
R-MPLS: Recursive Protection for
Highly Dependable MPLS Networks

Stefan Schmid

TU Berlin and University of Vienna

Germany and Austria

Morten Konggaard Schou

Dept. of Computer Science, Aalborg University

Denmark

Jiří Srba

Dept. of Computer Science, Aalborg University

Denmark

Juan Vanerio

Faculty of Computer Science, University of Vienna

Austria

ABSTRACT
Most modern communication networks feature fast rerouting

mechanisms in the data plane. However, design and configuration

of such mechanisms even under multiple failures is known to be

difficult. In order to increase the resilience of the widely deployed

MPLS networks, we propose R-MPLS, an alternative link protection

mechanism for MPLS networks that uses recursive protection and

can route around multiple simultaneously failed links. Our new

R-MPLS approach comes with strong theoretical underpinnings, is

implementable in a fully distributed way and executable on existing

MPLS hardware, and formally guarantees that no forwarding

loops are introduced. We implement our R-MPLS protection in

an automated tool which overcomes the complexity of configuring

such resilient network data planes, and report on the benefits of

recursive protection in realistic network topologies. We find that R-

MPLS significantly increases network robustness against multiple

failures, with only moderate increase in the number of forwarding

rules and communication overhead (both comparable to industry-

standards like RSVP-TE FRR).

CCS CONCEPTS
• Networks→ Network algorithms; Network reliability.

KEYWORDS
Network Reliability, Network Algorithms, Fast Reroute, MPLS

ACM Reference Format:
Stefan Schmid, Morten Konggaard Schou, Jiří Srba, and Juan Vanerio. 2022.

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks. In

The 18th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’22), December 6–9, 2022, Roma, Italy. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3555050.3569140

1 INTRODUCTION
Network failures are inevitable: network interfaces can go down

and devices crash at any time [28, 43]. Today, especially link failures

are common, and with the increasing scale of communication

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9508-3/22/12.

https://doi.org/10.1145/3555050.3569140

networks, failures are likely to become more frequent [23]. In order

to deal with such failures and provide the required high degree of

dependability, modern networks rely on control software whose

responsibility is to ensure connectivity despite these unreliable

components. In particular, most mission-critical communication

networks today feature fast rerouting (FRR) mechanisms in the

data plane [10] which allow routers to locally and hence quickly

forward traffic to alternative paths.

However, the design of fast rerouting mechanisms providing

a high degree of resilience is known to be challenging, and continues

to attract significant attention from the research community [10,

12, 20, 24, 35]. In particular, since routers need to react to failures

locally, these decisions are taken without knowledge of potential

failures downstream. The additional failures, however, may lead to

incorrect forwarding behaviors and threaten reachability.

Many major network outages have been reported over the last

years [14, 15]. While sometimes already a single link failure can lead

to undesired network behaviors [7], with the increasing network

scale and due to shared risk link groups, operators now even have

to plan for multiple failures simultaneously [49]. Also, multiple

link failures have already been studied in the literature intensively

before [5, 12, 16, 37]. There results for achieving perfect resilience

for many clasess of topologies and different kinds of networks.

None of them is readily implementable in MPLS.

This paper is motivated by observing an opportunity to

significantly improve the resilience provided by fast rerouting

mechanisms. In particular, we consider the widely deployed

networks based on Multiprotocol Label Switching (MPLS) [40, 44].

For example, MPLS networks are popular among ISPs for traffic

engineering purposes. The fast rerouting mechanism used in MPLS

relies on stacks of labels in the packet header, where a label pushed

on the stack allows to route packets around failed links, creating a

“backup tunnel” [38].MPLS FRR allows protecting against individual

link and node failures, and has been successfully used for two

decades already. It has recently regained attention for supporting

fast what-if analysis [25, 26].

Two common protection methods are standardized on MPLS for

protection of traffic engineering tunnels [38]: one-to-one backup
where one backup label switched path (LSP) is established for each

protected LSP in such a way that the former intersects the latter

at one of the downstream nodes and facility backup where each

backup LSP is established to protect a set of many primary LSPs

that share the same outgoing interface or next-hop, intersecting

the primary paths at a shared downstream node right after the

https://doi.org/10.1145/3555050.3569140
https://doi.org/10.1145/3555050.3569140

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

failed link/node. However, while conceptually simple, MPLS FRR

procedures are designed to protect against a single link or node

failure (as a weakness and in contrast to our method).

Our main contribution is a generalization of the MPLS fast

reroute mechanism, R-MPLS, which supports a recursive protection
scheme, where additional labels are pushed on the stack whenever

a packet encounters another failure, essentially creating “nested

tunnels”. This generalization is non-trivial: if done naively, nested

tunnels may quickly lead to forwarding loops, which is a major

concern of operators. Also, while R-MPLS may increase the

header size, this overhead occurs only when it is needed due to

multiple link failures. To this end, we believe that our approach

is in line with other trends in networking, such as IPv6 or

segment routing [19], which require larger headers. Although

MPLS forwarding requires exact matching on labels, which is

less expensive than IP ternary matches, the number of routing

entries and the number of communications required to compute

a protection are critical parameters to scale with the network size.

Our recursive protection mechanism R-MPLS then substantially

improves the resilience of the network to multiple link failures

without the risk of introducing forwarding loops, while keeping

low the memory and the communications overheads.

By recursively building protection tunnels, R-MPLS is able to

provide alternative paths from a single router, as well as protection

paths for other protection paths, neither of which is possible with

standard MPLS protection mechanisms. Figure 1 exemplifies the

protections provided by R-MPLS. A main path from 𝑣0 to 𝑣1 can be

backed upwith a protection path via 𝑣2. If (𝑣0, 𝑣2) is also unavailable
then the main path is protected by another protection path via 𝑣3,

which rejoins the original protection path at 𝑣2. Additionally also

link (𝑣2, 𝑣1) has its own protection via 𝑣4. As a result, R-MPLS can

find a path from 𝑣0 to 𝑣1 evenwhen links (𝑣0, 𝑣1), (𝑣0, 𝑣2) and (𝑣2, 𝑣1)
simultaneously fail. R-MPLS’s improvement is due to recursive link

failure protection by design.

We evaluate the benefits of such recursive protection empirically

on a large number of real network topologies, also comparing

against the state-of-the-art mechanism to achieve multi-failure

resiliency. We find that R-MPLS can indeed significantly increase

the network resilience against multiple link failures at minimal

overheads. Another attractive feature of R-MPLS is that it is

compatible with and can be employed on top of any existing MPLS

data plane and protocol, such as RSVP and LDP.

As a contribution to the research community, in order to ensure

reproducibility and support follow-up work, we make all our

experimental artifacts and implementations publicly available (as

open-source code) [41].

2 MPLS NETWORK MODEL
Let us first formally define a general data plane model of MPLS

networks. This model is based on prior formal models of MPLS

[25, 26], though we restrict the model to the widely used per-

platform label space.

In the model, an MPLS network consists of a topology and

forwarding rules, where the topology is composed of routers

and directed links. Bidirectional links, which are common in real

networks, are modelled by two directed links. Figure 2a gives a small

Figure 1: Example R-MPLS protection.

example topology. In the figure, links in1, in2 and out1 are connected
to the outside of the MPLS domain, modelled using a designated

external node not shown in the figure.

Definition 1. A network topology is a directed multigraph

(𝑉 , 𝐸, src, tgt) where𝑉 is a set of routers, 𝐸 is a set of links between
routers, src : 𝐸 → 𝑉 assigns the source router to each link, and

tgt : 𝐸 → 𝑉 assigns the target router.

A path 𝑝 in the directed multigraph is a sequence of links

𝑒1 . . . 𝑒𝑛 ∈ 𝐸∗ with tgt (𝑒𝑖) = src(𝑒𝑖+1) for 1 ≤ 𝑖 < 𝑛. The path

is simple if all its routers are distinct. Define tgt (𝑝) ≜ tgt (𝑒𝑛).
We assume that links in the network can fail. This is modelled

by a set 𝐹 ⊆ 𝐸 of failed links. In our model, this set does not change

for the duration of time considered. In other words we look at a

snapshot of the data plane after some failures happen and before

the control plane computes new paths. A link is active if it belongs
to 𝐸 \ 𝐹 . We sometimes call 𝐹 the failure scenario.

Forwarding in an MPLS network is accomplished using labels

in the packet header. We denote the set of MPLS labels used in

the network by 𝐿. Packet headers are modified using pop, swap

and push operations. For a set of MPLS labels 𝐿, we define the set

of MPLS operations on packet headers as Op(𝐿) = {swap(ℓ) | ℓ ∈
𝐿} ∪ {push(ℓ) | ℓ ∈ 𝐿} ∪ {pop}.

Each router has a mapping from labels to forwarding entries.

Figure 2c shows an example of a forwarding table for the topology

in Figure 2a. The tables encode two Label Switched Paths (LSPs)

from 𝑣1 resp. 𝑣2 and exiting at out1.
For ease of presentation, the formal model does not include how

a packet enters the MPLS domain, but it is easily extendable by

also mapping these external interfaces to forwarding entries. In the

formal definition, these mappings for all routers are joined into one

forwarding table 𝜏 :

Definition 2. An MPLS network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏) is a tuple
where (𝑉 , 𝐸, src, tgt) is a network topology, 𝐿 is a finite set of MPLS

labels, and 𝜏 : 𝑉 × 𝐿 → 2
N×𝐸×Op (𝐿)+

is the forwarding table.

For every router-label pair (𝑣, ℓ) ∈ 𝑉 × 𝐿, the forwarding

table returns a set 𝜏 (𝑣, ℓ) = {(pr
1
, 𝑒1, 𝜔1), . . . , (pr𝑚, 𝑒𝑚, 𝜔𝑚)} of

forwarding entries where, for all 1 ≤ 𝑗 ≤ 𝑚, pr 𝑗 is the priority,

𝑒 𝑗 is the outgoing link such that src(𝑒 𝑗) = 𝑣 , and 𝜔 𝑗 ∈ Op(𝐿)+
is a nonempty sequence of MPLS operations to be performed on

the packet header. We say that a forwarding entry is active, if its
outgoing link is active.

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

𝑣1

𝑣2

𝑣4

𝑣3

in1

in2

out1

𝑒1

𝑒2

𝑒3
𝑒4

𝑒5
𝑒6

lb𝑣1

lb𝑣3

lb𝑣4

lb𝑣2

(a) Network topology.

⟨𝑒1, 𝑒4𝑒3⟩ ⟨𝑒4, 𝑒6𝑒2⟩⟨𝑒3, 𝑒5𝑒1⟩

{𝑒4}

{𝑒5}
∅

𝑃 = {⟨𝑒3, 𝑒5𝑒1⟩, ⟨𝑒1, 𝑒4𝑒3⟩, ⟨𝑒4, 𝑒6𝑒2⟩}

(b) Protection graph for the protections 𝑃 is used for
loop avoidance.

Router Label Prio. 𝑒out Operation

𝑣1 01 1 𝑒1 swap(02)
𝑣2 05 1 𝑒2 swap(06)
𝑣3 06 1 𝑒3 swap(07)
𝑣4 02 1 out1 pop

07 1 out1 pop

(c) Forwarding table, before R-MPLS, encoding flows 𝑣1 → 𝑣4 and 𝑣2 → 𝑣3 → 𝑣4.

Router Label Prio. 𝑒out Operation

𝑣1 01 1 𝑒1 swap(02)
2 lb𝑣1 swap(02) ◦ push(10)

10 1 𝑒4 swap(11)
2 lb𝑣1 swap(11) ◦ push(40)

40 1 𝑒6 swap(41)
31 1 𝑒1 pop

2 lb𝑣1 pop ◦ push(10)
𝑣2 05 1 𝑒2 swap(06)

41 1 𝑒2 pop

𝑣3 06 1 𝑒3 swap(07)
2 lb𝑣3 swap(07) ◦ push(30)

11 1 𝑒3 pop
2 lb𝑣3 pop ◦ push(30)

30 1 𝑒5 swap(31)
𝑣4 02 1 out1 pop

07 1 out1 pop

(d) Forwarding table after R-MPLS protects links 𝑒1, 𝑒3, and 𝑒4 with labels
(10, 11), (30, 31), resp. (40, 41). Gray rows are excluded to avoid loops.

(in1, 01) (𝑒1, 02) (out1, 𝜀) 𝐹 = ∅
(in1, 01) (lb𝑣1 , 10 ◦ 02) (𝑒4, 11 ◦ 02) (𝑒3, 02) (out1, 𝜀) 𝐹 = {𝑒1}
(in1, 01) (lb𝑣1 , 10 ◦ 02) (lb𝑣1 , 40 ◦ 11 ◦ 02) (𝑒6, 41 ◦ 11 ◦ 02) (𝑒2, 11 ◦ 02) (𝑒3, 02) (out1, 𝜀) 𝐹 = {𝑒1, 𝑒4}
(in1, 01) (lb𝑣1 , 10 ◦ 02) (𝑒4, 11 ◦ 02) (lb𝑣3 , 30 ◦ 02) (𝑒5, 31 ◦ 02) (lb𝑣1 , 10 ◦ 02) . . . 𝐹 = {𝑒1, 𝑒3}

(e) Traces through the network in different failures scenarios. The last looping trace (notice the repeated hop (lb𝑣1 , 10 ◦ 02)) is avoided
by excluding the grayed forwarding rules in Figure 2d.

