
Chopin: Combining Distributed and Centralized
Schedulers for Self-Adjusting Datacenter Networks
Neta Rozen-Schiff #

Hebrew University, Israel

David Hay
Hebrew University, Israel

Klaus-Tycho Foerster #

Computer Science Department, Technical University of Dortmund, Germany

Stefan Schmid #

TU Berlin, Germany
Faculty of Computer Science, University of Vienna, Austria

Abstract
The performance of distributed and data-centric applications often critically depends on the in-
terconnecting network. Emerging reconfigurable datacenter networks (RDCNs) are a particularly
innovative approach to improve datacenter throughput. Relying on a dynamic optical topology which
can be adjusted towards the workload in a demand-aware manner, RDCNs allow to exploit temporal
and spatial locality in the communication pattern, and to provide topological shortcuts for frequently
communicating racks. The key challenge, however, concerns how to realize demand-awareness in
RDCNs in a scalable fashion.

This paper presents and evaluates Chopin, a hybrid scheduler for self-adjusting networks that
provides demand-awareness at low overhead, by combining centralized and distributed approaches.
Chopin allocates optical circuits to elephant flows, through its slower centralized scheduler, utilizing
global information. Chopin’s distributed scheduler is orders of magnitude faster and can swiftly react
to changes in the traffic and adjust the optical circuits accordingly, by using only local information
and running at each rack separately.

2012 ACM Subject Classification Networks → Programmable networks, Data center networks;
Networks

Keywords and phrases reconfigurable optical networks, centralized scheduler, distributed scheduler

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.4

Funding Research supported by the European Research Council (ERC), grant agreement No. 864228
(AdjustNet), Horizon 2020, 2020-2025.

1 Introduction

Data-centric and distributed applications, including batch processing, streaming, scale-out
databases, or distributed machine learning, generate a significant amount of network traffic
and their performance critically depends on the throughput of the underlying network [30,82].

To improve datacenter throughput, researchers and industry, e.g., Google [62], have
recently started exploring innovative new datacenter designs that rely on dynamic and
demand-aware topologies: topologies that self-adjust toward the workload they currently
serve. The motivation behind self-adjusting datacenter topologies is twofold.

First, empirical studies reveal that datacenter traffic patterns feature much structure [6,
10,30,64], i.e., are sparse, skewed, and bursty, which introduces optimization opportunities.
For example, a small number of flows typically carry the majority of traffic (these are called
elephant flows), while the remainder consists of a large number of flows that carry very little
traffic (mice flows). Therefore, in a demand-aware network, the elephant flows should be

© N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 4; pp. 4:1–4:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neta.r.schiff@gmail.com
mailto:klaus-tycho.foerster@tu-dortmund.de
https://orcid.org/0000-0003-4635-4480
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.4230/LIPIcs.OPODIS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(a) HULL [3]

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(b) pFabric [2]

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

(c) VL2 [31]

Figure 1 Comparison between centralized and distributed schedulers under different traffic patterns
(each generated by scaling well-known realistic flow size distributions, assuming Poisson flow arrival times
under different rates), when the number of ToR switches is 80, and the optical connectivity of each ToR
switch is 4. The color represents the ratio between the optical throughput of the distributed scheduler
and the centralized scheduler. Blue cells mark settings where the distributed scheduler outperforms the
centralized one; red cells mark the opposite. We refer to §6.1 for topology details.

routed through the optical circuits for offloading the electrical bottleneck, which in turn,
reduces the latency of the mice flows, and improves the overall throughput.

Second, emerging optical technologies and optical circuit switches enable the required
very fast reconfigurations [8, 20, 21, 32]. Over the last years, several interesting hybrid
optical datacenter networks were suggested and evaluated [80], augmenting an oversubscribed
network with inter-rack optical links [7,14,21,23,24,30,52,67,68,74,76], see [26] for a survey.
The number of optical routes from/to each Top-of-Rack (ToR) switch, which we call the ToR
switch optical degree, is a single-digit number, typically at most 4 [20, 69,79].

Challenge: Scalability. While the vision of self-adjusting networks is intriguing and
early solutions show promising results, the main challenge faced by such demand-aware
networks concerns the scalability of the control plane. Unlike demand-oblivious networks
(i.e., static networks like Clos [15], Slim Fly [12], and Xpander [73] or dynamic networks like
RotorNet [57], Opera [56] and Sirius [8]), demand-aware networks require the collection and
evaluation of traffic patterns. In particular, performing all topology scheduling decisions
centrally (i.e., a centralized scheduler) may introduce a bottleneck and can result in slow
reaction times. A fully distributed decision making (i.e., a distributed scheduler) on the
other hand, may be suboptimal as it is based on incomplete information.

In order to show this tradeoff, we analyzed the optical throughput ratio. The optical
throughput ratio is defined as the ratio between the throughput routed through the optical
circuit and the total datacenter throughput. It is a cornerstone measure as it reflects the
utilization of the optical circuit, and therefore reduces the bottleneck over the electrical
network. Fig. 1 compares the optical throughput ratio of the distributed-only scheduler and
the centralized-only scheduler under different traffic patterns (each traffic pattern follows
a distribution measured in a real datacenter, where we have parametrized the mean flow
size and each host rate). It demonstrates the tension between the two approaches: there
is no “clear winner” and which one is better depends on the traffic pattern. The traffic
pattern however is often not known when the datacenter is built and changes over time. For
example, consider a datacenter serving a pFabric traffic pattern, with typical mean flow size
of approximately 1.7 MB [50], and where each host sending rate is approximately 100 Mbps.
In this case, the optical circuit throughput ratio in the distributed scheduler is by 13% higher
compared to the centralized scheduler, as can be seen in the blue cells in Figure 1b. However,
for the same datacenter, with the same traffic pattern (pFabric), and the same mean flow size
distribution, once the host’s sending rate grows beyond 300 Mbps, the centralized scheduler

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:3

achieves a higher throughput ratio compared to the distributed one (see the relevant red cell).
Motivated by this insight, and by the desire to provide an efficient control plane for

self-adjusting networks, we propose to combine both approaches to achieve the best of both
worlds: fast reaction times of distributed decision-making and network utilization benefits of
centralized optimization.
Introducing Chopin. We present Chopin1, a novel scheduler for reconfigurable datacenter
networks that fully exploits the benefits of self-adjusting networks by relying on an efficient
control plane. Specifically, Chopin provides demand-awareness at low overhead, by combining
centralized and distributed approaches. At the heart of Chopin’s approach lies the idea
that a relatively complex algorithm (e.g., Maximum Weight Matching, MWM) should be
computed centrally, based on complete information.

However, since such an algorithm cannot be computed fast [11,16,47] (e.g., MWM may
take around 20 ms for 80 ToR switches), we additionally allow distributed updates to the
centralized optical circuit allocation, based on a threshold. The threshold specifies the flow
weight changes from which a distributed scheduler can update the centralized scheduler
allocation. For example, if there is a large drop in demand in an allocated optical circuit
(e.g., when an elephant flow ends), the distributed scheduler may tear it down and try to
establish another circuit. Hence, due to the volatility of many flows, we want a distributed
constant-round algorithm (ideally just two rounds) and hence forgo more complex distributed
algorithms [9] or dynamic centralized algorithms [13]; the indirection via a centralized
controller comes with overheads and delays which render this approach problematic to handle
continuous update streams.
Our Contributions. In summary, we make the following contributions:
1. We identify and analyze the difference in throughput performance of centralized and

distributed schedulers for reconfigurable datacenter networks, for various scenarios and
different flow size distributions.

2. We design a hybrid scheduler, Chopin, which combines centralized and distributed decision-
making based on thresholds. To this end, we present and analyze both a centralized
and a local online scheduler, exploring the trade-off between accuracy and running time.
Chopin relies on commodity devices available today, and required Chopin nodes which
can simply be added to existing ToR switches by directing one of the switch ports to
them. Moreover, information collection and dissemination of the centralized algorithm
can be realized in the control plane using Software-Defined Networks (SDNs).

