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A B S T R A C T

Modern cloud applications has led to a huge increase in multicast flows, which is becoming one of
the primary communication patterns in nowadays datacenter networks. Emerging datacenter tech-
nologies enable interesting new opportunities to support such multicast traffic more effectively and
flexibly in the physical layer: novel circuit switches offer high-bandwidth and reconfigurable inter-
rack multicasting capabilities. However, not much is known today about the algorithmic challenges
introduced by this new technology, especially in optimizing the completion times for multicast flows.

This paper presents SplitCast, a preemptive multicast scheduling approach that fully exploits
emerging high-bandwidth physical-layer multicasting capabilities to reduce flow times. SplitCast dy-
namically reconfigures the circuit switches to adapt to the multicast traffic, accounting for recon-
figuration delays. In particular, SplitCast relies on simple single-hop routing and leverages transfer
flexibilities by supporting splittable multicast so that a transfer can already be delivered to just a sub-
set of receivers when the circuit capacity is insufficient. Moreover, SplitCast supports two common
forwarding models, the all-stop and the not-all-stop, during circuit reconfiguration. We conduct ex-
tensive simulation to evaluate the performance of SplitCast, and the results show that SplitCast can
cut down flow times significantly compared to state-of-the-art solutions.

1. Introduction
With the vast popularity of data-centric applications, it

is expected that datacenter traffic will continue to grow ex-
plosively in the coming decades, pushing today’s datacenter
designs to their limits. Accordingly, we currently witness
great efforts to design innovative datacenter topologies, of-
fering high throughput at low cost [1, 2, 3, 4, 5, 6, 7, 8, 9],
or even allowing to adjust networks adaptively, in a demand-
aware manner [10, 11, 12].

A particularly fast-growing communication pattern in
data centers today are multicasts. Data-centric applications
increasingly rely on one-to-many communications [13, 14,
15, 16], including distributed machine learning [17], appli-
cations related to financial services and trading workloads [18,
19], virtual machine provisioning [20], pub/sub systems [21],
etc. [22, 23]. In many of these applications, multicasts are
frequent and high-volume and are becoming a bottleneck [13,
24, 25, 14, 26]. For example, in distributed machine learn-
ing frameworks, the learning model has to be frequently
communicated among all computation nodes during the long-
term training process [17, 27]. Despite the wide use of mul-
ticast, there is currently no support among cloud providers
for efficient multicasting: a missed opportunity [24, 13, 28].

Our paper is motivated by emerging optical technologies
which can potentially improve the performance of transfer-
ring multicast flows by supporting in-network multicast on
the physical layer. In particular, recent advancements for
reconfigurable circuit switches (RCS) allow to set up high-
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bandwidth port-to-multiport circuit connections which sup-
port adaptive and demand-aware multicasting among top-
of-rack (ToR) switches [29, 30, 31, 25, 26, 14, 12]. See
the example in Fig. 1(a) for an illustration: in this exam-
ple, the RCS can be used to first create a circuit connection
to directly multicast data from ToR 1 to ToRs 3 and 4, af-
ter which the RCS is reconfigured to support multicast from
ToR 2 to ToRs 1, 3, and 4 in a demand-aware manner (see
Fig. 1(b)). In general, the possibility to simultaneously fan
out to multiple receiver racks over a single port-to-multiport
circuit connection can greatly improve the delivery of mul-
ticast flows.

However, while this technology is an interesting enabler,
we currently lack a good understanding of how to algorith-
mically exploit this technology to optimize multicast com-
munications. While interesting first approaches such as Blast
[25] and Creek [26] are emerging, these solutions are still
limiting in that they cannot fully use the high capacity of
the circuit switch as they only transfer data as long as a
circuit connection can be created to match all the receivers
of a flow.
Motivating Example. Consider the situation shown in Fig. 2,
where there are three multicast flows f1, f2 and f3, each of
unit size. In this example, each node denotes one port of the
circuit switch and connects a ToR. Using the state-of-the-art
solution Blast [25] (single-hop) or Creek [26] (multi-hop),
the three flows have to be delivered one by one: the output
of a circuit (right) can only receive traffic from a single input
(left) on the other side of the circuit, while any two of these
three flows compete for one outport (f1 contends with f2,
f3 at outport R3, R2, respectively, and f2 contends with f3
at outport R1). Hence, a multicast flow can only be sched-
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Figure 1: A reconfigurable datacenter network based on a
reconfigurable circuit switch (RCS) allows to enhance the
conventional packet switching network with multicast capa-
bilities: e.g. at time t = 1, RCS supports multicasting ToR 1
to ToRs 3 and 4, while at time t = 2, from ToR 2 to ToRs 1, 3
and 4.

f1
f2

f3

R1
R2
R3

(a) Non-splittable multicast

f1
f23

f21
f3

R1
R2
R3

(b) Splittable multicast

Figure 2: A splittable multicast decreases the average flow
time by 22.2%, compared to a non-splittable multicast.

uled at a time when a port-to-multiport circuit connection is
set up between the corresponding ToRs matching its sender
and receivers as shown in Fig. 2(a). The average flow time
(i.e., average of the multicast flow duration) is 1+3+5

3 = 3
units of time if reconfiguring circuit connections takes one
unit of time.

However, if just matching the multicasts, we observe
that there are some free ports: an unused optimization op-
portunity we want to exploit in this work. For example, R1,
R2,R3 in Fig. 2(a) are unused when f1, f2, f3 are delivered,
respectively. In principle, all these ports can be fully used
if one splits and schedules f2 in two steps, each transferring
data to one of its receivers, as shown in Fig. 2(b). This re-
duces the average flow time to 1+3+3

3 = 2.3 units of time,
decreasing the average flow time by 22.2% compared to the
non-splittable solution in Fig. 2(a).

Problem. This simple example motivates us, in this
paper, to study the opportunities to improve the multicast
performance by supporting splittable multicasting: multi-
cast data which can be sent just to a subset of receivers at
a time by allowing circuit switch to strategically build port-

to-multiport circuit connections between ToRs. Essentially,
a circuit connecting an input port to multiple outports forms
a hyperedge and creating port-to-multiport circuit connec-
tions for multicast data produces a hypergraph matching
problem [32]. We are particularly interested in the split-
table multicast matching problem: a sender port/rack is al-
lowed to match to just a subset of the receiver ports/racks of
a multicast flow at a time.

More specifically, we consider the non-negligible time
delay for reconfiguring the circuit switch and multicast de-
mands with different flow sizes, where our objective is to
design a scheduler which reconfigures the circuit switch in a
demand-aware manner, in order to minimize multicast flow
times. In our model, a created port-to-multiport circuit con-
nection allows one ToR to simultaneously transmit to multi-
ple ToRs at bandwidth bc . Inter-rack multicast flows arrive
in an online manner, and a scheduled flow transmits from
server to the associated ToR first via a link with bandwidth
bs ≤ bc .

Our Contributions. This paper presents SplitCast, an
efficient scheduler for multicast flows in reconfigurable dat-
acenter networks, which leverages splitting opportunities to
improve performance of multicast transfers. By dynami-
cally adjusting the network topology and supporting split-
table multicasting, SplitCast fully exploits the available in-
frastructure, reducing flow times and improving through-
put. SplitCast is also simple in the sense that it relies on
segregated routing: similar to reconfigurable unicast solu-
tions, routing is either 1-hop along the reconfigurable cir-
cuit switch or along the (static) packet switching network,
but never a combination.

