
FBR: Dynamic Memory-Aware Fast Rerouting
Nicklas S. Johansen

Aalborg University, Denmark
Lasse B. Kær

Aalborg University, Denmark
Andreas L. Madsen

Aalborg University, Denmark
Kristian Ø. Nielsen

Aalborg University, Denmark

Stefan Schmid
TU Berlin, Germany and Univ. of Vienna, Austria

Jiřı́ Srba
Aalborg University, Denmark

Rasmus G. Tollund
Aalborg University, Denmark

Abstract—Modern internet communication networks, such as
MPLS networks, provide fast rerouting mechanisms in the data
plane in order to quickly react to link failures and hence become
more dependable. However, fast rerouting requires additional
memory for the conditional failover rules—a scarce and expensive
resource. We initiate the study of memory-aware fast rerouting
mechanisms and present Forward-Backward Routing (FBR), a
dynamic rerouting approach with a provably high resilience to
multiple link failures, which accounts for memory constraints on
the routers. FBR relies on backtracking search along the routing
paths via packet header modifications, and in our experimential
evaluation on a wide range of ISP topologies, it outperforms
state-of-the-art solutions while using less memory.

Index Terms—memory-aware routing, fast reroute, MPLS

I. INTRODUCTION

With the increasing scale of communication networks, link
failures become more frequent [1], [2], [3]. Accordingly,
modern communication networks provide fast rerouting (FRR)
mechanisms to quickly mask such failures and ensure connec-
tivity along alternative routes.

Fast rerouting mechanisms are implemented in the data
plane, which typically allows to react to failures orders of
magnitude faster compared to the control plane: fast rerouting
in the data plane relies only on local failure information
and avoids reconvergence [4], [5], [6]. At the same time,
the limited local information also renders the design of fast
rerouting mechanisms challenging, especially under multiple
link failures, and the underlying algorithmic challenges have
recently been intensively studied [7], [8], [9].

Fast rerouting mechanisms in the data plane also inherently
come with overheads: routers need to store conditional failover
rules which define the alternative forwarding behavior in
case incident links are failed. This is problematic, as the
forwarding rules of a router are typically stored in its Ternary
Content Addressable Memory (TCAM), which is an expensive
and power-hungry resource [10]. Interestingly, the memory
overheads of fast rerouting mechanisms has received much
less attention in the literature so far.

This paper initiates the study of fast rerouting mechanisms
based exclusively on header modifications while accounting
for the router memory constraints. Our main contribution is
a new memory-aware algorithm, called Forward-Backward
Routing (FBR), that generates highly resilient data planes
without exceeding the given memory limit of the routers.
FBR relies on header rewriting (a.k.a. dynamic rerouting,

which is necessary for high resilience [11]). The input to
FBR is a prioritized list of primary and backup paths, which
FBR encodes using smart backtracking rules in case of link
failures, allowing it to efficiently explore multiple paths to the
destination (without necessarily backtracking to the source as
in the state-of-the-art [12], [13]). We also propose two methods
to generate the backup paths as an input to FBR and prove
that one of these methods provides (k−1)-resilience on any k-
connected network, while the other one achieves a remarkable
performance on real-world network topologies. Our empirical
benchmark-comparison on over 200 ISP topologies shows that
FBR is attractive in terms of failure resilience, memory usage
as well as the expected number of hops.

II. CONTEXT AND RELATED WORK

Fast rerouting mechanisms have already been studied exten-
sively (see e.g. the survey [14]). We now provide an overview
of the existing approaches, including those based on header-
modification and the MPLS [15] technology. We also introduce
abbreviations for ease of reference later in this paper.

RSVP-FN [16] is the industry standard fast rerouting mech-
anism used in MPLS networks. In particular we will compare
to the RSVP facility node protection mechanism [16] utilizing
MPLS label stacking to create bypass tunnels for protecting
failed links and routers. R-MPLS [17] (Recursive MPLS
protection) is a recent link protection extension to RSVP-FN,
providing additional resilience through recursion. It can be
employed on top of any existing MPLS data plane.

Plinko [18] is a data plane generation approach that
achieves perfect resilience: packets always reach their desti-
nation as long as the underlying network remains connected.
Plinko relies on dynamic rerouting guided by header rewriting
because static perfect resilience [14] (without header mod-
ification) is not achievable [11]. Plinko stores link failure
information in the packet header which causes an exponential
explosion in the number of forwarding rules.