Figure 2: A simple network with a routing table before and after R-MPLS protection.

The semantics of a set of forwarding entries is to choose an

active entry with the highest priority (lowest natural number).

If several active entries have the same highest priority, we

nondeterministically pick one, hence abstracting away from various

specific routing policies like e.g. ECMP that allow splitting a flow

along multiple paths.

Definition 3. For a set of failed links 𝐹 ⊆ 𝐸 we define the

active forwarding table 𝜏𝐹 : 𝑉 × 𝐿 → 2
𝐸×Op (𝐿)+

as 𝜏𝐹 (𝑣, ℓ) =

{(𝑒, 𝜔) | (pr, 𝑒, 𝜔) ∈ 𝜏 (𝑣, ℓ), 𝑒 ∈ 𝐸 \𝐹 and pr = prmin}, where prmin
is the highest priority (minimal value) of an active forwarding entry

in 𝜏 (𝑣, ℓ), or define 𝜏𝐹 (𝑣, ℓ) = ∅ if 𝜏 (𝑣, ℓ) has no active forwarding

entries given 𝐹 .

As an example with a single protection entry, if 𝜏 (𝑣1, 01) =

{(1, 𝑒1, swap(02)), (2, 𝑒2, swap(02) ◦ push(10))}, then given the

failure scenario 𝐹 = {𝑒1}, the corresponding entry in the active

forwarding table is 𝜏𝐹 (𝑣1, 01) = {(𝑒2, swap(02) ◦push(10))}. In this

case forwarding is deterministic, since 𝜏𝐹 (𝑣1, 01) is a singleton set.

Definition 4. The semantics of MPLS operations is a partial header
rewrite function H : 𝐿∗ × Op(𝐿)∗ ⇀ 𝐿∗, where 𝜔,𝜔 ′ ∈ Op(𝐿)∗,
ℎ ∈ 𝐿∗ and 𝜀 is the empty sequence of operations:

H(ℎ,𝜔) =

ℎ if 𝜔 = 𝜀

H([op] (ℓ) ◦ ℎ′, 𝜔 ′) if 𝜔 = op ◦ 𝜔 ′ and ℎ = ℓ ◦ ℎ′

with ℓ ∈ 𝐿, ℎ′ ∈ 𝐿∗

undefined otherwise

where we define [pop] (ℓ) = 𝜀, [swap(ℓ ′)] (ℓ) = ℓ ′ and

[push(ℓ ′)] (ℓ) = ℓ ′ℓ for all ℓ, ℓ ′ ∈ 𝐿.

As an example, applying the operation sequence swap(02) ◦
push(10) to the header 01, yields H(01, swap(02) ◦ push(10)) =
10◦02. The forwarding of a packet proceeds by (i) selecting an entry
from the active forwarding table that corresponds to the top-most

label on the packet label-stack, (ii) applying the header operations,

and (iii) sending the packet on the outgoing link.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

Definition 5. A trace in a network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏), given
a set of failed links 𝐹 ⊆ 𝐸, is any (finite or infinite) sequence of

link-header pairs (𝑒1, ℎ1) (𝑒2, ℎ2) . . . with each (𝑒𝑖 , ℎ𝑖) ∈ (𝐸\𝐹)×𝐿∗,
where for each 𝑖 > 1, ℎ𝑖 = H(ℎ𝑖−1, 𝜔) for some (𝑒𝑖 , 𝜔) ∈
𝜏𝐹 (tgt (𝑒𝑖−1), head (ℎ𝑖−1)), where head (ℎ) is the top (left-most) label

of ℎ.

Figure 2e shows traces under different failure scenarios using the

forwarding table in Figure 2d. The first trace is a primary path in

the original data plane. The next two use R-MPLS protection in two

different failure scenarios. The last one shows looping behavior,

where the gray parts correspond to the gray forwarding entries in

Figure 2d, which are excluded from the forwarding table by our

loop avoidance algorithm.

3 R-MPLS PROTECTION
Our recursiveMPLS protection (R-MPLS) is designed as a protection

layer that enhances an existing data plane. That is, it takes

a topology and a data plane as inputs and returns an augmented

version of the same data plane as output. This operation is

performed regardless of the protocols involved in the creation of

the original one. Hence our R-MPLS implementation can be used

for postprocessing and data plane augmentation.

We generalize the notion of link protection and node protection

(Definition 6) and address which forwarding entries can be

protected by a given protection path in Section 3.1. Next we solve

in Section 3.2 the issue of avoiding the introduction of forwarding

loops—which occurs if naively applying recursive protection. The

high-level pseudocode of our protection algorithm is described in

Algorithm 2 and Section 3.3, while Section 3.5 provides details on

its distributed implementation.

3.1 Protectable Forwarding Entries
Definition 6. A protection is a pair ⟨𝑒, 𝑝⟩ where 𝑒 ∈ 𝐸 is the link

being protected and 𝑝 is a simple path 𝑒1 . . . 𝑒𝑛 ∈ (𝐸 \ {𝑒})∗, with
src(𝑒1) = src(𝑒).

If tgt (𝑝) = tgt (𝑒), then ⟨𝑒, 𝑝⟩ is a link protection. Figure 3 shows
a network with two main LSPs (dotted and dashed lines), and three

protections 𝑃 for 𝑒1. The protection ⟨𝑒1, 𝑒3𝑒4⟩ is a link protection. A
node protection routes around not just the failing link, but also the

neighboring node. In the example, ⟨𝑒1, 𝑒3𝑒7⟩ is a node protection.
Note that this protection can only be used for the LSP going through

𝑣5. The other LSP (going through 𝑣3) has no node protection, but

we can protect it by a path merging further down the LSP, namely

the protection ⟨𝑒1, 𝑒3𝑒7𝑒8⟩.
Not all forwarding entries can be protected by a given protection.

We only install protections on forwarding entries where the original

path merges with the protection path.

Definition 7. An entry (pr, 𝑒, 𝜔) ∈ 𝜏 (src(𝑒), ℓ) for a label ℓ ∈ 𝐿 is

protectable by a protection ⟨𝑒, 𝑝⟩ using operations 𝜔 ′ ∈ Op(𝐿)∗, if
there exists 𝑒 ′ ∈ 𝐸 with tgt (𝑒 ′) = tgt (𝑝) such that for all ℎ ∈ 𝐿∗

there is a trace

(𝑒,H(ℓ ◦ ℎ,𝜔)) . . . (𝑒 ′,H(ℓ ◦ ℎ,𝜔 ′))

in the network under no failures.

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

in

out

𝑒1 𝑒2

𝑒3
𝑒4

𝑒5 𝑒6

𝑒7 𝑒8

lb𝑣1

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝑃 = { ⟨𝑒1, 𝑒3𝑒4 ⟩, ⟨𝑒1, 𝑒3𝑒7 ⟩, ⟨𝑒1, 𝑒3𝑒7𝑒8 ⟩ }

First entries of LSP

(1, 𝑒1, swap(ℓ1)) ∈ 𝜏 (𝑣1, ℓ0)
(1, 𝑒5, swap(ℓ2)) ∈ 𝜏 (𝑣2, ℓ1)
Entries for 𝑝 = ⟨𝑒1, 𝑒3𝑒7 ⟩
(1, 𝑒3, swap(ℓ1𝑝)) ∈ 𝜏 (𝑣1, ℓ0𝑝)
(1, 𝑒7, pop) ∈ 𝜏 (𝑣4, ℓ1𝑝)

Protect LSP with 𝑝

(2, lb𝑣1 , swap(ℓ2) ◦ push(ℓ0𝑝))
∈ 𝜏 (𝑣1, ℓ0)

Figure 3: A networkwith twomain forwarding paths (dotted
and dashed line), and three protections 𝑃 of 𝑒1. Right side
shows node protection of the dotted LSP.

The R-MPLS algorithm only installs protections for protectable

entries, and it needs to know the operation sequence 𝜔 ′ to use. For

link protection, all entries are protectable using 𝜔 ′ = 𝜔 .

In Figure 3, the entry (1, 𝑒1, swap(ℓ1)) ∈ 𝜏 (𝑣1, ℓ0) is protectable
by ⟨𝑒1, 𝑒3𝑒7⟩ using 𝜔 ′ = swap(ℓ2), since (𝑒1, ℓ1 ◦ ℎ) (𝑒5, ℓ2 ◦ ℎ) is a
valid network trace for allℎ ∈ 𝐿∗. Note that applying𝜔 ′ = swap(ℓ2)
before pushing the protection label, ensures that a packet using the

protection path arrives at 𝑣5 with the same header ℓ2 ◦ ℎ as if using

the main LSP.

3.2 Loop Avoidance
When using a protection ⟨𝑒, 𝑝⟩, in case of a failure of a link 𝑒 ′ on
the path 𝑝 , the R-MPLS algorithm allows to recursively switch to

a new protection ⟨𝑒 ′, 𝑝 ′⟩. As shown in the last trace in Figure 2e

this can sometimes result in a loop. In this example the failure of 𝑒1
causes the packet to use the backup path 𝑒4𝑒3, where the failure of

𝑒3 makes the packet switch to the backup path 𝑒5𝑒1, hence looping

back to the failed 𝑒1 and the backup path 𝑒4𝑒3.

To avoid introducing forwarding loops, we need to understand

the interactions between different protection paths, and then avoid

installing the recursive protection in some cases. For this, we use

the following graph.

Definition 8. Given a set of protections 𝑃 , we define a protection
graph with nodes 𝑃 and edges called protection-pairs such that

there is an edge (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) ∈ protection-pairs whenever the
protected link 𝑒 ′ is on the protection path 𝑝 , and 𝑝 ′ merges

downstream on 𝑝 , i.e. there is 𝑒𝑖 = 𝑒 ′ and 𝑒 𝑗 with 𝑗 ≥ 𝑖 and

tgt (𝑒 𝑗) = tgt (𝑝 ′) such that 𝑝 = 𝑒1 . . . 𝑒𝑖 . . . 𝑒 𝑗 . . . 𝑒𝑛 . Moreover, we

annotate using the function 𝛼 every such edge with the set of links

that must be active before the link 𝑒 ′ is used, i.e. 𝛼 (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) =
{𝑒1, 𝑒2, . . . , 𝑒𝑖−1} where 𝑝 = 𝑒1𝑒2 . . . 𝑒𝑖−1𝑒𝑖 . . . 𝑒𝑛 and 𝑒 ′ = 𝑒𝑖 .

Figure 2b gives the protection graph for the running example,

when all link protections are used. The edges in the graph are

labelled by their 𝛼 annotations. We use the annotation to keep

track of which links on the protection path 𝑝 must be active, since

the packet has already traversed them, when the failure of 𝑒𝑖 makes

the packet move onto the protection path 𝑝 ′.

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

Algorithm 1 Computing bad protection pairs to avoid loops

1: function FindBadProtectionPairs(protections 𝑃)

2: Let 𝐺 be the protection graph of 𝑃 (see Definition 8)

3: 𝐵 ← ∅ ⊲ Initialize bad protection-pairs
4: while there is a bad simple cycle of length 𝑛 in 𝐺 do
5: if 𝑛 > 2 then
6: Pick an edge (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) from the cycle

7: Update 𝐵 ← 𝐵 ∪ {(⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩)}
8: Remove the edge (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) from 𝐺

9: else
10: Add both protection pairs in the cycle to 𝐵

and remove the two edges from 𝐺

11: return 𝐵

Note that in our example protection graph in Figure 2b, the

cycle between ⟨𝑒1, 𝑒4𝑒3⟩ and ⟨𝑒3, 𝑒5𝑒1⟩ corresponds to a possible

forwarding loop in the failure scenario 𝐹 = {𝑒1, 𝑒3} as shown by

the last trace in Figure 2e. We define such bad cycles that lead to

forwarding loops in some failure scenarios.

Definition 9. A bad simple cycle in the protection graph is

a sequence of distinct protections ⟨𝑒1, 𝑝1⟩ . . . ⟨𝑒𝑛, 𝑝𝑛⟩ s.t.
𝐶 ≜

{
(⟨𝑒1, 𝑝1⟩, ⟨𝑒2, 𝑝2⟩), . . . , (⟨𝑒𝑛−1, 𝑝𝑛−1⟩, ⟨𝑒𝑛, 𝑝𝑛⟩),
(⟨𝑒𝑛, 𝑝𝑛⟩, ⟨𝑒1, 𝑝1⟩)

}
⊆ protection-pairs

and {𝑒1, . . . , 𝑒𝑛} ∩ (
⋃
(⟨𝑒,𝑝 ⟩, ⟨𝑒′,𝑝′⟩) ∈𝐶 𝛼 (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩)) = ∅.