We provide insights into the algorithmic complexity of a
simplified problem variant, scheduling bounds, and present
a general problem formulation. We also show how to tackle
the challenges of splittable flows, how to account for recon-
figuration delays, and how to incorporate different circuit
switch reconfiguration models. Our extensive simulations
indicate that SplitCast can significantly outperform state-of-
the-art approaches: not only are the flow times reduced by
up to 9× but also the throughput increased by up to 3×.

Organization. Our paper is organized as follows. We
first review related work in §2 and theoretically analyze a
fundamental version of the multicast matching problem and
greedy scheduling in §3. We next provide a formulation and
motivating example for the generalized scheduling problem,
and discuss the challenges of splittable multicast scheduling
in §4. In §5, we present our solution, SplitCast, in detail.
After reporting the simulation results in §6, , we conclude
this work in §7.

2. Related Work
Multicast communication in datacenter networks

Multicast is a typical communication pattern of many data-
center applications, such as the data dissemination of publish-
subscribe services [21], distributed caching infrastructures
updates [24] and state machine replication [33]. Multicast
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communications are growing explosively in scale due to the
proliferation of applications based on big data processing
frameworks [34, 35, 36]. In order to improve the perfor-
mance of multicast transfers, many works turn to IP multi-
cast and focus on issues like scalability and reliability [37,
38, 13] of the deployment of IP multicast in the datacenter
context. Recent work also investigated the benefits of P4
in multicast [39] and of different topologies, e.g., multi-root
networks [40]. However, all these above proposals consider
multicast over static networks, and hence do not investigate
the benefits of reconfigurability.

Reconfigurable datacenter networks
One of the recent technology innovations in networking re-
search is the possibility of providing reconfigurable high-
bandwidth inter-rack connections at runtime, with reconfig-
urable circuit switches. Importantly, such technology also
supports high-performance inter-rack multicasting. This ca-
pability of data multicast is enabled by circuit switching
technologies [14, §I], e.g., optical circuit switches (OCS) [25,
26], free-space optics (FSO) [29, 10], and 60 GHZ wireless
links [41, 42, 43].

This work is in turn motivated by such novel circuit
switching technologies and focuses on scheduling algorithms
for multicast flows. The most related works are Blast [25]
and Creek [26]. Both transfer data only when there exists a
circuit connection matching all the receivers of a multicast
flow. In contrast, we also allow a flow to transfer data when
a circuit connection matching only a subset of its receivers.

We are also inspired by works leveraging the so-called
not-all-stop switch model [44], where, similar to FSO, cre-
ating or tearing down some circuits does not interrupt the
other circuits. Circuit switches leveraging not-all-stop model
are available off-the-shelf and have also shown to be mul-
ticast feasible in an FSO setting [29]. While not-all-stop
model has been considered to reduce flow completion time
for coflows [44], and in standard unicast traffic as well [10,
45], we are not aware of other multicast scheduling work
investigating this model

There also emerge further several works [46, 11, 47, 48,
49] on demand-aware reconfigurable datacenter networks.
Schmid et al. [46, 11, 47] focus on designing topologies
towards better network-wide performances, and Salman et
al. [48] and Wang et al. [49] focus on learning the topology.
They consider unicast flows and are all orthogonal to this
work. We refer to [50] for a recent survey.

Frame-based multicast scheduling
Different from the frame-based multicast scheduling prob-
lem in input-queued switches that takes flow rates as de-
mands, we focus on size-based traffic demands. The former
aims to decompose a rate matrix into multiple switch con-
figurations (permutation matrices) under switch constraints,
while we determine not only switch configurations but also
how long every computed configuration should maintain.
We also consider the switch reconfiguration delay of the
practical system while the frame-based multicast scheduling
does not. Moreover, our objective is to minimize the flow
completion time, while the frame-based multicast schedul-

ing aims at finding permutation matrices that satisfy a given
rate matrix. We refer to the work of Sundararajan et al. [51]
for an overview on frame-based multicast scheduling.

Reconfigurable Wide Area Networks (WANs)
WANs have also benefited from programmable physical lay-
ers, by e.g. leveraging reconfigurable optical add/drop mul-
tiplexers (ROADMs) [52]. Various networking research di-
rections were investigated, such as scheduling and comple-
tion times [53, 54, 55], robustness [56] and attacks [57], ab-
stractions and optical topology programming [58, 59], con-
nectivity as a service [60], CDN-ISP-interplay [61], and vari-
able bandwidth links [62, 63]. Benefits of multicast were
studied by Luo et al. [39], in the context of bulk transfers.

Bibliographical note: A preliminary version of this ar-
ticle appeared in the proceedings of IEEE INFOCOM 2020 [64].
This version was carefully revised and extended. In partic-
ular, this journal version mainly includes additional theoret-
ical scheduling bounds, an extension to not-all-stop model
of circuit connection, a new algorithm designed for this new
model, and an extensive evaluation of its performance ben-
efits.

3. First Insights into the Algorithmic Problem
We first present insights into the fundamental static prob-

lem underlying the design of datacenter topologies optimized
for multicasts. In the following, we consider the multicast
matching and the splittable multicast matching problem in-
troduced by the question: how to configure the RCS such
that the resulting matching maximizes the number of multi-
cast transfers that can be served simultaneously.

3.1. The Multicast Matching Problem
The multicast matching problem is essentially a hyper-

graph matching problem [32], this connection has already
been observed in [25], where the authors also provide some
intuition that “the multicast matching problem has a similar
complexity”. However, the complexity is not proven for-
mally. We first formalize their intuition and then prove it
to be correct already for a simple version multicast match-
ing: Given a set of k ∈ ℕ sources and receivers and a set of
hyperedges, each of the same weight (value/cost) with one
source and one or two receivers, can we admit q ∈ ℕ such
edges into a matching s.t. each node is incident to at most
one hyperedge?

Theorem 1. Multicast matching is NP-hard, already in the
unit weight case with at most k = 2 receivers per transfer.

PROOF. We use a variant of the 3-dimensional matching
problem for our proof, i.e., given a set M ⊆ X × Y × Z,
where X, Y ,Z are disjoint sets of q elements each: Does
M contain a subset (matching) M ′ s.t. |M ′

| = q and no
two elements in M ′ share a coordinate? This problem has
been shown to be NP-hard [65]:

Observe that we can cast (in polynomial time) each such
instance as a multicast matching problem: To this end, we
translate the hyperedges in M into transfers by setting X
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as the sources and Y ,Z as the receiver nodes, potentially
padding the number of source/receiver nodes to be of equal
number. Now, if q such transfers can be admitted simul-
taneously, it directly translates to a set M ′ of q elements
and vice versa. Hence, we have shown our multicast match-
ing problem to be NP-hard, as it can be used to solve each
instance of the NP-hard 3-dimensional matching problem,
using only polynomial-time overhead.

We note in this context that Sundararajan et al.[51] showed
the problem of deciding the feasibility of a given rate vector
in this context to be NP-hard. We note that there are subtle
differences between the models, see our discussion in §2.
Moreover, we show hardness already for k = 2, i.e., more
specific, whereas the former only considers the general case.

