bootstrap time thus raises interesting questions regarding the communication over-
head during the network bootstrap period. Concretely, we measure the maximum number of controller messages, taking
three controllers for the smaller networks B4 and Clos, and seven controllers for the Rocketfuel networks Telstra, AT&T and
EBONE in these experiments. While the communication overhead naturally depends on the network size, Fig. 9 suggests
that when normalized, i.e., dividing by the number of iterations it takes to recover, the overhead is similar for different
networks (and slightly higher for the case of the two largest networks).

6.4.2. How efficiently Renaissance recovers from link and node failures?
In order to study the recovery from benign failures, we distinguish between their different types: (i) fail-stop failures of

controllers, (ii) permanent switch-failures, and (iii) permanent link-failures. The experiments start from a legitimate system
state, to which we inject the above failures.
113

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 11. Recovery time after fail-stop failure of 1-6 controllers in Telstra (T), AT&T (A) and EBONE (E).

Fig. 12. Recovery time after permanent switch-failure.

(i) Recovery after the occurrence of controller’s fail-stop failure.
We injected a fail-stop failure by disconnecting a single controller chosen uniformly at random (Fig. 10). We have also

conducted an experiment in which we have disconnected many-but-not-all controllers (Fig. 11). That is, we disconnected
a single controller that is initially chosen at random and measured the recovery time. The procedure was repeated for the
same controller while recording the measurements until only one controller was left. Lemma 8, which does not take into
consideration the time it takes to send or receive messages, suggests that after the removal of at most NC − 1 controllers,
the system reaches a legitimate system state within O (D). We observe in Fig. 10 results that are in the ballpark of that
prediction. Moreover, we also measure disconnecting one to six random controllers simultaneously for the Rocketfuel net-
works (Telstra, AT&T, and EBONE), while running controller number 7. Note that we could not observe a relation between
the number of failing controllers and the recovery time, see Fig. 11.
(ii) Recovery after the occurrence of switch’s fail-stop failure. We have experimented with recovery after permanent switch-
failures. These experiments started by allowing the network to reach a legitimate (stale) state. Once in a legitimate (stale)
state, a switch (selected uniformly at random) was disconnected from the network. We have then measured the time it
takes the system to regain legitimacy (stability). We know that by Lemma 8, the recovery time here should be at most
in the order of the network diameter. Fig. 12 presents the measurements that are in the ballpark of that prediction. That
is, the longest recovery time for each of the studied networks grows as the network diameter does. We also observe a
rather large variance in the recovery time, especially for the larger networks. This is not a surprise since the selection of the
disconnected switch is random.
114

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 13. Recovery time after permanent link-failure.

Fig. 14. Recovery time after multiple (2,4 or 6) permanent link-failures at random for B4 (B), Clos (C), Telstra (T), AT&T (A) and EBONE (E).

(iii) Recovery after the occurrence of permanent link-failures. During the experiments, we waited until the system reached
a legitimate state, and then disconnected a link and waited for the system to recover. Lemma 8 predicts recovery within
O (D). Fig. 13 presents results that are in the ballpark of that prediction. We also investigated the case of multiple and
simultaneous permanent link failures that were selected randomly. Fig. 14 suggests that the number of simultaneous failures
does not play a significant role with respect to the recovery time.

6.4.3. Performance during failure recovery
Besides connectivity, we are also interested in performance metrics such as throughput and message loss during recovery

period that occur after a single link failure. Recall that we model such failures as transient faults and therefore there is a
need to investigate empirically the system’s behavior during such recovery periods since the mechanism for fault-resilient
flows (Section 2.2.2) is always active. Our experiments show that the combination between the proposed algorithm and the
mechanism for fault-resilient flows performs rather well. That is, the recovery period from a single permanent link failure
is brief and it has a limited impact on the throughput.

In the following, we measure the TCP throughput between two hosts (placed at a maximal distance from each other),
in the presence of a link-failure located as close to the middle of the primary path as possible. To generate traffic, we use
Iperf. A specific link to fail is chosen, such that it enables a backup path between the hosts.