The requirement in Definition 9 on the property of the cycle

states that the paths in the cycle do not protect links that appear

in the annotations of the protection-pairs involved in the cycle. If

this property does not hold, a link is assumed to be both active and

failed, hence the cycle does not correspond to a routing loop in any

possible failure scenario.

Algorithm 1 removes edges, i.e. protection-pairs, from the

protection graph, until there are no more bad simple cycles in the

graph. The set of removed edges is returned as the bad protection-

pairs, where R-MPLS should avoid adding recursive protection

entries for these specific cases. We note that for cycles of length 3

and more, we only break one protection-pair on that cycle, while

for shorter cycles we remove all of them (a minor optimization

of the algorithm). In our example from Figure 2b, we identify the

set {(⟨𝑒1, 𝑒4𝑒3⟩, ⟨𝑒3, 𝑒5𝑒1⟩), (⟨𝑒3, 𝑒5𝑒1⟩, ⟨𝑒1, 𝑒4𝑒3⟩)} as the set of bad
protection-pairs which form a cycle of length 2 and the links 𝑒1 and

𝑒3 do not appear on the annotations of the protection-pairs in the

cycle.

We can find and eliminate all bad cycles using a depth-

first-search approach starting from each protection, where the

annotations are continuously checked to not intersect with the

protected links on the search stack.

3.3 R-MPLS Algorithm
Given an existing MPLS network, with its own topology and

forwarding tables, we initialize the execution of Algorithm 2 by

adding loopback links to each router as an abstraction of instructing

the router to run a packet through its forwarding processes again.

The R-MPLS algorithm then installs the LSP for each protection

(loop in Lines 4–10). We here give the protections as input to the

algorithm. They can be computed e.g. as link or node protections

along shortest paths. Each router along the protection allocates

a local label ℓ𝑖⟨𝑒,𝑝 ⟩ to it and records that the label is on the LSP of

protection ⟨𝑒, 𝑝⟩. It then creates new entries in its forwarding table

to use the protection path. Notice that the last router in the path

uses a pop instruction while the others just swap labels. No router

along this path records a push instruction, as these LSPs are only

used as protection paths.

Next, we compute a set of bad protection-pairs based on the

protection graph using Algorithm 1. In order to avoid introducing

forwarding loops, we disable the recursive protection for these

specific pairs of protections.

After completing the previous process, each router proceeds

to execute the loop in Lines 14–21 which augments the original

forwarding table by adding lower priority entries. Note that this

loop does not iterate over the new entries created inside the loop.

For each previously existing highest priority forwarding entry, and

for each protection that can protect that forwarding entry (Line 16),

the router creates a new lower priority entry (Line 17). The new

entry performs the operations𝜔 ′ that will make the packet arrive at

the merge point router with the same header as under the original

forwarding. These operations are followed by pushing the label that

encodes the protection path. The new protection entries forward

to the router’s loopback link. For link protection, the sequence 𝜔 ′

is just the original operations 𝜔 for the entry; for other protections

this information needs to be retrieved from e.g. the control plane.

To achieve recursive protection, the same is done for the entries

created on the loop of Lines 4–10, unless the protection that the

incoming label encodes, paired with the protection we are about

to use, are part of the bad protection-pairs. Again, we check if the

entry is protectable by the protection, i.e. that the new protection

intersects downstream with the current protection. The operation

𝜔 ′ is computed based on where the two protection paths intersect.

We apply Algorithm 2 on the network topology from Figure 2a

and forwarding table in Figure 2c that encodes two flows. We use

the link protections 𝑃 in Figure 2b. The resulting forwarding table is

shown in Figure 2d, where the links 𝑒1, 𝑒3, and 𝑒4 are protected. Note

that in this small example, no other links can have link protection

due to the direction of the links; however, in real networks usually

all links get protection paths. Figure 2e shows four possible traces

under different failure scenarios. Notice how the third trace uses

the recursive protection to recover from both 𝑒1 and 𝑒4 failing. Due

to the failure of 𝑒1, it first tries to use the protection path starting

at 𝑒4 encoded by the label 10. Using the loopback link, it then tests

if link 𝑒4 is also failing, and then it uses the path through 𝑒6 until

that path joins the first protection path at router 𝑣3.

3.4 Recursive Link and Node Protection
Algorithm 2 takes the set of protections 𝑃 as input. We now

show two instantiations of computing 𝑃 : link protection and node

protection.

Given a network topology (𝑉 , 𝐸, src, tgt) where the links are

annotated with weights, we compute for each link 𝑒 ∈ 𝐸 the shortest

path 𝑝 from src(𝑒) to tgt (𝑒) in the graph (𝑉 , 𝐸 \ {𝑒}, src, tgt), and
if 𝑝 exists add ⟨𝑒, 𝑝⟩ to the set of protections 𝑃 . This gives link

protection of all links.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

Algorithm 2 Recursive protection algorithm

Input: Network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏), finite set of protections 𝑃 ⊆ (𝐸 × 𝐸∗)
Output: Protected network 𝑁 ′ = (𝑉 , 𝐸 ′, src′, tgt ′, 𝐿′, 𝜏 ′) with R-MPLS protection

1: src′ ← src, tgt ′ ← tgt, 𝐿′ ← 𝐿, 𝜏 ′ ← 𝜏 ⊲ Initialize 𝑁 ′

2: for 𝑣 ∈ 𝑉 do create loopback link lb𝑣 such that src′(lb𝑣) = 𝑣 and tgt ′(lb𝑣) = 𝑣

3: 𝐸 ′ ← 𝐸 ∪ {lb𝑣 | 𝑣 ∈ 𝑉 }
4: for each protection ⟨𝑒, 𝑝⟩ ∈ 𝑃 do (let 𝑒1, . . . , 𝑒𝑛 be the links on the protection path 𝑝)

5: 𝑒0 ← lbsrc (𝑒) ⊲ Start from loopback link

6: ℓ0⟨𝑒,𝑝 ⟩, . . . , ℓ
𝑛−1
⟨𝑒,𝑝 ⟩ ← fresh labels, add each ℓ𝑖⟨𝑒,𝑝 ⟩ to 𝐿

′

7: protects(ℓ𝑖⟨𝑒,𝑝 ⟩) ← ⟨𝑒, 𝑝⟩ for 0 ≤ 𝑖 < 𝑛 ⊲ Remember protection for label with the mapping protects : (𝐿′ \ 𝐿) → 𝑃

8: for 𝑖 ∈ {0, 1, . . . , 𝑛 − 2} do
9: 𝜏 ′(tgt (𝑒𝑖), ℓ𝑖⟨𝑒,𝑝 ⟩) ← {(1, 𝑒𝑖+1, swap(ℓ

𝑖+1
⟨𝑒,𝑝 ⟩))} ⊲ Use the labels to encode the protection path

10: 𝜏 ′(tgt (𝑒𝑛−1), ℓ𝑛−1⟨𝑒,𝑝 ⟩) ← {(1, 𝑒𝑛, pop)} ⊲ Pop the label on last hop

11: bad-protection-pairs← FindBadProtectionPairs(𝑃) ⊲ Call Algorithm 1

12: Let𝑀 be larger than any priority occurring in 𝜏 ′

13: Let 𝜏 ′min (𝑣, ℓ) = {(pr, 𝑒, 𝜔) ∈ 𝜏
′(𝑣, ℓ) | pr = prmin} where prmin is the highest priority in 𝜏 ′(𝑣, ℓ)

14: for 𝑣 ∈ 𝑉 , ℓ ∈ 𝐿′, (pr, 𝑒, 𝜔) ∈ 𝜏 ′min (𝑣, ℓ) and ⟨𝑒, 𝑝⟩ ∈ 𝑃 do ⊲ Iterate over routers, labels, entries and protections

15: if ℓ ∈ 𝐿 then ⊲ Protection of original data plane

16: if the entry (pr, 𝑒, 𝜔) ∈ 𝜏 ′(𝑣, ℓ) is protectable by ⟨𝑒, 𝑝⟩ using operations 𝜔 ′ ∈ Op(𝐿)∗ then
17: 𝜏 ′(𝑣, ℓ) ← 𝜏 ′(𝑣, ℓ) ∪ {(𝑀, lb𝑣, 𝜔 ′ ◦ push(ℓ0⟨𝑒,𝑝 ⟩))} ⊲ Push backup path

18: else (let ⟨𝑒 ′, 𝑝 ′⟩ = protects(ℓ), let 𝑒 ′
1
, . . . , 𝑒 ′𝑛 be the links on 𝑝 ′, and let 𝑗 be the index where tgt (𝑒 ′

𝑗
) = 𝑣)

19: if (⟨𝑒 ′, 𝑝 ′⟩, ⟨𝑒, 𝑝⟩) ∉ bad-protection-pairs and there exists index 𝑖 such that tgt (𝑒 ′
𝑖
) = tgt (𝑝) and 𝑖 > 𝑗 then

20: 𝜔 ′ ←
{
pop if 𝑖 = 𝑛

swap(ℓ𝑖⟨𝑒′,𝑝′⟩) otherwise

21: 𝜏 ′(𝑣, ℓ) ← 𝜏 ′(𝑣, ℓ) ∪ {(𝑀, lb𝑣, 𝜔 ′ ◦ push(ℓ0⟨𝑒,𝑝 ⟩))} ⊲ Push recursive backup path

22: return 𝑁 ′ = (𝑉 , 𝐸 ′, src′, tgt ′, 𝐿′, 𝜏 ′)

To compute node protection: for each 𝑣 ∈ 𝑉 and 𝑒, 𝑒 ′ ∈ 𝐸 with

tgt (𝑒) = 𝑣 = src(𝑒 ′), compute the shortest path 𝑝 from src(𝑒) to
tgt (𝑒 ′) in the graph with 𝑣 and all of 𝑣 ’s incident edges removed. If

𝑝 exists, add ⟨𝑒, 𝑝⟩ to the set of protections 𝑃 .

The standard FRR facility protection uses node protection when

possible and link protection only as a fallback. We can achieve the

recursive version of this, by adding both link and node protections

to 𝑃 , and then extending Line 16 and 19 to filter out link protections

in case the entry is protectable by a node protection. The R-MPLS

framework also allows for more general sets of protections, e.g. to

optimize link capacity usage in failure scenarios.

3.5 Distributed R-MPLS Implementation
The pseudocode from Algorithm 2 and the computation of

protections 𝑃 for common protection schemes like link and node

protection, can be implemented in a fully distributed fashion, and

it is hence compatible with traditional MPLS routers. In particular,

each router can compute the protection paths for each of its

outgoing links. The topology knowledge required to compute

paths is provided on traditional MPLS networks by the Interior

Gateway Protocol (IGP), typically OSPF-TE [51] or ISIS-TE [33].

The information exchanged by the IGP is stored by each router in

a local database, so no central entity with a complete view of the

topology is required. Each router along the computed protection

path is notified by the originating router, and then Lines 4–10 of

Algorithm 2 are executed locally.

Notice that Line 11 and Line 18 (with the mapping defined on

Line 7) require knowledge of the full protection path 𝑝 = 𝑒1, . . . , 𝑒𝑛 .

To obtain this information, the intermediate routers along the

path 𝑠𝑟𝑐 (𝑒2), . . . , 𝑠𝑟𝑐 (𝑒𝑛) query 𝑠𝑟𝑐 (𝑒1), which is responsible for

computing the protection path. Such a query can be performed

e.g. using the RSVP Diagnose facility [52], by which any network

element sends a request message to another router and inquires

information about computed paths. This request uses only existing

RSVP primitives so the communication can be implemented

completely in software.

The loop on Lines 14–21 of Algorithm 2 requires only local

operations on each router, when link protection is used. For node

protections, Line 20 queries the merge point router for its label

allocated to the protection, and Line 16 needs to query the next-hop

router tgt (𝑒) for its forwarding entries of the top label left by 𝜔 . In

other words, each router only needs to know about the labels of

neighboring routers to implement link protection and their next-

hop forwarding entries to implement node protection. No other

information nor central controller is needed.

R-MPLS has then all the information available, when it finishes

computing its protection paths. So, whichever path is provided by

the underlying protocols, at present or in the future, as long as

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

R-MPLS finished computing its own (topology dependent only)

protection paths, then the router can derive a protecting entry for

each original data plane route, loop-freedom guaranteed; (though

for node protections, Line 16 still needs to query the neighboring

router to get 𝜔 ′). And if or when new forwarding paths result from

the underlying protocols, these can also be protected against link

failures. Since the priority range is partitioned, all R-MPLS routing

entries are guaranteed to have lower priority than all original ones,

ensuring no interference on the networks’ basic routing.