3.2. Upper Bounds for Online Non-Preemptive
Scheduling

In this paper, we are particularly interested in the online
problem where requests arrive over time in an online fash-
ion and need to be served quickly, requiring fast algorithms.
Thus, a scheduling algorithm has to evolve and compute dy-
namic matchings. To this end, we consider greedy schedul-
ing algorithms, and revisit the approach by Jia et al. [54].

In the online setting, multicast transfer requests arrive at
the system in an arbitrary order, and each transfer is asso-
ciated with one source and multiple (i.e., k) receivers. We
assume that the size of every transfer is integer and all links
have unit capacity.

Definition 1. At any time slot t, we have a collection of
available multicast flows represented by edges in G(t). We
go through the flows in any arbitrary order and schedule
flows if the port constraints are not violated. This is the
Greedy Scheduling proposed by Jia et al.[54].

Jia et al. [54] showed the competitive ratio of greedy
scheduling to be 2 + 1 = 3 in a unicast setting with k = 1
receiver. We extend their results to arbitrary k, deriving a
bound of 2 + k:

Theorem 2. If each multicast flow has k receivers, the greedy
scheduling algorithm is (2 + k)-competitive.

PROOF. For each flow j, we use rj , Tj and T ∗
j respectively,

to denote its arrival time, the time when it is scheduled in the
greedy algorithm, and the time when it is scheduled in the
optimal offline algorithm. We can use T and T ∗ to denote
the makespan of the greedy algorithm and that of the offline
optimal solution. When flow j has a size of vj , we obtain

rj + vj ≤ T ∗
j ≤ T ∗ (1)

For the greedy algorithm, a worst case situation arises
when a flow j needs to be scheduled when all the flows at
its sender node sj and at its receivers nodes dj have finished.
Thus, Tj can be upper bounded by

Tj ≤ rj +
∑

i∈F (sj )
vi +

∑

dj∈dj ,i∈F (dj )
vi + vj (2)

On the other hand, we know that flow j and the flows in
F (sj) share the sender node sj and thus the optimal solution
has to use at least

∑

i∈F (sj ) vi + vj time to schedule them,
i.e.,

∑

i∈F (sj )
vi + vj ≤ T ∗ (3)

Similarly, at the receiver side, the optimal solution re-
quires at least time maxd∈dj (

∑

i∈F (dj ) vi) + vj for schedul-
ing, i.e.,

∀dj ∈ dj ,
∑

i∈F (dj )
vi + vj ≤ T ∗ (4)

Putting equation (1), (3) and (4) together into (2), we
have

Tj ≤ rj +
∑

i∈F (sj )
vi +

∑

dj∈dj ,i∈F (dj )
vi + vj

≤ T ∗ +
∑

i∈F (sj )
vi +

∑

dj∈dj ,i∈F (dj )
vi

≤ T ∗ + T ∗ + kT ∗

= (2 + k)T ∗ (5)

The first inequality is derived from equation (1), and the
second one is derived from (3) and (4).

4. Problem, Approach and Challenges
Given the first insights in §3, we now formulate the gen-

eral multicast scheduling problem considered in this paper.

4.1. Problem Setting
We consider a hybrid datacenter including a reconfig-

urable circuit switching network and a packet switching net-
work, recall Fig. 1. We focus on the former that is enabled
by the high-bandwidth circuit switch, as in Blast [25] and
Creek [26], and consider multicast flows that arrive over
time and can be of arbitrary size. Our main goal is to mini-
mize flow time, but we will also consider a throughput max-
imization objective.

In our reconfigurable network model, every ToR is di-
rectly connected to the circuit switch via an exclusive port.
The bandwidth of a circuit switch port is generalized to bc ,
which is typically multiple times the bandwidth bs of the
link between a server and a ToR. For example, bc can be
10Gbps, 40Gbps, 100Gbps and beyond while bs is 10Gbp
[25, 26, 14]. The circuit switch can constantly reconfigure
high-speed port-to-multiport circuit connections between the
ToRs, but comes with a reconfiguration delay and stops trans-
mitting data during the reconfiguration period. Any two cir-
cuit connections can share neither sender port nor receiver
ports [8, 14, 25, 26].

A multicast flow f is characterized by a tuple (sf ,df ,
vf , tarr

f ), where sf , df , vf , and tarr
f denote the sender rack,

the set of receiver racks, the data volume, and the release
time, respectively. By taking advantage of the application
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Figure 3: Preemptive and splittable scheduling can significantly speed up the flow time,
compared to the solutions that are just based on splittable or preemptive.

knowledge, the multicast group membership and traffic vol-
ume is available upon flow arrival [66, 25]. We assume seg-
regated routing model in this work, where a flow routed us-
ing either a single-hop circuit switching or multihop packet
switching, but not a combination of both [10, 47]. Such a
single-hop segregated routing avoids moving traffic between
the circuit and the packet switching network.

The question is to decide which circuit connections to
create and which flows to transfer over these connections,
optimizing the objective and accounting for the circuit switch
constraints.

4.2. Scheduling Approach: Splittable and
Preemptive Multicast

Flows are scheduled epoch by epoch, where in each of
the epochs the circuit connections and the set of serving
flows are fixed. At the beginning of an epoch, we determine
the circuit connections to be set up as well as the flows to be
served in this epoch. We also have to determine the epoch
duration in order to properly trade off reconfiguration over-
head against sub-optimal configurations. Overall, we adopt
splittable and preemptive data transfers.

We briefly explain the key idea of our solution and its
advantages over splittable-only and preemptive-only solu-
tions in Fig. 3, respectively. Using splittable transfers, the
scheduling algorithm may transfer data to just a subset of the
receivers of a multicast flow in an epoch. For example, for a
flow f2, the circuit switch may transfer data to its receiver 1
in the first epoch and its receivers 3, 6 in the second epoch by
building port-to-multiport connections between the source
ToR and the destination ToRs corresponding to the selected
subset of receivers, respectively, as shown in Fig. 3(b).

Additionally, a circuit connection can be shared by mul-
tiple matched flows to fully use the high-bandwidth capaci-
ties of circuit switches. As the bandwidth (bc) of per circuit
switch port is assumed to be twice the fan-in rate (bs) of each

flow, f1 and f4 are simultaneously transferred over a circuit
connecting inport 1 and outports 2 to 6 in the first epoch
in Fig. 3(b). Therefore, f1 also reaches the non-receiver
ToRs via outports 5, 6. However, it is necessary to prevent
the non-receiver ToRs from further forwarding f1 to non-
destination racks for storage efficiency. To this end, we in-
stall ToR forwarding rules only for the flows with this rack
destination. Hence, the ToRs connecting outports 5, 6 will
directly discard the packets of f1 due to no matching rule.

Using preemptive transfers, the scheduling algorithm may
reconfigure the circuit connections and reallocate the con-
nections to the most critical flows before the completion of
serving flows. For example, the circuit switch can be recon-
figured with a delay of 1ms and flow f4 is preempted by f3
and f5 after the completion of f1 shown in Fig. 3(c). With
preemption, the average flow time (see Fig. 3(f)) is sped up
1.43× over the splittable but non-preemptive plan shown in
Fig. 3(e). Moreover, by combining splittable and preemp-
tive scheduling (Fig. 3(d)), the average flow time (Fig. 3(g))
can be sped up 1.74× and 1.22× over the only splittable
(Fig. 3(b)) and preemptive plan (Fig. 3(c)), respectively.

