MPLS-Kit: An MPLS Data Plane Toolkit

Stefan Schmid
TU Berlin, Germany &
University of Vienna, Austria

Juan Vanerio
Faculty of Computer Science
University of Vienna
Austria

Abstract—Networking research often requires a means to
quickly generate different realistic networks for evaluating the
practical relevance. This is especially the case for emerging fields
related to the automated verification of network configurations
(“what-if analysis””) or to Al-driven network operations (‘“self-
driving networks”). Unfortunately, the data of real world network
deployments are often scarce. In particular, while the topologies
of many real communication networks have been made available
online, this data typically does not include the routers’ forwarding
tables, e.g., by Internet Service Providers (ISPs). This introduces
a dilemma, as generating arbitrary forwarding rules for these
topologies may not adequately mimic network behavior.

We present MPLS-Kit, a tool for the automated generation
of realistic MPLS data planes. In particular, the tool supports
an efficient generation of MPLS data planes following widely-
deployed industry-standard control protocols on top of arbitrary
network topologies. Notably, MPLS-Kit supports the instantiation
of MPLS Fast Reroute and VPN services. It further supports
packet-level simulations providing a rich set of statistics about
the simulated data plane which can be used for numerous
applications, like congestion, latency, and resilience analysis.
The generated data planes can be further exported in standard
exchange formats and analyzed by formal verification tools.

I. INTRODUCTION

Modern communication networks are often very complex,
and hence, modeling and analyzing their behavior can be
difficult. Given that communication networks have become
a critical infrastructure of our digital society in general and
ISP networks in particular, and their dependable operation is
crucial, this is worrisome.

In order to identify performance bottlenecks or to try out
new innovative protocols, and verify their practical relevance,
researchers need a means to generate realistic networks which
mimic real and complex behavior. For example, in order to
evaluate emerging automated network verification and what-
if tools such as AalWiNes [1] and DeepMPLS [2], a way to
generate realistic data planes (DP) is required. The generation
of network configurations is also particularly important for
emerging Al-driven approaches to improve the dependability
and performance of networks, e.g., [2] or [3].

However, the data of real world network deployments
are often scarce [4]. In particular, while the topologies
of existing real communication networks have been made
available online, e.g., [5], this data does not include the
routers’ forwarding tables; the latter however are required to
model data planes. Introducing arbitrary forwarding rules may
seem like a reasonable workaround, but the resulting data

Jifi Srba
Dept. of Computer Science
Aalborg University
Denmark

Morten Konggaard Schou
Dept. of Computer Science
Aalborg University
Denmark

plane may vastly differ from the one found on a real network.
Research based on such data planes may give results far from
what can be observed in practice.

Even researchers who manage to obtain such data, e.g.,
through a collaboration with industry, typically only have
access to one or two complete network configurations. They
are likely also not allowed to share their data with other
researchers. Furthermore, while many network protocols are
based on open standards and RFCs, many implementations of
these protocols are either not open-source or not fully featured.

This paper presents MPLS-Kit, a toolset that allows
the generation of synthetic data planes for the popular
Multiprotocol Label Switching (MPLS) [6] system, which
is widely deployed by ISPs. Concretely, given a weighted
network topology the tool directly computes the MPLS data
plane that would have been obtained after running commonly
deployed MPLS protocols as Label Distribution Protocol
(LDP [7]) and Resource Reservation Protocol with Traffic
Engineering extensions (RSVP-TE [8]) until convergence.

Our Contributions. Our main contribution is MPLS-Kit, a tool
and library to quickly generate MPLS data planes. The tool
provides researchers and operators with fine control over the
configuration of each network element, from fine path-level to
automatic creation of a given number of tunnels, supporting
the evaluation and analysis of MPLS configurations and their
behavior under various conditions.

It also enables the study of the impact of different design
choices on the network performance. MPLS-Kit includes
utility tools that provide easy-to-use, simple interfaces for
evaluation and automation of the execution.