The maximum link bandwidth is set to 1000 Mbits/s. During the experiments, we conduct throughput measurements
during a period of 30 seconds. The link-failure occurs after 10 seconds, and we expect a throughput drop due to the traffic
115

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 15. Throughput for the different networks using network updates with tags. Here, a single link failure causes the drop after the 10th second.

Fig. 16. Throughput for the different networks using no recovery after link-failure. Here, a single link failure causes the drop after the 10th second.

Network Correlation

Clos 0.94
B4 0.95

Telstra 0.92
EBONE 0.96
Exodus 0.94

Fig. 17. Correlation coefficient of the average throughput for the experiments in Fig. 15 and Fig. 16.

being rerouted to a backup path. We note that our prototype utilizes packet tagging for consistent updates [28] using the
variation of Algorithm 2 (presented in Section 6.2), which allows the controllers to repair the κ-fault-resilient flows without
the removal of the ones tagged with the previous tag.

We can see in Fig. 15 that one throughput valley occurs indeed (to around 480 - 510 Mbits/s). For comparison, Fig. 16
shows the throughput over time without recovery that includes consistent updates [28]: only the backup paths are used in
these experiments, and no new primary paths are calculated or used after the link-failure at the 10th second. The results
in Figs. 15 and 16 are very similar: there is a strong correlation between these two methods in terms of performance, see
Table 17.
116

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 18. Retransmission percentage rate for packets sent at each second.

Fig. 19. Percentage of “BAD TCP” flags during the recovery period that follows a single link failure.

In order to gain more insights, we used Wireshark [29] for investigating the number of re-transmissions (after the link-
failure) for Telstra, AT&T and EBONE network topologies. We observed an increase in the packets sent at the 11th second
(after the link-failure) are re-transmissions (Fig. 18) and “BAD TCP” flags (Fig. 19). This increase was from levels of below
1% to levels of between 10% and 15% and it quickly deescalated. We have also observed a much smaller presence of out-
of-order packets (Fig. 20). We observe that these phenomena (and the slight irregularity in the throughput) are related to
TCP congestion control protocol, which is TCP Reno [30]. Indeed, whenever congestion is suspected, Reno’s fast recovery
mechanism divides the current congestion window by half (when skipping the slow start mechanism).

7. Related work

The design of distributed SDN control planes has been studied intensively in the last few years [31–37]; both for perfor-
mance and robustness reasons. While we are not aware of any existing solution for our problem (supporting an in-band and
distributed network control), there exists interesting work on bootstrapping connectivity in an OpenFlow network [38,39]
that does not consider self-stabilization. In contrast to our paper, Sharma et al. [38] do not consider how to support multiple
controllers nor how to establish the control network. Moreover, their approach relies on switch support for traditional STP
and requires modifying DHCP on the switches. We do consider multiple controllers and establish an in-band control network
in a self-stabilizing manner. Katiyar et al. [39] suggest bootstrapping a control plane of SDN networks, supporting multiple
controller associations and also non-SDN switches. However, the authors do not consider fault-tolerance. We provide a very
strong notion of fault-tolerance, which is self-stabilization.
117

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
Fig. 20. Percentage of out-of-order packets during the recovery period that follows a single link failure.

To the best of our knowledge, our paper is the first to present a comprehensive model and rigorous approach to the
design of in-band distributed control planes providing self-stabilizing properties. As such, our approach complements much
ongoing, often more applied, related research. In particular, our control plane can be used together with and support dis-
tributed systems such as ONOS [31], ONIX [32], ElastiCon [33], Beehive [34], Kandoo [35], STN [36] to name a few. Our
paper also provides missing links for the interesting work by Akella and Krishnamurthy [40], whose switch-to-controller
and controller-to-controller communication mechanisms rely on strong primitives, such as consensus protocols, consistent
snapshot and reliable flooding, which are not currently available in OpenFlow switches. Our proposal does not utilize con-
sensus or flooding, as in [40]. In other words, the proposed solution requires less than that of [40] from the underlying
system, e.g., we do not assume synchrony. Also, unlike the proposal in [40], our proposal is self-stabilizing and includes
both algorithmic and empirical analysis.