4.3. Mathematical Formulations
We now present our formulation for the splittable mul-

ticast problem in an epoch, using the notations shown in
Table 1. We determine the circuit connections, the flows to-
be-scheduled and the length of a concerned epoch t. We first
point out the constraints of building circuit connections and
of scheduling flows and then formalize the objectives.

Constraints. Constraint (6) expresses that the output of
a circuit connection can only receive traffic from a single
input on the other side of the circuit. Constraint (7) con-
stricts the transmission rate of flows from a rack i to the cir-
cuit should not exceed the circuit port bandwidth bc . Con-
straint (8) states that a flow f with a set of receiver racks df
could transfer data to its receiver rack d ∈ df via the circuit
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Table 1
Key notations used problem formulations

Network model
n the number of all racks connecting to circuit switch
bs bandwidth of per server NIC port
bc bandwidth of per circuit switch port, bc ≥ bs
� reconfiguration time of switch circuit

Multicast flow f
sf the sender rack
af,i indicator whether rack i is the sender rack
df the set of receiver racks
vf the (remaining) flow size
tarr
f the arrival time

Internal and decision variables for epoch t
xti,j binary: indicate whether there is a circuit connec-

tion destining to rack j from rack i
wt
f binary: indicate whether flow f is to be scheduled

wt
f ,d binary: indicate whether flow f transfers data to

its receiver d
�t the time duration of the concerned epoch

switch only if there is a circuit connection originating from
the sender rack sf to d. Constraint (9) together with (10)
express that a flow f is to be scheduled as long as at least
one of its receivers is to be served.

∀j ∶
∑

i
xti,j ≤ 1 (6)

∀i ∶
∑

f
bsaf,iw

t
f ≤ bc (7)

∀f, d ∈ df ∶ wtf ,d ≤ xtsf ,d (8)

∀f ∶ wtf ≤
∑

d∈df

wtf ,d (9)

∀f, d ∈ df ∶ wtf ≥ wtf ,d (10)

Objectives. A most fundamental objective is to max-
imize the average throughput of every concerned epoch t,
which can be formulated as

max g(wt, �t) =

∑

f
∑

d∈df min(vtf ,d , bs�
t)wtf ,d

(�t + �)
(11)

where vtf ,d denotes the size of data that needs to be trans-
ferred to the receiver d of flow f before epoch t. It is easy
to compute the total size of data transferred over the circuit
switch in epoch t through

∑

f
∑

d∈df min(vtf ,d , bs�
t)wtf ,d .

A second important objective is to minimize the flow
times. As we are just planning epoch-by-epoch, we cannot
know the exact flow times of unfinished flows. However, we
could know the lower bound of the minimum flow times and
optimize it via

minℎ(wt, �t) =
∑

f

∑

d∈df

(I(vtf ,d > bs�
twtf ,d)(�

t + �)

+ I(vtf ,d < bs�
twtf ,d)

vtf ,d
bs

+ tstart − tarr
f )

(12)
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Figure 4: The challenge of receiver asynchronization: All
the receivers of a splittable flow have not yet received all
requested data (see (b)) despite the equivalent volume of
requested data (see (a)).

where I(vtf ,d > bs�twtf ,d)(�
t + �) is the time experienced

by the receiver d of flow f if it has not finished by the end

of epoch t, and I(vtf ,d < bs�twtf ,d)
vtf ,d
bs

otherwise. tstart is
the start time of epoch t and tarr

f is the arrival time of flow f .
We can see that the above formulations result in Integer

Linear Programs (ILPs) for the given epoch length �t. How-
ever, the length �t of every concerned epoch t is also subject
to optimization for the multicast flow scheduling problem in
reconfigurable datacenter networks, which makes the objec-
tive function become non-linear and introduces additional
challenges (see the next subsection).

4.4. Challenges
In this work, we would like to exploit the flexibility of

adapting the epoch lengths dynamically and also consider
an online problem that needs to schedule multicast flows
over time. This means that we not only determine the cir-
cuit connections xt and the flow scheduling decisions wt as
formulations in §4.3 but also the epoch duration �t for every
concerned epoch t to optimize the multicast flows in recon-
figurable datacenter networks. However, we can see that the
circuit connections xt, the flow scheduling decisions wt and
the epoch duration �t actually interact with each other and
they together determine the network throughput and the sum
of flow times. This renders it challenging to find an optimal
solution in practice. In addition to the above challenges in
the optimization formulations, there is also a synchroniza-
tion issue introduced by splittable multicasting, as we dis-
cuss in more details in the following.

Let’s consider an illustrative flow f1 with three receivers
d1, d2 and d3 that request three units of data. Assuming
that the circuit switch has unit capacity per port and can
only build a circuit connecting two of the three receivers in
the first three epochs with unit time length, due to one port
that has been taken by other circuit connections. In partic-
ular, considering that a unit of data has been transferred to
(d1, d2), (d2, d3), and (d1, d3) in the first, the second, and
the third epoch, respectively, as shown in Fig. 4(a). When it
comes to the fourth epoch, the circuit switch now can create
a circuit connecting all the receivers. Seemingly, f1 could
be completed as d1, d2, d3 will receive three units of data,
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the total requested data size, at the end of the fourth epoch.
However, f1 cannot been completed because two re-

ceivers did not receive the data they request in the last epoch.
Assume that the requested data is {X, Y, Z} (each has a unit
size) and that X, Y and Z are transferred in the first, the sec-
ond and third epoch, respectively, as illustrated in Fig. 4(b).
In the fourth epoch, as the circuit can only transfer either X
or Y or Z, two receivers cannot receive their lastly requested
data. We refer to this as receiver asynchronization problem.

When scheduling splittable flows, one should be care-
ful to handle receiver asynchronization to ensure that ev-
ery multicast receiver obtains all requested data, which is
challenging in general. A naive solution is to partition the
receivers of a flow into multiple non-neighboring subsets,
consider each subset of receivers together with the sender
as a subflow and independently scheduled these subflows
without allowing further splitting during the transmission.
However, such a premature fixed partition cannot adapt to
the traffic dynamics, and it is difficult to determine an opti-
mal partition in advance [67].

5. SplitCast: Efficient Optical Multicast
Scheduling over Reconfigurable Networks
Given the motivation and challenges discussed above,

we now present details of our scheduler, SplitCast. SplitCast
solves the multicast scheduling problem in reconfigurable
datacenter networks, in an online and efficient manner.
Overview. In a nutshell, SplitCast works in an epoch by
epoch manner. At the beginning of an epoch, SplitCast
creates circuit connections, chooses flows to be transferred
and determines the time duration of this epoch. SplitCast
chooses the to-be-served flows and creates circuit connec-
tions in a hierarchical fashion, see the pseudo-code in Alg. 1.
It first picks the flows where all receivers can be served with-
out splitting and creates the circuit connections that match
them (line 1, Alg. 1), and then determines the epoch dura-
tion according to the picked flows (line 2, Alg. 1). Subse-
quently, SplitCast searches for more flows where subsets of
their receivers can be served by employing or extending the
created circuit connections (line 3, Alg. 1).