The library is easy to extend and re-usable, allowing for fast
prototyping of new concepts. In particular, MPLS-Kit supports
RSVP-TE with Fast ReRoute protections and VPN services,
features rarely supported by other tools and forwarding stacks.
MPLS-Kit further supports forwarding simulations at packet-
level and provides easy-to-use, simple interfaces for evaluation
and automation of the execution.

Together with this publication, MPLS-Kit is released as
open source software at https://github.com/juartinv/mplskit,
along with further examples of library usage. It can also be
used online at https://demo.AalWiNes.cs.aau.dk.

https://github.com/juartinv/mplskit
https://demo.AalWiNes.cs.aau.dk

Direct DP Open-source Parametrized
Tool Type Computation MPLS LDP RSVP FRR | MPLS VPN MPLS Code | Configuration
GNS3 [9] Emulator N N v/ N
ns-3 [10] Simulator Limited N
Mininet [11] Emulator N Limited N
Batfish [12] | Configuration v N/A
analyzer
OMNet++ [13] Simulator V4 V4 V4
. Generator and
MPLS-Kit Simulator v 4 4 v 4 4 4

TABLE I: Related work feature comparison.

Novelty and Related Work. We are not aware of any open-
source tool which allows generation of realistic MPLS data
planes. MPLS-Kit complements many existing works such
as [1]-[3], [14] which so far relied on ad-hoc methodologies
to generate data planes.

The lack of network data and protocol implementations,
e.g., control planes, is not solved by emulators. GNS3 [9]
allows running closed-source MPLS implementations that may
use non-standard features and which cannot be independently
reproduced for usage on research evaluations. Tools like ns-
3 [10] and Mininet [11] can run open-source networking
stacks but these may not implement all the expected protocol
features. Besides, emulation of an entire network may also
be time-consuming, as it requires the protocols to run until
convergence, eventually providing the data plane as a by-
product of the emulation.

In fact, realistic control plane emulators and/or generators
of data planes are scarce in general. Batfish [12] is capable of
building an internal vendor-agnostic network model (including
the forwading table) from complete and correct vendor
configurations. Some useful features for research purposes,
like using parametrized configurations or stating that some
features should be created randomly are outside the scope of
Batfish. Also, Batfish does not support MPLS networks.

MPLS-Kit may also be compared with OMNeT++ [13],
a C++-based general discrete event simulation environment.
OMNeT++ is often used for communication networks
simulations. Although it provides limited support for MPLS,
some required functionality is missing, like support for VPN
services and MPLS failure-protection mechanisms. OMNeT++
is efficient for detailed, full-scale, cross-layer simulations and
not for data plane generation and prototyping.

See Table I for a concise feature comparison among these
tools.

II. MPLS NETWORK OPERATION

We model an MPLS networks as a graph composed of
routers interconnected through bidirectional links, forming a
topology. MPLS networks are designed to transport packets
from an ingress to an egress router.

Ingress packets. Packets are inspected by the ingress router
on the edge of the MPLS domain that finds their Forwarding
Equivalence Class (FEC). FECs are used to represent a
network resource or group of resources, such as traffic
engineering tunnels or virtual private networks (VPNs). All

packets that request the same resource must be forwarded
the same way. Each router hosts a (control-plane) table
called Label Information Base (LIB) mapping each FEC to
a unique local label. After identifying the packet’s FEC,
the router initializes the packet’s MPLS label stack with the
corresponding label from the LIB, and then further processes
it like an internal MPLS packet.

Internal MPLS packets. Each router has a Label Forwarding
Information Base (LFIB) table that registers the prioritized
forwarding instructions for each top of stack label. These
instructions describe the outgoing interface and the operations
(pop, swap, or push) to be performed on the packet’s label
stack. If a match is found, the router uses the highest priority
forwarding rules such that the outgoing interface is up. This
behavior enables the implementation of failure protections. If
no match or no acceptable forwarding rule is found, the packet
is dropped.