3. We report on Chopin’s effectiveness through extensive simulations for different settings,
showing that Chopin improves upon centralized and distributed approaches. We achieve
throughput improvements of up to 20% against centralized and up to 23% against
distributed schedulers, always outperforming both.

2 Optical Background and Related Work

Chopin is motivated by trade-offs between centralized and distributed scheduling, which arise
in matching algorithms. We first motivate why matching algorithms are central to Chopin’s
setting and then discuss centralized and distributed schedulers in this context.

Optical Model: Why Matchings? From a theoretical viewpoint, we consider the
problem of how to augment a static network with (optical) edges in order to improve the total

1 Stands for: Controller for Hybrid OPtIcal electrical Networks.

OPODIS 2022

4:4 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

network performance. The reason why this augmentation comes in the form of matchings lies
in the underlying hardware, namely optical circuit switches, we refer to Hall et al. [35, §3]
for a technological overview. In the simplest case, a set of nodes is connected to the optical
circuit switch’s ports by an optical cable each, and the switch “matches” these ports by
e.g. adjusting mirrors to steer the light signals s.t. that pairs of ports (and hereby, pairs
of nodes) are hence connected by optical circuits. Nodes could also be connected multiple
times to the optical switch, or multiple optical switches could be used, giving rise to, e.g.,
b-matchings [25,38]. Conceptionally, other hardware could be used to the same effect (e.g.,
beamformed wireless connections [36] or free-space optics [7]), but on a graph-theoretic level,
they form circuits between pairs of nodes, and as thus, matchings. We refer here to the
survey by Foerster and Schmid [26] for a further introduction to the enablers, algorithms,
and complexity of reconfigurable datacenter networks. We moreover refer to the article by
Zerwas et al. [81] on how system delays can be accounted for for scheduling algorithms.

Centralized schedulers operate under the assumption of near-perfect utilization visib-
ility and traffic demands, collected at a centralized location [17], often leveraging SDN. We
refer to a recent survey and the references therein [71]. Herein the restriction to large and
long-lived flows enables centralized schedulers [23,76] to also cope with control loop delays.
However, these schedulers still suffer from traffic stability assumptions [22].2 Traffic matrix
schedulers [21, 53, 74, 75] on the other hand, adjust packet transmissions to coincide with
scheduled circuit reconfiguration, with full knowledge of when bandwidth will be available to
particular destinations. However, for the duration of the matching schedule, new flows are
not accounted for and might need to wait for the next iteration. In contrast, Chopin’s design
ensures rapid reactions to local traffic changes and new flow insertions, due to its additional
distributed scheduler part.

Distributed schedulers. In practice, the large number of scheduling decisions and
status reports can overwhelm centralized schedulers, and in turn lead to long latencies
before scheduling decisions are made [17]. ProjecToR [30] initiated a broader interest in
distributed scheduling, by proposing a stable-matching algorithm that optimizes for low
latency, utilizing high fan-out single hop free-space optics [29]. Via aging of requests, they
obtain a constant-factor latency approximation for their online scheduling algorithm [18].
RotorNet [57], Opera [56], and Sirius [8] employ a different approach and use lower fan-out
circuits, where the topologies are created in a demand-oblivous manner. RotorNet rotates
through matchings independent of the current traffic, that provide eventual connectivity,
where traffic is either scheduled to be routed along single hops, or along two hops, via buffering
and a proposal and accept mechanism. Sirius follows similar ideas, either transmitting directly
or via schemes reminiscent of Valiant’s method. Opera extends RotorNet by also always
maintaining an expander graph, motivated by static topologies [45,73]. Although Opera’s
reconfiguration scheduling is deterministic, the precomputation of the topology layouts is in
its current form still randomized. Notwithstanding, ProjecToR, RotorNet, Sirius, and Opera
can all rapidly deploy traffic along reconfigurable connections, by omitting a centralized
control plane. However, it is not clear how to realize the above three distributed systems with
off-the-shelf hardware, such as a common optical circuit switch, and hence their application
scenario is not as general as with Chopin. Notwithstanding, Decentralized scheduling is also
used in several other systems, including SplayNet [66], Cerberus [34], or CacheNet [33].

2 Orthogonal to matching algorithms, Xia et al. [77] investigate how to migrate between Clos and random
graph topologies. However, they require specialized 4/6-port converter switches and also rely on a
centralized control loop, estimating an update delay “on the order of seconds” [77].

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:5

Lastly, while there is profound research on matching algorithms in the distributed
computing community [70], distributed algorithms for maximal matchings in graphs with large
degree ∆ (as for optical circuit switches) are relatively slow [9]. While approximation [54] and
dynamic [55] algorithms are considerably faster, here the constraints of the optical datacenter
networking and the distributed computing community are quite different and hence the
communities (yet) don’t overlap much in their research applications: ideally, for optical
circuit switching, small-constant round algorithms of low computational complexity are
desired, whereas in the distributed computing community, the local algorithms can be more
complex, with a focus on asymptotic runtime optimization. As thus, Chopin utilizes a low
complexity threshold based distributed algorithm, using just two rounds of communication,
which falls in line with the requirements of hybrid datacenters.

3 Chopin’s Design

In a nutshell, Chopin’s topology scheduler aims to provide demand-awareness efficiently by
combining centrally optimized decision making with fast distributed reactions. The idea is
hence analogous to the nervous system of animals, which is typically divided into a slower
central nervous system and a faster peripheral nervous system [72].

Specifically, Chopin’s scheduler uses two different control mechanisms, each carried out
in a different location in the datacenter, providing different latency and response times. The
centralized scheduler is reminiscent of an SDN controller and allows Chopin to adapt to
global changes (such as traffic rates). This optimization uses traffic measurements across
the network and has a (relatively) long response time. Moreover, it may receive additional
information (e.g., from applications that have specific repetitive patterns) to make even
better decisions. Fig. 2 presents the connectivity between the SDN controller to each of the
ToR switches and Chopin’s nodes. The distributed scheduler is embedded within the ToR
switches and is based only on local measurements. It reacts quickly to local changes in traffic
and may tear down connections if they become unmatched and establish new connections
for new “hot” ToR switch pairs. The tear down and connection establishment are made by
updates sent from the ToR switch to its Chopin node, see Fig. 2.

Figure 2 Chopin’s design.

The centralized scheduler and
the distributed scheduler are dis-
cussed in details in Section 4 and
Section 5 respectively.

Moreover, by combining these
two schedulers, we can strike an op-
timized trade-off and realize both
fast reactions and global and long-
term network optimizations, ac-
counting for demand uncertainty.
In particular, unlike many existing
solutions, which consider only one
scheduler, Chopin is flexible and
performs better than both.

OPODIS 2022

4:6 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

3.1 The Hybrid3 Topology
Chopin can be used together with any fast switching circuit technology (as in [21,22,60]), and
implemented within the existing datacenter hardware. We distinguish between two entities
in the ToR switches: the electric switch itself (for brevity, we will simply refer to this switch
as the ToR switch), and the Chopin node which resides in the switch, serving as the entry
point to the optical network. This modular Chopin structure enables us to support existing
ToR switches, by directing one of its upstream ports to the Chopin nodes. When clear from
the context, we use the terms, ToR switch and Chopin node, interchangeably.

The optical network can be any non-blocking topology, where the only constraint on
establishing a circuit between two ToR switches is the availability of a transceiver in the
corresponding Chopin node (namely, its optical degree).

Specifically, we assume each Chopin node has an optical degree of k and optical circuits
are symmetric. This implies, that at any given time, a Chopin node can send and receive
data from at most k Chopin nodes. For any given time t, we denote by desti(t) the set of
Chopin nodes connected to the Chopin node i. We observe that as circuits are symmetric, if
j ∈ desti(t) then it also holds that i ∈ destj(t).

3.2 Problem Formulation
At the heart of Chopin lies the desire to improve network performance and throughput by
avoiding scheduling bottlenecks. As Chopin is deployed between ToR switches, the scheduler
is oblivious to intra-rack traffic or delays.