5.1. Creating Circuit Connections and Scheduling
Flows

In our algorithm, a circuit configuration is modeled as
a directed hypergraph H , where each node denotes a rack
and each directed hyperedge denotes a circuit connection, as
in [25, 26]. The creation of circuit connections is modeled
as adding directed hyperedges (without sharing tail node
and head nodes) to the hypergraph H . Initially, the hyper-
edge set is empty.

Given a set F of multicast flows, we consider flows in
a shortest remaining processing time first (SRPT) manner
to determine a subset of flows where all their receivers can
be matched by creating circuit connections under the circuit
switch constraints. We consider flows and create circuit con-
nections in two rounds. In the first round, we only consider

the multicast flows with all receivers (line 9-12, Alg. 1).
In the second round, we consider the subflows of multicast
flows (line 13-16, Alg. 1), where subflows are products of
splitting flows, and a subflow includes a subset of receivers,
as explained later.

The scheduler considers a flow to be servable if the fol-
lowing two conditions are satisfied: i) the number of to-
be-served flows that use the hyperedge originating from its
sender is less than bc

bs
(line 2, Alg. 2), ii) all the receivers

of this flow are included in the hyperedge originating from
its sender (line 13, Alg. 2). Once such a flow is found, a
directed hyperedge is added from the sender to all the re-
ceivers if no hyperedge originates from the sender (line 19,
Alg. 2). Otherwise, the directed hyperedge originating from
the sender is extended to include the unconnected receivers
(line 21, Alg. 2).

5.2. Calculating the Epoch Length
We determine the epoch length according to the created

circuit connections (via the hypergraph H) and the to-be-
served unsplittable flows found in the last step. Given a set
of to-be-scheduled flows, the network throughput function
g(wt, �t) and flow time function ℎ(wt, �t) can be proven to
have unique extreme values [26] because the flow schedul-
ing decisions wt are already known. Actually, the opti-
mal epoch length is related to the completion times of the
flows to be served. Thus, we enumerate all possible epoch
lengths and pick the one that achieves the optimal value of
(11) or (12). Taking the objective function of maximizing
throughput g(wt, �t) as an example, we can compute a pos-

sible epoch length value
vtf ,d
bs

for every scheduling flow f
with wtf ,d = 1. Then, it is easy to compute the correspond-
ing throughput under every possible epoch length value and
choose the one that yields the maximum throughput. Op-
timizing the objective function (12) is similar. Given the
determined length �t of an epoch t, every to-be-served flow
can send up to �tbs of data in this epoch. Accordingly, we
can update the completion status (i.e., completion time and
sent size) of every scheduling flow and know whether a flow
can be completed by the end of this epoch.

5.3. Scheduling Splittable Flows
In order to fully use the remaining circuit capacity, we

further schedule flows for which subsets of receivers can
still be served (line 15, Alg. 2). Recall the example flow f1
in Fig. 4, where the switch could only send a unit of data
to d1 and d2 in the first epoch. At the end of this epoch,
our solution will decrease the remaining size of f1 by one
and create a subflow f11 with the unserved receiver d3: the
flow size equals to the amount of untransmitted data in this
epoch. The algorithm works similarly in the second and the
third epoch: it decreases the remaining size of f1 by one
and creates a subflow f12 with the unserved receiver d1 and
f13 with the unserved receiver d2, respectively. In the fol-
lowing epochs, subflows are scheduled independently with
other flows, which is easy to operate. In addition, if a newly
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Algorithm 1 Splittable Multicast Scheduling Algorithm
Input: A set F of flows to be scheduled in an epoch;
Output: A hypergraph H of the circuit configuration, a set
F serve of to-be-served flows and the epoch duration �;

1: (H,F serve) ← NONSPLITSCHEDULE(F );
2: � ← CALCULATEEPOCHLENGTH(F serve, �);
3: (H,F serve

split ) ← SPLITSCHEDULE(H,F ⧵ F serve, �);
4: F serve ← F serve ∪ F serve

split ;

5: procedure NONSPLITSCHEDULE(F )
6: F serve ← ∅;
7: F .order(policy = SRPT);
8: Initialize a hypergraph H to include the nodes of all racks

and an empty hyperedge set;
9: for f ∈ F do ⊳ Check every multicast f

10: scℎedule← CREATECIRCUIT(H,f,False);
11: Add f to F serve if scℎedule is True;
12: end for
13: for (fs, f ) ∈ F do ⊳ Check every subflow fs of each

multicast f
14: scℎedule← CREATECIRCUIT(H,fs,False);
15: Add fs to the to-be-served subflow list of f and add f

to F serve if scℎedule is True;
16: end for
17: return (H , F serve)
18: end procedure

19: procedure SPLITSCHEDULE(H , F ′, �)
20: F serve

split ← ∅;
21: F ′.order(policy = SRPT);
22: for f ∈ F ′ do
23: try CONSOLIDATESUBFLOW(SFf ); ⊳ SFf stores all

unfinished subflows of f
24: for fs ∈ SFf do
25: scℎedule ← CREATECIRCUIT(H,fs,True);
26: if scℎedule then
27: Add fs to the to-be-served subflow list of f ;
28: F serve

split .add(f );
29: Create a subflow f ′

s if f has unserved re-
ceivers;

30: try MERGESUBFLOW(SFf , f ′
s );

31: end if
32: end for
33: end for
34: return (H , F serve

split )
35: end procedure

created subflow has the same receivers as other unfinished
subflows, it is natural to merge them into a larger one: the re-
sulting flow size equals to the sum of the sizes of the merged
subflows (line 30, Alg. 1).

5.4. Complexity Analysis and Discussion
We first analyze the complexity of our algorithm and

then discuss an opportunity for further performance improve-
ment. The computation time of Alg. 1 depends on the time
to schedule non-splittable flows, the time to compute the
epoch length, and the time to schedule the splittable flows.
They have a time complexity of (g log g+gn+gn2), (g),
(g log g + gn2), respectively, where g is the number of

Algorithm 2 Create Circuit Connections
1: procedure CREATECIRCUIT(H , f , split)
2: if not H .hasfreeCapacity(sf ) then
3: return H , False
4: end if
5: rlistcover ← ∅, rlistoutlier ← ∅;
6: for d ∈ df do
7: if H .predecessor(d) = sf then
8: rlistcover.add(d);
9: else if H .inDegree(d) = 0 then

10: rlistoutlier.add(d);
11: end if
12: end for
13: if not split and len(rlistcover + r

list
outlier)< |df | then

14: return False
15: else if split and len(rlistcover + r

list
outlier)= 0 then

16: return False
17: end if
18: if H .outDegree(sf )= 0 then
19: H .addHyperedge(sf , rlistoutlier);
20: else
21: H .extendHyperedge(sf , rlistoutlier);
22: end if
23: H .decreaseCapacity(sf );
24: dunserved

f ← df ⧵
(

rlistcover ∪ r
list
outlier

)

;
25: return True
26: end procedure
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Figure 5: Subflow scheduling

flows considered by the algorithm and where n is the num-
ber of racks. In total, the computation complexity of our
scheduling algorithm is therefore (g(log g + n2)).