In a real MPLS network, the routers compute their
LFIBs after exchanging FEC and label information through
MPLS control plane protocols specialized in different FEC
types. Additionally, the routers gain information about the
topology through a Link-State Interior Gateway Protocol
(IGP), typically OSPF or IS-IS. After exchanging messages,
each router populates its local Link-State Database (LSDB)
and the Traffic Engineering Database (TEDB) for traffic
engineering functionalities.

We use the term flow to generalize over the reachability
requirements of different FEC types. The flow specifies an
initial router and header along with the destination routers
allowed by the FEC.

An MPLS data plane is a network topology including its
routers and links, together with the LFIB of each router. The
primary purpose of MPLS-Kit is to generate such a data plane
and to provide simulation capabilities on top of it.

III. MPLS-KIT OVERVIEW

MPLS-Kit is a modular Python library supporting MPLS
data plane generation and packet-level simulation, following
closely the operations described above.

Its main strengths are being stand-alone and extensible,
producing MPLS data planes based on controlable industry-
standard protocols. In terms of features, MPLS-Kit provides:
« per-platform label space,

o direct computation of converged data planes,
« support for Penultimate Hop Popping (PHP) ([15]),

Input Output

Preprocessing

topology —

y ponﬁguration:
Gon(j‘ator
N Network)
Simulator

Fig. 1: MPLS-Kit interfaces and modules.

« computation of Fast ReRoute (FRR) protection paths,

« instantiation of VPN services,

o deterministic and non-deterministic forwarding rules (sup-
porting e.g., ECMP),

« multiple supported control-plane protocols,

« printing data planes and flows to files, and

e easy automation through command line interface and
external configuration files.

The main overview of MPLS-Kit is depicted in Figure 1.
Initially, a user provides a parametrized configuration
including a topology (either a NetworkX [16] graph, an
external file, or random generation instructions) and the set of
enabled control plane protocols along with their parameters.
For instance, to create traffic engineering tunnels, allowed
values are a list of (tunnel start, tunnel end) tuples or a
number of different tunnels to be randomly created. The
parametrized configuration can be provided as YAML files,
python variables, or command-line arguments.

The Preprocessing module receives a parametrized config-
uration and returns a concrete one, i.e., a configuration with
no undetermined elements. On the tunnels example, a concrete
configuration has an explicit topology (a NetworkX graph) and
an explicit list of tuples specifying the requested tunnels.

As shown in Figure 1, the tool has two core modules; the
Generator and the Simulator. The Generator is responsible
for computing the data plane, i.e. the topology and the
MPLS forwarding tables, according to the specification of
the concrete configuration. Its operation reproduces the basic
functionalities of the control plane protocols including keeping
tables as the LIB.

The Generator returns a Network object including the data
plane and control plane components. The list of valid flows
in the network can be extracted by examining the LIBs and
exporting them to a file. The data plane can be exported to
a JSON file.

The Simulator module provides packet-level simulation
functionality. Its inputs are a Network object, a list of flows to
reproduce and a file describing failure scenarios. Each failure

scenario consists of a list of failed links, such that forwarding
instructions using them become unavailable. For each flow, the
Simulator instantiates and forwards a packet while recording
the trace of traversed links and the final result (e.g., succesful
delivery at destination, detection of a forwarding loop, etc.).
Results and traces can be exported to a file.

IV. MPLS DATAPLANE GENERATION

MPLS-Kit uses high-level abstractions of the control
plane components. Instead of thoughtfully mimicking control
protocols and their subtleties, MPLS-Kit reproduces their
essential functionalities in order to generate forwarding entries.

In a real MPLS network the routers engage in the distributed
execution of an IGP protocol to obtain a consistent local
view of the network topology to use in path computations.
Such a process is time-consuming and prone to transient
effects. Hence MPLS-Kit does not simulate any IGP, yet it
does provide their essential features; i.e., providing a view of
the topology and shortest path computations to every router,
under the assumption of a single level, single area (OSPF or
IS-IS) topology by default. This consideration covers most
basic deployments, and the tool can be extended to multi-area
deployments.

