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By introducing programmability, automated verification, and innovative debugging tools, 
Software-Defined Networks (SDNs) are poised to meet the increasingly stringent dependa-
bility requirements of today’s communication networks. However, the design of fault-
tolerant SDNs remains an open challenge. This paper considers the design of dependable 
SDNs through the lenses of self-stabilization—a very strong notion of fault-tolerance. In 
particular, we develop algorithms for an in-band and distributed control plane for SDNs, 
called Renaissance, which tolerate a wide range of failures. Our self-stabilizing algorithms 
ensure that after the occurrence of arbitrary failures, (i) every non-faulty SDN controller 
can reach any switch (or another controller) within a bounded communication delay (in 
the presence of a bounded number of failures) and (ii) every switch is managed by a 
controller. We evaluate Renaissance through a rigorous worst-case analysis as well as a 
prototype implementation (based on OVS and Floodlight, and Mininet).

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Context and motivation. Software-Defined Network (SDN) technologies have emerged as a promising alternative to the 
vendor-specific, complex, and hence error-prone, operation of traditional communication networks. In particular, by out-
sourcing and consolidating the control over the data plane elements to a logically centralized software, SDNs support a 
programmatic verification and enable new debugging tools. Furthermore, the decoupling of the control plane from the data 
plane, allows the former to evolve independently of the constraints of the latter, enabling faster innovations.

However, while the literature articulates well the benefits of the separation between control and data plane and the 
need for distributing the control plane (e.g., for performance and fault-tolerance), the question of how connectivity between 
these two planes is maintained (i.e., the communication channels from controllers to switches and between controllers) has 
not received much attention. Providing such connectivity is critical for ensuring the availability and robustness of SDNs.

Guaranteeing that each switch is managed, at any time, by at least one controller is challenging especially if control is 
in-band, i.e., if control and data traffic is forwarded along the same links and devices and hence arrives at the same ports. 
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In-band control is desirable as it avoids the need to build, operate, and ensure the reliability of a separate out-of-band 
management network. Moreover, in-band management can in principle improve the resiliency of a network, by leveraging 
a higher path diversity (beyond connectivity to the management port).

The goal of this paper is the design of a highly fault-tolerant distributed and in-band control plane for SDNs. In particular, 
we aim to develop a self-stabilizing software-defined network: An SDN that recovers from controller, switch, and link 
failures, as well as a wide range of communication failures (such as packet omissions, duplications, or reorderings). As such, 
our work is inspired by Radia Perlman’s pioneering work [1]: Perlman’s work envisioned a self-stabilizing Internet and 
enabled today’s link state routing protocols to be robust, scalable, and easy to manage. Perlman also showed how to modify 
the ARPANET routing broadcast scheme, so that it becomes self-stabilizing [2], and provided a self-stabilizing spanning tree 
algorithm for interconnecting bridges [3]. Yet, while the Internet core is “conceptually self-stabilizing”, Perlman’s vision 
remains an open challenge, especially when it comes to recent developments in computer networks, such as SDNs, for 
which we propose self-stabilizing algorithms.

Fault model. We consider (i) fail-stop failures of controllers, which failure detectors can observe, (ii) link failures, and (iii) 
communication failures, such as packet omission, duplication, and reordering. In particular, our fault model includes up to 
κ link failures, for some parameter κ ∈Z+ . In addition, to the failures captured in our model, we also aim to recover from 
transient faults, i.e., any temporary violation of assumptions according to which the system and network were designed to 
behave, e.g., the corruption of the packet forwarding rules changes to the availability of links, switches, and controllers. 
We assume that (an arbitrary combination of) these transient faults can corrupt the system state in unpredictable manners. 
In particular, when modeling the system, we assume that these violations bring the system to an arbitrary state (while 
keeping the program code intact). Starting from an arbitrary state, the correctness proof of self-stabilizing systems [4,5] has 
to demonstrate the return to correct behavior within a bounded period, which brings the system to a legitimate state.

The problem. This paper answers the following question: How can all non-faulty controllers maintain bounded (in-band) 
communication delays to any switch as well as to any other controller? We interpret the requirements for provable (in-band) 
bounded communication delays to imply (i) the absence of out-of-band communications or any kind of external support, and 
yet (ii) the possibility of fail-stop failures of controllers and link failures, as well as (iii) the need for guaranteed bounded 
recovery time after the occurrence of arbitrary transient faults. These faults are transient violations of the assumptions 
according to which the system was designed to behave.

Current implementations assume that outdated rules can expire via timeouts. Using such timeouts, one must guarantee 
that the network becomes connected eventually (even when starting from arbitrary timeout values and corrupted packet 
forwarding rules). This non-trivial challenge motivates our use of the asynchronous model when solving the studied problem 
via a mechanism for in-band network bootstrapping that connects every controller to every other node in the network.

Since we aim at recovering after the last occurrence of an arbitrary transient fault, the construction of a self-stabilizing 
bootstrapping mechanism makes the task even more challenging. Our solution combines a novel algorithm for in-band 
bootstrapping with well-known approaches for rapid recovery from link-failures, such as conditional forwarding rules [6]. 
Our analysis uses new proof techniques for showing that the system as a whole can recover rapidly from link and node 
failures as well as after the occurrence of the last arbitrary transient fault.

Our contributions. We present an important module for dependable networked systems: a self-stabilizing software-defined 
network. In particular, we provide a (distributed) self-stabilizing algorithm for distributed SDN control planes that, relying 
solely on in-band communications, recover (from a wide spectrum of controller, link, and communication failures as well 
as transient faults) by re-establishing connectivity in a robust manner. Concretely, we present a system, henceforth called 
Renaissance,1 which, to the best of our knowledge, is the first to provide:

1. A robust efficient and distributed control plane: We maintain short, O (D)-length control plane paths in the presence of 
controller and link (at most κ many) failures, as well as, communication failures, where D ≤ N is the (largest) net-
work diameter (when considering any possible network topology changes over time) and N is the number of nodes in 
the network. More specifically, suppose that throughout the recovery period the network topology was (κ + 1)-edge-
connected and included at least one (non-failed) controller. We prove that starting from a legitimate state, i.e., after 
recovery, our self-stabilizing solution can:
• Deal with fail-stop failures of controllers: These failures require the removal of stale information (that is related to 

unreachable controllers) from the switch configurations. Cleaning up stale information avoids inconsistencies and 
having to store large amounts of history data.

• Deal with link failures: Starting from a legitimate system state, the controllers maintain an O (D)-length path to all 
nodes (including switches and other controllers), as long as at most κ links fail. That is, after the recovery period the 
communication delays are bounded.

2. Recovery from transient faults: We show that our control plane can even recover after the occurrence of transient faults. 
That is, starting from an arbitrary state, the system recovers within time O (D2 N) to a legitimate state. In a legitimate 

1 The word renaissance means ‘rebirth’ (French) and it symbolizes the ability of the proposed system to recover after the occurrence of transient faults 
that corrupt its state.
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Fig. 1. The system architecture, which is based on self-stabilizing versions of existing network layers. The external building blocks for rule generation and 
local topology discovery appear in the dotted boxes. The proposed contribution of self-stabilizing SDN controller and self-stabilizing abstract switch appear 
in bold.

state, the number of packet forwarding rules per switch is at most |P C | times the optimal, where |P C | is the number 
of controllers. The proposed algorithm is memory adaptive [7], i.e., after the recovery from transient faults, each node’s 
use of local memory depends on the actual number, nC , of controllers in the system, rather than the upper bound, NC , 
on the number of controllers in the system.

3. The proposed algorithm is memory adaptive. That is, after its recovery from transient faults, each node’s use of local 
memory depends on the actual number of controllers in the system, nC , rather than the upper bound on the number 
of controllers in the system, NC . We present a non-memory adaptive variation on the proposed algorithm that recovers 
within a period of �(D) after the occurrence of transient faults. This is indeed faster than the O (D2 N) recovery time 
of the proposed algorithm. However, the cost of memory use after stabilization can be NC /nC times higher than the 
proposed algorithm. Moreover, the fact that the recovery time of the proposed memory adaptive solution is longer is 
relevant only in the presence of rare faults that can corrupt the system state arbitrarily, because for the case of benign 
failures, we demonstrate recovery within �(D).

While we are not the first to consider the design of self-stabilizing systems which maintain redundant paths also beyond 
transient faults, the challenge and novelty of our approach comes from the specific restrictions imposed by SDNs (and in 
particular the switches). In this setting not all nodes can compute and communicate, and in particular, SDN switches can 
merely forward packets according to the rules that are decided by other nodes, the controllers. This not only changes the 
model, but also requires different proof techniques, e.g., regarding the number of resets and illegitimate rule deletions.

In order to validate and evaluate our model and algorithms, we implemented a prototype of Renaissance in Floodlight 
using Open vSwitch (OVS), complementing our worst-case analysis. Our experiments in Mininet demonstrate the feasibility 
of our approach, indicating that in-band control can be bootstrapped and maintained efficiently and automatically, also in 
the presence of failures. To ensure reproducibility and to facilitate research on improved and alternative algorithms, we have 
released the source code and evaluation data to the community at [8].

We also discuss relevant extensions to the proposed solution (Section 8.2), such as a combining both in-band and out-
of-band communications, as well as coordinating the actions of the different controllers using a reconfigurable replicated 
state machine.

Organization. We give an overview of our system and the components it interfaces in Section 2 and introduce our formal 
model in Section 3. Our algorithm is presented in Section 4, analyzed in Section 5, and validated in Section 6. We then 
discuss related work (Section 7) before drawing the conclusions from our study (Section 8).

2. The system in a nutshell

Our self-stabilizing SDN control plane can be seen as one critical piece of a larger architecture for providing fault-tolerant 
communications. Indeed, a self-stabilizing SDN control plane can be used together with existing self-stabilizing protocols on 
other layers of the OSI stack, e.g., self-stabilizing link layer and self-stabilizing transmission control protocols [9,10], which 
provide logical FIFO communication channels. To put things into perspective, we provide a short overview of the overall net-
work architecture we envision. Our proposal includes new self-stabilizing components that leverage existing self-stabilizing 
protocols towards an overall network architecture that is more robust than existing SDNs. We consider an architecture 
(Fig. 1) that comprises mechanisms for local topology discovery and a logic for packet forwarding rule generation. We 
contribute to this architecture a self-stabilizing abstract switch as well as a self-stabilizing SDN control platform.

The network includes a set P C = {p1, . . . , pnC } of nC (remote) controllers, and a set P S = {pnC +1, . . . , pnC +nS } of the nS

(packet forwarding) switches, where i is the unique identifier of node pi ∈ P = P C ∪ P S . We denote by Nc(i) ⊆ P (communi-
cation neighborhood) the set of nodes which are directly connecting node pi ∈ P and node p j , i.e., p j ∈ Nc(i). At any given 
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Fig. 2. Abstract SDN switch illustration.

time, and for any given node pi ∈ P , the set No(i) (operational neighborhood) refers to pi ’s directly connected nodes for 
which ports are currently available for packet forwarding. The local topology information in No(i) is liable to change rapidly 
and without notice. We denote the operational and connected communication topology as Go = (P , Eo), and respectively, as 
Gc = (P , Ec), where Ex = {(pi, p j) ∈ P × P : p j ∈ Nx(i)} for x ∈ {o, c}.

Each switch pi ∈ P S stores a set of rules that the controllers install in order to define which packets have to be for-
warded to which ports. In the out-of-band control scenario, a controller communicates the forwarding rules via a dedicated 
management port to the control module of the switch. In contrast, in an in-band setting, the control traffic is interleaved 
with the data plane traffic, which is the traffic between hosts (as opposed to controller-to-controller and controller-to-switch 
traffic): switches can be connected to hosts through data ports and may have additional rules installed in order to correctly 
forward their traffic. We do not assume anything about the hosts’ network service, except for that their traffic may traverse 
any network link.

In an in-band setting, control and data plane traffic arrive through the same ports at the switch, which implies a need for 
being able to demultiplex control and data plane traffic: switches need to know whether to forward (data) traffic out of an-
other port or (control) traffic to the control module. In other words, control plane packets need to be logically distinguished 
from data plane traffic by some tag (or another deterministic discriminator).

Fig. 2 illustrates the switch model considered in this paper. Our self-stabilizing control plane considers a proposal for 
abstract switches that do not require the extensive functionality that existing SDN switches provide. An abstract switch can 
be managed either via the management port or in-band. It stores forwarding (match-action) rules. These rules are used 
to forward data plane packets to ports leading to neighboring switches, or to forward control packets to the local control 
module (e.g., instructing the control module to change existing rules). Rules can also drop all the matched packets. The 
match part of a rule can either be an exact match or optionally include wildcards.

Maintaining the forwarding rules with in-band control is the key challenge addressed in this paper: for example, these 
rules must ensure (in a self-stabilizing manner) that control and data packets are demultiplexed correctly (e.g., using tag-
ging). Moreover, it must be ensured that we do not end up with a set of misconfigured forwarding rules that drop all
arriving (data plane and control plane) packets: in this case, a controller will never be able to manage the switch anymore 
in the future.

In the following, we will assume a local topology discovery mechanism that each node uses to report to the controllers 
the availability of their direct neighbors. Also, we assume access to self-stabilizing protocols for the link layer (and the 
transport layer) [9,10] that provide reliable, bidirectional FIFO-communication channels over unreliable media that is prone 
to packet omission, reordering, and duplication.

2.1. Switches and rules

Each switch pi ∈ P S stores a set of forwarding rules which are installed by the controllers (servers) and define which 
packets have to be forwarded to which ports. In an out-of-band network, a controller communicates the forwarding rules 
via a dedicated management port to the control module of the switch. In contrast, in an in-band setting, the control traffic 
is interleaved with the dataplane traffic, and is communicated (possibly along multiple hops, in case of a remote controller) 
to a regular switch port. This implies that in-band control requires the switch to demultiplex control and data plane traffic. 
In other words, the dataplane of a switch cannot only be used to connect the switch ports internally, but also to connect to 
the control module.

In this paper, we make the natural assumption that switches have a bounded amount of memory. Moreover, we assume 
that rules come in the form of match-action pairs, where the match can optionally include wildcards and the action part 
mainly defines a forwarding operation (cf. Fig. 2).
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More formally, suppose that pi ∈ P S is a switch that receives a packet with psrc ∈ P C and pdest ∈ P , as the packet 
source and destination, respectively. We refer to a rule (for packet forwarding at the switch) by a tuple 〈k, i, src, dest, prt , 
j, metadata〉. The fields of a rule refer to pk as the controller that created this rule, prt ∈ {0, . . . , nprt} : nprt ≥ κ + 1 is a 
priority that pk assigns to this rule, p j ∈ Nc(i) is a port on which the packet can be sent whenever p j ∈ No(i), and metadata
is an (optional) opaque data value. Our self-stabilizing abstract switch considers only rules that are installed on the switches 
indefinitely, i.e., until a controller explicitly requests to delete them, rather than setting up rules with expiration timeouts.