We also note that our approach is not limited to a specific technology, but offers flexibilities and can be configured with
additional robustness mechanisms, such as warm backups, local fast failover [41], or alternatives spanning trees [42,43].

Our paper also contributes to the active discussion of which functionality can and should be implemented in OpenFlow.
DevoFlow [44] was one of the first works proposing a modification of the OpenFlow model, namely to push responsibility
for most flows to switches and adding efficient statistics collection mechanisms. SmartSouth [45] shows that in recent
OpenFlow versions, interesting network functions (such as anycast or network traversals) can readily be implemented in-
band. More closely related to our paper, [46] shows that it is possible to implement atomic read-modify-write operations on
an OpenFlow switch, which can serve as a powerful synchronization and coordination primitive also for distributed control
planes; however, such an atomic operation is not required in our system: a controller can claim a switch with a simple write
operation. In this paper, we presented a first discussion of how to implement a strong notion of fault-tolerance, namely a
self-stabilizing SDN [4,5].

We are not the first to consider self-stabilization in the presence of faults that are not just transient faults (see [4],
Chapter 6 and references therein). Thus far, these self-stabilizing algorithms consider networks in which all nodes can
compute and communicate. In the context of the studied problem, some nodes, i.e., the switches, can merely forward
packets according to rules that are decided by other nodes, i.e., the controllers. To the best of our knowledge, we are the
first to demonstrate a rigorous proof for the existence of self-stabilizing algorithms for an SDN control plane. This proof uses
a number of techniques, such as the one for assuring a bounded number of resets and illegitimate rule deletions, that were
not used in the context of self-stabilizing bootstrapping of communication (to the best of our knowledge).

Bibliographic note. We reported on preliminary insights on the design of in-band control planes in two short papers on
Medieval [46,47]. However, Medieval is not self-stabilizing, because its design depends on the presence of non-corrupted con-
figuration data, e.g., related to the controllers’ IP addresses, which goes against the idea self-stabilization. A self-organizing
version of Medieval appeared in [48]. Renaissance provides a rigorous algorithm and proof of self-stabilization; it appeared
as an extended abstract [49] and as a technical report [15].

8. Discussion

While the benefits of the separation between control and data planes have been studied intensively in the SDN literature,
the important question of how to connect these planes has received less attention. This paper presented a first model and
an algorithm, as well as a detailed analysis and proof-of-concept implementation of a self-stabilizing SDN control plane
called Renaissance.
118

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
8.1. A �(D) stabilization time variation (without memory adaptiveness)

Before concluding the paper, we would like to point out the existence of a straightforward 	(D) lower bound to the
studied task to which we match an O (D) upper bound. Indeed, consider the case of a single controller that needs to
construct at least one flow to every switch in the network. Starting from a system state in which no switch encodes any
rule and the controller is unaware of the network topology, an in-band bootstrapping of this network cannot be achieved
within less than O (D) frames, where D is the network diameter (even in the absence of any kind of failure).

We also present a variation of the proposed algorithm that provides no memory adaptiveness. In this variation, no
controller ever removes rules installed by another controller (line 17). This variation of the algorithm simply relies on
the memory management mechanism of the abstract switches (Section 2.1.1) to eventually remove stale rules (that were
either installed by failing controllers or appeared in the starting system state). Recall that, since the switches have sufficient
memory to store the rules of all controllers in P C , this mechanism never removes any rule of controller pi ∈ P C after
the first time that pi has refreshed its rules on that switch. Similarly, this variation of the algorithm does not remove
managers (line 15) nor performs C-resets (line 21). Instead, these sets are implemented as constant size queues and similar
memory management mechanisms eventually remove stale set items. We note the existence of bounds for these queues
that make sure that they have sufficient memory to store the needed non-failing managers and replies, i.e., maxManagers,
and respectively, 3 · maxRules.