We first need to introduce some preliminaries. Let n be the number of ToR switches
in the network and assume that time is slotted, where in each time-slot the distributed
scheduler can be invoked (e.g., the length of each time-slot is 1 ms). Let Xi,j(t) be the total
amount of traffic sent from rack i to rack j at time-slot t. Now let Yi,j(t) be an indicator
variable to describe whether a pair of ToR switches is connected through a Chopin circuit at
time interval t: Yi,j(t) = 1 if and only if j ∈ desti(t) (and 0 otherwise). If Yi,j(t) = 1 then
Yj,i(t) = 1 as connections through Chopin are symmetric.

Let Ct ⊆ S × S be a symmetric relation with all ToR switch pairs that are connected
through a Chopin circuit at time interval t (i.e., (i, j) ∈ C(t) if and only if j ∈ desti(t)).

We aim to maximize optical circuit throughput, a standard objective in such topologies [7,
14, 21, 23, 53, 57, 75, 76], namely

∑
t

∑
i

∑
j Xi,j(t) · Yi,j(t). This relieves the electrically

switched network part and reduces the overall latency. This is done by updating the set Ct,
based on local and centralized decisions.

Note that, as optical circuit capacities are typically very high, we assume that the capacity
of an optical circuit is always larger than the total amount of traffic sent between two racks
(namely Xi,j(t)). In case this does not hold, and the two racks are connected through an
optical link, one can send traffic through the optical circuit up to its capacity while the
remaining traffic is sent through the electrically switched network.

3.3 Schedulers and Definitions
First, a centralized scheduler has a global view of the network and, in some cases, even
auxiliary information given by the network administrator. This, on one hand, enables

3 We note that the term hybrid can have a different meaning in some networking contexts, e.g., indicating
a combination of the LOCAL model with the node-capacitated clique model [5].

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:7

the scheduler to perform more informed decisions. But on the other hand, when using a
centralized scheduler, it can take much longer to gather, compute, and spread the information
across the datacenter. In our model, we assume the centralized scheduler works every T

time-slots (which we call the centralized scheduler epoch) and uses slightly outdated traffic
information: at time t, only the measurements {Xi,j(t′)|t′ < t − ∆, for every i, j} can be
used, where ∆ is the centralized algorithm delay: the time it takes it to gather all information
and make decisions. For example, if the optical degree is 1 (i.e. k = 1), the centralized
scheduler may use algorithms such as maximum weight matching to optimize the throughput
that goes through the optical circuits.

As T becomes larger, centralized scheduler decisions can deteriorate, as the input on which
decisions are based is outdated toward the end of the epoch. Thus, we additionally consider
a distributed scheduler that is more fine-grained and runs every time-slot, benefiting from a
reduced computation time and avoiding the delays involved in the centralized scheduler; it
changes the pairs of connected switches based on local information only and by exchanging
messages between ToR switches in two rounds. Specifically, the distributed scheduler of node
i at time-slot t may use traffic measurements on its node until the computation starts:

{Xi,j(t′)|j ̸= i, t′ < t − δ} ∪ {Xj,i(t′)|j ̸= i, t′ < t − δ},

where δ < ∆ is the distributed scheduler delay. In addition, the distributed scheduler is
aware of the information sent to it by other nodes throughout the rounds of computation.
Importantly, for each pair (i, j) that was optically connected through Chopin at time interval
t − 1 (namely, Yi,j(t − 1) = 1), the distributed scheduler at node i knows what information
was used to establish this connection (e.g., what is the rate reported to the centralized
scheduler upon its last invocation) and decides whether the information is stale or not.
Table 1 summarizes Chopin schedulers’ notations.

Notation Meaning
n The number of ToR switches.
desti(t) The set of racks optically connected to rack i at time-slot t
Xi,j(t) The total amount of traffic sent from rack i to rack j at time slot t
Yi,j(t) Indicator variable. Yi,j(t) = 1 iff j ∈ desti(t)
Ct The set of rack pairs optically connected at time slot t
K Optical degree, the number of available circuits per Chopin node.
∆ Centralized scheduler delay
δ Distributed scheduler delay
α Chopin threshold for keeping centralized decisions
A Centralized scheduler aggregation interval
a Distributed scheduler aggregation interval
T Centralized scheduler epoch

Table 1 Chopin’s schedulers’ notations

4 Chopin’s Centralized Scheduler

The centralized scheduler is implemented on top of a centralized SDN controller, which is
(logically) connected to each of the ToR switches and the Chopin nodes. Upon a request
from the centralized scheduler, the controller collects traffic measurements across the network
(namely, counters at ToR switches, current status of Chopin nodes). Based on these
measurements, it computes the next optical circuit allocation.

Recall that the delay ∆ is the time it takes to send all the information to the controller,
run the centralized algorithm, and send the decisions back to the nodes. The centralized
algorithm works in epochs of length T , where decisions arrive at the nodes at the beginning

OPODIS 2022

4:8 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

of each epoch. Assume an epoch starts at time t. Then, these decisions will be used by
nodes until time t + T (or until altered locally by the distributed scheduler). Furthermore,
these decisions are based on information gathered in the interval [0, t − ∆]. However, if
traffic changes quickly (DC traffic is often bursty [6]), this information may be outdated
quickly. This motivates us to define an aggregation interval A for the centralized algorithm,
considering only the interval [t − (∆ + A), t − ∆], see Fig. 3.

Notice that the delay ∆ is an important factor for the performance of Chopin. The
delay describes the response time of the central scheduler and consists of several steps:
contacting tens to hundreds of nodes [19, 43], (2) receiving thousands of flow entry statistics,
estimating optical circuit utilization, contacting all nodes again, and updating all rules with
new parameters if needed.

Considering common SDN controllers’ capability to handle a few thousands of messages
per second [78], we estimate the delay to be in the order of hundreds of milliseconds in most
configurations [48] [39]. Furthermore, the computation time of our algorithms can be in the
order of tens of milliseconds for hundreds of ToR switches (e.g., when running maximum
weight matching–like algorithms, as reported in [23]). Due to these delays, fast changes in the
network (occurring within a few milliseconds [64]), may not be detected by the centralized
scheduler in a timely manner. Also, the reconfiguration time (approximately 11 µsec [30] [61])
is likely negligible compared to a centralized reconfiguration cycle. These observations
motivate usage of another scheduling layer, to adapt to traffic in an online manner.

Our high-level goal is to maximize the overall throughput over the optical network. First
recall that allocations are constrained by the optical ToR switch degree k: each ToR switch
can be optically connected to at most k other ToR switches, Accordingly, our centralized
algorithm essentially needs to solve a weighted b-matching problem, with b = k. Specifically,
we consider an undirected graph whose nodes are the ToR switches and the weight of each
edge (i, j) is the total traffic between i and j in the relevant interval:

wij =
t−∆∑

t′=t−(∆+A)

Xi,j(t′) + Xj,i(t′).

While b-matching algorithms are strongly polynomial [4], their running time can still be
prohibitively high in practice [27,49,59]. This can lead to high delays ∆ and in turn, to a
significantly reduced overall performance of the system. Thus, we propose to approximate the
problem: we compute a maximum weight matching (using Edmond’s MWM algorithm [28]),
subtract the weights of the matching’s edges from the graph, and run maximum weight
matching again with the new, smaller weights. As in [68], this process is repeated k times,
resulting in k matchings. Hence each node is connected to at most k other nodes, as required.
We refer to Khan et al. [46] for a further discussion on efficiently approximating b-matchings.

Delay Δ

ComputeG D Usage

T

ComputeG D Usage

ComputeG D UsageInformation used for
computation

Aggregation
interval A

t t+Tt-Dt-(D+A)

Figure 3 Centralized scheduler timing parameters, where “G” stands for the gathering period and “D”
for the disseminate period. Similar parameters are used by the distributed scheduler, with delay of δ.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:9

2 4 6 8 10 12 14 16 18
Mean Flow Size (MB)

0.20

0.25

0.30

0.35

0.40

Op
tic

al
 T

hr
ou

gh
pu

t R
at

io

Full-fledged MWM, 0 ms delay
Top-5 MWM, 3 ms delay
Full-fledged MWM, 20 ms delay

Figure 4 Comparison between a centralized
scheduler which operates every 3 ms and computes
the MWM of the top-5 live flows, to a centralized
scheduler which operates every 20 ms and computes
full-fledged MWM. For brevity only pFabric results
are shown.