Execution of Algorithm 1 can also be implemented in a dis-

tributed fashion. Again, each router only performs computations for

its own outgoing links. Routers query each other for the protections

paths they have previously computed. The rest of the algorithm is

computed locally from those elements. To ensure that computations

made on Line 6 are identical on all routers, it suffices to assume

a total order on the set of links and choose the protection-pair

deterministically regardless of the router.

3.6 Properties of the R-MPLS Protection
We shall now argue that our R-MPLS protection preserves all the

connections of the original MPLS data plane and does not introduce

any forwarding loops. For this we first need to define the subset of

traces that corresponds to a full run of a packet.

Definition 10. Let 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏) be an MPLS network

and let 𝐹 ⊆ 𝐸 be the set of failed links. Amaximum trace in 𝑁 under

𝐹 is either any infinite trace or a finite trace that is not a prefix of

any other trace in 𝑁 under 𝐹 .

Hence a finite trace (𝑒1, ℎ1) . . . (𝑒𝑛, ℎ𝑛) is maximum if its last link-

header pair (𝑒𝑛, ℎ𝑛) satisfies either ℎ𝑛 = 𝜀, 𝜏𝐹 (tgt (𝑒𝑛), head (ℎ𝑛)) =
∅, orH(ℎ𝑛, 𝜔) is undefined for all (𝑒, 𝜔) ∈ 𝜏𝐹 (tgt (𝑒𝑛), head (ℎ𝑛)).

We now formally define the three properties of MPLS networks.

Due to the support of nondeterministic forwarding, there is

a difference between possibility and certainty of connectivity in

a given scenario.

Definition 11. For a network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏) and set of

failed links 𝐹 ⊆ 𝐸, define the predicates no-loops𝐹
𝑁
, can-reach𝐹

𝑁
, and

must-reach𝐹
𝑁

such that for 𝑒, 𝑒 ′ ∈ 𝐸 and ℎ,ℎ′ ∈ 𝐿∗:
• can-reach𝐹

𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) is true iff there exists a trace

(𝑒, ℎ) . . . (𝑒 ′, ℎ′) in 𝑁 under 𝐹 ,

• must-reach𝐹
𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) is true iff every maximum trace

starting at (𝑒, ℎ) contains (𝑒 ′, ℎ′), and
• no-loops𝐹

𝑁
is true iff every maximum trace in 𝑁 under 𝐹 is

finite.

We now show that Algorithm 2 preserves all can-reach
and must-reach properties, i.e. our protection never removes

connectivity. We refer to the appendix for the proofs of the

theorems.

Theorem 1. Let 𝑁 ′ be the result of applying Algorithm 2 for

recursive protection to an MPLS network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏).
For all possible failure scenarios 𝐹 ⊆ 𝐸, for all 𝑒, 𝑒 ′ ∈ 𝐸 and

ℎ,ℎ′ ∈ 𝐿∗:
(1) if can-reach𝐹

𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) then can-reach𝐹

𝑁 ′ (𝑒, ℎ, 𝑒
′, ℎ′),

(2) if must-reach𝐹
𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) then must-reach𝐹

𝑁 ′ (𝑒, ℎ, 𝑒
′, ℎ′).

The next theorem states that for any loop-free input data plane,

R-MPLS guarantees to produce a loop-free protected data plane.

Theorem 2. Let 𝑁 ′ = (𝑉 , 𝐸 ′, src′, tgt ′, 𝐿′, 𝜏 ′) be the result of

applying Algorithm 2 for recursive protection to an MPLS network

𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏). If for all failure scenarios 𝐹 ⊆ 𝐸 the network

𝑁 satisfies no-loops𝐹
𝑁

then for all failure scenarios 𝐹 ′ ⊆ 𝐸 the

protected network also satisfies no-loops𝐹
′

𝑁 ′ .

4 EVALUATION OF R-MPLS
In this section we describe the experimental evaluation of R-

MPLS. We compare its protection performance as well as memory

and communication overhead against the unprotected data plane,

the industry standard FRR protection and the optimal protection

achieved by the tool Plinko [45].

4.1 MPLS Generation and Simulation
For evaluation ofMPLS data planes we useMPLS-Kit [46], a tool and

library for data plane generation and simulation. It includes utilities

for automation of execution and analysis. Specifically, MPLS-Kit

provides two main functionalities:

• Data Plane Generation. Allows for the computation of the

converged data plane, mimicking a real network by running

the industry standard control protocols Label Distribution

Protocol (LDP)[2] and the Resource ReSerVation Protocol

(RSVP) [38]. It does so by exchanging the same information

that these protocols do in real networks, yet without

engaging in a simulation of the actual message passing. The

user inputs the network topology and the required control

protocol parameters. With the information at hand, each

router in the topology allocates MPLS labels and populates

its forwarding tables accordingly to provide the intended

reachability.

• Simulation. Once the data plane is generated, the library
also provides functionality to perform simple packet-level

simulations in order to test reachability. For this purpose,

packet-level simulators model and mimic the packet delivery

through the network on a hop by hop basis. The resulting

trajectory of the packet along the network serves as a witness

in testing that the packet arrives to its intended destination.

In particular, our simulator initializes an MPLS packet with

a valid header to be handled by routers in the topology. The

packet is then forwarded according to the data plane rules

until there are no more labels on the header or the time-to-

live field is exceeded (i.e, a forwarding loop).

Further details regarding both core functionalities are provided in

the appendix. The code, dataset and experimental setup is publicly

available as an artifact [41], and details on the artifact are given in

the artifact appendix.

4.2 Methodology
To empirically evaluate the reliability achieved by our proposed

recursive protection method, we perform a series of experiments

that can be decomposed in two sets:

• RSVP experiments: Adding R-MPLS protection on top of

RSVP-based data planes.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

• LDP experiments: Adding R-MPLS protection on top of

LDP-based data planes.

The topologies used as input for MPLS-Kit [46] are real-world

networks from the topology Zoo dataset [27]. For the topologies in

the dataset, we first generate data planes and then we enumerate all

failure scenarios (sets of failed links) with up to 4 failed links. Then,

for each combination of topology, data plane and failure scenario,

we run a set of packet-level simulations for all labels representing

valid user traffic. As the LDP data plane is nondeterministic, we

run here multiple packet simulations and take the average.

4.2.1 Data Plane Generation. On RSVP experiments, we compute

the following data planes (referred as RSVP-based data planes):

• RSVP: Data plane containing 𝑛2 unprotected RSVP tunnels

between random endpoints, where 𝑛 is the number of nodes.

• RSVP + R-MPLS {Link,Node}: Data plane containing the
exact same tunnels as RSVP and additional R-MPLS recursive

protection on top with either single link protections (Link)

or node protections with link protection as fallback (Node).

• RSVP + FRR: Data plane containing the exact same

tunnels as RSVP and additional RSVP-TE Fast Reroute node

protection [10].

• RSVP + Plinko {2,4}:Data planes containing the exact same

tunnels as RSVP and additional Plinko [45] path protection,

with resiliency levels 2 and 4.

This set of six data planes per topology allows for direct

evaluation of the impact of adding R-MPLS on top of an unprotected

RSVP data plane, and to compare against the benchmarks of

industry-standard RSVP-TE FRR and the state-of-the-art high-

resiliency approach of Plinko.

RSVP-TE FRR is widely used on real MPLS networks to provide

temporary protection against networking failures. It has been in

use for more than a decade and is well understood. It is designed to

provide sub 50ms local responses by diverting traffic in case of link

failure and comes in two modes, facility (node) protection where

the precomputed protection path avoids sending traffic through the

next hop of the failed link, and link protection where other links to

the same next hop can be used.

Plinko is a state-of-the-art technique for achieving optimal

resiliency, i.e., it provides protection to existing routes on scenarios

of up to 𝑡 link failures, as long as there exists a path in the

topology, without introducing loops. Plinko can be implemented

using RSVP-TE FRR primitives, so we extended the RSVP class

of MPLS-Kit to provide protection as specified by Algorithm 1

in [45]. A drawback hindering widespread adoption of Plinko on

real networks is its high memory consumption. The original paper

proposes a non-MPLS forwarding model that allows a reduction

of required storage space but this improvement is impossible to

employ on traditional networking devices. In our experiments, we

use Plinko with resiliency levels 2 and 4. This means that for value 4,

Plinko computes a protection path for up to 4 failed links (provided

that the topology remains connected).

On LDP experiments, we compute just two data planes (referred

as LDP-based data planes):

• LDP Data plane containing LDP generated labels for

reaching every link and node in the topology from all routers.

• LDP + R-MPLS {Link,Node} Same data plane as LDP but

with additional R-MPLS recursive protection on top with

either link protection (Link) or node protection with link

protection as fallback (Node).

In this case, we evaluate the effect of adding the recursive protection

on top of an unprotected data plane. Notice that as FRR is a RSVP

TE specific protection mechanism, it cannot be applied to LDP.

4.2.2 Failure Scenarios. We generate the failure scenarios by

choosing all possible combinations of 𝑘 links on all the topologies,

for all values of 𝑘 between 0 and 4 (included). This means that all

failure scenarios have a number of total failed edges of at most 4.

When we generate a failure on a topology link, we remove both

directed links between the corresponding nodes, thus provoking

a disconnection in both directions. This is usually the case in real

networks. To restrict the total number of cases to test, if the number

of total combinations to evaluate is larger than

(
40

4

)
, we randomly

choose that number of scenarios from the set of all possible ones

with at most than 4 failed links. In this case no distinction is made

between LDP and RSVP experiments. Notice that when available,

Plinko with resiliency level 4 provides protection for the maximum

number of failed links we consider. This implies that Plinko (level

4) always achieves the optimal protection level in our simulations,

however, at the expense of exponentially large communication and

memory overheads as demonstrated by our experiments.

4.2.3 Execution Details. All simulations are executed making use

of the command line tools and the library we implemented. In order

to evaluate the topology as an MPLS network, we only simulate

packets that can be part of user-generated traffic. A key advantage

that this method provides, is that it allows to test the exact same

packets on all data planes for each kind of experiment (RSVP or

LDP), simplifying the comparison of the results.

During the simulations we also count how many times the

simulation of a packet forwarding ends up in a successful

forwarding towards its intended destination and how many times

it ends in a failure. Given the large number of experiments, we

execute the experiments on a compute cluster with 9 machines,

each with 64 cores. We conduct the experiments on all topologies

with a single connected component of up to 40 links.

The size of the topologies in our experiments is constrained by

the computation times required to compute Plinko and LDP data

planes. These two protocols have poor space scalability (exponential

for Plinko and quadratic for LDP), therefore using larger topologies

leads to excesively large delays in the tool MPLS-Kit [46] just

to obtain the baselines, without contributing significantly to the

results. This criterion results in a subset of 143 topologies.

4.3 Results of RSVP Experiments
In our experiments, we analyze the success rates of the protection,

memory overhead (related to the number of added protection rules)

and communication overhead (number of messages needed to

establish the protection in a distributed way).

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

RSVP + Plinko 4
RSVP + Plinko 2

RSVP + R-MPLS (Node)
RSVP + R-MPLS (Link)

RSVP + FRR
RSVP (unprotected)

0 25 50 75 100 125

Network Topologies

80

85

90

95

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 1 failure

(a) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

80

85

90

95

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 2 failures

(b) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

80

85

90

95

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 3 failures

(c) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

80

85

90

95

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 4 failures

(d) Success rate per topology relative to
optimal (higher value is better).

25 50 75 100 125

Network Topologies

10
3

10
4

N
um

be
r
of

en
tr
ie
s
(m

em
or
y)

(e) Number of total forwarding table entries
per topology (lower value is better).

25 50 75 100 125

Network Topologies

10
3

10
4

N
um

be
r
of

co
m
m
un

ic
at
io
ns

(f) Number of communication messages
among nodes (lower value is better).

Figure 4: Results for R-MPLS on all RSVP based data planes. Note that in (e) and (f) the y-axis is logarithmic.

From the experience using our data plane generation tool, on the

large majority of topologies the time required to compute R-MPLS

entries is comparable to the time to compute RSVP+FRR entries.

Additionally, the observed average number of additional hops is

almost identical between RMPLS and RSVP+FRR protections.

4.3.1 Success Rates. Figures 4a-4d show, for increasing numbers of

failed links, plots for the success rates achieved by each RSVP-based

data plane on each topology. Results are averaged over all failure

scenarios considered, providing a measurement on the fraction

of successful cases for each network topology and the network

topologies are sorted in non-decreasing order (on x-axis) according

to their success rates (y-axis). We can observe that Plinko 4 indeed

provides optimal protection upto 4 link failures, and Plinko 2 up

to two link failures. Our R-MPLS provides perfect protection for 1

link failure and slighly deteriorates with the increasing number of

failures. In the rest we focus on the discussion of Figure 4d, which

contains all the simulated scenarios with up to 4 link failures.