We say that the rule r = 〈k, i, src, dest , prt , j, metadata〉 is applicable for a packet that reaches switch pi and has source 
psrc and destination pdest , when r is the rule with the highest prt (priority) that matches the packet’s source and destination 
fields, and p j ∈ No(i), i.e., the link (pi, p j) is operational. We say that the set of rules of switch pi , rules(i), is unambiguous, 
if for every received packet there is at most one applicable rule. Thus, a packet can be forwarded if there exists only one 
applicable rule in the switch’s memory. We assume an interface function myRules() which outputs the unambiguous rules 
that a controller pk ∈ P C needs to install to a switch p j ∈ P S , based on pk ’s knowledge of the network’s topology. We 
require rules to be unambiguous and offer resilience against at most κ link failures (details appear in Section 2.2.2).

2.1.1. The abstract switch
The main task of switches is to forward traffic according to the rules installed by the controllers. In addition, switches 

provide basic functionalities for interacting with the controllers.
While OpenFlow, the de facto standard specification for the switch interface, as well as other suggestions (Forwarding 

Metamorphosis [11], P4 [12], and SNAP [13]) provide innovative abstractions with respect to data plane functionality and 
means to implement efficient network services, there is less work regarding the control plane abstraction, especially with 
respect to fault tolerance.

We consider a slightly simpler switch model that does not include all the functionality one may find in an existing 
SDN switch. In particular, the proposed abstract SDN switch only supports the equal roles approach (where multiple “equal” 
controllers manage the switch); the master-slave setup usually used by switches [14] is not relevant toward the design of 
our self-stabilizing distributed SDN control plane. We elaborate more on the interface in the following.

Configuration queries (via a direct neighbor)
As long as the system rules and operational links support (bidirectional) packet forwarding between controller pi and 

switch p j , the abstract switch allows pi to access p j ’s configuration remotely, i.e., via the interface functions manager( j)
(query and update), rules( j) (query and update) as well as Nc( j) (query-only), where manager( j) ⊆ P C is p j ’s set of assigned 
managers and rules( j) is p j ’s rule set. Also, a switch p j , upon arrival of a query of a controller pi , responds to pi with the 
tuple 〈 j, Nc( j), manager( j), rules( j)〉.

The abstract switch also allows controller pi to query node p j via p j ’s direct neighbor, pk as long as pi knows pk ’s local 
topology. In case p j is a switch, pi can also modify p j ’s configuration (via p j ’s abstract switch) to include a flow to pi (via 
pk) and then to add itself as a manager of p j . (The term flow refers here to rules installs on a path in the network in a way 
that allows packet exchange between the path ends.) We refer to this as the query (and modify)-by-neighbor functionality.

The switch memory management
We assume that the number of rules and controllers (that manage switches) that each switch can store is bounded by 

maxRules and maxManagers, respectively. We require that the abstract switch has a way to deal with clogged memory, i.e., 
when the flow table is full, cf. [14], Section B.17.7. Specifically, the abstract switch needs to implement an eviction policy 
that gives the lowest priority to rules that were least recently updated. Similarly, we assume that whenever the number 
of managers that a switch stores exceeds maxManagers, the last to be stored (or accessed) manager is removed so that a 
new manager can be added. We note that these requirements can be implemented using well-known techniques, for details 
see [15], Section 2.1.1.

2.2. Building blocks

Our architecture relies on a fault-tolerant mechanism for topology discovery. We use such a mechanism as an external 
building block. Moreover, we require a notion of resilient flows. We next discuss both these aspects.

2.2.1. Topology discovery
We assume a mechanism for local neighborhood discovery. We consider a system that uses an (ever running) failure 

detection mechanism, such as the self-stabilizing � failure detector [16, Section 6]: it discovers the switch neighborhood by 
identifying the failed/non-failed status of its attached links and neighbors. We assume that this mechanism reports the set 
of nodes which are directly connecting node pi ∈ P and node p j , i.e., p j ∈ Nc(i).

2.2.2. Fault-resilient flows
We consider fault-resilient flows that are reminiscent of the flows in [17]. The definition of κ-fault-resilient flows con-

siders the network topology Gc and assumes that Gc is not subject to changes. The idea is that the network can forward 
the data packets along the shortest routes, and use alternative routes in the presence of link failures, based on conditional 
95



M. Canini, I. Salem, L. Schiff et al. Journal of Computer and System Sciences 127 (2022) 91–121
forwarding rules [6]; these failover rules provide a backup for every edge and an enhancement of this redundancy for the 
case in which at most κ links fail, as we describe next.

Let (pr1 , . . . , prn ) ∈ Pn be a directed path in the communication network Gc , where n ∈ {2, . . . , |P |}. Given an operational 
network Go , we say that (pr1 , . . . , prn ) is a flow (over a simple path) in Go , when the rules stored in pr1 , . . . , prn relay 
packets from source pr1 to destination prn using the switches in the sequence pr2 , . . . , prn−1 for packet forwarding (relay 
nodes). Let Go(k) be an operational network that is obtained from Gc by an arbitrary removal of k links. We say there is a 
κ-fault-resilient flow from pi to p j in Gc when for any k ≤ κ there is a flow (over a simple path) from pi to p j in any Go(k). 
We note that when considering a communication graph, Gc , with a general topology, the construction of κ-fault-resilient 
flows is possible when κ < λ(Gc), where λ(Gc) is the edge-connectivity of Gc (i.e., the minimum number of edges whose 
removal can disconnect Gc ).

3. Models

This section presents a formal model of the studied system (Fig. 1), which serves as the framework for our correctness 
analysis of the proposed self-stabilizing algorithms (Section 5).

We model the control plane as a message passing system that has no notion of clocks (nor explicit timeout mechanisms), 
however, it has access to link failure detectors (in a way that is similar to the Paxos model [16,18]). We borrow from [16, 
Section 6] a technique for local link monitoring (Section 2.2.1), which assumes that every abstract switch can complete 
at least one round-trip communication with any of its direct neighbors while it completes at most � round-trips with 
any other directly connected neighbor. In other words, in our analytical model, but not in our emulation-base evaluation, 
we assume that nodes have a mechanism to locally detect temporary link failures (e.g., a link may also be unavailable 
due to congestion); a link which is unavailable for a longer time period will be flagged as permanent failure by a failure 
detector, which we borrow from [16, Section 6]. Apart from this monitoring of link status, we consider the control plane 
as an asynchronous system. Note that once the system installs a κ-fault-resilient flow between controller pi ∈ Pc and node 
p j ∈ P \ {pi}, the network provides a communication channel between pi and p j that has a bounded delay (because we 
assume that there are never more than κ link failures). Moreover, these bounded delays are offered by the data plane while 
the control plane is still asynchronous as described above (since, for example, we assume no bound on the time it takes a 
controller to perform a local computation).

Self-stabilizing algorithms usually consist of a do forever loop that contains communication operations and validations 
that the system is in a consistent state as part of the transition decision. An iteration (of the do forever loop) is said to 
be complete if it starts in the loop’s first line and ends at the last (regardless of whether it enters branches). As long as 
every non-failed node eventually completes its do forever loop, the proposed algorithm is oblivious to the rate in which this 
completion occurs. Moreover, the exact time considerations can be added later for the sake of fine-tuning performances.

3.1. The communication channel model

We are given reliable end-to-end FIFO channels over capacitated links, as implemented, e.g., by [9,10], which guarantee 
reliable message transfer regardless of packet omission, duplication, and reordering. After the recovery period of the channel 
algorithm [9,10], it holds that, at any time, there is exactly one token pkt ∈ {act, ack} in the channel that is either in transit 
from the sender pi ∈ P to the receiver p j ∈ P , i.e., channeli, j = {act} ∧ channel j,i = ∅, or the token pkt is in transit from p j

to pi , i.e., channeli, j = ∅ ∧ channel j,i = {ack}. During the recovery period (after the last occurrence of a transient fault), it can 
be the case that the sender sends a message m0 for which it receives a (false) acknowledgment ack0 without having m0 go 
through a complete round-trip. However, that can occur at most �comm times, where �comm ≤ 3 for the case of [9,10]. That 
is, once the sender sends message m1 and receives its acknowledgment ack1, the channel algorithm [9,10] guarantees that 
m1 has completed a round-trip.

When node pi sends a packet, pkt ∈ {act, ack}, to node p j , the operation send inserts a copy of pkt to the FIFO queue 
that represents the above communication channel from pi to p j , while respecting the above token circulation constraint. 
When p j receives pkt from pi , node p j delivers pkt from the channel’s queue and transfers pkt ’s acknowledgment to the 
channel from p j to pi immediately after.

3.2. The execution model

For our analysis, we consider the standard interleaving model [4], in which there is a single (atomic) step at any given 
time. An input event can be either a packet reception or a periodic timer triggering pi to resend while executing the do 
forever loop. In our settings, the timer rate is completely unknown and the only assumption that we make is that every 
non-failing node executes its do forever loop infinitely often.

We model a node (switch or controller) using a state machine that executes its program by taking a sequence of (atomic) 
steps, where a step of a controller starts with local computations and ends with a single communication operation: either 
send or receive of a packet. A step of the (control module of an) abstract switch starts with a single message reception, 
continues with internal processing and ends with a single message send.
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The state of node pi , denoted by si , consists of the values of all the variables of the node including its communication 
channels. The term (system) state is used for a tuple of the form (s1, s2, · · · , sn, Go), where each si is the state of node pi
(including messages in transit to pi ) and Go is the operational network that is determined by the environment. We define 
an execution (or run) R = c0,a0, c1,a1, . . . as an alternating sequence of system states cx and steps ax , such that each state 
cx+1, except the initial system state c0, is obtained from the preceding state cx by applying step ax .

For the sake of simple presentation of the correctness proof, we assume that the abstract switch deals with one controller 
at a time, e.g., when requesting a configuration update or a query. Moreover, we assume that within a single atomic step, 
the abstract switch can receive the controller request, perform the update, and send a reply to the controller.

3.3. The network model

We consider a system in which maxRules is large enough to store all the rules that all controllers need to install to any 
given switch, and that maxManagers ≥ NC . We assume that |P C | = nC and |P S | = nS are known only by their upper bounds, 
i.e., NC ≥ |P C |, and respectively, N S ≥ |P S |. We use these bounds only for estimating the memory requirements per node, in 
terms of maxRules and maxManagers, i.e., the maximum number of rules, and respectively, managers at any switch.

Suppose that a κ-fault-resilient flow from pi to p j is installed in the network. The term primary path refers to the path 
along which the network forwards packets from pi to p j in the absence of failures. We assume that myRules() returns rules 
that encode κ-fault-resilient flows for a given network topology. The primary paths encoded by myRules() are also the 
shortest paths in Gc (with the highest rule priority). A rule in myRules() corresponding to k link failures (k-fault-resilient 
flow) has the (k + 1)-highest rule priority.

3.3.1. Communication fairness
Due to the presence of faults in the system, we do not consider any bound on the communication delay, which could be, 

for example, the result of the absence of properly installed flows between the sender and the receiver. Nevertheless, when a 
flow is properly installed, the channel is not disconnected and thus we assume that sending a packet infinitely often implies 
its reception infinitely often. We refer to the latter assumption as the communication fairness property. We make the same 
assumptions both for the link and transport layers.

3.3.2. Message round-trips and iterations of self-stabilizing algorithms
This work proposes a solution for bootstrapping in-band communication in SDNs. The correctness proof depends on the 

nodes’ ability to exchange messages during this bootstrapping. The proof uses the notion of a message round-trip, which 
includes sending a message to a node and receiving a reply from that node. Note that this process spans over many system 
states.

We give a detailed definition of round-trips as follows. Let pi ∈ P C be a controller and p j ∈ P \ {pi} be a network node. 
Suppose that immediately after state c node pi sends a message m to p j , for which pi awaits a response. At state c′ , that 
follows state c, node p j receives message m and sends a response message rm to pi . Then, at state c′′ , that follows state c′ , 
node pi receives p j ’s response, rm . In this case, we say that pi has completed with p j a round-trip of message m.

We define an iteration of a self-stabilizing algorithm in our model. Let Pi be the set of nodes with whom pi completes 
a message round trip infinitely often in execution R . Suppose that immediately after the state cbegin , controller pi takes a 
step that includes the execution of the first line of the do forever loop, and immediately after system state cend , it holds 
that: (i) pi has completed the iteration it has started immediately after cbegin (regardless of whether it enters branches) and 
(ii) every message m that pi has sent to any node p j ∈ Pi during the iteration (that has started immediately after cbegin) 
has completed its round trip. In this case, we say that pi ’s iteration (with round-trips) starts at cbegin and ends at cend .

3.4. The fault model

We characterize faults by their duration, that is, they are either transient or permanent. We consider the occurrence 
frequency of transient faults to be either rare or not rare. We illustrate our fault model in Fig. 3.

3.4.1. Failures that are not rare
Transient packet failures, such as omissions, duplications, and reordering, may occur often. Recall that we assume com-

munication fairness and the use of a self-stabilizing link layer (and transport layer) [9,10]. This protocol assures that the 
system’s unreliable media, which are prone to packet omission, reordering, and duplication, can be used for providing re-
liable, bidirectional FIFO-communication channels without omissions, duplications or reordering. Note that the assumption 
that the communication is fair may still imply that there are periods in which a link is temporarily unavailable. We assume 
that at any time there are no more than such κ link failures.

3.4.2. Failures that may occur rarely
We model rare faults to occur only before the system starts running. That is, during the system run, Gc does not change 

and it is (κ + 1)-edge connected.
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Fig. 3. The table above details our fault model and the chart illustrates when each fault set is relevant. The chart’s gray boxes represent the system 
execution, and the white boxes specify the failures considered to be possible at different execution parts and recovery guarantees of the proposed self-
stabilizing algorithm. The set of benign faults includes both transient link failures as well as permanent link and node failures.

A permanent link failure or addition results in the removal, and respectively, the inclusion of that link from the network. 
The fail-stop failure of node p j is a transient fault that results in the removal of (pi, p j) from the network and p j from 
Nc(i), for every pi ∈ Nc( j). Naturally, node addition is combined with a number of new link additions that include the new 
node.