2 4 6 8 10 12 14 16 18
Mean Flow Size (MB)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
g.

 P
ai

rs
 R

ec
on

fig
ur

at
io

n
Ra

tio
 (p

er
 m

s)

Full-fledged MWM, 0 ms delay
Top-5 MWM, 3 ms delay
Full-fledged MWM, 20 ms delay

Figure 5 Average reconfiguration ratio per 1
ms of three scenarios: centralized scheduler which
computes MWM over top-5 live flows every 3 ms,
a centralized scheduler which operates every 20 ms
and computes full-pledged MWM. For brevity only
results for the pFabric traffic pattern are shown.

We further reduce computation time by considering only the top-m live flows per ToR
switch (instead of all possible pairs between the nodes). Due to the sparse nature of datacenter
traffic matrices, even small values of m provide a highly accurate approximation: there is
almost no performance degradation compared to a full-fledged MWM (§5). Note that the
top-m flows per switch can be efficiently calculated in each switch since there are only n

possible flows and maintaining n counters at line rate is supported by switches.
Moreover, focusing only on a constant number of top flows per node enables Chopin to scale

with an increasing number of nodes. It also decreases both the MWM computation and the
network reconfiguration times, allowing more frequent centralized scheduler reconfigurations.
As the frequency of centralized scheduler invocations significantly affects the performance,
by considering only m flow, we can improve the scheduler’s performance. For example, when
m = 5 and the number of ToR switches is 80, the time it takes to compute MWM based
on top-5 live flows per ToR is 3 ms, while full-fledged MWM takes at least 20 ms. Fig. 4
compares the performance of both algorithms under the pFabric traffic pattern we have
described (similar results hold for other traffic patterns as well) and shows that having more
frequent reconfigurations is more significant than having slightly better matchings. Our
centralized scheduler, based on top-5 live flows with reconfiguration every 3 ms, achieves
almost the same results as an idealized online optimal algorithm, that computes full-fledged
MWM every 1 ms. Finally, we observe that the optical throughput ratio improves as the
mean flow size increases (and the gap between the algorithms shrinks), since longer flows
imply that flow information is still relevant even after a long time when computations are
infrequent.

In order to explain the throughput differences in Fig. 4, we analyzed the number of
reconfigurations in each scenario. We consider the average number of reconfigured pairs in
each run, out of the total number of pairs (n/2). Fig. 5 presents the reconfiguration average
ratio per 1 ms, as a function of the mean flow size. As expected, as the mean flow size
increases (and the flows are longer), the number of reconfigurations decreases. Moreover, it
shows that the number of reconfigurations is decreasing rapidly when the epoch time is 20
ms. This can be attributed to the fact that short lived connections have less impact on the
20ms long measurements and are less likely to be matched.

OPODIS 2022

4:10 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

5 Chopin’s Distributed Scheduler

The distributed scheduler is a distributed control algorithm, embedded inside each Chopin
node. Each ToR switch is connected to a single Chopin node and sends flows to the latter
(e.g., by connecting one of its ports to the Chopin node). The traffic that is sent through
this port is configured either by our centralized algorithm (as described in Section 4) or by
the distributed scheduler that runs on the Chopin node.

The Chopin node is responsible of sending traffic destined for the ToR switch from one
of the optical circuits. Each ToR switch in turn is connected to a single Chopin node. We
refer to the illustration in Fig. 2 for an overview. Supplemental pseudo-code of Chopin’s
distributed algorithm appears in Algorithm 1 in the Appendix.

At the beginning of each centralized scheduler epoch, every Chopin node keeps track of
the traffic rate according to which its circuit was selected. Namely, for an epoch that starts
at time t, if a circuit was established between Node i and Node j, both Node i and Node j

compute and store:

Ri,j(t) = 1
A

t−∆∑
t′=t−(∆+A)

Xi,j(t′) + Xj,i(t′).

The nodes use these rates to determine if traffic demands stay steady during the epoch.
Specifically, we define a threshold α ≥ 0, and compute the rate in each time-slot t̂ ∈ [t, t + T]
based only on local information available at the nodes:

ri,j(t̂) = 1
a

t̂−δ∑
t′=t̂−(δ+a)

Xi,j(t′) + Xj,i(t′),

where δ is the distributed scheduler delay, and a is its aggregation interval. Only if ri,j(t̂) >

α · Ri,j(t), then the circuit is marked as matched and the algorithm keeps it connected
through this epoch. Otherwise, it strives to replace it with a better connection, as described
next. We observe that for α = 0, all existing connections are kept matched (namely, Chopin
just runs the centralized scheduler, and may improve only when its computed b-matching
changes). As the threshold increases, it enables the distributed scheduler to tear down
almost every centrally-computed connection and to create new ones, based on the current
ToR switch traffic. The distributed scheduler itself tries to establish as many circuits as
possible to increase the overall traffic through the optical circuit connections. In a nutshell,
each Chopin Node i sends requests to a predetermined number of other nodes needs (this
number is denoted by variable max_reqs), for which it observes the most bi-directional traffic.
These nodes, denoted by req_nodes, do not include those kept matched to Node i; moreover,
max_reqs > k to allow utilizing all the circuits connected to Node i. After a Chopin node i

sends its requests, it waits to receive requests from other nodes. We distinguish between:
1. Request from a node j that is in the req_nodes set: This means that both nodes i and

j consider the traffic between them in their top max_reqs links. This makes Node j a
candidate for a match with Node i.

2. Request from a node j that is not in the req_nodes set: This means that while Node j

considers Node i in its top max_reqs links, Node i has max_reqs other links with larger
traffic. This request should be denied.

We wait until all requests are received at Node i: This is indicated by a time-out event,
that can be set, for example to half the aggregation interval a (requests are timestamped,

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:11

so requests that arrive after the time-out will simply be ignored.). After all requests are
received, there will be at most max_reqs candidates for matching. However, the number
of free circuits (the optical degree minus the number of matched circuit) may be smaller.
Therefore, we choose only the top ones so as not to exceed the number of available links. We
thus send a grant message to all of them and deny messages to others.

In the last phase of our algorithm, each node waits until all its requests are either granted
or denied. It then connects with all nodes that (i) it has granted, and (ii) a grant message
was received from them. It disconnects all other links, except those made by the centralized
algorithm and above the threshold. Note that rate measurements used in an epoch are
performed in parallel with the decision making of the previous epoch.

6 Evaluation

Chopin aims to maximize the circuit throughput (online), without compromising the datacen-
ter latency, by combining centralized and distributed schedulers. Therefore, in our evaluation,
we focus on each of these schedulers’ parameters as well as on their contribution to the
overall DC performance. The performance is evaluated on several parameters, including the
centralized scheduler epoch T , aggregation intervals A (for the centralized scheduler) and a

(for the distributed scheduler), as well as the corresponding delays ∆ and δ.

6.1 Methodology
Topology. We have analyzed Chopin’s performance through synthetic simulations, for
which we generate traffic according to known datacenter traffic patterns [10,37,64]. We used
NetworkX for topology creation, as well as for matching computations. Our simulation code
is available at [65].

Specifically, we have considered real-world datacenter topologies (3-tier) with 8 and 16
aggregation switches, 80 racks and 160 racks, respectively, where each rack contains 10 hosts
(i.e., up to 1, 600 hosts in the network). In addition to the electrical network, we assume a
non-blocking optical circuit switch, which connects to each Chopin node k times at 10 Gbps,
we vary the value of k between 1,2, and 4.

Real datacenter’s data plane parameters were used. The link capacities are 1 Gbps
between servers and ToR switches, 10 Gbps between ToRs and aggregation-level switches
as in [10], and 40 Gbps between the aggregation-level switches and cores, as in [43]. The
reconfiguration time is approximately 11µsec [30,61], as discussed in Section 4. As the host’s
traffic contains hundreds of Mbps on average at all times [37], we analyzed average host
demand levels of 200 Mbps.