KF stands for the keep forwarding approach [6] without
header modification. Routers are grouped based on their dis-
tance to destination and KF-traversal aims to bring the packet
closer to the destination, unless this is impossible due to a
failed link, in which case the packet circulates among the
routers in the same group.

A general and powerful set of techniques to design re-
silient data planes is to decompose the network into arc-



disjoint arborescences [9]. B-CA stands for basic circular
arborescence approach [9] and relies on circular switching
among the arborescences: it starts by routing along the first
arborescence and in case of a failed link it bounces to reroute
along the next arborescence etc. GFT-CA [7] presents an
improved static circular arborescence algorithm called grafting
which first creates partial edge-disjoint arborescences. These
arborescences are extended to directed acyclic graphs (DAGs)
by adding additional edges; an idea proposed in [19], [20].
GFT-CA forwards along an outgoing edge that reduces the
distance to the egress router the most. We also implemented
a memory-aware improvement to the CA strategy (referred
to as E-CA) by applying dynamic header modifications and
employing non-disjoint arborescences, and hence improving
the resilience while at the same time being able to limit the
required memory.

Finally, there are approaches like [21] that store the failure
information in the header and locally recompute new routes
for each failure scenario, or run a dataplane re-convergence al-
gorithm by reversing the directions of links upon failures [22],
while modifying the routing tables. These approaches are
orthogonal to ours as they require path recomputations and/or
modification of the routing tables. In case of link failures,
our method instead allows us to switch between a number
of predefined paths (similarly as in MPLS fast reroute),
which simplifies network operations and allows us to support
traffic engineering goals (e.g., congestion avoidance, latency
minimization, etc.).

III. NETWORK MODEL AND METRICS

In this section we formalize the network model, assuming
that each packet has a header that can be matched and modified
by forwarding rules at the routers.

Definition 1: A network topology is a graph G = (V,E)
where V is a finite set of routers and E ⊆ V × V is a finite
set of links, assuming that all links are bidirectional, i.e. if
(v, v′) ∈ E then also (v′, v) ∈ E.

Figure 1a shows a network topology where the links are
depicted by solid undirected edges. A data plane forwarding
function for each router and an incoming label returns the set
of forwarding rules, each with a priority, next-hop router as
well as the outgoing label that replaces the incoming label.

Definition 2: For a network topology G = (V,E), a data
plane is a tuple (τ, L) where L is a finite set of header labels
and τ : V × L→ 2N×V×L is the global forwarding table.

Figure 1c provides an example of a forwarding table. For
every router v ∈ V and an incoming label ` ∈ L, the function
τ(v, `) returns a (possibly empty) set of forwarding rules. A
forwarding rule is a triple (p, v′, `′) where p is the priority of
the entry, v′ is the next-hop s.t. either (v, v′) ∈ E or v = v′

(loopback interface), and `′ ∈ L is the outgoing header label.
A failure scenario F ⊆ E is a subset of the edges that

represents the failed links; we assume that if (v, v′) ∈ F
then also (v′, v) ∈ F and by |F | we denote the number of
bidirections links in F . A forwarding rule is active if the link
to the next-hop is not failed (does not belong to F ). For a

given failure scenario, we define the active forwarding table
as a forwarding table that only contains highest-priority rules
with an active next-hop.

Definition 3: For a given data plane (τ, L) and a fail-
ure scenario F ⊆ E, we define the active forwarding
table τF : V × L → 2V×L as τF (v, `) = {(v′, `′) |
(p, v′, `′) ∈ τ(v, `), (v, v′) 6∈ F, p = pmin}, where pmin =
min {p | (p, v′, `′) ∈ τ(v, `), (v, v′) 6∈ F}.

Consider the forwarding table from Figure 1c. In case of no
link failures, we have τ∅(in, `1) = {(a, `1)}, meaning that a
packet with the label `1 arriving to the router in is forwarded
to the router a without modifying the label. In case that the
link between in and a fails, i.e. F = {(in, a), (a, in)}, we
get that τF (in, `1) = {(in, `2)}, implying that the packet is
recirculated at the router in with the modified label `2. As
the next step, the packet is forwarded to the router b with the
label `2 as τF (in, `2) = {(b, `2)}.

Definition 4: A demand in a network is a triple
(vin, vout, `) ∈ V × V × L describing a packet flow from
an ingress router vin to the egress router vout with an initial
label ` comprising the packet header. We denote by D the set
of all demands in a given network.