Other than the above faults, we also consider any violation of the assumptions according to which the system is assumed 
to operate (as long as the code stays intact). We refer to them as (rare) transient faults. They can model, for example, the 
event in which more than κ links fail concurrently. A transient fault can also corrupt the state of the nodes or the messages 
in the communication channels.

3.4.3. Benign vs. transient faults
We define the set of benign faults to include any fault that is not both rare and transient. The correctness proof of the 

proposed algorithm demonstrates the system’s ability to recover after the occurrence of either benign or transient faults, 
which are not necessarily rare. Our experiments, however, consider all benign faults and no rare transient faults due to the 
computation limitations that exist when considering all possible ways to corrupt the system state (Section 6.1).

3.5. Self-stabilization

We define the system’s task by a set of executions called legal executions (LE) in which the task’s requirements hold. That 
is, each controller pi constructs a κ-fault-resilient flow to every node p j ∈ P (either a switch or a controller). We say that a 
system state c is legitimate, when every execution R that starts from c is in LE . A system is self-stabilizing [4] with relation 
to task LE , when every (unbounded) system execution reaches a legitimate state with relation to LE (cf. Fig. 3). The criteria 
of self-stabilization in the presence of faults [4, Section 6.4] requires the system to recover within a bounded period after 
the occurrence of a single benign failure during legal executions (in addition to the design criteria of self-stabilization that 
require recovery within a bounded time after the occurrence of the last transient fault). We demonstrate self-stabilization 
in Section 5.4 and self-stabilization in the presence of faults in Section 5.5.

Self-stabilizing systems require the use of bounded memory, because real-world systems have only access to bounded 
memory. Moreover, the number of messages sent during an execution does not have an immediate relevance in the context 
of self-stabilization. The reason is that self-stabilizing algorithms can never terminate and stop sending messages, because 
if they did it would not be possible for the system to recover from transient faults (cf. [4, Chapter 2.3]). That is, suppose 
that the algorithm includes a predicate, such that when the predicate is true the algorithm forever stops sending messages. 
Then, a single transient fault can cause this predicate to be true in the starting state of an execution, from which the system 
can never recover. The latter holds, because the algorithm will never send any message and yet in the starting system state 
any variable that is not considered by the predicate can be corrupted.

3.5.1. Execution fairness
We say that a system execution is fair when every step that is applicable infinitely often is executed infinitely often and 

fair communication is kept (both at the link and the transport layer). Note that only failing nodes ever stop taking steps 
and thus a violation of the fairness (communication or execution) assumptions implies the presence of transient faults, 
which we assume to happen only before the starting system state of any execution. We clarify that fair execution and 
communication are weaker assumptions than partial synchrony [19] because they imply unknown upper bounds on relative 
processor speeds and message delay.
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Algorithm 1: Self-stabilizing SDN, high-level code description for controller pi . Algorithm 2 is a detailed version of this algorithm.

1 Local state: replyD B ⊆ {m( j) : p j ∈ P } has the most recently received query replies;
2 currT ag and prevT ag are pi ’s current and previous synchronization round, respectively;
3 Interface: myRules(G, j, tag): returns the rules of pi on switch p j given a topology G on round tag;

4 do forever begin
5 Remove from replyD B any reply from unreachable (in terms of graph connectivity) senders or not from round prevT ag or currT ag . Also, 

remove from replyD B any response from pi and then add a record that includes the directly connected neighbors, Nc(i);
6 if replyD B includes a reply (with tag currT ag) from every node that is reachable (in terms of graph connectivity) according to the accumulated local 

topology, G, in replyD B then
7 Store currT ag ’s value in prevT ag and get a new and unique tag for currT ag . By that, pi starts a new synchronization round;

8 foreach switch p j ∈ P S and p j ’s most recently received reply do
9 if this is the start of a new synchronization round then

10 Remove from p j ’s configuration any manager pk or rule of pk that was not discovered to be reachable during round prevT ag;

11 Add pi in p j ’s managers (if it is not already included) and replace pi ’s rules in p j with myRules(G, j, currT ag);

12 foreach p j ∈ P that is reachable from pi according to the most recently received replies in replyD B do send to p j (with tag currT ag) an update 
message (if p j ∈ P S is a switch) and query p j ’s configuration;

13 upon query reply m from p j begin
14 if there is no space in replyD B for storing m then perform a C-reset by including in replyD B only the direct neighborhood, Nc(i);
15 if m’s tag equals to currT ag then include m in replyD B after removing the previous response from p j ;

16 upon arrival of a query (with a syncT ag) from p j begin
17 send to p j a response that includes the local topology, Nc(i), and syncT ag

3.5.2. Asynchronous frames
The first (asynchronous) frame in a fair execution R is the shortest prefix R ′ of R = R ′ ◦ R ′′ , such that each controller starts 

and ends at least one complete iteration (with round-trips) during R ′ (see Section 3.3.2), where ◦ denotes an operation that 
concatenates two executions. The second frame in execution R is the first frame in execution R ′′ , and so on.

3.5.3. Complexity measures
The stabilization time (or recovery period from transient faults) of a self-stabilizing system is the number of asynchronous 

frames it takes a fair execution to reach a legitimate system state when starting from an arbitrary one. The recovery period 
from benign faults is also measured by the number of asynchronous frames it takes the system return to a legal execution 
after the occurrence of a single benign failure.

We also consider the design criterion of memory adaptiveness by Anagnostou et al. [7]. This criterion requires that, after 
the recovery period, the use of memory by each node is a function of the actual network dimensions. In our system, a 
memory adaptive algorithm has space requirements that depend on nC , which is the actual number controllers rather than 
their upper bound, NC . Moreover, when considering non-adaptive solutions, one can achieve a shorter recovery period from 
transient faults (Section 8).

For the sake a simple presentation, our theoretical analysis assumes that all local computations are done within a neg-
ligible time that is independent of, for example, the number of messages sent and received during each frame. We do 
however consider all network dimensions that are related to the recovery costs (including the number of messages sent and 
received during each frame) during the evaluation of the proposed prototype (Section 6).

4. Renaissance: a self-stabilizing SDN control plane

We present a self-stabilizing SDN control plane, called Renaissance, that enables each controller to discover the network, 
remove any stale information in the configuration of the discovered unmanaged switches (e.g., rules of failed controllers), 
and construct a κ-fault-resilient flow to any other node (switch or controller) that it discovers in the network. For the sake 
of presentation clarity, we start with a high-level description of the proposed solution in Algorithm 1 before we present the 
solution details in Algorithm 2.

4.1. High-level description of the proposed algorithm

Algorithm 1 creates an iterative process of topology discovery that, first, lets each controller identify the set of nodes 
that it is directly connected to; from there, it finds the nodes that are directly connected to them; and so on. This network 
discovery process is combined with another process for bootstrapping communication between any controller and any node 
in the network, i.e., connecting each controller to its direct neighbors, and then to their direct neighbors, and so on, until it 
is connected to the entire reachable network.

Each controller associates independently each iteration with a unique tag [20] that synchronizes a round in which the 
controller performs configuration updates and queries. Controller pi also maintains the variables currT ag and prevT ag
(line 2) of the round synchronization procedure, which starts when pi queries all reachable nodes and ends when it receives 
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replies from all of these nodes (cf. lines 6–7, as well as, Section 3). Upon receiving a query response, pi runs lines 13–15
and replies to other controllers’ queries in lines 16–17.

A controller pi ∈ P C keeps a local state of query replies (cf. Section 2.1) from other nodes (line 1). These replies allow pi
to accumulate information about the network topology according to which the switch configurations are updated in each 
round. The following three basic functionalities of Algorithm 1 are provided by the do-forever loop in lines 4–12, which we 
detail below.

4.1.1. Establishing communication between any controller and any other node
A controller pi ∈ P C can communicate and manage a switch p j ∈ P S only after pi has installed rules at all the switches 

on a path between pi and p j . This, of course, depends on whether there are no permanent link failures on the path. In 
order to discover these link failures, we use local mechanisms for failure detection at each node for querying about the 
status of every link (cf. Section 2.2.1). These mechanisms consider any permanent link failure as a transient fault and we 
assume that Algorithm 1 starts running only after the last occurrence of any transient fault (cf. Fig. 3). Thus, as soon as 
there is a flow installed between pi and p j and there are no permanent failures on the primary path (Section 3), pi and p j
can exchange messages that arrive eventually since it only depends on the temporary availability of the link which supports 
the communication fairness assumption (Section 3.3.1).

The above iterative process of network topology discovery and the process of rule installation consider κ-fault-
resilient flows (cf. Section 2.2.2 and myRules() function in Section 3). These flows are computed through the interface 
myRules(G, j, tag) (line 3), where G is the input topology, p j is the switch to store these rules, and tag is the tag of 
the synchronization round. Once the entire network topology is discovered, Algorithm 1 guarantees the installation of a 
κ-fault-resilient flow between pi and p j . Thus, once the system is in a legitimate state, the availability of κ-fault-resilient 
flows implies that the system is resilient to the occurrence of at most κ temporary link failures (and recoveries) and pi can 
communicate with any node in the network within a bounded time.

4.1.2. Discovering the network topology and dealing with unreachable nodes
Algorithm 1 lets the controllers connect to each other via κ-fault-resilient flows. Moreover, Algorithm 1 can detect 

situations in which controller pk /∈ P C is not reachable from controller pi (line 5). The reason is that pi is guaranteed to (i) 
discover the entire network eventually, and (ii) communicate with any node in the network. This means that pi eventually 
gets a response from every node in the network. Once that happens, the set of nodes that respond to pi equals to the set 
of nodes that were discovered by pi (line 6) and thus pi can restart the process of discovering the network (line 7).

The start of a new round (in which pi rediscovers the network) allows pi to also remove information at the switches 
that is related to any unreachable controller pk ∈ P C , only when it has succeeded in discovering the network and boot-
strapped communication. We note that, during new rounds (line 9), pi removes information related to pk from any switch 
p j (line 10); whether this information is a rule or pk ’s membership in p j ’s management set. This stale information clean-up 
eventually brings the system to a legitimate state, as we will prove in Section 5.

Recall that we regard the long-term failure of links (or of more than κ links) as transient faults. After the occurrence 
of the last transient fault, the network returns to fulfill our assumptions about the topology Gc , i.e., Gc is (κ + 1)-edge 
connected. Then, Algorithm 1 brings the system back to a legitimate state (Section 5). The do-forever loop of Algorithm 1
completes by sending rule and manager updates to every switch that has a reply in replyD B , as well as querying every 
reachable node, with the current synchronization round’s tag (lines 12–12).

4.2. Refining the model: variables, building blocks, and interfaces

After the provision of a high-level description of the proposed solution in Algorithm 1, we provide the solution details 
in Algorithm 2, which requires more notation, interfaces, and building blocks.

Local variables. Each controller’s state includes replyD B (line 1), which is the set of the most recent query replies, and the 
tags currT ag and prevT ag , which are pi ’s current, and respectively, previous synchronization round tags. Each response 
m( j) ∈ replyD B can arrive from either a switch or another controller and it has the form 〈 j, Nc( j), manager( j), rules( j)〉, 
for p j ∈ P . The code denotes by Nc( j) the neighborhood of p j , by manager( j) ⊆ P C the controllers of p j , and by rules( j) ⊆
{〈k, j, src, dest , prt , z, tag〉: (pk, p j, pz, pdest ∈ P ) ∧ (psrc ∈ P C ) ∧ prt ∈ {0, . . . , nprt} ∧ tag ∈ tag Domain} the rule set of p j . 
Throughout Algorithm 2 and for ease of presentation we refer to the elements of responses and rules using the struct 
notation, which is used by the C programming language. We refer to the fields of m = 〈I D, Nc, Mng, rules〉 stated above, 
by m.I D = j, m.Nc = Nc( j), m.Mng = manager( j), and m.rules = rules( j). We assume that the size of replyD B is bounded 
by maxReplies ≥ 2(NC + N S), hence the local state has bounded size (the factor of 2 is due to responses from the rounds 
prevT ag and currT ag).

An internal building block: round synchronization. An SDN controller accesses the abstract switch in synchronized rounds. Each 
round has a unique tag that distinguishes the given round from its predecessors. We assume access to a self-stabilizing 
algorithm that generates unique tags of bounded size from a finite domain of tags, tag Domain. The algorithm provides a 
function called nextT ag() that, during a legal execution, returns a unique tag. That is, immediately before calling nextT ag()
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Algorithm 2: Self-stabilizing algorithm for SDN control plane, controller pi ’s code (Algorithm 1’s detailed version with definitions 
at Fig. 4).

1 Local state: replyD B⊆{m( j):=〈 j,Nc( j),manager( j),rules( j)〉}p j∈P ;
2 currT ag and prevT ag are pi ’s current and previous tags respectively;
3 Macros: res(x) = {m ∈ replyD B : ∀r∈m.rules r.tag = x} ∪ {〈i, Nc(i), ∅, ∅〉};
4 G(S):=({pk :∃m∈S :(m.I D=k∨pk ∈ m.Nc)}, {( j, k):∃m∈S : (m.I D = j ∧ pk ∈ m.Nc});
5 f usion := res(currT ag) ∪ {m ∈ res(prevT ag) : �m′∈res(currT ag)m′.I D = m.I D};
6 p j →G pk := true if there is a path from p j to pk in G;
7 do forever begin

/* Use replies from reachable senders with prevT ag or currT ag */
8 replyD B ← {m ∈ replyD B : m.I D = k �= i ∧ (∃x∈{currT ag,prevT ag}m ∈ res(x) ∧ pi →G(res(x)) pk} ∪ {〈i, Nc(i), ∅, ∅〉};
9 let (new Round, msg):=( f alse, ∅); /* new Round and msg get defaults */

/* a new round with a new tag; remove replies with tag currT ag */
10 if ∀p�∈G(res(currT ag))(pi →G(res(currT ag)) p� =⇒ ∃m∈res(currT ag)m.I D = �) then
11 (new Round, prevT ag) ← (true, currT ag); currT ag ← nextT ag();
12 replyD B ← replyD B \ res(currT ag);

/* The reference tag is currT ag only when the topology changes */
13 if G( f usion) = G(res(prevT ag)) then let referTag := prevT ag else let referTag := currT ag;
14 foreach p j ∈ P S : ∃m∈res(ref erT ag) m.I D = j do

/* On new rounds, remove unreachable or rule-less managers */
15 let M := {pk ∈ m.Mng : (∃r∈m.rules r.cI D = k)∧ (¬new Round ∨ pi →G(res(prevT ag)) pk)} ∪ {pi};
16 msg←msg∪{(p j ,〈‘delMngr’, k〉):pk∈(m.Mng\M)}∪{(p j ,〈‘addMngr’, i〉)};