Chopin’s evaluation focuses on increasing the optical throughput. Optimizing Chopin’s
optical throughput adds some approximation to it, in three aspects: (i) partial maximal weight
matching computation, (ii) higher optical degree of Chopin nodes, and (iii) approximated
maximal weight matching for higher optical degrees, as discussed next.

Adding several optical routes per Chopin node improves its optical throughput by using
higher connectivity between Chopin nodes. This can be achieved, e.g., by a wavelength-
selective switch (WSS) module at each ToR switch, which is a customized 1 × 4-port Nistica
full-fledged 100 WSS module (as suggested in [20]). This implementation enables each Chopin
node to connect other Chopin nodes by up to 4 optical links.

This becomes less attractive for a larger number of channels (namely, greater than
4) because of the additional noise (e.g., the multiplexer enables additive noise funneling
from each of the sources into the reconfigurable optical add/drop multiplexer ROADM

OPODIS 2022

4:12 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

Distribution HULL pFabric VL2
Mean Low (100 KB) Medium (1.7MB) High (12 MB)
Variance Low Medium High
Centralized perf. 0.42 0.7 0.77
Distributed perf. 0.49 0.75 0.77
Chopin 0.5 0.76 0.78

Table 2 Throughput ratio for optical degree 4

network) [69]. Furthermore, recent studies show that using 1 × 8 ports increases the system
costs by a factor of 10 compared to 1 × 4 ports [79]. Thus, for cost-effective systems, where
several optical switches are recommended, we analyze Chopin’s performance where each
Chopin node has up to 4 connections to other Chopin nodes (i.e., “optical degree k = 4”).
Traffic patterns. We generate the traffic flow based on previous studies of traffic char-
acteristics of datacenter networks [10,44,63]. Flows are TCP [1] with Poisson flow arrival
times [37], whose size distribution follows one of three well-known flow size distributions: (i)
HULL [3]; (ii) pFabric [2, 50,58]; and (iii) VL2 [31].

The distribution of flow arrival time to the ToR switches is modeled as a Poisson process,
where the servers use the network heavily, constantly transmitting and receiving several
hundreds of Mbps data on average all the time [37]. Such a traffic pattern matches the
common inflow rate in today’s datacenters serving a variety of applications, such as video
and job-task managers [40,51].

The dispersion pattern in the simulation was based on the observation that traffic is
either rack-distributed or destined for one ≈ 1%−10% of the hosts, spread across most
of the source’s cluster (tens of racks) [44, 64]. The inter-rack demand per host was set to
approximately 150 Mbps, based on [37].

Chopin’s optical circuits throughput is analyzed w.r.t.:
Different flow traffic distributions (HULL, VL2 and pFabric).
Different scheduler policies: all-distributed/-centralized, and in-between (varying threshold
α levels).

We found that each flow size distribution has special properties, with respect to flow length
and flow size variance. These properties have a significant influence on the performance of
both the centralized and the distributed scheduler:

The HULL flow distribution is a Pareto distribution where almost all flows are mice4

(< 10KB). Moreover, flow variance is low. Therefore, the centralized scheduler throughput
is low, as there are not many elephant flows, and the differences between the flow carried
by the optical links is small compared to the others.
The VL2 distribution creates many elephant flows, with high variance. Therefore, the
centralized scheduler can optimize the traffic and the distributed scheduler can make
decisions which improves the throughput through the optical circuits.
The pFabric distribution includes some elephant flows (but medium mean). With medium
variance the distributed scheduler operates as for VL2, but centralized is slightly less
effective, due to shorter flows.

The properties of these traffic patterns and their impact on the scheduler performance are
described in Table 2, for an optical degree of 4. Notice that Hull, as a Pareto distribution

4 We define mice and elephant flows based on the distinction made by [10].

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:13

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(c) VL2

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 6 Comparison between Chopin and the centralized scheduler under different traffic patterns
(generated by scaling realistic flow size distributions and Poisson flow arrival times under different rates),
when the optical ToR switch’s connectivity is 4. The color represents the ratio between the optical
throughput of Chopin and the centralized scheduler. As the blue cells become darker, Chopin more
strongly outperforms the centralized scheduler.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(c) VL2

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 7 Comparison between Chopin and the distributed scheduler under the same settings as in
Fig. 6. The color represents the ratio between the optical throughput of Chopin and the distributed
scheduler. As the blue cells become darker, Chopin more strongly outperforms the distributed scheduler.

with α = 1.05, mean=100KB [3] has unbounded variance. pFabric has mean value of
approximately 1.7 MB [50] and variance of 3.9MB, and VL2 [31] has mean value of 12 MB
with variance of 85MB.

6.2 Scheduler Implementation
The Chopin scheduler consists of centralized scheduler and distributed scheduler. The
centralized, described in Section 4, aims to find a Maximum Weight Matching (MWM)
solution.

However, due to its complexity, especially as the optical degree (k) increases, the central-
ized scheduler suffers from large running times. In order to reduce delays, two approximations
were introduced. First, MWM with degree k is computed as an iterative Edmond’s MWM
algorithm. Second, the centralized scheduler considers only the top-m live flows per ToR
switch (instead of all possible pairs between the n nodes). We found top-5 MWM running
time to be within 1% of the MWM over all pairs, since MWM complexity (which is the core
of our b-matching solution) scales linearly with the number of to-be-matched edges.

Moreover, as each node reports only its top-5 nodes to the controller, the report can be
sent by a single 200 bit packet. Considering 100 switches reporting to a controller with 1Gbps
network card, and control plane latency of 0.05 ms, all reports can be sent within 0.07 ms.
The reconfiguration commands (for at most 4 links per ToR switch) will have similar latency.

Lastly, we consider the actual update time of the switch internal configuration after

OPODIS 2022

4:14 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

the reconfiguration message arrives. However, it is considered as negligible, assuming an
optimized implementation with time complexity dominated by TCAM update time which is
approximately in the 0.025 ms range [42]. Therefore, the total reconfiguration latency based
on top-5 nodes can be bounded by 3 ms.

6.3 Scheduler Evaluation Benchmarks
We evaluate Chopin with respect to the following centralized and distributed schedulers.

Centralized schedulers are designed for long term datacenter flows. The realistic centralized
scheduler was analyzed through different values of the centralized scheduler epoch T , and
with delay ∆ equals to T . Namely, in the third epoch, the scheduler uses matching results
based on data collected in the first epoch, i.e., data from two epochs ago, recall Fig. 3
(characterized both centralized scheduler and Chopin centralized scheduler). Similarly to
Veisllari et al. [74], we consider an optimal scheduler, which runs MWM, with access to future
traffic knowledge. For each 1 ms interval it uses the optimal matching computed as MWM of
that interval. Therefore, it is an upper bound for datacenter performance.

We also consider an online optimal scheduler, which has no knowledge of the future but
it does not suffer from any delay. For each 1 ms interval it uses an allocation computed as
the MWM of the previous interval.

Distributed schedulers are designed for bursts and short datacenter flows. According to
Roy et al. [64], 90% of the time, 50% of the heavy flows change within 1 ms. Therefore,
the distributed scheduler should operate repeatedly in high frequency. Chopin’s distributed
scheduler is set to operate every 1 ms, which is the length of a time-slot in our model.
Furthermore, as in the centralized scheduler, both aggregation interval and delay (a and δ

respectively) are set to equal the time between two invocations (namely, 1 ms). In addition,
the performance of a distributed scheduler (unrelated to a centralized scheduler) with the
same properties was also analyzed. Moreover, as discussed in §5, a major factor of the Chopin
distributed scheduler is the threshold α, the level under which the centralized allocation can
be changed by the distributed scheduler.

As the threshold decreases, Chopin’s performance is closer to a centralized scheduler.
Similarly, as the threshold increases, Chopin’s performance is closer to being distributed.
Therefore, we evaluate Chopin for different threshold levels, between 0.1 to 1.3, to capture
Chopin’s performance scheduling between distributed and centralized scheduling.

6.4 Centralized-Distributed Trade-off
How can we find an optimal tradeoff between the centralized scheduler, which provides
accurate solutions but relies on outdated information, and the distributed scheduler which
relies on more recent information but provides approximate solutions (due to locality)?