Recall the conditions of Lemma 5 that assume no C-resets and illegitimate deletions to occur during the system execu-
tion. It implies that the system reaches a legitimate state within ((�comm + �synch) + 2)D + 1 frames from the beginning
of the system execution. However, the cost of memory use after stabilization can be NC /nC times higher than the proposed
algorithm. We note that Lemma 5’s bound is asymptotically the same as the recovery time from benign faults (Lemmas 7
and 8). Theorem 2 brings an upper-bound for the proposed algorithm that is (((�comm + �synch)D + 1) · N S + NC + 1)

times larger than the one of the above variance with respect to the period that it takes the system to reach a legitimate
state. However, Theorem 2 considers arbitrary transient faults, which are rare. Thus, the fact that the recovery time of the
proposed memory adaptive solution is longer is relevant only in the presence of these rare faults.

8.2. Possible extensions

We note that the proposed algorithm can serve as the basis for more even advanced solutions. In particular, while we
have deliberately focused on the more challenging in-band control scenario only, we anticipate that our approach can also
be used in networks which combine both in-band and out-of-band control, e.g., depending on the network sub-regions.
Another possible extension can consider the use of a self-stabilizing reconfigurable replicated state machine [50–52] for
coordinating the actions of the different controllers, similar to ONOS [31].

This work showed how to construct a distributed control plane by connecting every controller to any node in the net-
work. That is, the algorithm defines rules for forwarding control packets between every controller and every node. Note that,
once the proposed distributed control plane is up and running, the controllers can collectively define rules for forwarding
data packets. This, for example, can be built using self-stabilizing (Byzantine fault-tolerant) consensus and state-machine
replication [53–57].

CRediT authorship contribution statement

All authors contributed equally to the development of the proposed solution and the write up of the paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Part of this research was supported by Vienna Science and Technology Fund (WWTF) project, Fast and Quantitative
What-if Analysis for Dependable Communication Networks (WHATIF), ICT19-045, 2020-2024. We are grateful to Michael
Tran, Ivan Tannerud and Anton Lundgren for developing the prototype. We are also thankful to Emelie Ekenstedt for helping
to improve the presentation. Last but not least, we also thank the anonymous reviewers whose comments greatly helped to
improve the presentation of the paper.

References

[1] R. Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, 2nd ed., Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[2] R.J. Perlman, Fault-tolerant broadcast of routing information, Comput. Netw. 7 (1983) 395–405.
119

http://refhub.elsevier.com/S0022-0000(22)00015-0/bib7BE4523C1599DFA6D4F1CF3BF12C6A81s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib7BE4523C1599DFA6D4F1CF3BF12C6A81s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibC85FD1CB7439B9453968112334AFFCAAs1

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
[3] R.J. Perlman, An algorithm for distributed computation of a spanningtree in an extended LAN, in: SIGCOMM ’85, Proceedings of the Ninth Symposium
on Data Communications, British Columbia, Canada, September 10–12, 1985, 1985, pp. 44–53.

[4] S. Dolev, Self-Stabilization, MIT Press, 2000.
[5] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (1974) 643–644.
[6] M. Borokhovich, L. Schiff, S. Schmid, Provable data plane connectivity with local fast failover: introducing openflow graph algorithms, in: Proc. 3rd

Workshop on Hot Topics in Software Defined Networking (HotSDN), 2014, pp. 121–126.
[7] E. Anagnostou, R. El-Yaniv, V. Hadzilacos, Memory adaptive self-stabilizing protocols (extended abstract), in: WDAG, in: Lecture Notes in Computer

Science, vol. 647, Springer, 1992, pp. 203–220.
[8] I. Tannerud, A. Lundgren, M. Tran, Renaissance: a self-stabilizing distributed SDN control plane [Online]. Available via http://www.renaissance -sdn .net/.