/* Remove any p j’s rule related to an unreachable node, pk */
17 msg ← msg ∪ {(p j , 〈‘del AllRules’, k〉) : (∃r∈m.rules r.cI D = k) ∧ pk /∈ M};

/* pi refreshes its rules at switch p j with ref erT ag */
18 msg←msg∪{(p j ,〈‘updateRule’,myRules(G(res(referTag)), j,currT ag)〉)};

/* Send prepared messages to all reachable nodes aggregately */
19 foreach p j : pi →G( f usion) p j do send (〈‘new Round’, currT ag〉) ◦ ©{x.cmd : x ∈ msg ∧ x.sI D = j} ◦ (〈‘query’, currT ag〉) to p j ;

20 upon query reply m from p j begin
/* make space for m (C-reset) and tests m’s tag is prevT ag */

21 if |replyD B ∪ {m}| > maxReplies then replyD B ← {〈i, Nc(i), ∅, ∅〉};
22 if (∃r∈m.rulesr.tag = currT ag) then
23 replyD B ← (replyD B \ {m′ ∈ replyD B : m′.I D = m.I D}) ∪ {m}
24 upon arrival of (• ◦ (〈‘query’, tag〉)) from p j do send 〈i, Nc(i), ⊥, {〈 j, i, ⊥, ⊥, ⊥, ⊥, tag〉}〉 to p j ;

there is no tag anywhere in the system that has the returned value from that call. Given two tags, t1 and t2, we require 
that t1 = t2 holds if, and only if, they have identical values. We use these tags for synchronizing the rounds in which the 
controllers perform configuration updates and queries. Namely, in the beginning of a round, controller pi ∈ P C generates 
a new tag and stores that tag in the variable currT ag ← nextT ag(). Controller pi then attempts to install at every reach-
able switch p j ∈ P S a special meta-rule 〈i, j, ⊥, ⊥, nprt , ⊥, tmetaRule〉, which includes, in addition to pi ’s identity, the tag 
tmetaRule = currT ag and has the lowest priority (before making any configuration update on that switch). It then sends a 
query to all (possibly) reachable nodes in the network and combines that query with the tag tquery = currT ag . The response 
to that query from other controllers p j ∈ P C includes the query tag, tquery . The response to the query from the switch 
pk ∈ P S includes the tag tmetaRule of the most recently installed meta-rule that pk has in its configuration. The controller 
pi ends its current round once it has received a response from every (possibly) reachable node in the network and that 
response has the tag of currT ag .

We note the existence of self-stabilizing algorithms, such as the one by Alon et al. [20], that in fair executions (that 
are legal with respect to the self-stabilizing end-to-end communication protocol) provide unique tags within a number of 
synchronization rounds that is bounded (by a constant whenever the execution is legal with respect to the self-stabilizing 
end-to-end communication protocol). We refer to that known bound by �synch and note that during a legal execution of the 
round synchronization algorithm, it holds that controller pi receives only a response message m that matches currT ag , i.e., 
it discards any message with a different tag. Moreover, since during legal executions nextT ag() returns only unique tags, m
and its acknowledgment are guaranteed to form a complete round-trip. Note that we do not require nextT ag() to support 
concurrent calls since every controller manages its own synchronization rounds; one round at a time. We note the existence 
of other relevant synchronizers, such as the α-synchronizer by Awerbuch et el. [21,4], which have simpler tags than [20]. 
However, we prefer the elegant interface defined in [20].

Interfaces. Controller pi can send requests or queries to any other node p j (which could be either another controller or a 
switch). We detail the switch interface below and illustrate it in Fig. 4.

The controllers send command batches, which are sequences of commands. The special metadata command 〈‘new Round’,
tmetaRule〉 is always the first command and updates the special meta-rule to store tmetaRule . We use it for starting a new 
round (where tmetaRule = t is the round’s tag). This starting command could be followed by a number of commands, 
such as 〈‘delMngr’, k〉 for the removal of controller pk from the management of switch p j , 〈‘addMngr’, k〉 for the addi-
tion of controller pk from the management of switch p j , and 〈‘del AllRules’, k〉 for the deletion of all of pk ’s rules from 
the configuration of switch p j , where pk ∈ P C \ {pi}. The rules’ update is done via 〈‘updateRule’, new Rules〉 and it is the 
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Symbols and operators: ‘•’ stands for ‘any sequence of values’, () is the empty sequence, ◦ (binary) is the sequence concatenation operator 
and © (unary) concatenates a set’s items in an arbitrary order.
Constants: Nc(i) ⊆ P , pi ’s directly connected nodes. maxRules and maxManagers, maximum number of rules and managers, respectively. 
maxReplies: maximum size of the set replyD B .
Interfaces: Recall the interface function myRules(G, j, tag), which creates pi ’s rules at switch p j according to G with tag tag (Section 2.2.2). 
The interface between controller pi ∈ PC and the abstract switch p j appears in the table below.

Command type Command Switch p j ’s control module action
new round 〈‘new Round’, tmetaRule〉 updates current synchronization tag of the switch

update command

〈‘delMngr’,k〉 deletes pk from manager( j)
〈‘addMngr’,k〉 adds pk in manager( j)

〈‘del AllRules’,k〉 deletes all rules of pk

〈‘updateRule’,new Rules〉 replaces all rules of pi with new Rules

query command 〈‘query’, tquery〉 sends query response m( j) to pi

Local state: A controller’s local state is the set replyD B which stores the most recently received query replies. A query reply m =
〈I D, Nc, Mng, rules〉 includes the respondent’s ID, m.I D ∈ P , its communication neighborhood, m.Nc ⊆ P , its set of managers, m.Mng ⊆ PC , 
and its set of installed rules, m.rules. A rule r = 〈cI D, sI D, src, dest, prt, f wd, tag〉 ∈ m.rules includes the switch’s ID, r.sI D , the ID of the 
controller which installed the rule, r.cI D , the source and destination fields, r.src, and respectively, r.dest , the rule’s priority r.prt , the ID of 
the neighbor to which the packet should be forwarded, r. f wd, and the rule’s tag, r.tag , where r.sI D, r. f wd, r.dest ∈ P , r.cI D, r.src ∈ PC , 
r.prt ∈ {0, . . . , nprt }, and r.tag ∈ tag Domain. A command record x includes the switch’s ID, x.sI D , and the command, x.cmd; currT ag and 
prevT ag are pi ’s current, and respectively, previous synchronization round tags;

Fig. 4. A list of symbols, operators, constants, interfaces and variables in Algorithm 2.

second last command. This update replaces all of pi ’s rules at switch p j (except for the special meta-rule) with the rules 
in new Rules. These commands are to be followed by the round’s query 〈‘query’, tquery〉, where tquery = t is the query’s 
tag. The switch p j replies to a query by sending m = 〈 j, Nc( j), manager( j), rules( j)〉 to pi , such that the rule set in-
cludes also the special meta-rule 〈i, •, t〉 ∈ rules( j). Whenever p j ∈ P C is another controller, response to a query is simply 
〈i, Nc(i), ⊥, {〈 j, i, ⊥, ⊥, ⊥, ⊥, tquery〉}〉 (line 24). Note that controller p j simply ignores all other types of commands. We use 
the interface function myRules(G, j, tag) (Section 2.2.2) for creating the packet forwarding rules that controller pi installs 
at switch p j when pi ’s current view on the network topology is G in round tag (Fig. 4).

4.3. Algorithm details

Algorithm 2 presents the proposed solution with a greater degree of details than Algorithm 1. Algorithm 2 is centered 
around a do forever loop, which starts by removing stale information from replyD B (line 8). This removal action includes 
refreshing information related to controller pi , which deletes information about any node that is not reachable from pi . The 
reachability test uses the currently known information about the network topology, G and the relation →G (line 6) that 
tells whether node p j is reachable from controller pi in G , given the information in replyD B .

Algorithm 2 accesses the switch configurations in synchronization rounds. Lines 9–12 manage the start (and end) of 
synchronization rounds. When a new round starts, i.e., the condition of the if-statement of line 10 holds, controller pi

marks the start of a new round (new Roundi = true), updates the values of the tags prevT agi and currT agi and clears any 
record with tag currT ag of the replies stored in replyD Bi (line 11 and 12).

Algorithm 2 refreshes (and reconstructs) the information about remote nodes (controllers and switches including the 
ones that are directly attached to it) by sending queries (line 19) and updating the set of stored replies (line 23). Notice 
that controller pi also responds to query requests coming from other controllers (line 24). Algorithm 2 uses these replies 
for completing the information about the switches that are directly connected to a remote controller (and thus the other 
fields in the response messages are the empty sets).

The heart of Algorithm 2 includes the updates of every switch p j ∈ P S (line 14 to 17). For every switch p j (line 14), 
controller pi considers p j ’s stored response 〈 j, Ngbi, Mngi, Ruli〉 for which it prepares a set of commands to be stored in 
the set msgi (lines 9, 16, 17, 18 and 19). To that end, pi first calculates the set of managers that p j should have in the 
following manner. If this iteration of the do forever loop (lines 7 to 19) is the first one for the round currT agi , the value of 
new Roundi is true (line 11); this leads pi to remove any controller pk that is not reachable according to G(res(prevT ag))

(lines 15 to 17). Whenever the iteration is not the first one, pi merely asserts that it is a manager of p j .
Controller pi removes any rules of an unreachable controller pk (line 17) and updates all of its rules at switch p j (line 18) 

using the interface function myRules() (line 18) and the reference tag, referTag (line 4 and line 13). The proposed algorithm 
selects referTag’s value to be prevT ag during legal executions. During recovery periods, the discovered topology can differ 
from that one that is stored with the tag prevT ag . In that case, the algorithm selects currT ag as the reference tag. After 
preparing these commands to all the switches, controller pi prepares query commands to all reachable nodes (including 
both controllers and switches) and then sends all prepared commands to their designated destinations. Note that each of 
these configuration updates are done via a single message that aggregates all commands for a given destination (line 19).
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We note that when a query response arrives at pi , before the update of the response set (line 23), pi checks that there 
is sufficient storage space for the arriving response (line 21). If space is lacking, pi performs what we call a ‘C-reset’. Note 
that pi stores replies only for the current synchronization round, currT ag .

5. Correctness proof

We prove the correctness of Algorithm 2 by showing that when the system starts in an arbitrary state, it reaches a legit-
imate state (Definition 1) within O (((�comm + �synch))D)[((�comm + �synch)D) · N S + NC ]) frames (Theorem 2). Moreover, 
we show that when starting from a legitimate state, the system satisfies the task requirements and it is also resilient to a 
bounded number of failures (Lemmas 7 and 8).

We refer to the values of variable X at node pi (controller or switch) as Xi , i.e., the variable name with a subscript that 
indicates the node index. Similarly, we refer to the return values of function f at controller pk as fk .

Definition 1 (Legitimate system state). State c ∈ R is legitimate with respect to Algorithm 2 when, for every controller pi ∈ P C

and node pk ∈ P \ {pi}, the following conditions hold.

1. 〈k, Nc(k), manager(k), rules(k)〉 ∈ replyD Bi if, and only if, Nc(k), manager(k), and rules(k) are pk ’s neighborhood, 
managers, and respectively, set of packet forwarding rules (line 1) as well as pi →G pk (line 6). Moreover, for the case 
of controller pk ∈ P C , the task does not require pk to have any managers or rules, i.e., manager(k) = ∅ and rules(k) = ∅.

2. Any controller is the manager of every switch and only these controllers can be the mangers of any switch, i.e., pi ∈
P C ∧ pk ∈ P S ⇐⇒ pi ∈ manager(k).

3. The rules installed in the switches encode κ-fault-resilient flows between controller pi and node pk in the network Gc

(Section 2.2.2).
4. The end-to-end protocol (Section 3.1) as well as the round synchronization protocol (Section 2.2.1) between pi and pk

are in a legitimate state.

5.1. Overview

The proof of Theorem 2 starts by establishing bounds on the number of rules that each switch needs to store (Lemma 1). 
The proof arguments are based on the bounded network size and the memory management scheme of the abstract switch 
(Section 2.1.1), which guarantees that, during a legal execution, all non-failing controllers are able to store their rules 
(Lemma 1). The bounded network size also helps to bound, during a legal execution, the amount of memory that each 
controller needs to have (Lemma 2). This proof also bounds the number of C-resets that a controller might take (line 21) 
during the period in which the system recovers from transient faults. This is line 14 in Algorithm 1. Note that this bound 
on the number of C-resets is important because C-resets delete all the information that a controller has about the network 
state.

C-resets are not the only disturbing actions that might occur during the recovery period. The system cannot reach a 
legitimate state before it removes stale information from the configuration of every switch. Note that failing controllers 
cannot remove stale information that is associated with them and therefore non-failing controllers have to remove this 
information for them. Due to transient faults, it could be the case that one controller can remove information that is 
associated with another non-failing controller. We refer to these ‘mistakes’ as illegitimate deletion of rules or managers 
(Section 5.3). Note that illegitimate deletions occur when the (stale) information that a controller has about the network 
topology differ from the actual network topology, Gc . Moreover, due to stale information in the communication channels, 
any given controller might aggregate (possibly stale) information about the network more than once and thus instruct more 
than once the switch to delete illegitimately the rules of other controllers.

Theorem 1 bounds the number of these illegitimate deletions. It does so by counting the number of possible steps 
in which a controller might have stale information about the network and that stale information leads the controller to 
perform an illegal deletion. The proof arguments start by considering a starting state in which controller pi ∈ Pc is just 
about to take a step that instructs the switches to perform illegitimate deletions. The proof then argues that between any 
two such steps, controller pi has to aggregate information about the network in such a way that pi (mistakenly) decides 
that it has completed the task of topology discovery. But, this can only happen after receiving a reply from every node 
in the preserved topology (Claim 5.1). By induction on the distance k between controller pi ∈ Pc and node p j ∈ P \ {pi}, 
the proof shows that the information that pi has about p j is correct within k · (�comm + �synch + 1) + 1 times in which 
pi instruct the switches to perform an illegitimate deletion, because there is a bounded number of stale information in 
the communication channel between pi and p j (Lemma 4). Thus, the total number of illegitimate deletions is at most 
D · (�comm + �synch + 1) + 1.

The proof demonstrates recovery from transient faults by considering a period in which there are no C-resets and no 
illegitimate deletions (Section 5.4). In such a period, all the controllers construct κ-fault-resilient flows to any other node 
in the network (Lemma 5). This part of the proof is again by induction on the distance k between controller pi ∈ Pc and 
node p j ∈ P \ {pi}. The induction shows that, within ((�comm + �synch) + 2)k frames, pi discovers correctly its k-distance 
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neighborhood and establishes a communication channel between pi and p j . This means that within ((�comm +�synch) +2)D
frames in which there are no C-resets and no illegitimate deletions, the system reaches a legitimate state (Lemma 6).