The communication involved in MPLS control protocols is
also abstracted away; MPLS-Kit provides the protocol’s client
processes direct access to the memory content of their peer
processes running on other routers. This simplification allows
direct computation the same data plane that a real network
achieves after convergence while avoiding delays and corner
cases that arise due to the interleaving of communication
processes and protocol computations. The following protocols
are implemented in MPLS-Kit.

Label Distribution Protocol (LDP) [7]. Provides connectivity
when traffic engineering is not required. It works by
establishing Label Switched Paths (LSPs) along the existing
IP paths. The routers broadcast label mappings for each IP
prefix to all of their neighbors. In turn, these neighbors allocate
a local label to the prefix and broadcast the information further.
MPLS-Kit assumes the implicit existence of an IP prefix for
each link and node in the topology. LDP is a “best effort”
protocol; if a router fails, all LSPs through it will fail.
Resource Reservation Protocol with Traffic Engineering
extensions (RSVP-TE) [8]. Used between ingress and egress
routers to establish tunnels implemented as LSPs, with
desirable traffic engineering properties. Examples include
waypointing, ensuring a given bandwidth and avoiding
some network links. MPLS-Kit supports the facility backup
protection method standardized on MPLS for protection of
traffic engineering tunnels [17]. Here a backup LSP is
established to protect a set of primary LSPs sharing a path
segment by intersecting at the closest possible common
downstream node [18].

VPN. MPLS-Kit also provides an MPLS client for
instantiating a generalization of industry-standard MPLS VPN
services such as Pseudo Wires [19], VPLS [20], [21] and
VPRNs [22].

—
— —— L

LDP RSVP-TE ‘V P%\ LDP RSVP-TE ‘VPN
- - Service — e Service
Client, Client . Client Client 9
Client Client
Process Process Process Process
Process Process
Router #1 Router #n
| | || |
- LIB — r LEIBA - LIB + r LFIB+
T 11 1 T

Topology
Network

Fig. 2: Internal structure of the MPLS data plane generator.

A high-level view of MPLS-Kit’s generator internal
architecture and its components is shown in Figure 2.
Descriptions are provided in the following sections. Protocol-
related parameters are adjustable.

Router. Supports multiple concurrent MPLS client processes

implementing control plane functionalities. As each router

object has direct access to the network topology (in the same
way a real router has access to its local LSDB or TEDB), it
also provides path computation functionalities.

It keeps the following local tables:

o Label Information Base (LIB): allocates a local label to each
FEC. Each FEC is managed by a single MPLS client process
on each router.

o Label Forwarding Information Base (LFIB): keeps routing
entries for each local label. The routing entries are computed
by the respective MPLS client.

Network. A network object is composed by a given topology,

pointers to the routers and global functions. In MPLS-Kit,

a topology is implemented as an undirected weighted graph

whose nodes are routers, and its edges are links connecting

the routers.

MPLS Client Process. Represents an actual process running

on a router to participate in the MPLS control plane. There is

a specialized client type per protocol, each responsible for:

« creating FEC objects for the network resources related to
its control plane protocol (e.g., IP prefixes for LDP and
TE tunnels for RSVP),

« requesting labels for its FECs on the router’s LIB table, and

« providing functions to compute appropriate routing entries
for LFIB building.

Performance Examples. We use MPLS-Kit to generate 100

data planes (one per topology) in 14.16s on an Ubuntu 20.04

system with Intel Core 19 and 32GiB RAM. The selected

topologies are taken alphabetically from the Topology Zoo

[5], accounting for 36.16 nodes 45.34 edges on average. and

ranging between 5 and 197 nodes.

The following parameter values are used:

« PHP enabled,

« LDP enabled,

2.01

1.5
=
0.5
=
00 L T T T T T
20 40 60 80 100
no. nodes in random topology

time (s)

Fig. 3: Computation times for generating data planes.

Algorithm 1 Use of simulation to estimate link utilization.