(Accessed 20 August 2018), 2018.
[9] S. Dolev, A. Hanemann, E.M. Schiller, S. Sharma, Self-stabilizing end-to-end communication in (bounded capacity, omitting, duplicating and non-FIFO)

dynamic networks, in: Proc. International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2012, pp. 133–147.
[10] S. Dolev, S. Dubois, M. Potop-Butucaru, S. Tixeuil, Stabilizing data-link over non-FIFO channels with optimal fault-resilience, Inf. Process. Lett. 111 (18)

(2011) 912–920.
[11] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard, F.A. Mujica, M. Horowitz, Forwarding metamorphosis: fast programmable match-

action processing in hardware for SDN, in: ACM SIGCOMM 2013 Conference, SIGCOMM’13, Hong Kong, China, August 12-16, 2013, ACM, 2013,
pp. 99–110.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: programming protocol-
independent packet processors, Comput. Commun. Rev. 44 (3) (2014) 87–95.

[13] M.T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, D. Walker, SNAP: stateful network-wide abstractions for packet processing, in: Proceedings of the ACM
SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016, ACM, 2016, pp. 29–43.

[14] Open Networking Foundation, OpenFlow switch specification version 1.5.1, https://opennetworking .org /wp -content /uploads /2014 /10 /openflow-switch -
v1.5 .1.pdf.

[15] M. Canini, I. Salem, L. Schiff, E.M. Schiller, S. Schmid, Renaissance: self-stabilizing distributed SDN control plane, CoRR, arXiv:1712 .07697 [abs].
[16] P. Blanchard, S. Dolev, J. Beauquier, S. Delaët, Practically self-stabilizing paxos replicated state-machine, in: NETYS, in: Lecture Notes in Computer

Science, vol. 8593, Springer, 2014, pp. 99–121.
[17] J. Liu, B. Yang, S. Shenker, M. Schapira, Data-driven network connectivity, in: Proc. ACM HotNets, 2011, p. 8.
[18] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133–169.
[19] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35 (2) (1988) 288–323.
[20] N. Alon, H. Attiya, S. Dolev, S. Dubois, M. Potop-Butucaru, S. Tixeuil, Practically stabilizing SWMR atomic memory in message-passing systems, J.

Comput. Syst. Sci. 81 (4) (2015) 692–701.
[21] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese, A time-optimal self-stabilizing synchronizer using a phase clock, IEEE Trans. Depend-

able Secure Comput. 4 (3) (2007) 180–190.
[22] S. Dolev, E. Schiller, Communication adaptive self-stabilizing group membership service, IEEE Trans. Parallel Distrib. Syst. 14 (7) (2003) 709–720.
[23] J.L. Hintze, R.D. Nelson, Violin plots: a box plot-density trace synergism, Am. Stat. 52 (2) (1998) 181–184.
[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, A. Vahdat, B4:

Experience with a Globally-Deployed Software Defined WAN, 2013.
[25] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture, Comput. Commun. Rev. 38 (4) (2008) 63–74.
[26] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring ISP topologies with rocketfuel, IEEE/ACM Trans. Netw. 12 (1) (2004) 2–16.
[27] N. Spring, R. Mahajan, T. Anderson, Quantifying the Causes of Path Inflation, 2003.
[28] M. Reitblatt, N. Foster, J. Rexford, D. Walker, Consistent updates for software-defined networks: change you can believe in!, in: Tenth ACM Workshop

on Hot Topics in Networks (HotNets-X), HOTNETS ’11, Cambridge, MA, USA - November 14 - 15, 2011, 2011, p. 7.
[29] A. Orebaugh, G. Ramirez, J. Beale, J. Wright, Wireshark & Ethereal Network Protocol Analyzer Toolkit, Syngress Publishing, 2007.
[30] J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP reno performance: a simple model and its empirical validation, IEEE/ACM Trans. Netw. 8 (2)

(2000) 133–145.
[31] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, G.M. Parulkar, ONOS: towards an open,

distributed SDN OS, in: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, Chicago, Illinois, USA, August
22, 2014, 2014, pp. 1–6.

[32] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, S. Shenker, Onix: A Distributed Control
Platform for Large-Scale Production Networks, 2010.