The above allows Theorem 2 to show that after at most O (((�comm +�synch))D)[((�comm +�synch)D) · N S + NC ]) frames 
in R , there is a period of O ((�comm + �synch))D) frames in which there are no C-resets and no illegitimate deletions and 
thus the system reaches a legitimate state. Lemma 7 shows that, when starting from a legitimate state and then letting a 
single link in the network to be added or remove from Gc , the system recovers within O (D) frames. The arguments here 
consider that number of frames it takes for each controller to notice the change and to update all the switches. By similar 
arguments, Lemma 8 shows that after the addition or removal of at most NC −1 controllers, the system reaches a legitimate 
system state within O (D) frames.

5.2. Analysis of memory and message size requirements

Lemmas 1 and 2 bound the needed memory at every node during a legal execution. Recall that we assume that the 
switches implement a mechanism for dealing with clogged memory (Section 2.1.1), such that once controller pi ∈ P C re-
freshes its rules on a given switch, that switch never removes pi ’s rules.

Lemma 1 considers an event that can delay recovery, i.e., the removal of a rule at a switch due to lack of space. Lemma 1
bounds the needed memory for every switch, and thus relates to events that can delay recovery, i.e., the removal of a rule 
at a switch due to lack of space.

Lemma 1 (Bounded switch memory). (i) Suppose that R is a legal execution of Algorithm 2. A switch needs to let no more than 
maxManagers ≥ NC controllers to manage it and (2) no more than maxRules ≥ NC · (NC + N S − 1) · nprt packet forwarding rules.

Proof. Let p j ∈ P S be a switch.
Number of managers. Recall that we assume that maxManagers ≥ NC ≥ |P C |, i.e., the bound is large enough to store all 
managers (once all stale information is removed in a FIFO manner that is explained in Section 2.1.1). During a legal execution 
R of Algorithm 2, every controller accesses every switch repeatedly (line 19). This way, every pi ∈ P C , is always among the 
NC most recently installed controllers at p j ∈ P S .
Number of rules. Recall that a rule is a tuple of the form 〈k, i, src, dest , prt , j, tag〉, where pk ∈ P C is the controller that 
created this rule, pi ∈ P S is the switch that stores this rule, psrc ∈ P C and pdest ∈ P are the source, and respectively, the 
destination of the packet, prt is the packet’s priority, p j ∈ P is the relay node (i.e., the rule’s action field) and tag is the 
synchronization round tag.

To show that there are no more than NC · (NC + N S −1) ·nprt rules that a switch needs to store, recall that each of the NC

controllers psrc ∈ P C constructs κ-fault-resilient flows to every node pdest ∈ P \ {psrc} in the network. Thus, switch pi ∈ P S

might be a hop on the κ-fault-resilient flow between psrc and pdest . That is, there are at most NC · (NC + N S − 1) such flows 
that pass via pi , because for each of the NC possible flow sources psrc , there are exactly (NC + N S − 1) destinations pdest . 
Each such flow stores at most nprt ≥ κ + 1 rules at pi , i.e., one for each priority. Note that, during a legal execution, each 
switch pi ∈ P S stores at most one tag per psrc ∈ P C (line 19). �

Lemma 2 considers an event C-reset, which can delay recovery.

Lemma 2 (Bounded controller memory). (1) Let ax ∈ R be the first step in which controller pi runs lines 20–23 (upon query reply). For 
every state in R that follows step ax, node pi stores no more than maxReplies replies in the set replyD Bi . (2) Suppose that R is a legal 
execution. Controller pi ∈ P C needs to store, in the set replyD Bi , no more than maxReplies ≥ 2 · (NC + N S) items. (3) Suppose that R
is any execution, which may start in an arbitrary state. Controller pi performs a C-reset at most once in R, i.e., takes a step ax′ ∈ R that 
includes the execution of line 21, in which the if-statement condition is true.

Proof. Part (1). We note that pi modifies replyD Bi only in line 8 and line 12 in the do-forever loop (lines 7–19), and in 
lines 21 and 23 in the query reply procedure (lines 20–23). In line 8 and line 12, the size of replyD Bi either decreases 
(possible only at the first step that pi executes line 8 or line 12) or stays the same. Thus, the rest of this proof focuses only 
at lines 21 and 23, where the set replyD Bi increases due to the addition of an incoming reply (line 23).

Let ax′ be the first step in R , in which controller pi executes lines 20–23 due to a message m j that pi receives from node 
p j . By line 21, if |replyD Bi ∪ {m j}| > maxReplies holds, then pi performs a C-reset, i.e., sets replyD Bi ← {〈i, Nc(i), ∅, ∅〉}, 
which implies that |replyD Bi | = 1 after the execution of line 21. Hence, after the execution of line 23 in step ax′ , 
|replyD Bi | < maxReplies holds for the state cx′+1, which follows ax′ immediately. Similarly, since the size of replyD Bi
increases only when pi executes line 23, for every step ax′′ and the system state cx′′+1 that appears in R after cx′+1, it is 
true that |replyD Bi | ≤ maxReplies holds in cx′′+1, due to line 21. Thus, for every system state that follows the first step 
ax′ ∈ R , it holds that |replyD Bi | ≤ maxReplies.
Part (2). Line 8 removes from replyD Bi any response that its synchronization round tag is not in the set {prevT agi,

currT agi} and line 23 does not add to replyD Bi a response that its synchronization round tag is not currT agi . More-
over, line 12 makes sure that when finishing one synchronization round and then transitioning to the next one, replyD Bi
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includes replies only with synchronization round tags that are prevT agi . Therefore, there are no more than two synchro-
nization round tags that could be simultaneously present in replyD Bi . Moreover, line 8 also removes any response from an 
unreachable node, because item 1 of Definition 1 holds in any system state of a legal execution. This further limits the set 
replyD Bi to includes response from at most NC + N S nodes. Therefore, |replyD Bi| ≤ 2 · (NC + N S).
Part (3). Suppose that pi does perform a C-reset during R . Once that happens, parts (i) and (ii) of this proof imply that this 
can never happen again. �

Lemma 3 demonstrates that the proposed algorithm requires bounded message size.

Lemma 3. The message size before and after the recovery period is in O (maxRules log N), and respectively, O (�N log N) bits, where 
N = NC + N S and � is the maximum node degree.

Proof. The size of the messages sent differs during and after the recovery period. Algorithm 2 involves messages sent from 
a controller to any other node and their subsequent replies to the controller. A message from a controller to a switch is a 
set of commands msg initialized to the empty set in line 9. Commands are appended in msg in lines 16, 17, and 18, before 
a controller appends two more commands to msg (line 19) and sends it to a switch. We denote with msg16, msg17, msg18
the sets of commands appended to msg in the respective lines. Thus, |msg| = |msg16| + |msg17| + |msg18| + O (log ctag) bits, 
where |msgx| refers to the message size due to line x and ctag , is the maximum size of a tag. Note that when using tags 
based on the ones in [20], O (log(N)) bits are needed, whereas using the ones by Awerbuch et el. [21,4] requires O (1) bits.

We now calculate the size of each msgx , for each line x mentioned above, following the analysis of the current section. 
Recall from Section 2.1 that the size of a single rule is in O (log NC + log N S + log nprt + log ctag) bits, where nprt ≥ � + 1
suffices for expressing all rules. A command in msg16, msg17, and msg18 has size in O (log NC + log N S), O (log NC + log N S ), 
and respectively, in O ((NC + N S −1)nprt(log NC + log N S + log nprt + log ctag)) bits. During recovery the following hold for the 
product of cardinality with command size for each set: |msg16| ∈ O (maxManagers ·(log NC + log N S )), |msg17| ∈ O (maxRules ·
(log NC + log N S )), |msg18| ∈ O ((NC + N S − 1)nprt(log NC + log N S + log nprt + log ctag))). Similarly, during a legal execution 
the following hold: |msg16| ∈ O (log NC + log N S)), |msg17| = 0 |msg18| ∈ O ((NC + N S − 1)nprt(log NC + log N S + lognprt +
log ctag))). Summing up, during recovery |msg| ∈ O ((maxRules +maxManagers)(log NC + log N S) +(NC + N S −1)nprt(log NC +
log N S + log nprt + log ctag))) and during a legal execution |msg| ∈ O ((log NC + log N S) + (NC + N S − 1)nprt(log NC + log N S +
log nprt + log ctag))).

We now turn to calculate the message size for a query response. Since the query response of a switch has a larger size 
than the one of a controller (by definition), we present only the case of switches. During recovery, a switch query response 
has size in O (log N S +�(log N S + log NC ) +maxManagers log NC +maxRules(log NC + log N S + log nprt + log ctag)) bits, while 
a legal execution the response size is in O (log N S + �(log N S + log NC ) + NC log NC + (NC + N S − 1)nprt(log NC + log N S +
log nprt + log ctag)) bits, where � is the maximum degree. �

The proof of Lemma 3 reveals that the proposed solution is communication adaptive [22], because after stabilization the 
messages size is reduced.

5.3. Bounding the number of illegitimate deletions

We consider another kind of event that might delay recovery (Definition 2) and prove that it can occur a bounded 
number of times. Recall that �comm is the number of frames in which the end-to-end protocol stabilizes (Section 3.1) and 
�synch the number of frames in which the round synchronization mechanism stabilizes (Section 4.2).

Definition 2 (Illegitimate deletions). A switch p j performs an illegitimate deletion when it removes a non-failing controller 
p� ∈ P C from its manager set (or its rules), due to a command that it received from another controller pk ∈ P C .

Theorem 1 (Bounded number of illegitimate deletions). Let axk ∈ R be the k-th step in which controller pi ∈ P C executes lines 11–12
during execution R. Suppose that R includes at least ((�comm + �synch)D + 1) such axk steps, where D is the network diameter. Let 
R ′ be a prefix of R = R ′ ◦ R ′′ that includes the steps a1, . . . , ax(�comm+�synch )D+1 ∈ R ′ and R ′′ be the matching suffix. Controller pi does 
not take steps as′k ∈ R ′′ that send a message mk to p j ∈ P S , such that p j performs an illegitimate deletion (Definition 2) upon receiving 
mk.

Proof. This proof uses Claim 5.1 and Lemma 4. Theorem 1 follows by the case of k ≥ D for Lemma 4 and then applying Part 
(ii) of Claim 5.1.

Claim 5.1. (i) The condition in the if-statement of line 10 holds if, and only if, Vreported = Vreporting , where Vreported = {pk :
∃〈 j,Nc( j),•,rls〉∈replyD Bi ((k = j ∨ pk ∈ Nc( j)) ∧ ∃〈i, jk, •, currT agi〉 ∈ rls)} ∪ {〈i, Nc(i), ∅, ∅〉} and Vreporting = {p j : 〈 j, •, rls〉 ∈
replyD Bi ∧ (∃〈i, jk, •, currT agi〉 ∈ rls)}. (ii) Suppose that every node p j in Gc has sent a response 〈 j, •〉 to pi . Suppose that pi
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stores these replies in replyD Bi together with pi ’s report about its directly connected neighborhood, 〈i, Nc(i), ∅, ∅〉, cf. lines 3 and 8. 
In this case, the condition in the if-statement of line 10 holds.

Proof of Claim 5.1. The proof of Part (i). The condition in the if-statement of line 10 is (∀p�: pi →G(resi(currT agi)) p� =⇒
〈�, •〉 ∈ resi(currT agi). When Vreported = Vreporting holds, the following two claims also hold by the definition of these sets 
(and vice versa): (a) pi ’s response is in replyD Bi , and (b) for every node p j that was queried with tag currT agi , such that 
before the query either p j had a response in replyD Bi or a direct neighbor of p j had a response in replyD Bi , there exists 
a response from p j in replyD Bi with rules that have the tag currT agi . Hence, the condition in the if-statement of line 10
is true.
The proof of Part (ii). This is just a particular case in which P = Vreported = Vreporting . �
Lemma 4. Let p jk ∈ P be a node that is at distance k from pi in Gc, such that p j0 , p j1 , . . . , p jk is any shortest path from pi to p jk and 
p j0 = pi . Let cxy ∈ R be the system state that immediately follows step axy ∈ {ax1 , . . ., axk·(�comm+�synch )+1 } ⊂ R ′ .

1. Let � > k ·�comm + 1. The system state cx�
is legal with respect to the end-to-end protocol of the channel between pi and p jk , and 

it holds that m = 〈 jk, •〉 is a message arriving from p jk through the channel to pi , which is an acknowledgment for pi ’s message 
to p jk .

2. Let � > k · (�comm + �synch) + 1. The system state cx�
is legal with respect to the round synchronization protocol between pi and 

p jk . That is, for any message m = 〈 jk, •, rls〉 that arrives from the channel from p jk to pi , it holds that m ∈ replyD Bi ∧ ∃r∈rls r =
〈i, jk, •, currT agi〉. Moreover, message m is an acknowledgment of a message m′ that pi has sent to p jk and together m′ and m
form a completed round-trip.

Proof of Lemma 4. We note that the first step, ax1 could occur due to the fact that the system starts in an arbitrary state 
in which the condition of the if-statement of line 10 holds, hence the addition of 1 in k · (�comm + �synch). The proof is by 
induction on k > 0. That is, we consider the steps in axy ∈ {ax1 , . . . , axk·(�comm+�synch )+1 }.

The base case of k = 1. Claim 5.1 says that the condition in the if-statement of line 10 holds if, and only if, Vreported =
Vreporting , where {〈i, Nc(i), ∅, ∅〉} ⊆ Vreported (line 3). Therefore, for any � > 1, we have that ax�

∈ {ax2 , . . . , axk·(�comm+�synch+1)+1 }
implies that {〈i, Nc(i), ∅, ∅〉} ⊆ Vreporting holds immediately before ax�

.

Claim 5.2. Between axk−1 and axk , a message 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉 arrives from the channel from p jk ∈ Nc(i) to 
pi , which pi stores in replyD Bi , where k ≥ 1.