While our algorithm performs well as we will see in the
evaluation section, it offers an interesting opportunity to fur-
ther improve the transfer performance through subflow con-
solidation when scheduling splittable flows. Recall that the
multicast flow f1 in Fig. 4 has three subflows, f11, f12 and
f13, at the end of the third epoch. If the fourth epoch has
only one unit of time, it is impractical to simultaneously fin-
ish f11, f12 and f13 over a circuit connection between the
sender and all receivers due to the receiver asynchroniza-
tion problem. The circuit switch has to schedule these sub-
flows one by one and reconfigures the circuit connections
for scheduling each of them, as shown in Fig. 5(a). How-
ever, if the fourth epoch lasts for three units of time, we
could consolidate these subflows as a larger one and finish
them over the circuit connection to all their receivers with-
out more reconfigurations, as shown in Fig. 5(b). In our
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algorithm, we use a greedy subflow consolidation method
(line 23, Alg. 1). For every considered multicast flow, we
first determine which of its receivers could be matched, if
one more hyperedge is added subject to the capacity con-
straints. Then, we greedily consolidate the subflows which
can be matched by this hyperedge, and we stop before the
remaining sizes of the consolidated subflows exceeds �bs, �
is the time length computed for current epoch.

5.5. Scheduling under not-all-stop model
So far in our model and algorithms, as well as in prior

related work [25, 26] in our setting, a circuit reconfiguration
implied that all circuits are offline for some period. How-
ever, this hardware limitation is not always present and more
fine-grained reconfigurations may be possible, for example
in free-space optics [29, 10, 45], where the laser paths can
be adjusted independently. Moreover, there is also various
off-the-shelf circuit switch hardware which does not block
all circuits during reconfigurations [44].

Using the terminology of Huang et al. [44], we will de-
note this model as the not-all-stop model, where we might
refer to our standard model as the all-stop model, if not
clear from the context. not-all-stop model allows for lo-
calized reconfigurations, not disturbing the other ongoing
flows, which can be very useful to further reduce flow com-
pletion time [44, 10, 45]. More formally, during reconfig-
uration in not-all-stop model, communication are blocked
only on reconfigured circuits that are newly established or
removed, while the circuits which are not being reconfig-
ured are can still be used for sending traffic during the re-
configuration. The benefits of not-all-stop model in improv-
ing bandwidth utilization and further reducing flow time is
apparent, compared to all-stop model. We next propose how
to leverage not-all-stop model in our setting, in order to fur-
ther reduce flow completion time.

Algorithm Design. We slightly modify Alg. 1, to adapt
it to not-all-stop model. The main idea of our variant schedul-
ing algorithm is to replace the epoch calculation method in
Alg. 1, Line 2 with a new one shown in Alg. 3.

Once there is a new flow coming or some existing flow
being completed, we opportunistically reschedule flows on
available free ports. When some existing flow completes,
we could tear down the circuit used by this finished flow if
no other existing flow uses this circuit. If there is no new
flow that arrives at this time, the current epoch length ex-
tends to the completion time of this finished flow minus the
start time of current epoch, as shown in Line 15, Alg. 3. On
the other hand, if there are new flows arriving before finish-
ing the existing flows, Alg. 3 runs Line 7-13 to compute the
epoch length.

The key idea is that if the new flow is short, we decide to
reconfigure the circuit when it arrives. Otherwise, we wait
to reconfigure circuits after some existing flow finishes. By
the end of each epoch, reconfiguration delay is only added
to flows using circuits of ports affected by reconfiguration.

Algorithm 3 Calculate Epoch Length � (Not-All-Stop
Model)

1: t0 ← The start time of current epoch;
2: f ← The upcoming flow with the earliest arrival time;
3: t′(f ) ← The arrival time of f ;
4: t′′(f ) ← The expected completion time of f without

reconfiguration;
5: t1 ← The earliest completion time among scheduable

(unsplittable) flows;
6: if t′(f ) ≤ t1 then
7: tt = t1 − t′(f );
8: tt′ = t′′(f ) − t′(f ) + 2 × �;
9: if tt′ ≤ tt then

10: � = t′(f ) − t0;
11: else
12: � = t1 − t0;
13: end if
14: else
15: � = t1 − t0;
16: end if

6. Evaluation
In order to study the performance of SplitCast in dif-

ferent scenarios and in order to compare our results to the
state-of-the-art, we conducted extensive simulations. In the
following, we first introduce our setup in §6.1, and then dis-
cuss our results in §6.2. We find that SplitCast can signifi-
cantly improve the performance of multicast transfers across
multiple networks and workloads.

6.1. Setup
To be fair, our evaluation setup largely follows the most

related work Blast [25] and Creek [26].
Network topologies: We run simulations over four typi-
cal datacenter sizes, with 32, 64, 128, and 256 racks, re-
spectively. According to recent circuit switch designs, we
choose the bandwidth per circuit switch port from 10Gbps,
40Gbps, and 100Gbps and let the circuit reconfiguration
time range from 0.1ms to 100ms, similar to the evaluation
settings in Creek [26, §5.1]. The fanout of per circuit port
is 8 by default. The bandwidth between the server and the
ToR switch is 10Gbps.
Workloads: We use synthetic non-uniform multicast traffic
resulting from real datacenter applications similar to related
work [26, 14]. The distribution of data sizes (in GB) per
receiver follows a beta distribution B(0.7, 1.7). The sender
and the receivers of every multicast are randomly chosen
from the racks in the network. To simulate different traffic,
we change the number of receiver racks in our experiments
and the input load increases as the number of receivers in-
creases. The number of receiver racks follows a uniform
distribution U [2, n
], where n is the total number of racks
in a network and 
 is chosen from [10%, 20%, 30%].

The total simulation time T of every experiment ranges
from 5,000ms to 10,000ms and flows uniformly arrive be-
tween 1ms and T

10ms.
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Figure 6: Impact of the circuit switch port bandwidth. (a)-(d) show the speedup of the average flow time of SplitCast to Blast
and to Creek over all runs.

Compared approaches: We compare SplitCast against the
state-of-the-art approaches for scheduling multicast demands
using a reconfigurable circuit switch.

• Blast [25] performs non-preemptive scheduling and
iteratively schedules the flows in an decreasing order
of a “score” defined by size

#receivers . The latest flow from
a set of flows that can be simultaneously transferred
in an epoch determines the epoch duration.

• Creek [26] adopts preemptive scheduling, uses the
SRPT policy to schedule flows, and chooses the epoch
duration that can maximize the circuit switch utiliza-
tion. We first let Creek use the 1-hop segregated rout-
ing model, but will later show how SplitCast com-
pares when Creek may use a multi-hop routing model
as well (see Fig. 10).

As in Blast [25] and Creek [26], we focus on the cir-
cuit switching network and hence the performance of flows
delivered by it.
Performance metrics: We collect the following performance
metrics: 1) flow time: the duration between the release time
and the completion time of the latest receiver of a multicast
flow, 2) throughput: the total transmission rate of all flows
at any time, and 3) circuit utilization: the percentage of the
total data size transferred to the total data size that can be
delivered with full capacity, which reflects how much band-
width has been utilized. We conduct at least 100 runs for
every experiment setting over each network and report the
average results below unless otherwise specified.

