
PDAAAL: A Library for Reachability Analysis of
Weighted Pushdown Systems

Peter G. Jensen1, Stefan Schmid2, Morten K. Schou1, and Jiří Srba1

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
2 TU Berlin, Berlin, Germany and University of Vienna, Vienna, Austria

Abstract. We present PDAAAL, an open source C++ library and tool
for weighted reachability analysis of pushdown systems, including gen-
eration of both shortest and longest witness traces. We consider totally
ordered weight domains which have important applications, e.g. in net-
work verification, and achieve a speedup of two orders of magnitude
compared to the state-of-the-art tool WALi. Our tool further extends
the state of the art by supporting the generation of the longest trace in
case it exists, or reporting that no finite longest trace can be generated.
PDAAAL is provided both as a stand-alone tool accepting JSON files
and as a C++ library. This allows for integration in software pipelines as
well as in verification tools like AalWiNes.

1 Introduction

Pushdown automata are a fundamental model in computer science and they
are often used as an underlying formalism for data-flow analysis of recursive
programs [1, 3, 14, 17], parsing of XML streams [11], modelling of network pro-
tocols [5, 13] and others [9, 12]. The verification questions on different types of
models can be reduced to reachability analysis for pushdown systems.

In order to support quantitative extensions of such systems, we need to study
weighted extensions of pushdown automata. In general, these weights are defined
over an idempotent semiring and we need to consider meet-over-all-paths val-
ues for reaching certaing pushdown configurations. There is a rich literature of
theory showing the application of weighted pushdown automata [9, 10, 12, 14]
to various application domains and several tools for the reachability analysis of
pushdown systems exist, including the tools Moped [16] used for the analysis
of Java programs (in the jMoped framework [17]), WPDS++ [7] for program
analysis as well as its more recent successor WALi [8] employed in tools like
ICRA [9] performing interprocedureal compositional recurrence analysis and the
static analysis tool Phasar [14] for C/C++ programs.

We present an open source C++ library and stand-alone tool PDAAAL for
efficient reachability analysis of pushdown automata over the weight domain of
totally ordered idempotent semirings. The study of such totally ordered semir-
ings is fundamental and has important applications, e.g., in the context of the



2 Jensen, Schmid, Schou and Srba

verification of communication networks [5,13]. PDAAAL implements the classi-
cal pre∗ and post∗ saturation algorithms for unweighted pushdown systems, in-
cluding the new dual∗ algorithms [6] and extends these algorithms for weighted
reachability analysis, computing the weights of not only the shortest traces but
also the longest traces, while returning such trace witnesses in case they exist.
The study of longest traces is practically relevant, as it allows, for example, to
perform a worst-case analysis of the routing paths in a communication network,
e.g., in terms of delay or size of packet headers [5]. It is, however, also challenging
to analyze, as the longest trace may be unbounded and hence impossible to com-
pute directly. To the best of our knowledge, PDAAAL is the first tool providing
the exact computation of the longest traces as the debugging information.

We introduce the formalism of weighted pushdown systems (Section 2),
present the implemented algorithms and tool usage (Section 3) and compare
the performance of PDAAAL with the state-of-the-art tool WALi for weighted
reachability analysis (Section 4) where we observe up to two orders of magnitude
faster performance. Finally, we elaborate on a specific use case in network
verification (Section 5) related to MPLS networks [5].

2 Weighted Pushdown Systems and Reachability

PDAAAL can accept weights from the domain of totally ordered idempotent
semirings S = (D,u,⊕,>,⊥). An example of a weight domain for computing
the shortest paths is S1 = (N ∪ {∞},min,+,∞, 0) where weights are natural
numbers including infinity, the weights are additive along a single path and
minimum is the meet-over-all-path operation. A domain for the computation of
the longest path is S2 = (Z ∪ {−∞},max,+,−∞, 0).

Definition 1. A Weighted Pushdown System (WPDS) over a weight semiring
S = (D,u,⊕,>,⊥) is a tuple (P, Γ,∆) where P is a finite set of control loca-
tions, Γ is a finite stack alphabet, and the set of rules ∆ is a finite subset of
(P × Γ )×D × (P × Γ ∗), written 〈p, γ〉 d

↪−→ 〈p′, w〉, if ((p, γ), d, (p′, w)) ∈ ∆.