[33] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards an Elastic Distributed SDN Controller, 2013.
[34] S.H. Yeganeh, Y. Ganjali, Beehive: Simple Distributed Programming in Software-Defined Networks, 2016.
[35] S. Hassas Yeganeh, Y. Ganjali, Kandoo: A Framework for Efficient and Scalable Offloading of Control Applications, 2012.
[36] M. Canini, P. Kuznetsov, D. Levin, S. Schmid, A Distributed and Robust SDN Control Plane for Transactional Network Updates, 2015.
[37] S. Schmid, J. Suomela, Exploiting Locality in Distributed sdn Control, 2013.
[38] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, In-band control, queuing, and failure recovery functionalities for OpenFlow, IEEE Netw.

30 (1) (2016).
[39] R. Katiyar, P. Pawar, A. Gupta, K. Kataoka, Auto-configuration of SDN switches in SDN/non-SDN hybrid network, in: Proceedings of the Asian Internet

Engineering Conference, AINTEC 2015, Bangkok, Thailand, November 18-20, 2015, ACM, 2015, pp. 48–53.
[40] A. Akella, A. Krishnamurthy, A highly available software defined fabric, in: HotNets, ACM, 2014, pp. 21:1–21:7.
[41] M. Reitblatt, M. Canini, A. Guha, N. Foster, FatTire: Declarative Fault Tolerance for Software-Defined Networks, 2013.
[42] M. Borokhovich, L. Schiff, S. Schmid, Provable Data Plane Connectivity with Local Fast Failover: Introducing OpenFlow Graph Algorithms, 2014.
[43] M. Parter, Dual failure resilient BFS structure, in: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015,

Donostia-San Sebastián, Spain, July 21 - 23, 2015, ACM, 2015, pp. 481–490.
[44] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Banerjee, DevoFlow: Scaling Flow Management for High-Performance Networks, 2011.
[45] L. Schiff, M. Borokhovich, S. Schmid, Reclaiming the Brain: Useful OpenFlow Functions in the Data Plane, 2014.
[46] L. Schiff, P. Kuznetsov, S. Schmid, In-band synchronization for distributed SDN control planes, Comput. Commun. Rev. 46 (1) (2016).
[47] L. Schiff, S. Schmid, M. Canini, Ground Control to Major Faults: Towards a Fault Tolerant and Adaptive Sdn Control Network, 2016.
[48] M. Canini, I. Salem, L. Schiff, E.M. Schiller, S. Schmid, A self-organizing distributed and in-band SDN control plane, in: ICDCS, IEEE Computer Society,

2017, pp. 2656–2657.
[49] M. Canini, I. Salem, L. Schiff, E.M. Schiller, S. Schmid, Renaissance: a self-stabilizing distributed SDN control plane, in: 38th IEEE International Conference

on Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, IEEE Computer Society, 2018, pp. 233–243.
[50] S. Dolev, C. Georgiou, I. Marcoullis, E.M. Schiller, Practically-self-stabilizing virtual synchrony, J. Comput. Syst. Sci. 96 (2018) 50–73.
[51] S. Dolev, C. Georgiou, I. Marcoullis, E.M. Schiller, Self-stabilizing Byzantine tolerant replicated state machine based on failure detectors, in: CSCML, in:

Lecture Notes in Computer Science, vol. 10879, Springer, 2018, pp. 84–100.
120

http://refhub.elsevier.com/S0022-0000(22)00015-0/bib73FB4DEB1E12F73AC6D2DBC7D274192Es1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib73FB4DEB1E12F73AC6D2DBC7D274192Es1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibAB8EC31BEA009867A1BB2FF2C9E6D067s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib6CD6ABB5D9B57779B2D5AD5EFDE74E7Cs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib23A7B8160BDFA83C5FC24D9F4D7BB54Fs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib23A7B8160BDFA83C5FC24D9F4D7BB54Fs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib46388505FC1EE5C531A4B795C1BA8474s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib46388505FC1EE5C531A4B795C1BA8474s1
http://www.renaissance-sdn.net/
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib605874B927F5DA82E8B0BB4A2747AD69s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib605874B927F5DA82E8B0BB4A2747AD69s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib87D92471BFF85D9E1DF3BED5CA038E72s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib87D92471BFF85D9E1DF3BED5CA038E72s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib73F16F2C4765614E2F9C4936A96F3761s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib73F16F2C4765614E2F9C4936A96F3761s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib73F16F2C4765614E2F9C4936A96F3761s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib0F5764827437CBC8FBAA6237846C4159s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib0F5764827437CBC8FBAA6237846C4159s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibF8350F90E1FB1543877B6B8EE1882854s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibF8350F90E1FB1543877B6B8EE1882854s1
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib3D227F824CD5400038A6CEC5CFAA88ADs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib83C829257F39C53262AFA250E735F220s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib83C829257F39C53262AFA250E735F220s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib147521607133A77A02DB291BA9711A4Es1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibDC45D06692712332BCA7B59D4BA43548s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib0E7073C6210BB459263C87E49AF89EFAs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib36A9DCF59EE9099B1F90E547D7E69493s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib36A9DCF59EE9099B1F90E547D7E69493s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibA1BED24590BCAEFAEAE691C13A9FE098s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibA1BED24590BCAEFAEAE691C13A9FE098s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibAA09E8E8984ECAB51419A8525EB7C8FFs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibACC954D3D8424D58CCDF50AD1C9A5E78s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib3DFE563103AB11BEC75BB5081E7A1DBEs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib3DFE563103AB11BEC75BB5081E7A1DBEs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib0F14082C2CE55B9475A1A6714CE517D7s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib08BCD6EBEA4E2534E65F92DF059658D9s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibC6796A800E0F6454ED4AE1AE78DB2455s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib1CF1B8ADC0800DA7CEB932B65967532Ds1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib1CF1B8ADC0800DA7CEB932B65967532Ds1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibC310EA336924F71B29BD60AF38C06A4As1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib76A0D67930BFBEC2BFC7655A851E3D42s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib76A0D67930BFBEC2BFC7655A851E3D42s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib648044321ACF3629BCAF0C45785ECC35s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib648044321ACF3629BCAF0C45785ECC35s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib648044321ACF3629BCAF0C45785ECC35s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibFD96A4E3EB98BA9ACAE5C3ABC3D3E4A9s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibFD96A4E3EB98BA9ACAE5C3ABC3D3E4A9s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib7943508BDAA8ED8DBC5A4D0542A173AFs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib6E1C482BBEE5BDA9A62E262FA13E8F5Fs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib08433472C5D529078ACDA32BF91F9102s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib63E08BE2ACE66375521F1413A6F98341s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibF47A840ABB14B4E1BAD52705581A8F19s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib1B46A618CAAE1A12335A60675C3EB597s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib1B46A618CAAE1A12335A60675C3EB597s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibBC1E853F66CA6B01155B7D18BE57EEDEs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibBC1E853F66CA6B01155B7D18BE57EEDEs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib86321DD636ADC47C50A27B773917BDC1s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibD265856BBF369710597812568E2D68C5s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib0077021858C449E5505518A23AB0C5F3s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibC9EEAE629FC5B94A65DB64AF5F1D6505s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibC9EEAE629FC5B94A65DB64AF5F1D6505s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5804B07EC54E17EF547C6F62C8DB3201s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibBDCA33263F6BB5E1B5911BAE49843AD2s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5201415F9D0F31E056D1B6E07ECE8944s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib7553E1C58672795DDCBF59DC072342ECs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5104765E27F1CFF192C827F2E8A718F2s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5104765E27F1CFF192C827F2E8A718F2s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib3D9041FBC0C4A4513C96FD0505EEC424s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib3D9041FBC0C4A4513C96FD0505EEC424s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibFAEEF2D06441BE04472640D099CD3956s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5161B024975E3D9CB186F754E3E6CC69s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5161B024975E3D9CB186F754E3E6CC69s1

M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
[52] S. Dolev, C. Georgiou, I. Marcoullis, E.M. Schiller, Self-stabilizing reconfiguration, in: NETYS, in: Lecture Notes in Computer Science, vol. 10299, 2017,
pp. 51–68.