Clearly, the unprotected RSVP has the smallest success rates,

and all protected data planes achieve higher success rates. The

standard FRR node protection on top of RSVP achieves, as

expected, a considerably better success rate. Adding our R-MPLS

protection on top of the unprotected RSVP data plane alone clearly

outperforms RSVP with the standard FRR node protection, both

for the link and node protection. This is because RSVP+FRR

has only one option to provide a protection while R-MPLS adds

recursive (multiple edge) protection. Our R-MPLS protections

gets closer in success rate to the optimal protection achieved by

Plinko level 4 (protection is guaranteed anytime there is physical

connectivity), while Plinko’s level 2 success rate is between R-MPLS

and the optimal protection. As expected, the node protection R-

MPLS achieves better success ratio than the link protection. In all

experiments, as formally proved earlier, we confirm that R-MPLS

does not create any forwarding loops.

Table 1 highlights the 5 topologies (from the tested 143) that

achieved the largest improvement by adding R-MPLS protection

on top of the unprotected RSVP data plane, as well as the 5 in the

middle and the 5 topologies with the lowest improvement. It also

provides further details about the size of the topologies. Note that

the 5 bottom topologies are trees, and hence cannot be protected

against link failures by any method. For the top 5 topologies in the

table, large improvements are achieved by all protection schemes.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

#nodes #links RSVP FRR R-MPLS R-MPLS Plinko 2 Plinko 4

Topology (Link) (Node)

Ans 18 25 61 % 70 % 87 % 88 % 90 % 94 %

Heanet 7 11 55 % 77 % 80 % 83 % 85 % 88 %

Uninet 13 18 58 % 81 % 83 % 84 % 87 % 88 %

EliBackbone 20 30 68 % 85 % 93 % 94 % 96 % 98 %

Abvt 23 31 65 % 74 % 90 % 91 % 93 % 95 %

Cesnet200304 29 33 69 % 80 % 82 % 82 % 83 % 83 %

Nextgen 17 19 44 % 48 % 56 % 58 % 60 % 60 %

Harnet 21 23 59 % 71 % 71 % 71 % 73 % 74 %

Getnet 7 8 39 % 50 % 51 % 52 % 54 % 54 %

GtsRomania 21 24 64 % 72 % 76 % 76 % 77 % 77 %

Nordu1997 14 13 49 % 49 % 49 % 49 % 49 % 49 %

Arn 30 29 67 % 67 % 67 % 67 % 67 % 67 %

Reuna 37 36 57 % 57 % 57 % 57 % 57 % 57 %

Amres 25 24 46 % 46 % 46 % 46 % 46 % 46 %

Basnet 7 6 31 % 31 % 31 % 31 % 31 % 31 %

Table 1: Success rates for topologies using different protections ordered by the improvment R-MPLS (Link) gives on
unprotected RSVP. The table shows the five top, five middle and five bottom rows.

Yet clear differences are present between the R-MPLS protected

data planes and FRR: at least 2% for link protection (3% for node

protection) and up to 17% (resp 18%) on the first 5 topologies. On

many occasions, the R-MPLS solutions get closer to the optimal

value achieved by Plinko (at level 4) than to the standard FRR.

4.3.2 Memory and Communication Overhead. Figure 4e shows

the accumulated number of entries in the forwarding tables

(corresponding to the required memory) of the routers, where the

topologies are sorted (on the x-axis) according to the number of

entries (y-axis). We can see that both FRR and our R-MPLS approach

add only a moderate number of additional forwarding rules to the

existing data plane (with only small differences between node and

link protection). On average 21% of the memory on FRR protected

data planes are used for the protection, where for R-MPLS the

number is 35% and 44% for link and node protection respectively.

Plinko protects (whenever possible) against all failure scenarios

with up to 4 failed links, but it requires exponentially many more

entries in the forwarding tables to do so (note that the y-axis is

logarithmic). This is also the case if we consider Plinko only at level

2; now Plinko does not provide the optimal protection for 4 link

failures anymore but at the same time it still has an exponential

overhead for establishing the protection.

Similarly, Figure 4f shows the amount of required communica-

tion (message exchanges between the nodes) for all considered

network topologies, showing only a negligible overhead for estab-

lishing FRR and R-MPLS link protection (on average 31% resp. 23%

of the communications are used for protection) but a large commu-

nication penalty for adding the optimal protection by Plinko, both

for level 4 and 2. We also notice that computing the R-MPLS node

protection requires larger number of communications (on average

60% of the communications) compared to the link protection. This

is due to the fact that routers must query the neighboring routers

about the labels used for encoding downstream header rewriting.

As a conclusion, the memory overhead to establish our R-MPLS

protection in a distributed way is small and comparable to the

widely used FRR protection, however, the success rate of the R-

MPLS protection is significantly higher than for FRR. R-MPLS link

protection requires fewer message exchanges between the routers

compared to the node protection. Plinko achieves the optimal

success rate, however, at the expense of unrealistic demands on the

available memory and with a large communication overhead.

4.4 Results of LDP Experiments
We first focus on the success rate achieved by both protected (R-

MPLS) and unprotected LDP data planes and benchmark against the

optimumwhich indicates a success if the failure scenario still allows

at least one path from source to destination. We then consider the

memory and communication overhead. As discussed earlier, FFR

and Plinko are not applicable for protecting an LDP data plane.

4.4.1 Success Rates. Figures 5a-5d show, for increasing numbers

of failed links, plots with sorted success rates achieved by the LDP-

based data plane and its R-MPLS protection relative to the optimum

achievable protection. As before, we can observe that R-MPLS

protects optimally up to 1 link failure and with the increasing

number of link failures, it provides significant improvement over

the unprotected data plane. The curves in Figure 5d confirm the

observations from the RSVP experiments, showing significantly

improved success rates when the basic LDP data plane is protected

using R-MPLS and we are also relatively close to the optimum

protection. As before, R-MPLS node protection is slightly more

successful than the link protection.

4.4.2 Memory and Communication Overhead. The plots in

Figure 5e and 5f follow the same trend as for protection of RSVP data

plane and show that the overhead both for the number of entries

in the forwarding tables and in the communication overhead is

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

LDP + R-MPLS (Node) LDP + R-MPLS (Link) LDP (unprotected)

0 25 50 75 100 125

Network Topologies

70

80

90

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 1 failure

(a) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

70

80

90

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 2 failures

(b) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

70

80

90

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 3 failures

(c) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

70

80

90

100

Su
cc
es
s
R
at
io

(%
)

Scenarios up to 4 failures

(d) Success rate per topology relative to
optimal (higher value is better).

0 25 50 75 100 125

Network Topologies

10
2

10
3

10
4

N
um

be
r
of

en
tr
ie
s
(m

em
or
y)

(e) Number of total forwarding table entries
per topology (lower value is better).

0 25 50 75 100 125

Network Topologies

10
2

10
3

10
4

N
um

be
r
of

co
m
m
un

ic
at
io
ns

(f) Number of communication messages
among nodes (lower value is better).

Figure 5: Results for R-MPLS on LDP based data planes. Note that in (e) and (f) the y-axis is logarithmic.

moderate and proportional to the overhead for establishing the

unprotected data plane using LDP. Out of all created forwarding

rules, only 39% (on average) are used for the additional recursive

link protection and 49% for node protection, with about 27% of

message exchanges needed to establish the link protection and 61%

for node protection.

5 DISCUSSION
Our R-MPLS protection is designed for working on top of an

arbitrary MPLS data plane. To realize this efficiently we have to

address the issue of packet recirculation. Our solution uses the

logical loopback link to check link failures one at a time. In case

of failures, this induces a runtime overhead that is linear in the

number of failed links at the router. The advantage, however, is that

only one path needs to be added per link we protect, and it only

takes one entry to add recursive protection for each existing entry,

so the memory overhead is minimal. An alternative approach is to

compute protection paths for each router and for each subset of its

links that can fail. With this approach, there is no time overhead,

however, an explosion in the number of necessary entries in the

forwarding tables of the routers.

In our R-MPLS implementation, we hence resort to packet

recirculation (where packets are sent to the loopback interface)

inside the router to provide resiliency against failures. Yet,

recirculating packets requires these to be sent through a slow

processing path to a control element that introduces the packet

again into forwarding hardware. This can hurt the throughput and

cause a spike in the router’s CPU. To avoid these effects, we propose

a further R-MPLS enhancement without altering its inner working

by recirculating the first few packets of a flow after an adjacent link

failure and caching the set of header operations and the outgoing

interface through which the packet finally gets transmitted. This

information is then used to insert a new temporary routing entry

in the forwarding table, with a priority such that it matches the

following packets of the same flow. The new entry is valid until the

router detects a new local link up or link down event. This operation

avoids further recirculation of packets while preserving the same

protection intended by R-MPLS. We plan to develop this concept

in future work. In the case of non-traditional MPLS devices, it is

possible to implement this cachingmechanism e.g. using PURR [13],

a technique devised specifically to provide packet recirculation-free

primitives for path protections on programmable routers.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

Although requiring fewer routing entries, R-MPLS may result in

deep label stacks in multiple failure scenarios, leading to potential

fragmentation or maximum label depth issues. The former can be

alleviated with jumbo frames [17] without requiring lowering the

MTU, and the latter with label replacement techniques in which

a label stack is replaced by a new, shallower stack.

6 RELATEDWORK
To provide high availability in the presence of failures, most modern

communication networks support fast recovery in the data plane

[11, 35, 38], see [10] for a recent survey.

This paper focuses on conventional MPLS networks, which

are widely deployed today. Compared to alternative network

types [1, 6, 21, 22, 39], a particular property and challenge of

MPLS networks is that the header size is dynamic and potentially

unbounded. The ability to fast reroute traffic (i.e., to protect LSPs)

is a key feature of MPLS [38, 40, 44]. Most work has, however,

been on single failure protection techniques, e.g, RSVP-TE FRR [38],

LFA[8] and TI-LFA, [34]. Limitations of these techniques in multi-

failure scenarios have already been observed [3, 4, 30–32, 47, 48, 50].

Besides RSVP-TE FRR, which has already been discussed in this

article, LFA is a solution LDP Fast ReRoute. LFA requires knowledge

of the paths to destination, so it cannot be used independently of

its specific control protocol, while R-MPLS works for any control

protocol—it uses the LFIB entries but is not concerned about how

they were generated. Hence, R-MPLS does not interact with any

other control protocol. Additionally, both LFA and TI-LFA have

been designed to protect against a single failure, while R-MPLS

is more general, so it is expected that R-MPLS outperforms both

on multi-link failure scenarios. Alternatively, one can consider

the resilience provided by Equal Cost Multi-Path (ECMP), a load-

balancing data plane mechanism. As ECMP is not a Fast ReRoute

protection scheme, it cannot be directly directly compared with

R-MPLS. Furthermore, our model and simulator support ECMP that

is abstracted as nondeterministic forwarding.

The approach suggested in [36] runs a data plane re-convergence

algorithm by reversing the directions of links upon failures, while

modifying the routing tables. This approach is orthogonal to ours

as we preinstall the failover directly in the data plane.

Although there are proposals for achieving forwarding resilience

up to a maximum number of link failures that do not disconnect

the topology (perfect forwarding resiliency[18]) on top of MPLS

primitives, we are not aware of a solution that achieves such

resilience in a conventionalMPLS network. Some existing proposals,

like R3 [48] have a mandatory centralized stage and require

additional traffic demand information, which is usually not

available. R-MPLS achieves such resilience while being fully

distributed and not requiring external information.

Protecting the protection paths is mentioned in RFC6981 [9],

where the issue of mutually looping protection paths is addressed

by putting such links into a secondary shared risk link group (SRLG),

but—to our knowledge—this has not been implemented. Compared

to [9], we extend with multiple protection paths, provide a complete

algorithm for eliminating loops and support node protection.

Further, we implement our algorithm along side with existing

protocols, and run experiments to compare the performance.

R-MPLS is attractive for its ability to reinforce an existing

forwarding data plane independently of how it was built. This

is in stark contrast with Plinko [45], which is the only state-of-the-

art proposal we know of capable of achieving perfect forwarding

resilience that can be applied to conventional MPLS. However,

Plinko requires control plane knowledge, i.e. the information on

how the forwarding paths were originally computed, and thus

cannot be easily integrated with traditional MPLS control protocols.

Moreover, Plinko brute-force enumerates all hypothetical failure

scenarious that must be encoded into (exponentially large) label

space, causing a combinatorial number of inserted forwarding

entries and exchanged messages among the routers. Our R-MPLS

does not introduce this explosion in the number of labels and

rules and hence scales memory- and communication-wise better

than Plinko, whereas Plinko on the other hand achieves better

connectivity. The requirement on the knowledge of the control

plane also affects Failure Carrying Packets (FCP) [29], a classical
proposal similar to Plinko.