Input: Flows f € F, demands dy, iterations n,
capacity ¢y of each link £.
Output: Utilization u, of each link ¢
for each flow f € I do
for ¢ from 1 to n do
trace := Simulator.run(f)
for each link ¢ do use;(f,¢) := count ¢ in trace

for each link £ do avg_use(f,?) := > . use;(f,0)/n

i

return u; =), pds - avg_use(f,£)/cq for all links ¢

¢ RSVP-TE enabled; 20 random tunnels
protection FRR, and
« VPN services enabled; 15 instances spanning 5 nodes each.

with facility

Additionally, we generate data planes for random topologies
of different sizes, using the same configuration as above,
except with 3n RSVP-TE tunnels and 2n VPN services with
n being the number of nodes in the topology. For each n we
generate 100 different topologies, one data plane per topology.

The results are shown in Figure 3. We can see that in
the order of seconds, MPLS-Kit is capable of providing data
planes fast enough for most interesting applications. These
results are in line with MPLS-Kit’s goal of providing a large
variety of data to other tools in a time efficient way.

V. MPLS FORWARDING SIMULATION

When a router forwards a packet in a real-world MPLS
network, it uses the outmost label of the packet’s stack to look
up in its LFIB table. On a match, the router uses the forwarding
rules with the highest priority such that the outgoing interface
is up. If there are no acceptable forwarding rules at any priority
level, or if at any point the time-to-live value reaches 0, the
packet is dropped.

Consider the case in which the router’s LFIB provides
multiple equally preferable forwarding rules for a packet.
Solving such nondeterminism is actually outside the scope of
MPLS, and on actual routers this decision is made by the
lower-layer Forwarding Information Base. MPLS-Kit resolves
it by choosing uniformly among all available options.

Packet Forwarding Simulation Implementation. In MPLS-
Kit, at the beginning of each execution step a packet lies
inside a router’s memory. It is then processed and forwarded

to the next hop (if any) moving to the next execution
step, or finishing the simulation otherwise. As their real-
world counterpart, MPLS-Kit’s MPLS packets (instances of
the MPLS packet class) have a label stack and a time-to-
live field that decreases on each forwarding step. They also
keep a pointer to the network object allowing access to all
forwarding rules as well as to a list F' of failed links. This
information is used to filter out forwarding rules by priority
when taking the forwarding decision.

The MPLS packet class implements
forwarding methods:

the following

« step simulates the next execution step as follows:

1) In the current router’s LFIB, identify the set of matching
forwarding entries and their priorities.

2) Filter out entries instructing to use a failed link, i.e. a link
in F'. If no entries remain, the packet is dropped.

3) Select the highest priority rule. Break ties by randomly
choosing with uniform distribution.

4) Modify the packet’s label stack, decrease its time-to-live,
and send it to the next hop.

« fwd iteratively calls step until the packet depletes its label
stack or its time-to-live expires.

As a packet is forwarded through the network, it keeps

a record of its path (traceroute) for further analysis. Upon
completion of the forwarding, the packet returns an exit code
indicating its successful forwarding (0) or the specific type of
error encountered.
Simulator Implementation. The Simulator class takes care
of iteratively instantiating MPLS packets from user-specified
flows on the network’s routers with an adequate label stack
and calling their fwd method.

Upon finalization, the Simulator gathers and aggregates
statistics (exit code and traceroute) from all packet simulations
and returns a summary of successful and failed cases. Results
can be written to a CSV file or sent to the standard output.

VI. USE CASES

We shall now provide examples of how MPLS-Kit can be

used in practical applications.
Dataplane Verification. We can use the data plane output of
MPLS-Kit to check properties using MPLS network data plane
verification tools. The benefit of this use case is twofold. First,
for testing and benchmarking a verifier tool, it is useful to have
realistic data planes, since this is closer to what the tool will
experience in real use. Second, the verifier allows us to check
various properties of the generated data plane.

Formal verification. As a first example, we run Aal-
WiNes [1] with a reachability query for each of the flows that
the Generator outputs (see Figure 1). The query checks for a
flow (source, header, destinations) that a packet starting at
the source router with the given initial header can reach one
of the given destinations. For example for a flow (R, H, R2),
the query is (H) [-#Rq]-* [-#Rz] (). This verifies that all the
flows that MPLS-Kit claims to have created are in fact present
in the output data plane.