The demands determine where packets enter and exit the
network. A packet enters the network at a router via a link from
outside the network. We denote this outside link as (v̂, vin),
where v̂ is a placeholder for the outside router. Additionally,
each demand has an egress router vout. If the packet reaches
this router it is delivered and leaves the network. We can now
formalize the notion of a trace for a given demand.

Definition 5: Let (v0, vn, `0) ∈ D be a demand, F be a
failure scenario, and τF be the active forwarding table. A
trace is a (finite or infinite) maximal sequence of link-label
pairs ((v̂, v0), `0)((v0, v1), `1) · · · ((vi−1, vi), `i) · · · , where
((vi−1, vi), `i) ∈ V × V × L and (vi, `i) ∈ τF (vi−1, `i−1)
for each i > 0.

Figure 1d shows a trace for the failure scenario F =
{(a, out), (out , a), (in, b), (b, in)}.

Given a network G = (V,E), a failure scenario F and a
demand (vin, vout, `), we say that vin delivers to vout if for all
possible traces, t = ((v̂, vin), `) · · · , there exists a link-label
pair ((v, vout), `

′) ∈ t, i.e. for all nondeterministic choices
(rules with equal priority) the packet arrives to vout.

a) Data Plane Metrics: Our aim is to construct a
memory-bounded data plane with fast rerouting that maxi-
mizes the possibility of delivering packets for all demands
in the network. We say that a router is connected to another
router if there exists a path between them.

The connectivity metric returns for a given failure scenario
the number of successfully delivered demands divided by the
number of demands that are connected under the failure sce-
nario. For a network topology G = (V,E), a failure scenario
F and a set of demands D, the measure connectivity(τF , D)
is hence given as

#(v1, v2, `) ∈ D where v1 delivers to v2 in τF
#(v1, v2, `) ∈ D where v1 is connected to v2 in GF



in

b

c

a

d

out

(a) Network with three forwarding paths from in to out

iteration path label visualisation
1 in-a-out `1 solid/
2 in-b-d-out `2 dashed/
3 in-c-d-out `3 dotted/

(b) Three forwarding paths found by Algorithm 2

Router Label Priority Router Label
in `1 1 a `1

2 in `2
`2 1 b `2

2 in `3
`3 1 c `3

a `1 1 out `1
2 a `2

`2 1 in `2
b `2 1 d `2

2 b `3
`3 1 in `3

c `3 1 d `3
d `2 1 out `2

2 d `3
`3 1 out `3

(c) Data plane created by Algortihm 1 with paths from Figure 1b

Step Router Label Forwarding rules
1 in `1 (1, a, `1), (2, in, `2)
2 a `1 (1, out, `1), (2, a, `2)
3 a `2 (1, in, `2)
4 in `2 (1, b, `2), (2, in, `3)
5 in `3 (1, c, `3)
6 c `3 (1, d, `3)
7 d `3 (1, out, `3)
8 out `3

Corresponding trace:
((v̂, in), `1) ((in, a), `1) ((a, a), `2) ((a, in), `2) ((in, in), `3)
((in, c), `3) ((c, d), `3) ((d, out), `3)

(d) Forwarding steps for the demand (in, out , `1) in the failure
scenario F = {(a, out), (out, a), (in, b), (b, in)}; the striked-out
rules are not active in F

Fig. 1: Example network, protection paths, generated data plane and a trace in a given routing scenario

where GF is the subgraph induced by removing the edges
corresponding to the links in F . Clearly, connectivity(τF , D)
is a rational number between 0 and 1, where 1 means that the
data plane can for the failure scenario F deliver every demand
where it is physically possible.

We assume that each failure scenario F has a probability
pF of occurring (which allows us to account for independent
link and node failures as well as shared risk group failures)
such that

∑
F⊆E pF = 1. We now introduce the notion of

connectedness of a data plane under failures, defined by

connectedness(τ,D) =
∑
F⊆E

pF · connectivity(τF , D)

which aggregates connectivity over all failure scenarios and
weights them by their probability. Hence the influence of
failure scenarios that are more common is higher. The con-
nectedness measure is again a number between 0 and 1 and a
higher connectedness implies a more reliable data plane.