This trade-off was analyzed in two related ways: (i) optimal threshold, and (ii) optimal
reconfiguration number. The threshold α is the parameter which enables the distributed
scheduler to change the centralized matching, and therefore, to adapt the traffic changes in
small time intervals. For example, a circuit allocation between ToR pair with high throughput
on previous intervals, should be torn down if the flow rate reduces drastically. We found that
Chopin’s optimal threshold α is between ≈ 0.4 − 0.7, depending on the traffic pattern. For
the HULL traffic pattern, it achieves higher performance with α = 0.4, while for DCTCP
and VL2 traffic, the optimal threshold is approximately 0.7. Moreover, across this range, the
performance across all the traffic patterns were the highest, with low deviation.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:15

(a) HULL (b) pFabric (c) VL2

Figure 8 Throughput through the optical circuits, for different optical degrees and flow size distributions.

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(a) HULL

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(b) pFabric

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

30

20

10

0

10

20

30

(c) VL2

1.3

1 .2

1.1

1

0.9

0.8

0.7

Figure 9 Comparison between Chopin and the online optimal scheduler under different traffic patterns
(each generated by scaling well-known realistic flow size distributions and assuming Poisson flow arrival
times under different rates), when the optical ToR switch’s connectivity is 4. As the red cells become
darker, the online optimal scheduler performs better than Chopin.

6.5 On the Benefit of Hybrid Scheduling
To analyze Chopin’s (the hybrid scheduler) improvement over distributed and centralized
schedulers, we consider the optical throughput ratio. Fig. 6 and Fig. 7 describe Chopin’s
improvement ratio for each of the flow patterns, compared to centralized and distributed
schedulers (respectively), when considering a centralized compute epoch of 3 ms, see §6.2.

The results show that Chopin outperforms the centralized scheduler for every traffic
pattern. We found that Chopin’s optical throughput ratio is higher than the centralized
scheduler optical throughput ratio by up to 20% in the HULL distribution, 15% for pFabric
pattern, and 2% for datacenters with a VL2 flow size distribution (as shown in Fig. 6a).
Moreover, Chopin also achieves a higher throughput ratio compared to the distributed
scheduler across all traffic patterns. Specifically, Chopin increases the optical throughput
ratio of the distributed scheduler by up to 16% in the HULL distribution, 20% in the pFabric
and 23% in VL2 traffic (see Fig. 7b). Therefore, Chopin outperforms both centralized and
distributed schedulers.

6.6 Optical Degree Improvement
Next, we examine the improvement as a function of Chopin nodes’ optical degree. Therefore,
we have focused on the optimal threshold for each of the flow patterns, where the centralized
scheduler epoch is 3 ms, as discussed in Section 4.

Fig. 8 presents the ratio between the throughput through optical circuits to the overall
throughput (electrical and optical networks combined). This optical throughput ratio changes
with the optical degree and flow patterns, as shown in Fig. 8. In each flow pattern, all the
schedulers were considered. It is shown that as the degree increases, the throughput among
all the schedulers improved, and that Chopin’s throughput is higher than both the centralized

OPODIS 2022

4:16 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

and the distributed schedulers. Moreover, as the number of elephant flows increases (as in
VL2), Chopin’s throughput is getting closer to the optimal. It is consistent with Chopin’s
aim to carry elephant flows over optical circuits. Therefore, flow patterns with high number
of elephant flows benefit more from using Chopin.

6.7 Chopin VS Online Optimal Scheduler
We compared between Chopin performance, and online optimal scheduler performance (where
centralized updates are being sent to Chopin nodes every 1 ms instead of 3 ms respectively).
Fig. 9 shows that even if Chopin’s centralized scheduler updates were sent every 1 ms (such
as in the online optimal scheduler), there is no significant improvement for the V L2 flow
pattern (see Fig. 9c). In other words, Chopin is closer to the optimal scheduler as the flows
become larger, because as the mean flow is longer, the changes over small time intervals (such
as 1 ms) become minor. Therefore, in these cases, the added value of high frequent scheduling
updates, even with the “future” information (as in the optimal scheduler), decreases. Chopin
can benefit from higher frequent centralized updates mostly in HULL distribution, (where
the flows are usually shorter), by approximately 20%.

6.8 Sensitivity Analysis

2 4 6 8 10 12 14 16 18 20 22
Mean Flow Size (MB)

100
200
300
400
500
600

M
ea

n
Ho

st
 R

at
e

(M
b/

s)

0.6

0.8

1.0

1.2

1.4

Figure 10 Comparison between centralized and
distributed schedulers, as in Fig. 1, but with 160 ToR
switches. For brevity we only present pFabric results.

We further analyzed our results by consid-
ering different sizes of networks, e.g. with
100 ToR switches and for 160 ToR switches,
where there are 10 hosts per ToR switch,
and for different rates per host (100–600
Mbps). Across all the networks that were
examined, for each of the traffic patterns,
we observe that on certain conditions the
distributed scheduler outperforms the cent-
ralized scheduler and vice versa, with respect
to higher optical throughput. For instance,
see the heatmap for a network with 160 ToR
switches, each with an optical degree of 4
connections, under the pFabric traffic pattern in Fig. 10. It shows that under the pFabric
distribution, when the mean flow is larger than 5 MB, the centralized scheduler achieves
higher performance compared to the distributed one. This phenomenon was also observed
for the 80 ToR network, as in Fig. 1b.

Moreover, Chopin’s performance can scale. We demonstrate its effectiveness over a
concrete network topology (specified in Section 6.1), but faster links with higher demand
will create the same bottleneck and resolve with Chopin in the same way.

7 Conclusion

Chopin aims to combine the benefits of centralized scheduling with distributed scheduling, to
provide high throughput and fast reaction. While centralized and distributed scheduling has
also been combined in all-static non-hybrid networks, e.g., Facebook’s Express Backbone [41],
hybrid networks with optical circuits pose structurally different challenges. In particular,
we find that distributed decisions benefit from being closer in time to the measurements they
are based on, which is more critical than the rate of decisions.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:17

We believe that our work opens several interesting avenues for future research. In
particular, while we achieve significant performance gains, our approach is more complex
than the state-of-the-art and it would be useful to simplify it further. Furthermore, our
distributed schedulers use the same threshold for all nodes as a homogeneous strategy. While
this succinct representation is sufficient for the settings described in this paper, it can be
interesting to explore heterogeneity, e.g., to increase the threshold on very congested racks.
Finally, the trade-off between an elephant flow’s duration and the time before it starts to
route through optical circuits can be considered for future optimization.

References
1 Mohammad Alizadeh. Empirical traffic generator. Cisco DC Repositories, 2015.
2 Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,

Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In ACM
SIGCOMM, 2010.

3 Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and
Masato Yasuda. Less is more: Trading a little bandwidth for ultra-low latency in the data
center. In NSDI. USENIX Association, 2012.

4 Richard P. Anstee. A polynomial algorithm for b-matchings: An alternative approach. Inf.
Process. Lett., 24(3):153–157, 1987.

5 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp
Schneider. Shortest paths in a hybrid network model. In SODA, pages 1280–1299. SIAM,
2020.

6 Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the complexity of traffic
traces and implications. In Proc. ACM SIGMETRICS, 2020.

7 Navid Hamed Azimi, Zafar Ayyub Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.
Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: a reconfigurable wireless data center
fabric using free-space optics. In SIGCOMM. ACM, 2014.

8 Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István Haller, Krzysztof
Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and Hugh Williams. Sirius:
A flat datacenter network with nanosecond optical switching. In SIGCOMM, pages 782–797.
ACM, 2020.

9 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. J. ACM,
68(5):39:1–39:30, 2021.

10 T. Benson, A. Akella, and D.A. Maltz. Network traffic characteristics of data centers in the
wild. In ACM IMC, pages 267–280, 2010.

11 André Berger, James Gross, Tobias Harks, and Simon Tenbusch. Constrained resource
assignments: Fast algorithms and applications in wireless networks. Management Science, 62,
11 2015.