[53] S. Dolev, O. Liba, E.M. Schiller, Self-stabilizing byzantine resilient topology discovery and message delivery, in: Networked Systems - First International
Conference, NETYS, in: Lecture Notes in Computer Science, vol. 7853, Springer, 2013, pp. 42–57.

[54] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing multivalued consensus in asynchronous crash-prone systems, in: 17th European Dependable
Computing Conference, EDCC, IEEE, 2021, pp. 111–118.

[55] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing indulgent zero-degrading binary consensus, in: ICDCN ’21: International Conference on Dis-
tributed Computing and Networking, ACM, 2021, pp. 106–115.

[56] R. Duvignau, M. Raynal, E.M. Schiller, Self-stabilizing byzantine-tolerant broadcast, CoRR, arXiv:2201.12880 [abs].
[57] O. Lundström, M. Raynal, E.M. Schiller, Self-stabilizing uniform reliable broadcast, in: C. Georgiou, R. Majumdar (Eds.), Networked Systems - 8th

International Conference, NETYS, in: Lecture Notes in Computer Science, vol. 12129, Springer, 2020, pp. 296–313.
121

http://refhub.elsevier.com/S0022-0000(22)00015-0/bibCBA3F3D6BB3F7125BE0AAB36592AC933s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibCBA3F3D6BB3F7125BE0AAB36592AC933s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib953F95294AC107CD6036DADB287F7594s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib953F95294AC107CD6036DADB287F7594s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5A9B84C30A6DD3991064CA0D4C66F36Bs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib5A9B84C30A6DD3991064CA0D4C66F36Bs1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib6FB7DE602A52AB46C61F19807DFAD13Ds1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib6FB7DE602A52AB46C61F19807DFAD13Ds1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bib79D73B130743E474A517257798F4E44Ds1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibD2D05FD3B1649A658CDD29ABAAED0265s1
http://refhub.elsevier.com/S0022-0000(22)00015-0/bibD2D05FD3B1649A658CDD29ABAAED0265s1

	Renaissance: A self-stabilizing distributed SDN control plane using in-band communications
	1 Introduction
	2 The system in a nutshell
	2.1 Switches and rules
	2.1.1 The abstract switch

	2.2 Building blocks
	2.2.1 Topology discovery
	2.2.2 Fault-resilient flows

	3 Models
	3.1 The communication channel model
	3.2 The execution model
	3.3 The network model
	3.3.1 Communication fairness
	3.3.2 Message round-trips and iterations of self-stabilizing algorithms

	3.4 The fault model
	3.4.1 Failures that are not rare
	3.4.2 Failures that may occur rarely
	3.4.3 Benign vs. transient faults

	3.5 Self-stabilization
	3.5.1 Execution fairness
	3.5.2 Asynchronous frames
	3.5.3 Complexity measures

	4 Renaissance: a self-stabilizing SDN control plane
	4.1 High-level description of the proposed algorithm
	4.1.1 Establishing communication between any controller and any other node
	4.1.2 Discovering the network topology and dealing with unreachable nodes

	4.2 Refining the model: variables, building blocks, and interfaces
	4.3 Algorithm details

	5 Correctness proof
	5.1 Overview
	5.2 Analysis of memory and message size requirements
	5.3 Bounding the number of illegitimate deletions
	5.4 Recovery from transient faults
	5.5 Returning to a legitimate state after topology changes

	6 Evaluation
	6.1 Limitations and expectations
	6.2 Implementation
	6.3 Setup
	6.4 Results
	6.4.1 How efficiently Renaissance bootstraps an SDN?
	6.4.2 How efficiently Renaissance recovers from link and node failures?
	6.4.3 Performance during failure recovery

	7 Related work
	8 Discussion
	8.1 A Θ(D) stabilization time variation (without memory adaptiveness)
	8.2 Possible extensions

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