Recent work showed how to provably verify the resilience and

policy-compliance of MPLS networks under multiple failures. In

particular, tools such as P-Rex [25, 42] and AalWines [26] allow

verifying the reachability ofMPLS data planes even under failures in

polynomial time. However, in contrast to R-MPLS, these approaches

cannot be used to improve the resilience of the data plane.

Last but not least, our work is orthogonal to solutions such as

PURR [13], which allows to avoid overheads of recirculation in the

switch during failover.

7 CONCLUSION
Motivated by uncovering the opportunity to increase the resilience

of MPLS networks, we suggest a recursive MPLS data plane

protection, allowing us to provably route traffic around multiple
simultaneously failed links without creating any forwarding loops.

Contrary to other existing approaches, R-MPLS is fully distributed
solution and hence it is compatible with existing MPLS hardware

employed in current networks.

We evaluate R-MPLS on protecting real-world networks with

realistic data planes and show that our approach is efficient and

significantly increases network robustness compared to the state-

of-the-art FRR protection, at similar memory and communications

cost. Another feature of our solution is that it is orthogonal and

can be combined with existing and future protocols, such as RSVP

or LDP, serving as an “extra resilience” layer, while requiring only

minimal increase in memory and communication overhead.

Our work opens several interesting directions for future research.

We plan to extend R-MPLS to Segment Routing networks and to

evaluate its performance with respect to the standard Segment

Routing’s protection TI-LFA. Also, we plan to study how to further

improve the performance of our algorithms. Our approach is also

readily available to account for link congestion when fast reroute

takes over because in our protection algorithm, we can select an

arbitrary protection path for a link.

Acknowledgements. This research is funded by the Vienna

Science and Technology Fund (WWTF), project WHATIF (ICT19-

045), and DFF project QASNET.

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 201–219.

[2] L. Andersson, I. Minei, and B. Thomas. 2007. Multiprotocol Label Switching
Architecture. RFC 5036. RFC Editor. 1–135 pages. https://doi.org/10.17487/

RFC5036

[3] David Applegate and Edith Cohen. 2003. Making Intra-domain Routing Robust to

Changing and Uncertain Traffic Demands: Understanding Fundamental Tradeoffs.

In Proceedings of the 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (Karlsruhe, Germany) (SIGCOMM’03).
ACM, New York, NY, USA, 313–324. https://doi.org/10.1145/863955.863991

[4] Jasbir Singh Arora. 2017. Introduction to Optimum Design (fourth ed.). Academic

Press, Boston. https://doi.org/10.1016/B978-0-12-800806-5.00002-0

[5] Alia K Atlas and Alex Zinin. 2008. Basic specification for IP fast-reroute: loop-free

alternates. IETF RFC 5286.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. 2017. A General Approach to

Network Configuration Verification. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM’17). ACM, 155–168.

https://doi.org/10.1145/3098822.3098834

[7] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. 2016. Don’t Mind

the Gap: Bridging Network-Wide Objectives and Device-Level Configurations.

In Proc. ACM SIGCOMM. ACM, 328–341.

[8] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So. 2015. Remote Loop-Free
Alternate (LFA) Fast Reroute (FRR). RFC 7490. RFC Editor. https://doi.org/10.

17487/RFC7490

[9] S. Bryant, S. Previdi, andM. Shand. 2013. A Framework for IP andMPLS Fast Reroute
Using Not-Via Addresses. RFC 6981. RFC Editor. https://doi.org/10.17487/RFC6981

[10] Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.

2021. A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks.

IEEE Communications Surveys and Tutorials (COMST) (2021).
[11] Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrović, Andrei Gurtov, Aleksander

Madry, Michael Schapira, and Scott Shenker. 2016. On the resiliency of static

forwarding tables. IEEE/ACM Transactions on Networking 25, 2 (2016), 1133–1146.
[12] Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrović, Aurojit Panda, Andrei

Gurtov, Aleksander Maidry, Michael Schapira, and Scott Shenker. 2016. The

quest for resilient (static) forwarding tables. In Proc. IEEE INFOCOM.

[13] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej

Kamisiński, Georgios Nikolaidis, and Stefan Schmid. 2019. Purr: A primitive

for reconfigurable fast reroute: Hope for the best and program for the worst.

In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies. 1–14.

[14] Richard Chirgwin. 2017. Google routing blunder sent Japan’s Internet dark on

Friday. In https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_
japans_internet_dark/ .

[15] Duluth News Tribune. 2018. Human error to blame in Minnesota 911

outage. In https://www.ems1.com/911/articles/389343048-Officials-Human-error-
to-blame-in-Minn-911-outage/ .

[16] Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. 2014.

IP fast rerouting for multi-link failures. In Proc. IEEE INFOCOM. ACM, 2148–2156.

[17] EthernetAlliance.org. 2009. Ethernet Jumbo Frames. http://www.ethernetalliance.

org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

[18] Joan Feigenbaum, Brighten Godfrey, Aurojit Panda, Michael Schapira, Scott

Shenker, and Ankit Singla. 2012. Brief announcement: On the resilience of routing

tables. In Proceedings of the 2012 ACM symposium on Principles of distributed
computing. 237–238.

[19] Clarence Filsfils, Nagendra KumarNainar, Carlos Pignataro, Juan Camilo Cardona,

and Pierre Francois. 2015. The segment routing architecture. In 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 1–6.

[20] Klaus-Tycho Foerster, Juho Hirvonen, Yvonne-Anne Pignolet, Stefan Schmid,

and Gilles Tredan. 2021. On the Feasibility of Perfect Resilience with Local Fast

Failover. In Proc. SIAM Symposium on Algorithmic Principles of Computer Systems
(APOCS).

[21] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network

Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 469–483.

[22] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

2016. Fast Control Plane Analysis Using an Abstract Representation. In

Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 300–313.

[23] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

network failures in data centers: measurement, analysis, and implications. In

ACM SIGCOMM Computer Communication Review, Vol. 41 (4). 350–361.
[24] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,

Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery

entirely in the data plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 161–176.

[25] Jesper Stenbjerg Jensen, Troels Beck Krøgh, Jonas Sand Madsen, Stefan Schmid,

Jiří Srba, and Marc Tom Thorgersen. 2018. P-Rex: Fast Verification of MPLS

Networks with Multiple Link Failures. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies (CoNEXT).
ACM, 217–227. https://doi.org/10.1145/3281411.3281432

[26] Peter Gjøl Jensen, Dan Kristiansen, Stefan Schmid, Morten Konggaard Schou,

Bernhard Clemens Schrenk, and Jiri Srba. 2020. AalWiNes: A Fast and

Quantitative What-If Analysis Tool for MPLS Networks. In Proceedings of the 16th
International Conference on Emerging Networking EXperiments and Technologies
(CoNEXT). ACM, 474–481.

[27] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The Internet Topology Zoo. IEEE Journal on Selected Areas
in Communications 29, 9 (2011), 1765–1775. https://doi.org/10.1109/JSAC.2011.

111002

[28] Craig Labovitz, G Robert Malan, and Farnam Jahanian. 1998. Internet routing

instability. IEEE/ACM transactions on Networking 6, 5 (1998), 515–528.

[29] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,

Scott Shenker, and Ion Stoica. 2007. Achieving Convergence-Free Routing Using

Failure-Carrying Packets. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (Kyoto,
Japan) (SIGCOMM ’07). Association for Computing Machinery, New York, NY,

USA, 241–252. https://doi.org/10.1145/1282380.1282408

[30] O. Lemeshko andK. Arous. 2014. Fast ReRoutemodel for different backup schemes

in MPLS-network. In 2014 First International Scientific-Practical Conference
Problems of Infocommunications Science and Technology. 39–41. https://doi.

org/10.1109/INFOCOMMST.2014.6992292

[31] O. Lemeshko, A. Romanyuk, and H. Kozlova. 2013. Design schemes for MPLS

Fast ReRoute. In 2013 12th International Conference on the Experience of Designing
and Application of CAD Systems in Microelectronics (CADSM). 202–203.

[32] O. Lemeshko and O. Yeremenko. 2018. Linear optimization model of MPLS

Traffic Engineering Fast ReRoute for link, node, and bandwidth protection.

In 2018 14th International Conference on Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering (TCSET). 1009–1013. https:

//doi.org/10.1109/TCSET.2018.8336365

[33] Tony Li and Henk Smit. 2008. IS-IS Extensions for Traffic Engineering. Technical
Report 5305. https://doi.org/10.17487/RFC5305

[34] Stephane Litkowski, Pierre Francois, Ahmed Bashandy, Clarence Filsfils, and

Bruno Decraene. 2018. RFC draft: Topology Independent Fast Reroute using Segment
Routing. Technical Report. https://tools.ietf.org/html/draft-bashandy-rtgwg-

segment-routing-ti-lfa-02

[35] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker. 2013. Ensuring

connectivity via data planemechanisms. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). USENIX Association, 113–126.

[36] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and

Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
USENIX Association, 113–126.

[37] Michael Menth, Michael Duelli, Ruediger Martin, and Jens Milbrandt. 2009.

Resilience analysis of packet-witched communication networks. IEEE/ACM
transactions on Networking (ToN) 17, 6 (2009), 1950–1963.

[38] P. Pan, G. Swallow, and A. Atlas. 2005. Fast Reroute Extensions to RSVP-TE for LSP
Tunnels. RFC 4090. RFC Editor. 1–38 pages. https://doi.org/10.17487/RFC4090

[39] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and

Matthew Caesar. 2020. Plankton: Scalable network configuration verification

through model checking. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). USENIX Association, 953–967.

[40] E. Rosen, A. Viswanathan, and R. Callon. 2001. Multiprotocol Label Switching
Architecture. RFC 3031. RFC Editor. 1–61 pages. https://doi.org/10.17487/RFC3031

[41] Stefan Schmid, Morten Konggaard Schou, Jiri Srba, and Juan Vanerio. 2022.

Artifact for "R-MPLS: Recursive Protection for Highly Dependable MPLS Networks".
https://doi.org/10.5281/zenodo.7191618

[42] Stefan Schmid and Jiří Srba. 2018. Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks. In IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 1–9.

[43] Nick Shelly, Brendan Tschaen, Klaus-Tycho Förster, Michael Chang, Theophilus

Benson, and Laurent Vanbever. 2015. Destroying networks for fun (and profit).

In Proceedings of the 14th ACM Workshop on Hot Topics in Networks. 1–7.
[44] Steve Smith. 2003. Introduction to MPLS. https://www.cisco.com/c/dam/global/

fr_ca/training-events/pdfs/Intro_to_mpls.pdf. Visited: 19/05/2020.

[45] Brent Stephens, Alan L Cox, and Scott Rixner. 2016. Scalable multi-failure fast

failover via forwarding table compression. In Proceedings of the Symposium on
SDN Research. 1–12.

[46] Juan Vanerio, Stefan Schmid, Morten K Schou, and Jiri Srba. 2022. MPLS-Kit: An

MPLS Data Plane Toolkit. In 2022 Global Internet (GI) Symposium (GI 2022). IEEE,
Paris, France. (To appear).

https://doi.org/10.17487/RFC5036
https://doi.org/10.17487/RFC5036
https://doi.org/10.1145/863955.863991
https://doi.org/10.1016/B978-0-12-800806-5.00002-0
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.17487/RFC7490
https://doi.org/10.17487/RFC7490
https://doi.org/10.17487/RFC6981
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/1282380.1282408
https://doi.org/10.1109/INFOCOMMST.2014.6992292
https://doi.org/10.1109/INFOCOMMST.2014.6992292
https://doi.org/10.1109/TCSET.2018.8336365
https://doi.org/10.1109/TCSET.2018.8336365
https://doi.org/10.17487/RFC5305
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-ti-lfa-02
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-ti-lfa-02
https://doi.org/10.17487/RFC4090
https://doi.org/10.17487/RFC3031
https://doi.org/10.5281/zenodo.7191618
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

[47] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert

Greenberg. 2006. COPE: Traffic Engineering in Dynamic Networks. In Proceedings
of the 2006 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (Pisa, Italy) (SIGCOMM ’06). ACM, 99–110. https:

//doi.org/10.1145/1159913.1159926

[48] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu,

and Yang Richard Yang. 2010. R3: Resilient Routing Reconfiguration. ACM
SIGCOMM Computer Communication Review 40, 4 (Aug. 2010), 291–302. https:

//doi.org/10.1145/1851275.1851218

[49] Dahai Xu, Yizhi Xiong, Chunming Qiao, and Guangzhi Li. 2004. Failure protection

in layered networks with shared risk link groups. IEEE Network 18, 3 (2004),

36–41.

[50] O. S. Yeremenko, O. V. Lemeshko, and N. Tariki. 2017. Fast ReRoute scalable

solution with protection schemes of network elements. In 2017 IEEE First
Ukraine Conference on Electrical and Computer Engineering (UKRCON). 783–788.
https://doi.org/10.1109/UKRCON.2017.8100353

[51] Derek M. Yeung, Dave Katz, and Kireeti Kompella. 2003. Traffic Engineering (TE)
Extensions to OSPF Version 2. Technical Report 3630. https://doi.org/10.17487/

RFC3630

[52] Lixia Zhang, Robert T. Braden, Andreas Terzis, and Subramaniam Vincent. 2000.