Finally, we define the memory usage of a data plane τ at a
router v by

M(τ, v) =
∑
`∈L

|τ(v, `)|

as the number of forwarding rules stored at the router v for
each of the incomming labels.

A memory limit is then a function m : V → N that
determines the maximum number of forwarding rules that each
router can store. Our objective is to synthetise a data plane
with the highest connectedness within the memory limit.

Problem 1: Given a network topology G = (V,E), a set of
demands D and a memory limit m, create a data plane (τ, L)
that maximises connectedness(τ,D) while at the same time
M(τ, v) ≤ m(v) for all v ∈ V .

IV. FORWARD-BACKWARD ROUTING

We now present our memory-aware data plane generation
algorithm, Forward-Backward Routing (FBR). The core idea
of FBR is to utilize the observation that edges that were just
used for forwarding are active. FBR assumes as an input
a prioritized sequence of alternative paths that can deliver
packets for each demand. FBR then follows the first path in
the sequence and in case that at a certain router v a link on the
path is down, it tries (using the loopback interface) to switch
to an alternative path (assuming that there is an alternative
path that intersects at the router v). If no alternative path is
found at the router v, the packet is returned back to where
it came from (knowing that this link is active) and the same
process recursively repeats at the source router of the link.
In the worst case, the packet can arrive all the way back to
the ingress router where an alternative path is guaranteed to



Algorithm 1: Forward-Backward Routing (FBR)
input : A network topology G = (V,E), a set of

demands D, a path function P : D → PG,
and a memory limit m : V → N.

output: A data plane (τ, L).

1 Initialize τ to an empty forwarding table
// Create a label for each path and
demand

2 L := {`di | d ∈ D, 1 ≤ i ≤ |P (d)|}
3 for i := 1 to max{|P (d)| | d ∈ D} do
4 foreach d = (v0, vn, `0) ∈ D do
5 if i ≤ |P (d)| then
6 p := P (d)(i)
7 if MEM(τ, p, v) ≤ m(v) for all v ∈ V then
8 ENCODE-PATH(d, p, i)

9 return τ , L

10 Function ENCODE-PATH(d, p, i)
11 foreach (v, v′) ∈ p do
12 τ(v, `di ) := {(1, v′, `di )}
13 if i < |P (d)| then
14 p′ := P (d)(i+ 1)
15 τ(v, `di ) := τ(v, `di ) ∪ {(2, v, `di+1)}
16 if v does not appear in p′ and ∃(v′′, v) ∈ p

then
17 τ(v, `di+1) := τ(v, `di+1)∪{(1, v′′, `di+1)}

18 Function MEM(τ, p, v)
// Computes memory usage at router
v after path p is encoded into τ

be selected. It is important to evenly distribute diverse paths
among all the demands and FBR iteratively attempts to add
a path for each demand in a round robin fashion as long as
it does not exceed the routers’ memory. The algorithm relies
hence on a centralized controller.

FBR is formalized in the pseudocode of Algorithm 1. The
input to the algorithm is, apart from the topology G = (V,E),
set of demands D and a memory limit m, also a function P
that for every demand d ∈ D returns a prioritized sequence
of paths in G so that these paths can deliver the demand d.
The set of all such prioritized sequences is denoted by PG

and formally for each demand d we have a function P (d) :
{1, 2, . . . , n} → E* that encodes n alternative paths such that
P (d)(i) for 1 ≤ i ≤ n is the sequence of edges in the i’th
path for the demand d. We require that each router occurs
in each path at most once. By |P (d)| = n we denote the
number of alternative paths for the demand d and we assume
that |P (d)| ≥ 1 for all d ∈ D. We will later discuss how
these paths can be effectively generated in order to optimize
the performance of the data plane.

Algorithm 1 adds paths for the demands in a round robin
fashion, starting with the first path of each demand, then the
second path of each demand etc. Paths are encoded into the
data plane only if their addition does not cause any router
to exceed its memory limit (see line 7). The function Mem
simulates the encoding of a path to the routing table (according
to the function Encode-Path) in order to compute the
number of rules for each router after the path gets installed.

If the path fits into the memory, each edge in the path is
added to the routing table at line 12. The switch to the next
path, in case of failure, is encoded at line 15 using the loop-
back interface. Finally, a backtracking to the parent node is
added at line 17. To avoid forwarding loops, a backtracking
rule is added only if the router is not part of the next path.