6.2. Evaluation Results
The impact of circuit port bandwidth. In this group

of experiments, we evaluate the impact of circuit port band-
width by varying it from 10Gbps to 100Gbps. The receiver
fraction 
 is fixed to 10% and the circuit reconfiguration
time is 0.1ms in these experiments. Fig. 6 shows the speedup
of the average flow time of SplitCast in comparison to Blast
and Creek, in four topologies at different scales. Overall, the
results in Fig. 6 show that SplitCast speeds up the average
flow time over Blast and Creek and presents a similar trend,
the speedup increases with an increasing circuit switch port
bandwidth, in these four simulated topologies. Additionally,
we can see that the speedup increases as the topology size
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Figure 7: (a)-(c) show the CDF of the flow time, the percent-
age of flows experiencing speedup, and the throughput over
time in the 256 rack topology.

grows. In particular, the experiment results for the topol-
ogy with 256 racks in Fig. 6(d) present the speedup of the
average flow time of SplitCast in log scale, from which we
can see that SplitCast outperforms Blast and Creek in re-
ducing the average flow time by up to a factor of 27× and
9×, respectively. Thanks to the preemptive scheduling, both
Creek and SplitCast outperform Blast. However, Creek can-
not beat SplitCast as Creek only transfers data when the cir-
cuit connections can match all the receivers of a multicast
flow, even through a subset of receivers could be matched.
In contrast, SplitCast allows data to be transferred to par-
tially matched receivers, fully using the circuit capacity and
achieving the shortest average flow time.

Fig. 7 reports more detailed results obtained from the
topology with 256 racks. Fig. 7(a) shows that SplitCast re-
duces the flow time of the latest flow from around 20s to
less than 5s when the circuit port bandwidth is 40Gbps and
100Gbps, and Fig. 7(b) shows that around 68%-98% of the
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Figure 8: Impact of the reconfiguration time of circuit switch.
(a-b) show the maximum-average-minimum speedups of
average flow time and the number of reconfigurations of
SplitCast in the 256-rack topology. The simulation results
show that the improvement of SplitCast in flow time is quite
stable for all common switch reconfiguration times.

flows experience speedups, compared to Creek. This is con-
sistent with the results in Fig. 6. Fig. 7(a) also shows that
Creek obtains very close flow times under different circuit
port bandwidth (10Gbps, 40Gbps, 100Gbps), which indi-
cates that it cannot efficiently use the high-bandwidth cir-
cuit capacity. Fig. 7(c) shows the throughput over time (av-
eraged in every epoch) in one experiment simulated with
40Gbps circuit port bandwidth, where each zero point in-
dicates a reconfiguration. SplitCast achieves the highest
throughput in the early stage, Creek comes second and Blast
follows. The high throughput of SplitCast is also related to
its flow time improvements.

The impact of circuit switch reconfiguration time. As
the circuit switch will stop transmitting data during circuit
reconfiguration, we evaluate how different reconfiguration
times impact scheduling approaches in this group of experi-
ments. Fig. 8(a) shows that the speedup of the average flow
time of SplitCast over Blast and Creek is stable as the recon-
figuration time increases from 0.1ms to 100ms over the 256-
rack topology. We omit the presentations of the similar re-
sults obtained from other three topologies due to the limited
space. Additionally, Fig. 8(b) shows that SplitCast has the
minimum number of reconfigurations, Blast comes second,
and Creek is last. The very small number of reconfigura-
tions of SplitCast also indicates lower operating cost, com-
pared to Creek and Blast. Additionally, the average number
of reconfigurations of SplitCast and that of Creek drop as
the reconfiguration time increases. In contrast, the number
of reconfigurations of Blast is unadapted to reconfiguration
times. This is as expected because SplitCast and Creek con-
sider the reconfiguration time when determining the epoch
length, while Blast does not.

The impact of the number of receivers. In this part, we
evaluate how the receiver scale impacts the performance of
the scheduling approaches. To this end, we set the number
of receivers of every multicast to be different percentages 

of the racks and vary 
 from 10% to 30%.

Fig. 9(a) shows the speedups of the average flow time of
SplitCast over Blast and Creek. We can see that the speedup

w.r.t. Blast, 𝛾=10% w.r.t. Blast, 𝛾=20% w.r.t. Blast, 𝛾=30%
w.r.t. Creek, 𝛾=10% w.r.t. Creek, 𝛾=20% w.r.t. Creek, 𝛾=30%
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Figure 9: Impact of the number of receivers. (a) and (b)
show the speedup of the average flow time and the improve-
ment of the switch utilization, respectively, in experiments
where 
 of racks are the receivers of multicast flows.
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Figure 10: SplitCast even outperforms Creek when Creek
does m-hop circuit routing, on average speeding up the flow
time 2× to 4×.

of the average flow time almost linearly increases with an
increasing number of receivers and topology size. In addi-
tion, we collect the circuit utilization which is defined as a
ratio: the total data size actually transferred, compared to
the theoretical total data size that can be delivered with full
capacity of the circuit switch for every epoch. We com-
pare the average circuit utilization over all epochs. Fig. 9(b)
shows that SplitCast improves the average circuit utilization
up to 4.3× and 3× over Blast and Creek, respectively. The
improvement of the average circuit utilization increases as
the network size scales up.

Additionally, we count the number of subflows created
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(a) Network with 32 racks
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(b) Network with 64 racks
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(c) Network with 128 racks
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(d) Network with 256 racks

Figure 11: Impact of circuit capacity. (a)-(d) show the average, 95th percentile, and 75th percentile flow time improvement of
SplitCast under not-all-stop model, with 
 = 10% of racks being receivers and a reconfiguration time of 1ms.

by SplitCast for every multicast flow in these experiments.
The experimental results show that SplitCast splits only 55%
of multicast flows with three receivers on average and cre-
ates just one additional subflow for mutlicast flows with an
average of three to nine receivers in 32-rack network. Also,
SplitCast creates two more subflows for 30%-35% flows and
at most four subflows for 80% flows in 256-rack network.
The small number of subflows created indicates that the cost
of maintaining the state of subflows is low or negligible.

SplitCast vs. Creek with multi-hopping: In the last
group of experiments, we evaluate how our 1-hop solution
SplitCast compares against the multi-hop version of Creek.
Fig. 10 shows that SplitCast can still outperform Creek, speed-
ing up the flow times for around 87% to 94% flows and
achieving 2× to 4× speedups on average. These results indi-
cate the great potential of splittable multicast for improving
the performance of multicast transfers in reconfigurable dat-
acenter networks. Also, it motivates us to exploit splittable
multicast in multi-hop routing enabled reconfigurable net-
works in future work.

6.3. All-Stop vs. Not-All-Stop Model
We now use simulations to show the further benefits of

our new scheduling approach in not-all-stop model, by com-
paring the performances of SplitCast in the all-stop model
and not-all-stop model under a wide spectrum of experi-
ments. To this end, we run simulations under different pa-
rameters, circuit port bandwidth, topology scale, reconfig-
uration time, and the number of receivers. We study the
performance gain in terms of the 95th percentile, the 75th
percentile, and average flow time obtained by using not-all-
stop model. Note that we omit the comparison to Blast and
Creek because our scheduling approach has already shown a
significant performance improvement over Blast and Creek
in the all-stop model. Therefore, we only investigate the
further improvement brought by not-all-stop model over the
all-stop model in this part of the experiments.