RSVP Diagnostic Messages. RFC 2745. RFC Editor. https://doi.org/10.17487/

RFC2745

A PROOFS FOR SECTION 3.6
Theorem 1. Let 𝑁 ′ be the result of applying Algorithm 2 for

recursive protection to an MPLS network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏).
For all possible failure scenarios 𝐹 ⊆ 𝐸, for all 𝑒, 𝑒 ′ ∈ 𝐸 and

ℎ,ℎ′ ∈ 𝐿∗:
(1) if can-reach𝐹

𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) then can-reach𝐹

𝑁 ′ (𝑒, ℎ, 𝑒
′, ℎ′),

(2) if must-reach𝐹
𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) then must-reach𝐹

𝑁 ′ (𝑒, ℎ, 𝑒
′, ℎ′).

Proof. Before we prove (1) and (2), we first consider for any

failure scenario 𝐹 , the active forwarding tables 𝜏𝐹 and 𝜏 ′
𝐹
for 𝑁

and 𝑁 ′, respectively. We argue by considering Line 17 and 21

in Algorithm 2 together with the definition of 𝑀 that for any

𝑣, ℓ ∈ 𝑉 × 𝐿,
(a) if 𝜏𝐹 (𝑣, ℓ) ≠ 𝜏 ′

𝐹
(𝑣, ℓ) then 𝜏𝐹 (𝑣, ℓ) = ∅,

since all new rules in 𝜏 ′ are appended with lower priority.

To prove (1), we assume that can-reach𝐹
𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) is true

for some 𝑒, 𝑒 ′ ∈ 𝐸 and ℎ,ℎ′ ∈ 𝐿∗. Then there must exist

a trace (𝑒1, ℎ1) . . . (𝑒𝑛, ℎ𝑛) in 𝑁 under 𝐹 s.t. (𝑒1, ℎ1) = (𝑒, ℎ)
and (𝑒𝑛, ℎ𝑛) = (𝑒 ′, ℎ′). For each step 𝑖 , 1 ≤ 𝑖 < 𝑛, we must

have 𝜏𝐹 (tgt (𝑒𝑖), head (ℎ𝑖)) ≠ ∅, and hence due to (a) we have

𝜏𝐹 (tgt (𝑒𝑖), head (ℎ𝑖)) = 𝜏 ′
𝐹
(tgt (𝑒𝑖), head (ℎ𝑖)). This means that the

same trace is valid in 𝑁 ′ under 𝐹 , so can-reach𝐹
𝑁 ′ (𝑒, ℎ, 𝑒

′, ℎ′) is also
true.

To prove (2), we assume must-reach𝐹
𝑁
(𝑒, ℎ, 𝑒 ′, ℎ′) is true for

some 𝑒, 𝑒 ′ ∈ 𝐸 and ℎ,ℎ′ ∈ 𝐿∗. Now all maximum traces in 𝑁

under 𝐹 starting from (𝑒, ℎ) contain (𝑒 ′, ℎ′). Assume (to reach

a contradiction) that some maximum trace (𝑒1, ℎ1) (𝑒2, ℎ2) . . . in
𝑁 ′ under 𝐹 with (𝑒1, ℎ1) = (𝑒, ℎ) does not contain (𝑒 ′, ℎ′). Then
for some step 𝑖 , (𝑒𝑖 , ℎ𝑖) is contained in some maximum trace

in 𝑁 , while (𝑒𝑖+1, ℎ𝑖+1) is not. Hence, 𝜏𝐹 (tgt (𝑒𝑖), head (ℎ𝑖)) ≠

𝜏 ′
𝐹
(tgt (𝑒𝑖), head (ℎ𝑖)), so due to (a) 𝜏𝐹 (tgt (𝑒𝑖), head (ℎ𝑖)) = ∅. But

then (𝑒1, ℎ1) . . . (𝑒𝑖 , ℎ𝑖) is a maximum trace in 𝑁 that does not

contain (𝑒 ′, ℎ′), which is a contradiction. □

Theorem 2. Let 𝑁 ′ = (𝑉 , 𝐸 ′, src′, tgt ′, 𝐿′, 𝜏 ′) be the result of

applying Algorithm 2 for recursive protection to an MPLS network

𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏). If for all failure scenarios 𝐹 ⊆ 𝐸 the network

𝑁 satisfies no-loops𝐹
𝑁

then for all failure scenarios 𝐹 ′ ⊆ 𝐸 the

protected network also satisfies no-loops𝐹
′

𝑁 ′ .

Proof. Assume (to reach a contradiction) that there exists

a failure scenario 𝐹 ′ such that no-loops𝐹
′

𝑁 ′ does not hold. Then

there must be some infinite trace in the protected network

(𝑒1, ℎ1) (𝑒2, ℎ2) . . . and because there are only finitely many links

and labels, the infinite trace must consist of finitely many repeating

heads (𝑒, head (ℎ)). Consider the first repeating head, i.e. the

smallest 𝑏 such that there exists 𝑎 < 𝑏 where (𝑒𝑎, head (ℎ𝑎)) =
(𝑒𝑏 , head (ℎ𝑏)). The sequence loop = (𝑒𝑎, ℎ𝑎) . . . (𝑒𝑏 , ℎ𝑏) is the (first)
forwarding loop, and we shall now argue that it cannot exist.

Let 𝐻 = {head (ℎ𝑎), . . . , head (ℎ𝑏)} be the set of head labels in

the loop. Consider two cases: a)𝐻 consists only of protection labels,

i.e. 𝐻 ⊆ (𝐿′ \ 𝐿), and b) 𝐻 contains labels from the original data

plane, i.e.𝐻 ∩𝐿 ≠ ∅. Note that these two cases cover all possibilities.
For case a), since all protection labels are fresh, the loop must

be only traversing protection paths. A single protection path does

not contain a loop (assured by Definition 6), so it must be due to

recursive protection moving the trace from one protection path

to another eventually making a loop. Formally, let loop𝑒𝑖 denote

the 𝑖th link 𝑒𝑎+𝑖 in the loop sequence, let loopℎ𝑖 denote the 𝑖th

header ℎ𝑎+𝑖 in the loop sequence, and let 𝑝 𝑗 denote the 𝑗th link

in the protection path 𝑝 , i.e. 𝑝 𝑗 = 𝑒 𝑗 if 𝑝 = 𝑒1 . . . 𝑒 𝑗 . . . 𝑒𝑛 . Let

⟨𝑒, 𝑝⟩ = protects(head (ℎ𝑎)) be the protection on which the loop

starts, so 𝑒 is a failed link. Let 𝑒𝑎 . . . 𝑝 𝑗 be the longest part of

𝑝 that coincides with loop𝑒
1
. . . loop𝑒𝑖 such that 𝑝 𝑗+1 ≠ loop𝑒𝑖+1.

Since head (loopℎ𝑖+1) is also a protection label, this must indicate

a failure on 𝑒 ′ = 𝑝 𝑗+1, so we must be using a new protection

⟨𝑒 ′, 𝑝 ′⟩ = protects(head (loopℎ𝑖+1)), and the loop trace continues

with 𝑝 ′
1
. . . 𝑝 ′

𝑗 ′ = loop𝑒𝑖+1 . . . loop
𝑒
𝑖+𝑗 ′ such that 𝑝 ′

𝑗 ′+1 ≠ loop𝑒
𝑖+𝑗 ′+1.

Here either loop merges back into the protection path 𝑝 at some

point after 𝑝 𝑗 , or 𝑒
′′ = 𝑝 ′

𝑗 ′+1 is the next failed link. In the former

case we can just forget the fully traversed protection ⟨𝑒 ′, 𝑝 ′⟩ and
only consider the last recursive protection of a link 𝑒 ′ on 𝑝 . Since

each protection path does not contain a loop, and the recursive

protections always merge downstream (ensured by Line 19), the

looping trace must eventually move to a new protection that is

not fully traversed. This goes on until we reach the first failed

link 𝑒 on a protection path, which will complete the loop. In the

protection graph there must be edges (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) annotated
𝛼 (⟨𝑒, 𝑝⟩, ⟨𝑒 ′, 𝑝 ′⟩) = {𝑝1, . . . , 𝑒𝑎, . . . , 𝑝 𝑗 }, and (⟨𝑒 ′, 𝑝 ′⟩, ⟨𝑒 ′′, 𝑝 ′′⟩)
annotated 𝛼 (⟨𝑒 ′, 𝑝 ′⟩, ⟨𝑒 ′′, 𝑝 ′′⟩) = {𝑝 ′

1
, . . . , 𝑝 ′

𝑗 ′}, and so on until

the edge (⟨𝑒 (𝑘) , 𝑝 (𝑘) ⟩, ⟨𝑒, 𝑝⟩), which forms a cycle. Note that all

links in the annotations of the edges are part of the trace and

hence cannot be failed, so the cycle is a bad cycle. Since the call to

FindBadProtectionPairs on Line 11 of Algorithm 2 returns a set

of protection-pairs that break all bad cycles, and Line 19 removes

protection based on this set, there must be some (𝑒𝑖 , ℎ𝑖) in loop
where the given recursive protection is not installed, and hence the

loop cannot exist.

For case b), the loop includes some routing from the original

network, and hence the protection paths are fully traversed, so we

can iteratively remove protection paths and corresponding failures

and find a loop in the original network. Line 16 and Definition 7

along with Lines 4–10 and Line 19 ensures that a protection is

only used if a higher priority entry has a path to the target of

the protection path in the network with no failures. If that higher

priority entry is part of another protection path, we will inductively

https://doi.org/10.1145/1159913.1159926
https://doi.org/10.1145/1159913.1159926
https://doi.org/10.1145/1851275.1851218
https://doi.org/10.1145/1851275.1851218
https://doi.org/10.1109/UKRCON.2017.8100353
https://doi.org/10.17487/RFC3630
https://doi.org/10.17487/RFC3630
https://doi.org/10.17487/RFC2745
https://doi.org/10.17487/RFC2745

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

remove that, eventually removing all failures, or else the entry is

part of the original forwarding; hence, the original network will

have a loop in some failure scenario 𝐹 ⊆ 𝐹 ′. This contradicts the
assumption that no-loops𝐹

𝑁
holds for all 𝐹 . □

B ELABORATION ON SECTION 4.1
B.1 Data Plane Generation
MPLS-Kit [46] implements an abstraction of the distributed MPLS

control plane, in which each router has its own protocol processes,

yet these can directly access the memory of each other when

required. This abstracts away communications.

MPLS introduces the concept of Forward Equivalence Class

(FEC), which stands for the set of packets that should be forwarded

in the same fashion; sent through the same outgoing interface to

the same next-hop and executing the same set of header operations.

Essentially, each FEC is identified with a local label on each router.

When a packet arrives to a router, the latter determines to which

FEC the former belongs to, and forwards it accordingly.

In MPLS-Kit, the two main control protocols that create Label

Switched Paths (LSPs) by introducing forwarding entries on the

router’s tables, are LDP and RSVP. Both are industry standard, fully

distributed protocols. Each LSP is related to a single FEC. LDP

associates FECs with IP protocol prefixes and propagates labels

through the network in order for the other routers to build their

own LSPs to reach said prefixes. RSVP builds tunnels (and associates

them with FECs) from a given starting node (the headend) towards
a final node (the tailend) over a path allowing for fine-grained

packet steering. The routers along said path locally allocate labels

to represent the LSP.

Given a weighted network topology and parameters for the

control protocols as inputs, the tool outputs the data plane that

results from letting the control protocols converge. As MPLS-Kit

implements functionalities commonly used on ISP networks, the

resulting data plane is then a realistically-looking MPLS data plane.

B.2 Simulation
As MPLS is a transport network, each user data packet (also called

user-generated traffic) that enters the MPLS domain should follow

an LSP and eventually exit the network. No successfully delivered

data packets may be generated or terminated inside the MPLS

domain.

To model the connections to the outside, we add a special node 𝜃

to𝑉 , and we add links (with infinite weight) between 𝜃 and a subset

of MPLS routers that have interfaces with the outside. Such routers

are known as Label Edge Routers (LERs). The links from 𝜃 are used

to model the possible incoming packets, and the links to 𝜃 model

the points where packets can leave the MPLS network.

Algorithm 3 shows how we simulate a packet, given the link

where the packet starts and the intended exit link. Line 3 considers

the possible next link-header pairs given the current link and header.

Line 4 reports a failure if this set is empty, i.e. there is no valid rule

for the current header. When there are multiple options due to

nondeterminism, Line 5 randomly picks one. A maximum number

of iteration is used to determine if the packet entered a forwarding

loop.