Algorithm 2 Use of simulation for latency analysis.

Input: Flow f, delay delay(¢) for each link /, iterations n
Output: Expected latency E(latency) for the flow f
for i from 1 to n do
trace := Simulator.run(f)
£l ... L, = the sequence links in trace
latency; := Z;nzl delay(¥;)

return E(latency) := Y ., latency;/n

Algorithm 3 Use of simulation for resilience analysis.

Input: Flows F, links L, failure-bound k,
probability of single link failure p.

Output: Average success rate, weighted by failure probability
let S:={XCL||X| <k}
for each X in S do

rx = Simulator.run(F, X).success_rate()
wy = plXl . (1 = p)k-IXI

return)y o7rx - wx/ Y ycgwx > Normalized average

> Failure scenarios

Machine learning assisted verification. While formal
verification tools for the data plane provide guaranteed results,
they can still be relatively slow in practice. DeepMPLS [2]
is a highly accurate, low execution time machine learning-
based verification tool that also needs MPLS data planes
as input, hence also benefitting from MPLS-Kit generation
capabilities. The same properties (i.e., queries) verified with
AalWiNes can be checked with DeepMPLS, and while the
former provides guarantees, the latter can synthesize new
MPLS header-rewriting rules in case a network property is
not satisfied. Combined usage of AalWiNes, DeepMPLS and
MPLS-Kit suggest an opportunity for synthesizing arbitrary
property compliant MPLS data planes.

Congestion Analysis. We can use the simulation component of
MPLS-Kit together with flow demands of a bandwidth-limited
network to estimate congestion on links. From the trace output
of the simulation, we can count how many times each flow
traverses a certain link. By running the simulation of each flow
multiple times, we can average out the randomness introduced
by multiple path. Now, given traffic demands for each flow and
the capacity of each link, we can compute the link utilization
as in Algorithm 1. All links ¢ with uy > 1 can be congested
given the traffic demands of the flows. The benefit of MPLS-
Kit for this use case is the realistic packet-level simulation on
an MPLS data plane that can be used e.g. in early stages of
network design.

Latency Analysis. The trace output of the simulation in
MPLS-Kit can be used to estimate latency of flows in the
MPLS network. Measuring network latency in a simulated
environment like the one provided by MPLS-Kit can be helpful
in networks where the researcher or the operator has no access
to trace collecting tools or the ability to inject test traffic into
the network.

We can turn the trace into a sequence of links 105 ... 0.,
where m is the hop count. Due to nondeterminism in the data
plane, several packets of the same flow may traverse different
paths, so we repeat many experiments for the given flow. By
labeling each link ¢ € L in the topology with a delay, we can
estimate the path latency of the flow as in Algorithm 2.
Resiliency Analysis. To test the resilience of various data
planes, we can use the simulator’s capability of simulating link
failures. For a given set of failing links, the simulator outputs
for each flow, whether the packet is successfully forwarded to
an intended destination. We can run multiple simulations and
compute the average success rate of packets in each failure
scenario.

Using the external script, create_confs.py, we can for
a data plane with links L systematically generate all k-failure
scenarios as all the subsets X C L with size |X| < k. To
speed up the simulation, MPLS-Kit supports batch processing
of failure scenarios and allows for possible parallelization of
this computationally heavy task.

We can now average the success rates over all k-failure
scenarios. To take failure probabilities into account, a weighted
average can be used, as in the example in Algorithm 3,
where link failures are modelled with a uniform, independent
probability p. This gives a measure of the resilience of
the given data plane. We can use this resiliency measure
to compare different data planes of the same topology, for
instance with or without fast re-route (FRR) protection.