Impact of circuit port bandwidth. We first investigate
the performance gain brought by not-all-stop model under
different settings of circuit port bandwidth, in the same set-
ting as the experiments in Fig. 6. Besides, the values of
other parameters are also consistent with those in the exper-
iments in Fig. 6. Fig. 11 shows the performance gain results

in four topologies with different network sizes. As shown
in Fig. 11, SplitCast in not-all-stop model reduces both 95th
percentile, 75th percentile, and average flow time, and the
gains roughly grow as the circuit port bandwidth increases.
The results indicate that the performance gains have a pos-
itive correlation with the circuit port bandwidth. We can
also see from the results that the performance gain increases
as the topology size grows. For example, SplitCast in not-
all-stop model can further reduce the average flow time by
up to 25% in the network with 256 racks compared to the
all-stop model. This results suggest that even when the re-
configuration delay is small, e.g., 1ms, network operators
who manage large-scale data centers can benefit from us-
ing reconfigurable circuit switches that support not-all-stop
forwarding model to reap the maximum benefit of recon-
figurable network technology in terms of accelerating the
transfer of multicast traffic.

Impact of topology scales. We also investigate the per-
formance gain brought by not-all-stop model under different
topology scales. We use 10Gbps, 40Gbps, and 100Gbps cir-
cuit port bandwidth, 100ms reconfiguration time, and ran-
domly choose 10% of racks as the receivers of each multi-
cast flow. We observe from the results in Fig. 12(a)-Fig. 12(c)
that the trend in performance gain is inconsistent, the gain in
flow time reduction is generally higher in larger topologies
at 40Gbps and 100Gbps circuit port bandwidth while that is
reverse at 10Gbps. Nevertheless, we observe that the gain
in flow time reduction is significant, more than 15% and up
to (around) 40% in all cases. This results indicate that it is
in particular better to use not-all-stop reconfigurable circuit
switches in terms of reducing flow times if the reconfigura-
tion delay is not negligible (100ms).

Impact of reconfiguration time �. We also show the
performance gain brought by not-all-stop model under dif-
ferent reconfiguration times, ranging from 0.1ms to 100ms,
with different number of receivers per multicast flow in a
topology with 32 racks. Fig. 13 shows consistent results
with the plots in Fig. 12. As the results in Fig. 13 indi-
cate, the performance gain sharply increases as the recon-
figuration time becomes longer. This is as expected as not-
all-stop model lets traffic flows utilize high-speed circuits
with encountering fewer disruptions compared to the all-
stop model. Moreover, we observe from Fig. 13(a)-Fig. 13(c)
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(a) 10Gbps circuit port bandwidth
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(b) 40Gbps circuit port bandwidth

0

10

20

30

40

32 64 128 256

Re
du

ct
io

n 
in

 F
lo

w
 T

im
e 

(%
)

Number of Racks

95th Percentile
75th Percentile
Average

(c) 100Gbps circuit port bandwidth

Figure 12: Improvement under different topology scales, at 10Gbps, 40Gbps, and 100Gbps circuit port bandwidth, 100ms
reconfiguration time, 10% of racks being receivers.
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(a) 10% receivers per flow
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(b) 30% receivers per flow
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(c) 50% receivers per flow

Figure 13: Improvement under different reconfiguration downtimes, using 10%, 30%, and 50% receivers per flow respectively,
in a 32-rack topology with 10Gbps circuit port bandwidth.

that the performance gains are very close for multicast flows
with different number of receivers. The reason could be
that not-all-stop model can fully use the capacity of unaf-
fected ports during reconfiguration, no matter how many re-
ceivers the multicast flows have. Motivated by this results,
in term of reducing flow time, we can again recommend net-
work operators deploying reconfigurable circuit switch with
not-all-stop forwarding capability when the reconfiguration
downtime is long. This results also indicates that the for-
warding model (e.g., all-stop or not-all-stop) could be an
optimization option for the deployment problem of recon-
figurable circuit switches in data centers.

Impact of the number of receivers. At last, we study
the performance gain brought by not-all-stop model to mul-
ticast flows with different numbers of receivers. The cir-
cuit port bandwidth is set to 100Gbps and the reconfigura-
tion time is 100ms. To simulate different numbers of re-
ceivers, we vary the receiver fraction from 10% to 50%
and rerun experiments under each setting in every evalu-
ated topology. Fig. 14 shows the results. We see that the
performance gain first increases and then decreases as the
number of receivers increases for every simulated topology,
but not-all-stop model retains significant gains all around.
This results are a bit different from those in Fig. 13, where
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Figure 14: Improvement of 95th-percentile, 75th-percentile, and avg. flow time under different numbers of receivers, at
100Gbps circuit port bandwidth and 100ms reconfiguration time.
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the performance gain is relative stable when the number of
receivers increases. The reason is that the experiments in
Fig. 13 use 10Gbps circuit bandwidth ports, which is same
as the bandwidth of per server NIC port. This means that
each circuit can only be used by a single flow in each epoch
and the performance of not-all-stop model is independent
with the number of receivers of multicast flows. While, in
this part of the experiments, we simulate 100Gbps circuit
bandwidth ports, 10× the bandwidth of server NIC port,
which means that we can let at most 10 flows share the high-
bandwidth circuit in each epoch. Therefore, when the num-
ber of receivers increases, by increasing 
 from 10% to 30%,
the network load accordingly increase. SplitCast in not-all-
stop model can improve the circuit utilization and achieve a
higher reduction in flow times, compared to SplitCast in all-
stop model. However, as traffic load continue to increase, by
increasing 
 from 30% to 50%, the network load becomes
heavy, the gain of SplitCast in not-all-stop drops a bit be-
cause SplitCast can use the circuits well in both forwarding
models.

Summary. We see that SplitCast can significantly ben-
efit from our modifications to include not-all-stop model,
showing reductions in the flow time of 10% to 30% in many
settings, even up to 40% in some scenarios. As the here
evaluated settings conform to our previous comparisons of
SplitCast to Blast and Creek1 in the all-stop model, we hence
conclude that SplitCast in not-all-stop model widens the per-
formance gap to prior work even further.

7. Conclusion
This paper studied the multicast scheduling problem in

datacenter networks that are capable of high-bandwidth cir-
cuit switching and fast reconfigurations at runtime. We first
discussed the unexploited potential of splittable multicast
and analyzed the algorithmic complexity of splittable mul-
ticast matching. We proposed a scheduler, SplitCast, which
relies on simple single-hop segregated routing and mini-
mizes the flow times by leveraging the potential of splittable
multicast, preemptive scheduling, and circuit switch recon-
figuration. SplitCast employs a simple but fast algorithm
that jointly optimizes both the flows and the circuit configu-
ration schedules. Moreover, SplitCast can also leverage the
benefits of both all-stop and not-all-stop models of circuit
reconfiguration. Our extensive simulations on real-world
topologies show that SplitCast significantly reduces the flow
time and improves the throughput over the prior solutions.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. For
example, it would be interesting to account for more specific
application-level objectives, e.g., flow deadlines.
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