Example 1: Figure 1 shows how FBR encoded three paths
(depicted in Figure 1b) in a network with a single demand
(in, out, `1). We assume here a sufficient memory limit to
install all three paths. The first processed path (encoded using
the label `1) is in-a-out. The forwarding rules from in to
out through a are added with priority 1. For all routers on
the path, except the egress router, a bounce rule to the next
path is added with priority 2 (meaning that it is active only if
the outgoing interface on the first path is down). Because the
next path, in-b-d-out (encoded using the label `2), does not
use the router a, FBR creates a backtracking rule from a to
in using the label `2. FBR then creates rules for the second
path in-b-d-out. Similarly, the third path is encoded using
the label `3. As the third path in-c-d-out is the last one, no
further bounce/backtracking rules are added. Figure 1d shows
the forwarding behaviour and a trace for the failure scenario
with failed links (a, out) and (in, b) (in both directions).

A. Theoretical Properties of FBR

We shall first argue that FBR does not create any forwarding
loops, meaning that after finitely many steps every packet is
either delivered or dropped.

Theorem 1: FBR algorithm generates a loop-free data plane.
Proof (sketch): A packet with a given label can use

at most twice as many hops (first moving forward and then
backward) as the length of the path it encodes. Moreover,
labels can be swapped only in acyclic way and if the last
path cannot deliver, the packet is dropped.

Next, we shall argue that FBR can achieve high resilience.
Definition 6: Let G = (V,E) be a network topology, D

be a set of demands. A forwarding table τ is k-resilient if
connectivity(τF , D) = 1 for all F ⊆ E where |F | ≤ k.

Theorem 2: Let G be a k-connected network topology with
demands D and memory limit m(v) ≥ (3k − 2) · |D| for all
v ∈ V . There is a path generation method for which the FBR
algorithm achieves (k − 1)-resilience.

Proof (sketch): As the network is k-connected, we can
find k edge-disjoint paths between all pairs of routers. If Al-
gorithm 1 is called with such a sequence of paths, interleaved
with the empty paths (this guarantees a full backtracking to the
ingress router in case a failed edge on a path), we know that
the data plane eventually delivers any packet as we assume



Algorithm 2: Semi-disjoint path generation
input : A network topology G = (V,E), a set of

demands D, and a number of iterations N
output: A path function P : D → PG used by Alg. 1

1 Let W : D × E → N, initially set to 0 for all entries
2 Let P : D → PG, initialized to empty path sequences
3 for N iterations do
4 for d = (v0, vn, l0) ∈ D do
5 p := SHORTESTPATH(G, v0, vn,W)
6 for e ∈ p do
7 W (d, e) :=W (d, e) · 2 + 1

8 if p is not in P (d) then
9 j := |P (d)|+ 1 // Get next index

10 P (d)(j) := p // Add new path

11 return P

that only k − 1 edges can fail (implying that there is at least
one connected path left). The number of installed entries for
the k paths of each demand is 2(k − 1) + k = 3k − 2.

B. Semi-Disjoint Paths Generation

We now propose a practically efficient path generation
method for the use in the FBR algorithm, also used in the
experimental evaluation. We produce semi-disjoint paths for
all demands in a network topology, providing a good balance
between the disjointness of the paths while minimizing the
number of hops. The pseudocode is given in Algorithm 2. In
each iteration starting at line 3, we add a new path to each
demand. The path is identified as the shortest path between v0
and vn with respect to the dynamic edge weight function W .
In case of multiple shortest paths w.r.t. W , we select one with
the fewest number of hops. Initially, all weights are set to 0,
and when a path p is selected, the weights of the edges on this
path are increased. Updating the weights penalizes paths that
use edges already in other paths, thus increasing the diversity
of the paths.

V. IMPLEMENTATION AND EVALUATION

We implement our FBR algorithm in the data plane toolkit
MPLS-Kit [23], which is also used to generate failure scenar-
ios, to simulate the packet forwarding, and to compute the
connectedness of the generated data planes. The data plane
generation for Plinko (with resilience level 4), RSVP-FN and
R-MPLS are already available in MPLS-Kit. The algorithms
KF, B-CA, E-CA and GFT-CA are implemented by ourselves.
The source code and reproducibility package is available on
GitHub at https://github.com/Ragusaen/p8.