VII. CONCLUSIONS

Motivated by the need to produce realistic data planes
for networking research, we developed MPLS-Kit, a library
with MPLS data plane generation capabilities (including
its fast-rerouting features) which also supports packet-level
simulations. MPLS-Kit is designed to faithfully mimick
the control plane processes responsible for computing the
forwarding tables in real networks, especially ISP networks,
without engaging in time-consuming full convergence
simulations. Our design and implementation are based on
a hierarchical structure of classes closely following the internal
architecture of a router, allowing easy development of new
functionalities and prototyping. As demonstrated with our use
cases, MPLS-Kit can be useful in many scenarios, ranging
from verification of data plane properties with external tools
to simulation-based studies like convergence, latency and
resiliency analysis. In summary, our contribution provides an
opportunity to alleviate the scarceness of data plane datasets,
thus encouraging more reproducible research in networking.

As a future work, we plan to extend our current work with
Segment Routing (SR) [23], addressing first MPLS-SR and
afterward moving towards IPv6-SR.

(1]

(2]
(3]

[4]
(5]

(6]

(8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk,
and J. Srba, “AalWiNes: A fast and quantitative what-if analysis tool for
MPLS networks,” in Proc. ACM CoNEXT. ACM, 2020, pp. 474—481.
F. Geyer and S. Schmid, “DeepMPLS: Fast analysis of MPLS

configurations using deep learning,” in Proc. IFIP Networking, 2019.
A. Blenk, P. Kalmbach, S. Schmid, and W. Kellerer, “O’Zapft is: Tap

your network algorithm’s Big Data!” in Proc. ACM SIGCOMM 2017
Big-DAMA Workshop, 2017.

K. Claffy and D. Clark, “Comments on request for information on the
american research environment,” 2020-01.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765-1775, 2011.

B. S. Davie and Y. Rekhter, MPLS: technology and applications.
Morgan Kaufmann Publishers Inc., 2000.

L. Andersson, I. Minei, and B. Thomas, “LDP Specification,” Internet
Requests for Comments, IETF, RFC 5036, Oct 2007.

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP tunnels,” Internet Requests for
Comments, IETF, RFC 3209, Dec 2001.

“GNS3,” https://gns3.com/, accessed: 2022-02-10.

T. R. Henderson, M. Lacage, G. F Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,” SIGCOMM
demonstration, vol. 14, no. 14, p. 527, 2008.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. ACM SIGCOMM
HotNets, 2010, pp. 1-6.

A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network
configuration analysis,” in Proc. USENIX NSDI. USENIX Association,
2015, pp. 469—483.

A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in Proc. of ICST SIMUTools Workshop, 2008.

J. S. Jensen, T. B. Krggh, J. S. Madsen, S. Schmid, J. Srba, and M. T.
Thorgersen, “P-Rex: Fast verification of MPLS networks with multiple
link failures,” in Proc. ACM CoNEXT, 2018, p. 217-227.

E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li,
and A. Conta, “MPLS label stack encoding,” Internet Requests for
Comments, IETF, RFC 3032, Jan 2001.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proc. of the 7th
Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman,
Eds., Pasadena, CA USA, 2008, pp. 11 — 15.

P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” Internet Requests for Comments, IETF, RFC 4090,
May 2005.

M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Communications Surveys and Tutorials (COMST), 2021.

S. Bryant and P. Pate, “Pseudo wire emulation edge-to-edge (PWE3)
architecture,” Internet Requests for Comments, IETF, RFC 3985, Mar
2005.

V. Kompella and Y. Rekhter, “Virtual private LAN service (VPLS) using
BGP for auto-discovery and signaling,” Internet Requests for Comments,
IETF, RFC 4761, 01 2007.

M. Lasserre and V. Kompella, “Virtual private LAN service (VPLS)
using label distribution protocol (LDP) signaling,” Internet Requests for
Comments, IETF, RFC 4762, 01 2007.

E. Rosen and Y. Rekhter, “BGP/MPLS IP virtual private networks
(VPNs),” Internet Requests for Comments, IETF, RFC 4364, Feb 2006.
C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” Internet Requests for
Comments, IETF, Tech. Rep. 8402, Jul. 2018.

https://gns3.com/

	Introduction
	MPLS Network Operation
	MPLS-Kit Overview
	MPLS Dataplane Generation
	MPLS Forwarding Simulation
	Use cases
	Conclusions
	References