Proof of Claim 5.2. During the step axk−1 , controller pi removes any response 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉
(line 12) and the only way in which 〈 jk, •, rls〉 : ∃r∈rls r = 〈i, jk, •, currT agi〉 holds immediately before axk is the follow-
ing. Between axk−1 and axk , a message arrives through the channel from p jk ∈ Nc( jk−1) : j0 = i to pi , which pi stores in 
replyD Bi (line 23). This is true because no other line in the code that accesses replyD Bi adds that message to replyD Bi (cf. 
lines 8, 12, and 23). �
The proof of Part (1). It can be the case the pi sends a message for which it receives a (false) acknowledgment from p j1 , i.e., 
without having that message go through a complete round-trip. However, by �comm ’s definition (Section 3.1), that can occur 
at most �comm times.
The proof of Part (2). It can be the case that pi receives message m from p j1 for which the following condition does not hold 
in c j1 : m = 〈•, rls〉 ∈ replyD Bi ∧∃r∈rls r = 〈i, jk, •, currT agi〉. However, by �synch ’s definition (Section 2.2.2), that can occur at 
most �synch times. The rest of the proof is implied by the properties of the round synchronization algorithm (Section 2.2.2).
The induction step. Suppose that, within more than (�commk + 1) and ((�comm +�synch)k + 1) synchronization rounds from 
R ’s starting state, the system reaches a state in which conditions (1), and respectively, (2) hold with respect to some k ≥ 1. 
We show that in cx�comm(k+1)+1 and cx(�comm+�synch )(k+1)+1 , conditions (1), and respectively, (2) hold with respect to k + 1.

The proof of Part (1). Claim 5.1 says that the condition in the if-statement of line 10 holds if, and only if, Vreported =
Vreporting . By the induction hypothesis, condition (2) holds with respect to k in cx(�comm+�synch )k+1 and therefore A(k + 1) ∪
{〈i, Nc(i), ∅, ∅〉} ⊆ Vreported , where A(k) = {〈 jk′ , Nc( jk′ ), •, rls〉 : 1 < k′ ≤ k ∧ ∃r∈rls r = 〈i, jk′ , •, currT agi〉}. Therefore, that fact 
that the step ax(�comm+�synch )(k+1)+2 ∈ ax2 . . .axk·(�comm+�synch+1)+1 implies that A(k + 1) ∪ {〈i, Nc(i), ∅, ∅〉} ⊆ Vreporting holds in the 
system state that appears in R immediately before the step ax(�comm+�synch )(k+1)+2 . Claim 5.2 implies the rest of the proof.

The proof of Part (2). The proof here follows by similar arguments to the ones that appear in the proof of item (2) of the base 
case. �

Part (iii) of Lemma 2 and Theorem 1 imply Corollary 1.

Corollary 1. Any execution R of Algorithm 2 includes no more than NC C-resets (Lemma 2) and ((�comm + �synch)D + 1) · N S
illegitimate deletions (Theorem 1).
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5.4. Recovery from transient faults

In this section we prove that Algorithm 2 is self-stabilizing. Lemma 5 shows that (under some conditions, such as reset 
freedom) controller pi eventually discovers the local topology of a switch p jk that is at distance k from pi in the graph 
Gc . This means that pi has all the information that its needs for constructing (at least) a 0-fault-resilient flow to p jk and 
discover any switch p jk+1 ∈ Nc(p jk ) that is at distance k + 1 from pi . Then, Lemma 6 shows that, within a bounded number 
of frames, no stale information exists in the system. Theorem 2 combines Corollary 1 and Lemma 6 to show that, within a 
bounded number of frames, the system reaches a legitimate state from which only a legal execution may continue.

We start by giving some necessary definitions. Let Gi be the value of G(ref erT agi) (line 13) that controller pi ∈ P C
computes in a step ax ∈ R . We say that there is a path between pi ∈ P and p j ∈ P , when there exist p j0 , p j1 , . . . , p jk ∈ P , 
such that (1) p j0 = pi , (2) p jk = p j , (3) p j1 , . . . , p jk−1 ∈ P S , and (4) the rules installed by a controller p� ∈ P C at the switches 
in p j1 , . . . , p jk−1 (and also pi or p j if they are also switches) forward packets from pi to p j as well as from p j to pi (when 
the respective links are operational). We say that two nodes pi ∈ P and p j ∈ P can exchange packets, when there is a path 
between pi and p j . Moreover, we say that the rules installed in the switches ps ∈ P S facilitate κ-fault-resilient flows between 
pi and p j , if at the event of at most κ link failures there exists a path between pi and p j . Let px and p y be two nodes in 
P and recall that we assume that every node pz ∈ P has a fixed ordering of its neighbors, i.e., Nc(z) = {pi1 , . . . , pi|Nc (z)| }. We 
define the first shortest path between px and p y to be the shortest path between px and p y that includes the nodes with 
minimum indices according to the neighborhood orderings (among all the shortest paths between these two nodes).

Lemma 5. Let pi ∈ P C be a controller and p jk ∈ P be a node in P that is at distance k from pi in Gc, such that p j0 , p j1 , . . . , p jk is the 
first shortest path from pi to p jk and p j0 = pi in Gc. Suppose that C-resets (Lemma 2) and illegitimate deletions (Theorem 1) do not 
occur in R. For every k ≥ 0, and any system state that follows the first ((�comm + �synch) + 2)k frames from the beginning of R, the 
following hold.

1. 〈 jk, Nc( jk), manageri( jk), rulesi( jk)〉 ∈ resi(prevT agi), where Nc( jk), manageri( jk), and rulesi( jk) are p jk ’s neighborhood, 
managers, and respectively, rules that pi has received from p jk . Moreover, for the case of controller p jk ∈ P C , it holds that 
manager( jk) = ∅ ∧ rules( jk) = ∅.

2. pi ∈ manager jk ( jk).
3. the rules in rules j0( j0), rules j1 ( j1), . . . , rules jk ( jk) facilitate packet exchange between pi and p jk along p j0 , p j1 , . . . , p jk (when 

the respective links are operational).
4. The end-to-end protocol as well as the round synchronization protocol between pi and p jk are in a legitimate state.

Proof. The proof is by induction on k.
The base case. Claims 5.3, 5.4, and 5.5 imply that the lemma statement holds for k = 1.

Claim 5.3. Within one frame from R’s beginning, the system reaches a state in which condition (1) is fulfilled with respect to pi and 
any node that is in pi ’s distance-1 neighbors in Gc.

Proof of Claim 5.3. During the first frame (with round-trips) of R , controller pi starts and completes at least one iteration 
in which it sends a query (line 19) to every node p j1 ∈ P that is in pi ’s distance-1 neighborhood in Gc (this includes both 
switches, as we explain in Section 2.1.1, as well as other controllers, which respond according to line 24). Moreover, during 
that first frame, p j1 receives that query and replies to pi (lines 20-23) within one step (Section 3.2). Thus, the first part of 
condition (1) is fulfilled, because controller pi then adds (or updates) the latest (query) replies that it received from these 
neighbors to replyD Bi . The second part of condition (1) is implied by the first part of condition (1) and by line 24. �
Claim 5.4. Within two frames from the beginning of R, the system reaches a state in which conditions (2) and (3) are fulfilled with 
respect to pi and any node that is in pi ’s distance-1 neighbors in Gc.

Proof of Claim 5.4. This proof uses Claim 5.3 to prove this claim by first showing that within one frame from the beginning 
an execution in which condition (1) holds, the system reaches a state in which conditions (2) and (3) are fulfilled with 
respect to pi and any node p j ∈ Nc(i). This indeed implies that conditions (2) and (3) are fulfilled within two frames of R
for pi ’s direct neighbors.

Let R∗ be a suffix of R such that in R∗ ’s stating system state, it holds that condition (1) is fulfilled with respect to pi and 
any node that is in pi ’s distance-1 neighbors in Gc . During the first frame (with round-trips) of R∗ , controller pi starts and 
completes at least one iteration (with round-trips) in which it is able to include pi in p j ’s manager set, manager j( j) (line 15
to 17) and to install rules at p j ∈ Nc(i) (line 18). We know that this installation is possible, because pi is a direct neighbor 
of p j ∈ Nc(i) (Section 2.1.1). Once these rules are installed, the packet exchange between pi and p j ∈ Nc(i) is feasible. This 
implies that conditions (2) and (3) are fulfilled within one frame of R∗ (and two frames of R) for pi ’s direct neighbors. �
Claim 5.5. Within ((�comm +�synch) +2) frames from the beginning of R, the system reaches a state in which condition (4) is fulfilled 
with respect to pi and any node that is in pi ’s distance-1 neighbors in Gc.
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Proof of Claim 5.5. Since conditions (2) and (3) hold within two frames with respect to k = 1, controller pi and p j1 can 
maintain an end-to-end communication channel between them because the network part between pi and p j1 includes all 
the needed flows. By �comm ’s definition (Section 3.1), within �comm frames, the system reaches a legitimate state with re-
spect to the end-to-end protocol between pi and p j1 . Similarly, by �synch ’s definition (Section 2.2.2), within �synch frames, 
the system reaches a legitimate state with respect to the round synchronization protocol between pi and p j1 . Thus, condi-
tion (4) holds within ((�comm + �synch) + 2) frames from R ’s beginning. �
The induction step. Suppose that, within ((�comm + �synch) + 2)k frames from R ’s starting state, the system reaches a state 
cx ∈ R in which conditions (1), (2), (3) and (4) hold with respect to k. We show that within (�comm + �synch) + 2 frames 
from cx , the system reaches a state in which the lemma’s statements hold with respect to k + 1 as well.
Showing that, within one frame from cx , processor pi knows all of its distance-(k + 1) neighbors. This part of the proof 
starts by showing that within one frame from cx , execution R reaches a state, such that pi →Gi p j holds for every 
distance-(k + 1) neighbor of pi in Gc . The system state cx encodes (packet forwarding) rules that allow pi to exchange 
packets with its distance-k neighbors in Gc (since by the induction hypothesis, conditions (3) and (4) hold with respect to k
in cx). Moreover, pi stores in res(prevT agi) replies from pi ’s distance-k neighbors in Gc (since by the induction hypothesis, 
condition (1) holds for k in cx). The latter implies that pi knows, as part of Gi in cx , all of its distance-(k + 1) neighbors, 
{pk : ∃〈 j, Nc( j), •〉 ∈ resi(prevT agi) ∧ (k = j ∨ k ∈ Nc( j, prevT agi))}, since every reply of a distance-k neighbor, p j∗ , in Gc
(which resi(prevT agi) stores in cx) includes p j∗ ’s neighborhood.
Condition (1) holds with respect to k + 1 within ((�comm + �synch) + 2)k + 1 frames. Using the above we show that, within 
one frame from cx , controller pi ∈ P C queries all of its distance-(k + 1) neighbors (line 19), receives their replies, and stores 
them in replyD Bi (lines 20–23), i.e., 〈 jk+1, Nc( jk+1), manageri( jk+1), rulesi( jk+1)〉 ∈ resi(currT agi) for every distance-(k +1)

neighbor p jk+1 of pi in Gi . Recall that cx encodes rules that let pi to forward packets with its distance-k neighbors in Gc
(condition (3) holds for k in cx). By the query-by-neighbor functionality (Section 2.1.1), every such distance-k neighbor 
reports on its direct neighbors (that include pi ’s distance-(k + 1) neighbors), which implies that it forwards the query 
message to pi ’s distance-(k + 1) neighbor as well as the reply back to pi . Therefore, within ((�comm + �synch) + 2)k + 1
frames, the system reaches a state, cx′ , in which condition (1) holds with respect to k + 1.
Conditions (2) to (3) hold with respect to k + 1 within ((�comm + �synch) + 2)k + 2 frames. The next step of the proof is to 
show that within one frame from cx′ , the system reaches the state cx′′ in which conditions (2) and (3) hold with respect 
to k + 1 (in addition to the fact that condition (1) holds). By the functionality for querying (and modifying)-by-neighbor 
(Section 2.1.1) and for every switch p j that is a distance-(k + 1) neighbor of pi in Gc , it holds that between cx′ and cx′′ : (a) 
pi adds itself to the manager set manager( j) of p j (line 15 to 17), and (b) pi installs its rules in p j ’s configuration (line 18). 
(We note that for the case p j is another controller, there is no need to show that conditions (2) and (3) hold.)
Condition (4) holds for k + 1 within ((�comm + �synch) + 2)(k + 1) frames. The proof is by similar arguments to the ones 
that appear in the proof of Claim 5.5.

Thus, conditions (1), (2), (3), and (4) hold for k + 1 within ((�comm + �synch) + 2)(k + 1) frames in R and the proof is 
complete. �

Lemma 6 bounds the number of frames before the system reaches a legitimate system state.

Lemma 6. Let R = R ′ ◦ R ′′ be an execution of Algorithm 2 that includes a prefix, R ′ , of (�comm + �synch) + 2)D + 1 frames that has 
no occurrence of C-resets or illegitimate deletions. (1) Any system state in R ′′ is legitimate (Definition 1). (2) Let ax ∈ R ′′ be a step that 
includes the execution of the do-forever loop that starts in line 8 and ends in line 19. During that step ax, the value of msgi , which pi
sends to p j ∈ P in line 19, does not include the record 〈‘delMngr’, •〉 nor the record 〈‘del AllRules’, •〉, i.e., no deletions, whether they 
are illegitimate or not, of managers or rules. (3) No controller pi takes a step in R ′′ during which the condition of line 21 holds, which 
implies that pi performs no C-reset during R ′′.

Proof. When comparing the conditions of Definition 1 and the conditions of Lemma 5, we see that Lemma 5 guaran-
tees that within (�comm + �synch) + 2)D frames the system reaches a state calmost Saf e ∈ R ′ in which all the conditions of 
Definition 1 hold except condition 2 with respect to controllers p j /∈ P C that do not exist in the system (and their rules 
that are stored by the switches). From condition 1 of Definition 1, we have that at each controller pi ∈ P C , it holds that 
G(res(currT agi)) = G( f usioni) = Gc . This implies that pi can identify correctly any stale information related to p j and re-
move it from configuration of every switch (see line 14 to 18) that is in the system during the round that follows calmost Saf e , 
which takes one frame because condition 1 of Definition 1 holds. This means that within (�comm +�synch) + 2)D + 1 frames 
the system reaches a legitimate state in which all the conditions of Definition 1 hold and thus R ′′ is a legal execution, i.e., 
the first part of the lemma holds. Part (2) of this lemma is implied by the fact that there is no controller p j /∈ P C that the 
controller pi ∈ P C needs to remove from the configuration of any switch during the legal execution R ′′ . Part (3) is implied 
by Part (3) of Lemma 2 and the fact that R ′′ is a legal execution. �
Theorem 2 (Self-Stabilization). Within ((�comm + �synch) + 2)D + 1)[((�comm +�synch)D + 1) · N S + NC + 1] frames in R, the 
system reaches a state csaf e ∈ R that is legitimate (Definition 1). Moreover, no execution that starts from csaf e ∈ R includes a C-reset 
nor illegitimate deletion of managers or rules.
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Proof. In this proof, we say that an execution Radm is admissible when it includes at least ((�comm + �synch) + 2)D + 1
frames and no C-reset nor an illegitimate deletion. Let R be an execution of Algorithm 2. Let us consider R ’s longest possible 
prefix R ′ , such that R ′ does not include any sub-execution that is admissible, i.e., R = R ′ ◦ R ′′ . Recall that by Corollary 1 the 
prefix R ′ has no more than ((�comm +�synch)D + 1) · N S + NC C-resets or illegitimate deletions. By the pigeonhole principle, 
the prefix R ′ has no more than ((�comm + �synch) + 2)D + 1)[((�comm + �synch)D + 1) · N S + NC + 1] frames. By Lemma 6, 
R ′′ does not include C-resets nor deletions of managers or rules, and the system has reached a safe state, which is csaf e . �
5.5. Returning to a legitimate state after topology changes

This part of the proof considers executions in which the system starts in a state c′ , that is obtained by taking a system 
state csaf e that satisfies the requirements for a legitimate system state (Definition 1), and then applying a bounded number 
of failures and recoveries. We discuss the conditions under which no packet loss occurs when starting from c′ , which is 
obtained from csaf e and (i) the events of up to r link failures and up to � link additions (Lemma 7), as well as, (ii) the 
events of up to r controller failures and up to � controller additions (Lemma 8).