In our benchmark we use 259 ISP topologies from the
Topology Zoo [24]. For each topology, we create a demand
that starts in each router and ends in a random egress router.
We assume that all routers have the same memory limit and
we consider a uniform link failure probability of pf = 0.001.
Hence the probability of a failure scenario F ⊆ E is given by

pF = p
|F |
f · (1− pf )|E|−|F |. where |E| and |F | is the number

bidirectional links in E and F , respectively. As the simulation
of all possible failure scenarios is infeasible (the number grows
exponentially in the number of links), we run our experiments
with randomly selected 1000 failure scenarios with up to four
failed links and normalize the sum of probabilities of the
selected failure scenarios. All experiments are executed on a
compute-cluster running Ubuntu version 18.04.5 on an AMD
Opteron(tm) Processor 6376.

Experimental Evaluation. KF and Plinko (that achieves the
optimal resilience by construction) use over 500 and 7500
forwarding rules on each router per demand, respectively.
As these numbers are unreasonably high for any real-world
application (e.g. the industry standard RSVP-FN uses only up
to 3 rules per router and demand), we exclude these approaches
from the comparison plots.

Figure 2a shows how the average connectedness of the
algorithms (on y-axis) increases with the amount of available
memory per router and demand (on x-axis). The approaches of
B-CA, RSVP-FN and GFT-CA are not memory-aware (hence
the horizontal lines in the plot) and achieve similar average
connectedness of around 1 − 103. Noticeably, RSVP-FN has
the lowest memory requirements (installing at most three rules
per router and demand) while the other two approaches install
over 10 rules in order to achieve a similar performance.
With a slightly higher memory requirements the R-MPLS
protocol achieves a significantly higher connectedness but
similarly to the other protocols it is not memory-aware and
may not necessarily fit into the available memory (depending
on the hardware). We extended the basic CA algorithms into
a memory-aware variant, called E-CA, which considerably
improves the connectedness while increasing the available
memory (and eventually even exceeds R-MPLS). Finally, the
plot shows that our FBR algorithm produces a data plane
that provides the highest connectedness (very close to the
one achieved by Plinko) for any considered memory limit
and achieves its best performance already with 4-5 installed
rules per router and demand. Already with the same memory
requirement as the industry standard RSVP-FN, it provides the
highest connectedness among all competing approaches.

Figure 2b displays the median number of hops (y-axis)
for an algorithm to deliver a packet over all demands on
all networks (x-axis). Here the memory limit for E-CA and
FBR is set to 4. We can notice that the arborescence based
approaches B-CA, GFT-CA and E-CA use the largest number
of hops to deliver a packet. Both RSVP-FN and R-MPLS have
a very similar performance in the number of hops but still
they use one additional hop, in the median case, to deliver the
packet compared to our FBR approach.

VI. CONCLUSION

We initiated the study of memory-aware fast rerouting and
presented an efficient mechanism, Forward-Backward Routing
(FBR), which guarantees a high resilience. On real-world ISP
network topologies, FBR outperforms the state-of-the-art, with
regard to failure resilience, while using only 2–3 rules per



2 3 5 10 15 20 25

1− 10−3

1− 10−4

1− 10−5

1− 10−6

Available memory per router per demand

A
ve

ra
ge

co
nn

ec
te

dn
es

s

0 2,000 4,000 6,000 8,000
1

10

100
∞

Demand

M
ed

ia
n

nu
m

be
r

of
ho

ps

(a) Average connectedness vs. maximum memory usage (b) Median number of hops among all failure scenarios

FBR R-MPLS [17] E-CA GFT-CA [7] RSVP-FN [16] B-CA [9]

Fig. 2: Experimental results (in Figure 2b E-CA and FBR have a memory limit of 4).

router per demand. Compared to related work, FBR further
uses the fewest number of hops to deliver a packet.

In our future work, we plan to improve the path generation
method for FBR to account for congestion and to include
unused links more effectively in the paths.

Acknowledgements. Research supported by the Vienna Sci-
ence and Technology Fund (WWTF) project ICT19-045 and
by the DFF project QASNET.

REFERENCES

[1] N. Shelly, B. Tschaen, K. Förster, M. A. Chang, T. Benson, and
L. Vanbever, “Destroying networks for fun (and profit),” in 14th ACM
Workshop on Hot Topics in Networks, J. de Oliveira, J. Smith, K. J.
Argyraki, and P. A. Levis, Eds. ACM, 2015, pp. 6:1–6:7.