12 Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter network topology.
In IEEE SC, pages 348–359, 2014.

13 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic dynamic
matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020.

14 Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao, and Shan
Zhong. Enabling wide-spread communications on optical fabric with megaswitch. In USENIX
NDSI, 2017.

15 Charles Clos. A study of non-blocking switching network. Bell System Technology Journal,
32(2):406–424, 1953.

16 Shibsankar Das. A modified decomposition algorithm for maximum weight bipartite matching
and its experimental evaluation. Sci. Ann. Comput. Sci., 30(1):39–67, 2020.

OPODIS 2022

4:18 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

17 Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel. Hawk: Hybrid
datacenter scheduling. In USENIX ATC, 2015.

18 Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade, Manya Ghobadi, Ratul Mahajan,
and Amar Phanishayee. Stable matching algorithm for an agile reconfigurable data center
interconnect. Technical Report 2016-1140, MSR, Jun 2016.

19 Fahad Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron. Decentralized
task-aware scheduling for data center networks. ACM SIGCOMM CCR, 44, 08 2014.

20 N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and
A. Vahdat. A multiport microsecond optical circuit switch for data center networking. IEEE
Phot. Techn. L., 25(16):1589–92, Aug 2013.

21 Nathan Farrington, Alex Forencich, Pang-Chen Sun, Shaya Fainman, Joe Ford, Amin Vahdat,
George Porter, and George C. Papen. A 10 us hybrid optical-circuit/electrical-packet network
for datacenters. In OFC/NFOEC. OSA, 2013.

22 Nathan Farrington, George Porter, Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Hunting mice with microsecond circuit switches. In ACM HotNets, 2012.

23 Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios: a hybrid
electrical/optical switch architecture for modular data centers. In SIGCOMM. ACM, 2010.

24 Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu. Efficient non-
segregated routing for reconfigurable demand-aware networks. Comput. Commun., 164:138–147,
2020.

25 Klaus-Tycho Foerster, Maciej Pacut, and Stefan Schmid. On the complexity of non-segregated
routing in reconfigurable data center architectures. Comput. Commun. Rev., 49(2):2–8, 2019.

26 Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center networks:
Enablers, algorithms, complexity. SIGACT News, 50(2):62–79, 2019.

27 Harold N. Gabow. Data structures for weighted matching and extensions to b-matching and
f -factors. ACM Trans. Algorithms, 14(3):39:1–39:80, 2018.

28 Zvi Galil. Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv.,
18(1):23–38, March 1986.

29 Manya Ghobadi, Ratul Mahajan, Amar Phanishayee, Pierre-Alexandre Blanche, Houman
Rastegarfar, Madeleine Glick, and Daniel Kilper. Design of mirror assembly for an agile
reconfigurable data center interconnect. Technical Report 2016-1139, MSR, Jun 2016.

30 Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janardhan Kulkarni,
Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar, Madeleine Glick, and Daniel
Kilper. Projector: Agile reconfigurable data center interconnect. In ACM SIGCOMM, pages
216–229, 2016.

31 A. Greenberg, J. R. Hamilton, N. Jain, S.Kandula, C.Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A scalable and flexible data center network. ACM SIGCOMM, 39(4):51–62,
2009.

32 A. Grieco, G. Porter, and Y. Fainman. Integrated space-division multiplexer for application
to data center networks. IEEE J. Sel. Top. Quant. El., 22(6), 2016.

33 Chen Griner, Stefan Schmid, and Chen Avin. Cachenet: Leveraging the principle of locality in
reconfigurable network design. Computer Networks, 204:108648, 2022.

34 Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen
Avin. Cerberus: The power of choices in datacenter topology design - A throughput perspective.
Proc. ACM Meas. Anal. Comput. Syst., 5(3):38:1–38:33, 2021.

35 Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
A survey of reconfigurable optical networks. Opt. Switch. Netw., 41:100621, 2021.

36 Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall.
Augmenting data center networks with multi-gigabit wireless links. In SIGCOMM, pages
38–49. ACM, 2011.

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:19

37 Y. Han, J.H. Yoo, and J.W.K. Hong. Poisson shot-noise process based flow-level traffic matrix
generation for data center networks. In IFIP/IEEE IM, May 2015.

38 Kathrin Hanauer, Monika Henzinger, Stefan Schmid, and Jonathan Trummer. Fast and heavy
disjoint weighted matchings for demand-aware datacenter topologies. In INFOCOM, pages
1649–1658. IEEE, 2022.

39 Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan Prakash, Aditya
Akella, Li Erran Li, and Marina Thottan. Measuring control plane latency in sdn-enabled
switches. In ACM SIGCOMM, SOSR ’15, pages 25:1–25:6, 2015.

40 Netflix help center. Internet connection speed recommendations, 2018. URL: https://help.
netflix.com/en/node/306.

41 Mikel Jimenez and Henry Kwik. Building Express Backbone: Facebook’s new long-
haul network, May 2017. URL: https://engineering.fb.com/data-center-engineering/
building-express-backbone-facebook-s-new-long-haul-network/.

42 Mikel Jimenez and Henry Kwik. Ternary Content Addressable Memory (TCAM) Search IP for
SDNet - SmartCORE IP Product Guide. Technical report, Xilinx, November 2017. URL: https:
//www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf.

43 S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. In ACM
HotNets, 2009.

44 S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of data center
traffic: Measurements & analysis. In ACM IMC, pages 202–208, 2009.

45 Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla. Beyond
fat-trees without antennae, mirrors, and disco-balls. In SIGCOMM, pages 281–294. ACM,
2017.

46 Arif M. Khan, Alex Pothen, Md. Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Naray-
anan Sundaram, Fredrik Manne, Mahantesh Halappanavar, and Pradeep Dubey. Efficient
approximation algorithms for weighted b-matching. SIAM J. Sci. Comput., 38(5), 2016.

47 Viatcheslav Korenwein. The practical power of data reduction for maximum-cardinality
matching. Masterthesis, TU Berlin, Januar 2018. Master thesis. URL: http://fpt.akt.
tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf.

48 M. Kuzniar, P. Peresini, and D. Kostic. What you need to know about sdn control and data
planes. Technical report, EPFL, 2014.

49 Adam N. Letchford, Gerhard Reinelt, and Dirk Oliver Theis. Odd minimum cut sets and
b-matchings revisited. SIAM J. Discret. Math., 22(4):1480–1487, 2008.

50 Z. Li, W. Bai, K. Chen, D. Han, Y. Zhang, D. Li, and H. Yu. Rate-aware flow scheduling
for commodity data center networks. In IEEE INFOCOM, pages 1–9, 2017. doi:10.1109/
INFOCOM.2017.8057082.

51 Xiao Ling, Yi Yuan, Dan Wang, Jiangchuan Liu, and Jiahai Yang. Joint scheduling of
mapreduce jobs with servers. J. Parallel Distrib. Comput., 90(C):52–66, April 2016.

52 He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George
Papen, Alex C. Snoeren, and George Porter. Circuit switching under the radar with reactor.
In USENIX NSDI, pages 1–15, April 2014.

53 He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George
Papen, Alex C. Snoeren, and George Porter. Circuit switching under the radar with reactor.
In USENIX NSDI, pages 1–15, 2014.

54 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
J. ACM, 62(5):38:1–38:17, 2015.

55 Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. Distributed approximate matching. SIAM J.
Comput., 39(2):445–460, 2009.

56 William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren, and George
Porter. Expanding across time to deliver bandwidth efficiency and low latency . In NSDI.
USENIX Association, 2020.

OPODIS 2022

https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://engineering.fb.com/data-center-engineering/building-express-backbone-facebook-s-new-long-haul-network/
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
https://www.xilinx.com/support/documentation/ip_documentation/tcam/pg190-tcam.pdf
http://fpt.akt.tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf
http://fpt.akt.tu-berlin.de/publications/theses/ma-viatcheslav-korenwein.pdf
https://doi.org/10.1109/INFOCOM.2017.8057082
https://doi.org/10.1109/INFOCOM.2017.8057082

4:20 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

57 William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen, Alex C.
Snoeren, and George Porter. Rotornet: A scalable, low-complexity, optical datacenter network.
In SIGCOMM. ACM, 2017.