Lemma 7. Suppose that c′ is obtained from a legitimate system state csaf e by the removal of at most r links and the addition of at 
most � links (and no further failures), and R is an execution of Algorithm 2 that starts in c′. It holds that no packet loss occurs in R
as long as r ≤ κ and � ≥ 0. For the case of r ≤ κ ∧ � ≥ 0 recovery occurs within O (D) frames, while for the case of r > κ bounded 
communication delays can no longer be guaranteed.

Proof. We consider the following cases.
The case of r ≤ κ and � = 0. Suppose that a single link e has failed, i.e., it has been permanently removed from Gc , in 
a state c′ that follows a legitimate system state csaf e . Say that e is included either in a primary path �0 in Go(0) or in 
one of the alternative paths of �0, �k in Go(k), where k > 0, for a controller pi (cf. definitions of the function myRules()
and the graphs Go(k) in Section 2.2.2). For every such case, since e’s failure occurs after a legitimate state, communication 
is maintained when at most κ − 1 links (other than e) are non-operational. Let s be the index in {0, 1, . . . , κ} for which 
e ∈ �s . Due to the construction of the paths �k , k ∈ {0, 1, . . . , κ}, in the computation of the function myRules() in pi , if 
s = 0, then each alternative path �k before e’s failure is now considered as path �k−1, for k ∈ {1, . . . , κ}. Otherwise, if s �= 0, 
the paths �k remain the same for k ∈ {0, . . . , s − 1} and each path �k is now considered as the alternative path �k−1 for 
k ∈ {s + 1, . . . , κ}. In both cases, a new path �κ is computed and installed in the switches if that is possible due to the 
edge-connectivity of Gc , and if that is not the case, the rules installed in the network’s switches facilitate (κ − 1)-fault-
resilient flows between every controller and every other node in the network. The recovery time is at most 1 frame (if e
belongs to some path �k), since the removal of link e occurs after a legitimate state and all nodes in the network can be 
reached by every controller pi ∈ P C .

Note that if e is not part of any flow, then its failure has no effect in maintaining bounded communication delays. By 
extension of the argument above, bounded communication delays can be maintained when at most κ link failures occur. 
That is, in the worst case when exactly κ link failures occur, bounded communication delays are maintained due to the 
existence of the κ th alternative paths and the assumption that no further failures occur in the network.
The case of r = 0 ∧ � > 0. A link addition can violate the first shortest path optimality, thus in this case all paths should 
be constructed from scratch. Since, the link addition occurs after a legitimate state, no stale information exists in the 
system, and no resets or illegitimate deletions occur. Hence, by Lemma 5 (for k = D) within 2D frames it is possible to 
(re-)build the κ-fault containing flows throughout all nodes in the network and reach a legitimate system state (since the 
edge-connectivity cannot decrease with link additions).
The case of r ≤ κ and � > 0. Note that by the first case, bounded communication delays are maintained, since r ≤ κ . Since �
links are added in Gc , the controllers require O (D) frames to install new paths (by Lemma 5), even though the connectivity 
of Gc might be less than κ + 1 (but for sure at least 1). Hence, bounded communication delays are guaranteed in this case, 
given that no more failures occur.
The case of r > κ . In this case, we do not guarantee bounded communication delays. This holds, due to the fact that the 
removal of more than κ edges might break connectivity in Gc , which makes the existence of alternative paths for r > κ link 
failures impossible. �
Lemma 8. Suppose that c′ is obtained from a legitimate system state csaf e by the removal of at most r nodes and the addition of at 
most � nodes (and no further failures), and R is an execution of Algorithm 2 that starts in c′ . It holds that no packet loss occurs in R if, 
and only if, Gc remains connected (and NC ≥ 1 ∧ N S ≥ 1), and in this case the network recovers within O (D) frames. For the case of 
r > 0 ∧ � = 0 bounded communication delays can no longer be guaranteed.

Proof. We study the following cases.
The case of r > 0 and � = 0. The removal of a switch p j is equivalent to the removal of all the links that are adjacent to 
p j . Since the edge-connectivity is at least κ + 1, the minimum degree of every node in Gc is at least κ + 1. Thus, a switch 
removal (equiv. removal of at least κ + 1 links) would violate the assumption of at most κ link failures, possibly violating 
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connectivity or affecting all the alternative paths between two endpoints in the network. In this case, Algorithm 2 can only 
guarantee that the controllers will install κ̃ -fault-resilient flows, where 0 ≤ κ̃ ≤ κ .

The case of removing a controller pi can be handled by Algorithm 2 if we assume that the communication graph Gc
stays (at least) (κ + 1)-edge-connected after removing pi . In that case, each controller pi′ can discover the removal of pi
and delete it from replyD Bi′ in 1 frame, and then, in the subsequent frame, pi′ can delete pi ’s rules from rules j( j) and pi
from manager j( j), for every switch p j . Hence, within 2 frames the system recovers to a legitimate state, since the existing 
rules of the other controllers stay intact.
The case of r = 0 and � > 0. We assume that if controller or switch additions occur (including their adjacent links) after a 
legitimate state, the new node is initialized with empty memory. That is, replyD Bi is empty if a new controller pi is added, 
and manager j( j) = rules j( j) = ∅ if a new switch p j is added. Note that the new node should not violate the assumption of 
Gc ’s edge-connectivity being at least κ + 1. In both cases, and similarly to link additions, the first shortest path optimality 
might be violated and hence (as in the case of link additions) a period of 2D frames is needed (Lemma 5) to (re-)build the 
κ-fault-resilient flows (since no stale information exists, and no resets or illegal deletions occur).
The case of r > 0 and � > 0. Let G ′

c be Gc after the removal of at most r nodes and the addition of at most � nodes. If G ′
c is 

κ̃-edge-connected, where 1 < κ̃ ≤ κ , then bounded communication delays in the occurrence of at most κ̃ link failures can 
be guaranteed by following the arguments of Section 5.4 for κ = κ̃ . �
6. Evaluation

In order to evaluate our approach, and in particular, to complement our theoretical worst-case analysis as well as study 
the performance in different settings, we implemented a prototype using Open vSwitch (OVS) and Floodlight. To ensure 
reproducibility and to facilitate research on improved and alternative algorithms, the source code and evaluation data are 
accessible via [8]. In the following, we first explain our expectations with respect to the performance (Section 6.1) and 
discuss details related to the implementation of the proposed solution (Section 6.2) before presenting the setup of our 
experiments (Section 6.3). In particular, we empirically evaluate the time to bootstrap an SDN (after the occurrence of 
different kinds of transient failures), the recovery time (after the occurrence of different kinds of benign failures), as well 
as the throughput during a recovery period that follows a single link failure (Section 6.4). For the reproducibility sake, the 
source code and evaluation data can be access via [8].

6.1. Limitations and expectations

We study Renaissance’s ability to recover from failures in a wide range of topologies and settings. We note that the 
scope of our work does not include an empirical demonstration of recovery after the occurrence of arbitrary transient faults, 
because such a result would need to consider all possible starting system states. Nevertheless, we do consider recovery after 
changes in the topology, which Section 3.4 models as transient faults. However, in these cases, we mostly consider a single 
change to the topology, i.e., node or link failure (after the recovery from any other transient fault).

The basis for our performance expectation is the analysis presented in Section 5. Specifically, we use Lemmas 5, 7
and 8 to anticipate an O (D) bootstrap time and recovery period after the occurrence of benign failures. Recall that, for 
the sake of simple presentation, our theoretical analysis does not consider the number of messages sent and received 
(Section 3.5.3), which depends on the number of nodes in the case of Renaissance. Thus, we do not expect the asymptotic 
bounds of Lemmas 5, 7 and 8 to offer an exact prediction of the system performance since our aim in Section 5 is merely 
to demonstrate bounded recovery time. The measurements presented in this section show that Renaissance’s performance is 
in the ballpark of the estimation presented in Section 5.

6.2. Implementation

In this evaluation section, we demonstrate Renaissance’s ability to recover from failures without distinguishing between 
transient and permanent faults, as our model does (Fig. 3), because there is no definitive distinction between transient and 
permanent faults in real-world systems. Moreover, our implementation uses a variation on Algorithm 2. The reason that 
we need this variation is that this evaluation section considers changes to the network topology during legal executions, 
whereas our model considers such changes as transient faults that can occur before the system starts running.

In detail, Algorithm 2 installs rules on the switches using two tags, which are currT ag and prevT ag (line 2). That is, 
as the new rules for currT ag are being installed, the ones for prevT ag are being removed. Our variation uses a third 
tag, beforePrevTag, which tags the rules in the synchronization round that preceded the one that prevT ag refers to. When 
Renaissance installs new rules that are tagged with currT ag , it does not remove the rules tagged with prevT ag but instead, 
it removes the rules that are tagged with beforePrevTag. This one extra round in which the switches hold on to the rules 
installed for prevT ag ’s synchronization round allows Renaissance to use the κ-fault-resilient flows that are associated with 
prevT ag for dealing with link failures (without having them removed, as Algorithm 2 does). The above variation allows 
us to observe the beneficial and complementary existence of the mechanisms for tolerating transient and permanent link 
failures, i.e., Renaissance’s construction of κ-fault-resilient flows, and respectively, update of such flows according to changes 
reported by Renaissance’s topology discovery.
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Fig. 5. Bootstrap time for the networks using 3 controllers. The network diameters are 4, 5, 8, 10 and 11 (left to right order).

6.3. Setup

We consider a spectrum of different topologies (varying in size and diameter), including B4 (Google’s inter-datacenter 
WAN based on SDN), Clos datacenter networks and Rocketfuel networks (namely Telstra, AT&T and EBONE). The relevant 
statistics of these networks can be found in Table 8. The hosts for traffic and round-trip time (RTT) evaluation are placed 
such that the distance between them is as large as the network diameter. The evaluation was conducted on a PC run-
ning Ubuntu 16.04 LTS OS, with the Intel(R) Core(TM) i5-457OS CPU @ 2.9 GHz (4x CPU) processor and 32 GB RAM. The 
maximum transmission unit (MTU) for each link in the Mininet networks were set to 65536 bytes.

Paths are computed according to Breadth First Search (BFS) and we use OpenFlow fast-failover groups for backup paths. 
We introduce a delay before every repetition of the algorithm’s do forever loop as well as between each interval in which 
the abstract switch discovers its neighborhood. In our experiments, the default delay value was 500 ms. However, in an 
experiment related to the bootstrap time (Fig. 7), we have varied the delay values.

The link status detector (for switches and controllers) has a parameter called �, similar to the one used in [16, Section 
6]. This threshold parameter refers to scenarios in which the abstract switch queries a non-failing neighboring node without 
receiving a query reply while receiving � replies from all other neighbors. The parameter � can balance a trade-off between 
the certainty that node is indeed failing and the time it takes to detect a failure, which affects the recovery time. We have 
selected � to be 10 for B4 and Clos, and 30 for Telstra, AT&T and Ebone. We observed that when using these settings the 
discovery of the entire network topology always occurred and yet had the ability to provide a rapid fault detection.

6.4. Results

We structure our evaluation of Renaissance around the main questions related to the SDN bootstrap, recovery times, and 
overhead, as well as regarding the throughput during failures.

For illustrating our data in Figs. 5–6 and 9–14, we use violin plots [23]. In these plots, we indicate the median with a 
white dot. The first and third quartiles are the endpoints of a thick black line (hence the white dot representing the median 
is a point on the black line). The thick black line is extended with thin black lines to denote the two extrema of all the 
data (as the whiskers of box plots). Finally, the vertical boundary of each surface denotes the kernel density estimation 
(same on both sides) and the horizontal boundary only closes the surface. We ran each experiment 20 times. For the case 
of violin plots, we used all measurements except the two extrema. For the case of the other plots, we dismissed from the 
20 measurements the two extrema. Then, we calculated average values and used them in the plots.

6.4.1. How efficiently Renaissance bootstraps an SDN?
We first study how fast we can establish a stable network starting from empty switch configurations. Towards this end, 

we measure how long it takes until all controllers in the network reach a legitimate state in which each controller can 
communicate with any other node in the network (by installing packet-forwarding rules on the switches). For the smaller 
networks (B4 [24] and Clos [25]), we use three controllers, and for the Rocketfuel networks [26,27] (Telstra, AT&T and 
EBONE), we use up to seven controllers.
Bootstrapping time. We are indeed able to bootstrap in any of the configurations studied in our experiments. Lemma 5
predicts an O (D) bootstrap time when starting from an all-empty switch configuration; that prediction does not consider 
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Fig. 6. Bootstrap time for Telstra (T), AT&T (A) and EBONE (E) for 1 to 7 controllers.

Fig. 7. Bootstrap time for B4, Clos, Telstra, AT&T and EBONE using seven controllers, as a function of query intervals. Recall that the task delay in the 
added time between any repetition of the algorithm’s do forever loop as well as each interval in which the abstract switch discovers its neighborhood. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Network Nodes Diameter
B4 12 5
Clos 20 4
Telstra 57 8
AT&T 172 10
EBONE 208 11

Fig. 8. The number of nodes and diameter of the studied networks.

the number of nodes, as explained above. Note that in such executions, no controller sends commands that perform (illegit-
imate) deletions before it discovers the entire network topology and thus no illegitimate deletion is ever performed by any 
controller. In terms of performance, we observe that the recovery time grows (Fig. 5) as the network dimensions increase 
(diameter and number of nodes). It also somewhat depends on the number of controllers when experimented with the 
larger networks (Fig. 6): more controllers result in slightly longer bootstrap times. We note that the recovery process over 
a growing number of controllers follows trades that appear when considering the maximum value over a growing number 
of random variables. Specifically, when an abstract switch updates its rules, the time it takes to update all of the rules that 
were sent by many controllers can appear as a brief bottleneck.
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Fig. 9. Communication cost per node needed from a maximum loaded global controller to reach a stable network. Note that we divide the number of 
messages by the number of iterations it takes to converge.