[2] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate
link overload as observed on an IP backbone,” in IEEE INFOCOM 2003.
IEEE Computer Society, 2003, pp. 406–416.

[3] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: measurement, analysis, and implications,” in ACM
SIGCOMM 2011, S. Keshav, J. Liebeherr, J. W. Byers, and J. C. Mogul,
Eds. ACM, 2011, pp. 350–361.

[4] C. Jiang, S. G. Rao, and M. Tawarmalani, “PCF: provably resilient
flexible routing,” in SIGCOMM ’20, H. Schulzrinne and V. Misra, Eds.
ACM, 2020, pp. 139–153.

[5] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in ACM SIGCOMM 2014,
F. E. Bustamante, Y. C. Hu, A. Krishnamurthy, and S. Ratnasamy, Eds.
ACM, 2014, pp. 527–538.

[6] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in INFOCOM 2014. IEEE,
2014, pp. 1617–1625.

[7] K.-T. Foerster, A. Kamisiński, Y.-A. Pignolet, S. Schmid, and G. Tredan,
“Grafting arborescences for extra resilience of fast rerouting schemes,”
in IEEE INFOCOM 2021 - IEEE Conference on Computer Communi-
cations, 2021, pp. 1–10.

[8] K. Foerster, J. Hirvonen, Y. Pignolet, S. Schmid, and G. Trédan, “On
the feasibility of perfect resilience with local fast failover,” in 2nd
Symposium on Algorithmic Principles of Computer Systems, APOCS
2020, Virtual Conference, January 13, 2021, M. Schapira, Ed. SIAM,
2021, pp. 55–69.

[9] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133–1146, 2017.

[10] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: a systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, 2010.

[11] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “Brief announcement: on the resilience of routing tables,”
in ACM Symposium on Principles of Distributed Computing, PODC
’12, Funchal, Madeira, Portugal, July 16-18, 2012, D. Kowalski and
A. Panconesi, Eds. ACM, 2012, pp. 237–238.

[12] K.-T. Foerster, Y.-A. Pignolet, S. Schmid, and G. Tredan, “Casa:
congestion and stretch aware static fast rerouting,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 469–477.

[13] P. M. Mohan, T. Truong-Huu, and M. Gurusamy, “Tcam-aware local
rerouting for fast and efficient failure recovery in software defined
networks,” in 2015 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2015, pp. 1–6.

[14] M. Chiesa, A. Kamisinski, J. Rak, G. Rétvári, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Commun. Surv. Tutorials, vol. 23, no. 2, pp. 1253–1301, 2021.

[15] Introduction to MPLS, https://www.cisco.com/c/dam/global/fr ca/training-
events/pdfs/Intro to mpls.pdf, visited: 19/05/2020.

[16] P. Pan, G. Swallow, and A. Atlas, “Fast reroute extensions to RSVP-TE
for LSP tunnels,” in Request for Comments (RFC) 4090, 2005. [Online].
Available: https://doi.org/10.17487/RFC4090

[17] S. Schmid, M. K. Schou, J. Srba, and J. Vanerio, “Recursive Protection
for Highly Dependable Networks,” Patent application PA 202200385.
Filed by Aalborg University, April, 2022.

[18] B. E. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure
fast failover via forwarding table compression,” in Symposium on SDN
Research, SOSR 2016, B. Godfrey and M. Casado, Eds. ACM, 2016,
p. 9.

[19] S. Ray, R. Guérin, K. W. Kwong, and R. Sofia, “Always acyclic
distributed path computation,” IEEE/ACM Trans. Netw., vol. 18, no. 1,
pp. 307–319, 2010.

[20] J. Liu, B. Yang, S. Shenker, and M. Schapira, “Data-driven network
connectivity,” in Tenth ACM Workshop on Hot Topics in Networks
(HotNets-X), HOTNETS, H. Balakrishnan, D. Katabi, A. Akella, and
I. Stoica, Eds. ACM, 2011, p. 8.

[21] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets,” in Proceedings of the 2007 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
ser. SIGCOMM ’07. ACM, 2007, p. 241–252.

[22] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker,
“Ensuring connectivity via data plane mechanisms,” in 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). USENIX Association, 2013, pp. 113–126.

[23] J. Vanerio, S. Schmid, M. Schou, and J. Srba, “MPLS-Kit: MPLS Data
Plane Tooklit,” 2022. [Online]. Available: https://github.com/juartinv/
mplskit

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.