58 Alizadeh Mohammad, Yang Shuang, Sharif Milad, Katti Sachin, McKeown Nick, Prabhakar
Balaji, and Shenker Scott. pfabric: Minimal near-optimal datacenter transport. ACM
SIGCOMM, 43(4):435–446, 2013.

59 Matthias Müller-Hannemann and Alexander Schwartz. Implementing weighted b-matching
algorithms: Insights from a computational study. ACM Journal of Experimental Algorithmics,
5:8, 2000.

60 George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-Sun, Tajana
Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond circuit
switching into the data center. ACM SIGCOMM, 43(4):447–458, 2013.

61 George Porter, Richard D. Strong, Nathan Farrington, Alex Forencich, Pang-Chen Sun, Tajana
Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond circuit
switching into the data center. In SIGCOMM, pages 447–458. ACM, 2013.

62 Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muhammad Mukarram Bin
Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve D. Gribble, Rishi
Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir
Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan Zhou,
and Amin Vahdat. Jupiter evolving: transforming google’s datacenter network via optical
circuit switches and software-defined networking. In SIGCOMM, pages 66–85. ACM, 2022.

63 Y. Qiao, Z. Hu, and J. Luo. Efficient traffic matrix estimation for data center networks. In
IFIP Networking, pages 1–9, May 2013.

64 Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside the
social network’s (datacenter) network. In SIGCOMM. ACM, 2015.

65 Neta Rozen-Schiff, David Hay, Stefan Schmid, and Klaus-Tycho Foerster. Chopin imple-
mentation code. https://bitbucket.org/NetaRS/sched_analytics/src/master/, October
2020.

66 Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler,
and Zvi Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM Trans. Netw.,
24(3):1421–1433, 2016.

67 Ankit Singla, Chi-Yao Hong, Lucian Popa, and Philip Brighten Godfrey. Jellyfish: Networking
data centers, randomly. In USENIX NSDI, volume 12, 2012.

68 Ankit Singla, Atul Singh, and Yan Chen. OSA: An optical switching architecture for data
center networks with unprecedented flexibility. In USENIX NSDI, 2012.

69 T. A. Strasser and J. L. Wagener. Wavelength-selective switches for roadm applications. IEEE
J. Sel. Top. Quant. El., 16(5), 2010.

70 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
71 Akhilesh S. Thyagaturu, Anu Mercian, Michael P. McGarry, Martin Reisslein, and Wolfgang

Kellerer. Software defined optical networks (sdons): A comprehensive survey. IEEE Commun.
Surv. Tutorials, 18(4):2738–2786, 2016.

72 Gerard J Tortora and Bryan H Derrickson. Principles of anatomy and physiology. John Wiley
& Sons, 2018.

73 Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander: Towards
optimal-performance datacenters. In ACM CoNEXT, 2016.

74 R. Veisllari, S. Bjornstad, and N. Stol. Scheduling techniques in an integrated hybrid node
with electronic buffers. In ONDM, April 2012.

75 Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath. Costly
circuits, submodular schedules and approximate carathéodory theorems. In SIGMETRICS.
ACM, 2016.

https://bitbucket.org/NetaRS/sched_analytics/src/master/

N. Rozen-Schiff, K.-T. Foerster, S. Schmid, and D. Hay 4:21

76 Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki, T. S. Eugene
Ng, Michael Kozuch, and Michael P. Ryan. c-through: part-time optics in data centers. In
SIGCOMM, pages 327–338. ACM, 2010.

77 Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Dingming Wu, Xin Sunny Huang,
and T. S. Eugene Ng. A tale of two topologies: Exploring convertible data center network
architectures with flat-tree. In SIGCOMM, pages 295–308. ACM, 2017.

78 Bing Xiong, Kun Yang, Jinyuan Zhao, Wei Li, and Keqin Li. Performance evaluation
of openflow-based software-defined networks based on queueing model. Comput. Netw.,
102(C):172–185, 2016.

79 Haining Yang, Brian Robertson, Peter Wilkinson, and Daping Chu. Low-cost cdc roadm
architecture based on stacked wavelength selective switches. J. Opt. Commun. Netw., 9(5):375–
384, May 2017.

80 Johannes Zerwas, Chen Avin, Stefan Schmid, and Andreas Blenk. Exrec: Experimental
framework for reconfigurable networks based on off-the-shelf hardware. In ANCS, pages 66–72.
ACM, 2021.

81 Johannes Zerwas, Wolfgang Kellerer, and Andreas Blenk. What you need to know about
optical circuit reconfigurations in datacenter networks. In ITC, pages 1–9. IEEE, 2021.

82 Danyang Zhuo, Qiao Zhang, Vincent Liu, Arvind Krishnamurthy, and Thomas Anderson.
Rack-level congestion control. In ACM HotNets, 2016.

A Chopin’s Distributed Scheduler Algorithm

We provide on the next page the pseudo-code of Chopin’s distributed algorithm in Algorithm 1.

OPODIS 2022

4:22 Chopin: Combining Distributed and Centralized Schedulers for Self-Adjusting Networks

Algorithm 1 Chopin Distributed Algorithm Code for Node i.

max_reqs : The number of allowed requests per ToR switch
cur_nodes : The nodes currently connected with i

centralized_nodes : The nodes matched to i by the centralized scheduler in its last invocation
received_reqs ← ∅

Upon the beginning of a distributed scheduler epoch:
1: function start:
2: matched_nodes ← ∅
3: for p ∈ (cur_nodes ∩ centralized_nodes) do
4: if ri,p ≥ α ·Ri,p then
5: matched_nodes.add(p)
6: req_nodes ← ([n] \ {i}) \matched_nodes ▷ n denotes the

number of Chopin nodes in the network
7: req_nodes ← get_top_nodes(req_nodes,max_reqs)

▷ Top max_reqs nodes, out of req_nodes, with
the most bi-directional traffic with ToR switch i.

8: grants ← ∅; denies ← ∅
9: send_requests(req_nodes) ▷ Send request to all

nodes in req_nodes.
Upon receiving a request message from src_id:
10: function request_handler(src_id):
11: received_reqs.add(src_id)
Upon a timeout event (implying the request phase has ended):
12: function request_timeout_handler:
13: nodes ← req_nodes ∩ received_reqs
14: free_links ← k - |matched_nodes|
15: granted ← get_top_nodes(nodes, free_links)
16: rejected ← received_reqs \ granted
17: send_denies(rejected) ▷ Send deny message to all

nodes in rejected set.
18: send_grants(granted) ▷ Send grant message to

all nodes in granted set.
19: grant_sent ← true
20: try_execute_decisions()
Upon receiving a grant message from src_id:
21: function grant_handler(src_id):
22: grants.add(src_id)
23: try_execute_decisions()

Upon receiving a deny message from src_id:
24: function deny_handler(src_id):
25: denies.add(src_id)
26: try_execute_decisions()

27: function try_execute_decisions:
28: if denies∪grants ̸= req_nodes or not grant_sent then
29: return ▷ Not all grant/deny were received
30: new_nodes←granted ∩ grants
31: for p∈(cur_nodes\ new_nodes)\matched_nodes do
32: disconnect(p)
33: for p ∈(new_nodes\cur_nodes\ matched_nodes) do
34: connect(p)
35: received_reqs ← ∅; grant_sent←false

	1 Introduction
	2 Optical Background and Related Work
	3 Chopin's Design
	3.1 The Hybrid Topology
	3.2 Problem Formulation
	3.3 Schedulers and Definitions

	4 Chopin's Centralized Scheduler
	5 Chopin's Distributed Scheduler
	6 Evaluation
	6.1 Methodology
	6.2 Scheduler Implementation
	6.3 Scheduler Evaluation Benchmarks
	6.4 Centralized-Distributed Trade-off
	6.5 On the Benefit of Hybrid Scheduling
	6.6 Optical Degree Improvement
	6.7 Chopin VS Online Optimal Scheduler
	6.8 Sensitivity Analysis

	7 Conclusion
	A Chopin's Distributed Scheduler Algorithm