Fig. 10. Recovery time after fail-stop failure for a controller.

Note that the shown bootstrap times only provide qualitative insights: they are, up to a certain point, proportional to 
the frequency at which controllers request configurations and install flows (Fig. 7). Specifically, the rightmost peaks in the 
charts are due to the congestion caused by having task delays that overwhelm the networks. These peaks rise earlier for 
networks with an increasing number of switches. This is not a surprise because the proposed algorithm establishes more 
and longer flows in larger networks and thus uses higher values of network traffic as the number of nodes becomes larger.
Communication overhead. The study of bootstrap time thus raises interesting questions regarding the communication over-
head during the network bootstrap period. Concretely, we measure the maximum number of controller messages, taking 
three controllers for the smaller networks B4 and Clos, and seven controllers for the Rocketfuel networks Telstra, AT&T and 
EBONE in these experiments. While the communication overhead naturally depends on the network size, Fig. 9 suggests 
that when normalized, i.e., dividing by the number of iterations it takes to recover, the overhead is similar for different 
networks (and slightly higher for the case of the two largest networks).

6.4.2. How efficiently Renaissance recovers from link and node failures?
In order to study the recovery from benign failures, we distinguish between their different types: (i) fail-stop failures of 

controllers, (ii) permanent switch-failures, and (iii) permanent link-failures. The experiments start from a legitimate system 
state, to which we inject the above failures.
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Fig. 11. Recovery time after fail-stop failure of 1-6 controllers in Telstra (T), AT&T (A) and EBONE (E).

Fig. 12. Recovery time after permanent switch-failure.

(i) Recovery after the occurrence of controller’s fail-stop failure.
We injected a fail-stop failure by disconnecting a single controller chosen uniformly at random (Fig. 10). We have also 

conducted an experiment in which we have disconnected many-but-not-all controllers (Fig. 11). That is, we disconnected 
a single controller that is initially chosen at random and measured the recovery time. The procedure was repeated for the 
same controller while recording the measurements until only one controller was left. Lemma 8, which does not take into 
consideration the time it takes to send or receive messages, suggests that after the removal of at most NC − 1 controllers, 
the system reaches a legitimate system state within O (D). We observe in Fig. 10 results that are in the ballpark of that 
prediction. Moreover, we also measure disconnecting one to six random controllers simultaneously for the Rocketfuel net-
works (Telstra, AT&T, and EBONE), while running controller number 7. Note that we could not observe a relation between 
the number of failing controllers and the recovery time, see Fig. 11.
(ii) Recovery after the occurrence of switch’s fail-stop failure. We have experimented with recovery after permanent switch-
failures. These experiments started by allowing the network to reach a legitimate (stale) state. Once in a legitimate (stale) 
state, a switch (selected uniformly at random) was disconnected from the network. We have then measured the time it 
takes the system to regain legitimacy (stability). We know that by Lemma 8, the recovery time here should be at most 
in the order of the network diameter. Fig. 12 presents the measurements that are in the ballpark of that prediction. That 
is, the longest recovery time for each of the studied networks grows as the network diameter does. We also observe a 
rather large variance in the recovery time, especially for the larger networks. This is not a surprise since the selection of the 
disconnected switch is random.
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Fig. 13. Recovery time after permanent link-failure.

Fig. 14. Recovery time after multiple (2,4 or 6) permanent link-failures at random for B4 (B), Clos (C), Telstra (T), AT&T (A) and EBONE (E).

(iii) Recovery after the occurrence of permanent link-failures. During the experiments, we waited until the system reached 
a legitimate state, and then disconnected a link and waited for the system to recover. Lemma 8 predicts recovery within 
O (D). Fig. 13 presents results that are in the ballpark of that prediction. We also investigated the case of multiple and 
simultaneous permanent link failures that were selected randomly. Fig. 14 suggests that the number of simultaneous failures 
does not play a significant role with respect to the recovery time.

6.4.3. Performance during failure recovery
Besides connectivity, we are also interested in performance metrics such as throughput and message loss during recovery 

period that occur after a single link failure. Recall that we model such failures as transient faults and therefore there is a 
need to investigate empirically the system’s behavior during such recovery periods since the mechanism for fault-resilient 
flows (Section 2.2.2) is always active. Our experiments show that the combination between the proposed algorithm and the 
mechanism for fault-resilient flows performs rather well. That is, the recovery period from a single permanent link failure 
is brief and it has a limited impact on the throughput.

In the following, we measure the TCP throughput between two hosts (placed at a maximal distance from each other), 
in the presence of a link-failure located as close to the middle of the primary path as possible. To generate traffic, we use 
Iperf. A specific link to fail is chosen, such that it enables a backup path between the hosts.

The maximum link bandwidth is set to 1000 Mbits/s. During the experiments, we conduct throughput measurements 
during a period of 30 seconds. The link-failure occurs after 10 seconds, and we expect a throughput drop due to the traffic 
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Fig. 15. Throughput for the different networks using network updates with tags. Here, a single link failure causes the drop after the 10th second.

Fig. 16. Throughput for the different networks using no recovery after link-failure. Here, a single link failure causes the drop after the 10th second.

Network Correlation

Clos 0.94
B4 0.95

Telstra 0.92
EBONE 0.96
Exodus 0.94

Fig. 17. Correlation coefficient of the average throughput for the experiments in Fig. 15 and Fig. 16.

being rerouted to a backup path. We note that our prototype utilizes packet tagging for consistent updates [28] using the 
variation of Algorithm 2 (presented in Section 6.2), which allows the controllers to repair the κ-fault-resilient flows without 
the removal of the ones tagged with the previous tag.

We can see in Fig. 15 that one throughput valley occurs indeed (to around 480 - 510 Mbits/s). For comparison, Fig. 16
shows the throughput over time without recovery that includes consistent updates [28]: only the backup paths are used in 
these experiments, and no new primary paths are calculated or used after the link-failure at the 10th second. The results 
in Figs. 15 and 16 are very similar: there is a strong correlation between these two methods in terms of performance, see 
Table 17.
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Fig. 18. Retransmission percentage rate for packets sent at each second.

Fig. 19. Percentage of “BAD TCP” flags during the recovery period that follows a single link failure.

In order to gain more insights, we used Wireshark [29] for investigating the number of re-transmissions (after the link-
failure) for Telstra, AT&T and EBONE network topologies. We observed an increase in the packets sent at the 11th second 
(after the link-failure) are re-transmissions (Fig. 18) and “BAD TCP” flags (Fig. 19). This increase was from levels of below 
1% to levels of between 10% and 15% and it quickly deescalated. We have also observed a much smaller presence of out-
of-order packets (Fig. 20). We observe that these phenomena (and the slight irregularity in the throughput) are related to 
TCP congestion control protocol, which is TCP Reno [30]. Indeed, whenever congestion is suspected, Reno’s fast recovery 
mechanism divides the current congestion window by half (when skipping the slow start mechanism).

7. Related work

The design of distributed SDN control planes has been studied intensively in the last few years [31–37]; both for perfor-
mance and robustness reasons. While we are not aware of any existing solution for our problem (supporting an in-band and 
distributed network control), there exists interesting work on bootstrapping connectivity in an OpenFlow network [38,39]
that does not consider self-stabilization. In contrast to our paper, Sharma et al. [38] do not consider how to support multiple 
controllers nor how to establish the control network. Moreover, their approach relies on switch support for traditional STP 
and requires modifying DHCP on the switches. We do consider multiple controllers and establish an in-band control network 
in a self-stabilizing manner. Katiyar et al. [39] suggest bootstrapping a control plane of SDN networks, supporting multiple 
controller associations and also non-SDN switches. However, the authors do not consider fault-tolerance. We provide a very 
strong notion of fault-tolerance, which is self-stabilization.
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Fig. 20. Percentage of out-of-order packets during the recovery period that follows a single link failure.

To the best of our knowledge, our paper is the first to present a comprehensive model and rigorous approach to the 
design of in-band distributed control planes providing self-stabilizing properties. As such, our approach complements much 
ongoing, often more applied, related research. In particular, our control plane can be used together with and support dis-
tributed systems such as ONOS [31], ONIX [32], ElastiCon [33], Beehive [34], Kandoo [35], STN [36] to name a few. Our 
paper also provides missing links for the interesting work by Akella and Krishnamurthy [40], whose switch-to-controller 
and controller-to-controller communication mechanisms rely on strong primitives, such as consensus protocols, consistent 
snapshot and reliable flooding, which are not currently available in OpenFlow switches. Our proposal does not utilize con-
sensus or flooding, as in [40]. In other words, the proposed solution requires less than that of [40] from the underlying 
system, e.g., we do not assume synchrony. Also, unlike the proposal in [40], our proposal is self-stabilizing and includes 
both algorithmic and empirical analysis.

We also note that our approach is not limited to a specific technology, but offers flexibilities and can be configured with 
additional robustness mechanisms, such as warm backups, local fast failover [41], or alternatives spanning trees [42,43].

Our paper also contributes to the active discussion of which functionality can and should be implemented in OpenFlow. 
DevoFlow [44] was one of the first works proposing a modification of the OpenFlow model, namely to push responsibility 
for most flows to switches and adding efficient statistics collection mechanisms. SmartSouth [45] shows that in recent 
OpenFlow versions, interesting network functions (such as anycast or network traversals) can readily be implemented in-
band. More closely related to our paper, [46] shows that it is possible to implement atomic read-modify-write operations on 
an OpenFlow switch, which can serve as a powerful synchronization and coordination primitive also for distributed control 
planes; however, such an atomic operation is not required in our system: a controller can claim a switch with a simple write 
operation. In this paper, we presented a first discussion of how to implement a strong notion of fault-tolerance, namely a 
self-stabilizing SDN [4,5].

We are not the first to consider self-stabilization in the presence of faults that are not just transient faults (see [4], 
Chapter 6 and references therein). Thus far, these self-stabilizing algorithms consider networks in which all nodes can 
compute and communicate. In the context of the studied problem, some nodes, i.e., the switches, can merely forward 
packets according to rules that are decided by other nodes, i.e., the controllers. To the best of our knowledge, we are the 
first to demonstrate a rigorous proof for the existence of self-stabilizing algorithms for an SDN control plane. This proof uses 
a number of techniques, such as the one for assuring a bounded number of resets and illegitimate rule deletions, that were 
not used in the context of self-stabilizing bootstrapping of communication (to the best of our knowledge).

Bibliographic note. We reported on preliminary insights on the design of in-band control planes in two short papers on 
Medieval [46,47]. However, Medieval is not self-stabilizing, because its design depends on the presence of non-corrupted con-
figuration data, e.g., related to the controllers’ IP addresses, which goes against the idea self-stabilization. A self-organizing 
version of Medieval appeared in [48]. Renaissance provides a rigorous algorithm and proof of self-stabilization; it appeared 
as an extended abstract [49] and as a technical report [15].

8. Discussion

While the benefits of the separation between control and data planes have been studied intensively in the SDN literature, 
the important question of how to connect these planes has received less attention. This paper presented a first model and 
an algorithm, as well as a detailed analysis and proof-of-concept implementation of a self-stabilizing SDN control plane 
called Renaissance.
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8.1. A �(D) stabilization time variation (without memory adaptiveness)

Before concluding the paper, we would like to point out the existence of a straightforward 	(D) lower bound to the 
studied task to which we match an O (D) upper bound. Indeed, consider the case of a single controller that needs to 
construct at least one flow to every switch in the network. Starting from a system state in which no switch encodes any 
rule and the controller is unaware of the network topology, an in-band bootstrapping of this network cannot be achieved 
within less than O (D) frames, where D is the network diameter (even in the absence of any kind of failure).

We also present a variation of the proposed algorithm that provides no memory adaptiveness. In this variation, no 
controller ever removes rules installed by another controller (line 17). This variation of the algorithm simply relies on 
the memory management mechanism of the abstract switches (Section 2.1.1) to eventually remove stale rules (that were 
either installed by failing controllers or appeared in the starting system state). Recall that, since the switches have sufficient 
memory to store the rules of all controllers in P C , this mechanism never removes any rule of controller pi ∈ P C after 
the first time that pi has refreshed its rules on that switch. Similarly, this variation of the algorithm does not remove 
managers (line 15) nor performs C-resets (line 21). Instead, these sets are implemented as constant size queues and similar 
memory management mechanisms eventually remove stale set items. We note the existence of bounds for these queues 
that make sure that they have sufficient memory to store the needed non-failing managers and replies, i.e., maxManagers, 
and respectively, 3 · maxRules.

Recall the conditions of Lemma 5 that assume no C-resets and illegitimate deletions to occur during the system execu-
tion. It implies that the system reaches a legitimate state within ((�comm + �synch) + 2)D + 1 frames from the beginning 
of the system execution. However, the cost of memory use after stabilization can be NC /nC times higher than the proposed 
algorithm. We note that Lemma 5’s bound is asymptotically the same as the recovery time from benign faults (Lemmas 7
and 8). Theorem 2 brings an upper-bound for the proposed algorithm that is (((�comm + �synch)D + 1) · N S + NC + 1)

times larger than the one of the above variance with respect to the period that it takes the system to reach a legitimate 
state. However, Theorem 2 considers arbitrary transient faults, which are rare. Thus, the fact that the recovery time of the 
proposed memory adaptive solution is longer is relevant only in the presence of these rare faults.

8.2. Possible extensions

We note that the proposed algorithm can serve as the basis for more even advanced solutions. In particular, while we 
have deliberately focused on the more challenging in-band control scenario only, we anticipate that our approach can also 
be used in networks which combine both in-band and out-of-band control, e.g., depending on the network sub-regions. 
Another possible extension can consider the use of a self-stabilizing reconfigurable replicated state machine [50–52] for 
coordinating the actions of the different controllers, similar to ONOS [31].

This work showed how to construct a distributed control plane by connecting every controller to any node in the net-
work. That is, the algorithm defines rules for forwarding control packets between every controller and every node. Note that, 
once the proposed distributed control plane is up and running, the controllers can collectively define rules for forwarding 
data packets. This, for example, can be built using self-stabilizing (Byzantine fault-tolerant) consensus and state-machine 
replication [53–57].
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