Algorithm 3 Simulation of a packet starting from 𝑒𝑠 .

Input: Network 𝑁 = (𝑉 , 𝐸, src, tgt, 𝐿, 𝜏), failures 𝐹 ⊆ 𝐸,

start (𝑒𝑠 , ℎ𝑠) ∈ 𝐸 × 𝐿∗, final link 𝑒𝑓 ∈ 𝐸
Output: Exit code (in {SUCCESS, FAILURE, LOOP})

1: (𝑒, ℎ) ← (𝑒𝑠 , ℎ𝑠), 𝑛 ← 0 ⊲ Initial packet

2: while 𝑛 < MAX_TTL do
3: nexts← {(𝑒 ′, ℎ′) | (𝑒 ′, 𝜔) ∈ 𝜏𝐹 (tgt (𝑒), head (ℎ)),

ℎ′ = H(ℎ,𝜔)} ⊲ Compute all next hops

4: if nexts = ∅ then return FAILURE
5: Pick at random (𝑒 ′, ℎ′) ∈ nexts
6: if 𝑒 ′ = 𝑒𝑓 and ℎ′ = 𝜀 then return SUCCESS ⊲ Success if

egress router is reached

7: (𝑒, ℎ) ← (𝑒 ′, ℎ′), 𝑛 ← 𝑛 + 1 ⊲ Update packet

8: return LOOP

The start and final links in the calls to Algorithm 3 are determined

from the protocols used to create LSPs and their FECs. For the

purpose of this section, a FEC 𝑓 defines a mapping from a subset of

routers 𝑉𝑓 to the corresponding local labels for that FEC: 𝑓 : 𝑉𝑓 →
𝐿.

For RSVP, each tunnel corresponds to a single FEC 𝑓 in this

protocol, and is implemented with an LSP from 𝑣 to 𝑣 ′. We define

links 𝑒, 𝑒 ′ s.t. src(𝑒) = 𝜃 , tgt (𝑒) = 𝑣 , src(𝑒 ′) = 𝑣 ′, and tgt (𝑒 ′) = 𝜃 ,

and we define 𝜏 (𝑣 ′, 𝑓 (𝑣 ′)) = {𝑒 ′, pop} and initial header ℎ = 𝑓 (𝑣),
where 𝜏 (𝑣, 𝑓 (𝑣)) contains the forwarding entries for the first step
of the LSP. This encodes the behavior of the tunnel at the border of

the MPLS domain. Simulating the header ℎ is here an abstraction

over how the forwarding is implemented on a real router. For the

simulation with Algorithm 3, we use initial packet (𝑒, ℎ) and final

link 𝑒 ′, and we run this simulation for each tunnel.

In LDP, for each LDP FEC 𝑓 (corresponding to an IP destination

prefix 𝑖𝑝) announced by router 𝑣 ′, we define a link 𝑒 ′ s.t. src(𝑒 ′) = 𝑣 ′,
tgt (𝑒 ′) = 𝜃 , andwe define 𝜏 (𝑣 ′, 𝑓 (𝑣 ′)) = {𝑒 ′, pop}. Let𝑋 ⊆ 𝑉 be the

set of label edge routers. Then for each such router 𝑣 ∈ 𝑋 we define

a link 𝑒𝑣 s.t. src(𝑒𝑣) = 𝜃 and tgt (𝑒𝑣) = 𝑣 , and we define initial header

ℎ𝑣 = 𝑓 (𝑣), where 𝜏 (𝑣, 𝑓 (𝑣)) contains the forwarding entries of FEC
𝑓 for packets entering the MPLS network at 𝑣 with destination 𝑖𝑝 .

We run for each 𝑣 a simulation with Algorithm 3 using initial packet

(𝑒𝑣, ℎ𝑣) and final link 𝑒 ′, and we run such simulations for each LDP

FEC. In our simulation we use 𝑋 = 𝑉 , which implies that all MPLS

routers are LERs, and results in the maximum number of possible

LDP generated LSPs.

In a nutshell, our simulator initializes an MPLS packet with

a valid header to be handled by routers in the topology. For RSVP

tunnels, this means a packet with proper headers on each headend

router. For LDP entries, the simulator just initializes a packet with

the corresponding label on each router.

C ARTIFACT APPENDIX
C.1 Abstract
This appendix describes software artifacts associated with this

work; the python source code of R-MPLS implemented on top of the

MPLS data plane generator and simulator MPLS-Kit [46] (accepted

for Global Internet 2022), along with a topology dataset derived

from the original topology-zoo [27] with an adapted JSON format.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Schmid, Schou, Srba, Vanerio

These artifacts come with scripts to reproduce the experiments

described in the evaluation section and a Jupyter notebook to

process the result files and produce the paper statistics, Table 1,

and Figures 4 and 5. The scripts are written in Bash and automate

the execution of the MPLS-Kit [46] python code. Additionally, we

include a dataset containing the results files we obtained from

executing the artifact’s scripts on our computation cluster. Finally,

we provide instructions for executing the scripts and reproducing

the results.

C.2 Artifact check-list (meta-information)
• Algorithm: The code provided implements Algorithms 1 and 2

from the RMPLS paper on the file “rmpls.py”, leveraging the MPLS-

Kit [46] code base.

• Data set: A topology dataset in JSON format derived from

the topology-zoo [27] dataset is provided. For the reviewers’

convenience, a dataset with the results from executing the scripts

of this artifact is also provided. The dataset is approximately 3.2GB

in size.

• Run-time environment: The artifact should run on any Linux

machine with Python3 and the required libraries. This setting is

recommended: Linux kernel version 5.4.0 or later, Python 3.10. It

may also require root/sudo access to install python modules.

• Hardware: The scripts use only CPU, memory, and I/O access, so

in principle, they can be run on any Linux machine without tuning.

Some simulations may require up to 20 GB RAM. As a reference, our

installation used a cluster of 16 computing nodes with 1TB RAM

each and 1248 CPU cores in total.

• Execution: Handled by the Bash scripts provided.

• Experiments: After installing the artifact, the experiment

workflow can be reproduced by executing the provided scripts in

the following order:

(1) Run “create_confs.sh {light|full}”: creates configuration files and

failure scenarios.

(2) Run “run.sh {light|full}”: uses the configuration files and the

topology dataset to create MPLS data planes and run simulations

on each data plane and failure scenario.

(3) Activate the python virtual environment (e.g., running “source

.venv/bin/activate”).

(4) Run “jupyter-notebook make_plots.ipynb” and follow the

instructions to open it in a browser. The notebook loads result

files and produces figures and tables. In the “Options” cell, specify

the parameters as appropriate.

• Output: The script “create_confs.sh” creates configuration

specifications to be used as inputs by the data plane generator under

the folder “confs/{light|full}/<topology name>”. Each configuration

file instructs the generation of anMPLS data plane from a specific set

of protocols, as described in the paper. It also creates files describing

the different possible failure scenarios up to 𝑘 = 2 (“light”) or 𝑘 = 4

(“full”) under a subfolder called “failure_chunks” for each topology.

An additional folder “confs/conext22artifact/” contains the dataset

of configurations and failure scenarios computed for the “full” case

on our cluster.

The script “run.sh” takes the output from the previous script and

generates theMPLS data planes, which include a topology, and based

on the protocols in use, the forwarding tables on each router and a

set of valid traffic source and destination pairs. Immediately after

the script executes the simulation (tracing) on each data plane in

each of the failure scenarios. The results are stored in JSON files

under the “results/{light|full}/<topology name>” directory. There

will be one result file for each configuration, summarizing results

across all failure scenarios, according to the following format:

{ " preamble " :

{ " benchmark " : < topo logy name> ,

" p r o g _ a l i a s " : < c o n f i g u r a t i o n name> ,

" program " : " Comparison o f MPLS

and R−MPLS "

} ,

" s t a t s " :

{ " < code > " : { " comms " : 5 3 2 . 0 ,

" e n t r i e s " : 8 3 5 . 0 ,

" k " : 0 ,

" l o op s " : 0 ,

" op t ima l " : 1 21 ,

" s u c c e s s " : 1 21 ,

" t o t a l " : 1 2 1 } ,

. . .

}

Code uniquely identifies each failure scenario. The stats are,

respectively: no. of control-plane communications among routers,

no. of LFIB entries, no. of failed links, no. of packet traces ended

in forwarding loops, no. of possible successful traces, no. of actual

successful traces, number of attempted packet traces.

An additional folder “confs/conext22artifact/” contains the dataset

of configurations and failure scenarios as computed for the “full”

case on our cluster for the evaluator’s convenience.

The Jupyter notebook “make_plots.ipynb” loads the JSON files

summarizing the results and the topology dataset and produces

the PDF files with the plots from Figures 4 and 5 (stored in the

“plots/” folder). It will also generate Table 1 showing success rates

(percentages) and other performance statistics mentioned in the

article.

• How much disk space required (approximately)?: At least 9

GB.

• Howmuch time is needed to complete experiments (approx-
imately)?: On our cluster installation, running the whole batch of

experiments (“full”) took five days; running on a standard laptop

may take weeks. A smaller set of experiments (“light”), also included

for the evaluator’s convenience, can be run, taking up to 30 mins to

complete in our installation while using 200MB RAM.

• Publicly available?: Yes.

• Code and data licenses: GNU General Public License v3.0

• Archived: https://doi.org/10.5281/zenodo.7191618

C.3 Description
C.3.1 How to access. The artifact is publicly available on Zenodo

https://zenodo.org/record/7191618 The provided results dataset

uses 3.2GB of space. Reproducing the results using the “full” option

will create an additional 3.2 GB of data. The remaining datasets and

packages are usually below 2 GB. The total would be approximately

9 GB.

C.3.2 Software dependencies. This artifact assumes execution

with a Debian-based OS machine or similar, with recommended

requirements: Linux kernel version 5.4.0 or later, Python 3.8.10,

jupyter-notebook 6.0.3.

https://doi.org/10.5281/zenodo.7191618
https://zenodo.org/record/7191618

R-MPLS: Recursive Protection for Highly Dependable MPLS Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

The following Python libraries are also required: matplotlib

3.3.4, NetworkX 2.5, numpy 1.17.4, PyYAML 5.3.1, jsonschema 3.2.0,

pandas 1.3.3, ujson 5.5.0.

C.3.3 Data sets. A JSON-formatted version of the publicly

available topology-zoo [27] dataset is provided with the artifact.

Also, a dataset containing the JSON result files we got from our

execution of the experiment workflow is included.

C.4 Installation
After downloading and decompressing the artifact, change to the

main artifact folder and run:

. / i n s t a l l − dependenc i e s . sh

C.5 Experiment workflow
Described in Section C.2. Detailed instructions can also be found

on the README file.

C.6 Evaluation and expected results
After successful installation, the evaluator can run the artifacts’

scripts as described in Section C.2. Detailed instructions can be

found in the README file.

There are three different evaluation options, already mentioned

in Section C.2. First, the “full” option will replicate the whole set

of experiments and produce their results, although it can take a

significant amount of time. Alternatively, the “conext2artifact” can

be used directly on the final jupyter notebook to generate the tables

and figures from the article using our provided results dataset.

Finally, the “light” option allows the evaluator to run a smaller and

faster set of experiments to validate the artifact: no use of Plinko4,

no LDP, failure scenarios considering up to two simultaneous

link failures, and just the first 10 topologies from the dataset by

alphabetical order. The results of this option will naturally differ

from the published results, although the main findings hold.

Once the instructions from the README file have been

completed (with the “full” option), the user will have launched a set

of experiments for each kind of data plane included in the paper

(RSVP, RSVP+R-MPLS Link, RSVP+R-MPLS Node, RSVP+FRR,

RSVP+Plinko2, RSVP+Plinko4, LDP, LDP+R-MPLS Link, LDP+R-

MPLS Node). They will also have reproduced Figures 4 and 5,

Table 1, and other performance statistics from the article using the

included jupyter notebook. The produced files’ location is described

in item C.2.

C.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	2 MPLS Network Model
	3 R-MPLS Protection
	3.1 Protectable Forwarding Entries
	3.2 Loop Avoidance
	3.3 R-MPLS Algorithm
	3.4 Recursive Link and Node Protection
	3.5 Distributed R-MPLS Implementation
	3.6 Properties of the R-MPLS Protection

	4 Evaluation of R-MPLS
	4.1 MPLS Generation and Simulation
	4.2 Methodology
	4.3 Results of RSVP Experiments
	4.4 Results of LDP Experiments

	5 Discussion
	6 Related Work
	7 Conclusion
	References
	A Proofs for Section 3.6
	B Elaboration on Section 4.1
	B.1 Data Plane Generation
	B.2 Simulation

	C Artifact Appendix
	C.1 Abstract
	C.2 Artifact check-list (meta-information)
	C.3 Description
	C.4 Installation
	C.5 Experiment workflow
	C.6 Evaluation and expected results
	C.7 Methodology