A configuration in a pushdown system is a pair 〈p, w〉 where p ∈ P is the
current control location and w ∈ Γ ∗ is the stack content (head of the stack on the
left). A WPDS induces a labelled transition system T = (P × Γ ∗, D,⇒), where
for all w′ ∈ Γ ∗ 〈p, γw′〉 d

=⇒ 〈p′, ww′〉, provided that there is a pushdown rule

〈p, γ〉 d
↪−→ 〈p′, w〉. We write c0

d
=⇒⊕cn if there is a path in the labelled transition

system c0
d1==⇒ . . .

dn==⇒ cn such that d = d1 ⊕ . . .⊕ dn. The distance between two

configurations c and c′ is given by δ(c, c′) = ⊔{d | c d
=⇒⊕c′}. If S is a bounded

idempotent semiring (i.e. has no infinite descending chains), the distance is well
defined. If S is unbounded, the supremum may not be in the domain D; for
example in the semiring S2, the distance is ∞ if there is a positive-weight loop.



PDAAAL: Library for Reachability Analysis of Weighted Pushdown Systems 3

The problem solved by PDAAAL is: given a WPDS (P, Γ,∆) and two regular
sets of configurations C,C ′ ⊆ P × Γ ∗, compute the distance ⊔{δ(c, c′) | c ∈
C, c′ ∈ C ′} and return a witness trace (if any) with this distance.

3 Implemented Algorithms and PDAAAL Architecture

It is well known that the sets of all predecessors pre∗(C) and successors post∗(C)
of a regular set of pushdown configurations C are also regular [2]. The classical
pre∗ and post∗ saturation algorithms [1, 4, 15] solve reachability for pushdown
systems without weights. Schwoon [15] describes how to find a shortest witness
trace for totally ordered weight domains by using a priority queue to select the
next step of the saturation. This is later generalized to bounded idempotent
semirings [12], and implemented in the tool WALi [8]. Here the saturation al-
gorithms use a workset where transitions may be added multiple times, hence
possibly loosing some efficiency compared to the priority queue that exploits
the total ordering. Extensions to unbounded semirings are considered in [10] by
detecting that exceeding a given number of iterations of the saturation algo-
rithm causes nontermination of the procedure. PDAAAL implements the ideas
from [10] to pre∗, post∗ as well as dual∗ (combination of the first two approches)
for unbounded but totally ordered weight domains.

To achieve a high performance, we employ numerous algorithmic optimiza-
tions. We extend the early termination and bidirectional-search (dual∗) tech-
nique from unweighted pushdowns [6] to shortest trace queries for weighted sys-
tems. The main challenge here is that the on-the-fly construction of the product
automata must keep track of the weight of the best path to any state, and the
saturation only terminates if the best weight of an accepting path is no higher
than the current weight in the priority queue in the saturation. For longest trace
queries the dual∗ approach simply interleaves the saturation of pre∗ and post∗

and returns when either of them terminates. We also efficiently handle rules that
apply to any top-of-stack label, using of a wildcard flag in the precondition, and
adapting the pre∗ and post∗ algorithms to efficiently handle wildcards.

PDAAAL is designed to be included as a library in other C++ projects, but
it also functions as a stand-alone tool with JSON parsers for pushdown systems
and P-automata (nondeterministic automata used to represent regular sets of
pushdown configurations). The tool has predefined weight domains for integers
and natural numbers as well as vectors of these. In all cases, the weight semiring
can either minimize or maximize the weight, depending on whether a shortest
or longest trace is required. Other weight domains can be defined by the user,
when PDAAAL is used as a C++ library.

As an example, a P-automaton for the following set of pushdown configu-
rations {〈p0, BA〉, 〈p0, A〉, 〈p1, A〉} can be defined either in JSON format, or by
using regular expressions for the stack, symbols ’<’ and ’>’ to denote configu-
rations, and the symbol ’|’ to union multiple configuration sets: < [p0], [B]?
[A] > | < [p1], [A] >.



4 Jensen, Schmid, Schou and Srba

WALi pre∗ WALi post∗ WALi min pre
∗

post
∗

dual
∗

0 5,000 10,000 15,000

10
−1

10
0

10
1

10
2

(s)

(a) Shortest latency

0 5,000 10,000 15,000

10
−1

10
0

10
1

10
2

(s)

(b) Longest latency

Fig. 1: Performance plots of WALi (pre∗,post∗ and minimum of both) in thin
lines, compared to PDAAAL (pre∗, post∗ and dual∗) in thick lines; all instances
on x-axis are independently sorted by the increasing verification time that is
plotted on y-axis (log-scale) in seconds.

To run PDAAAL from the command line, an input file must be provided
along with the algorithm to use: -e 1 (post∗), -e 2 (pre∗), or -e 3 (dual∗) and
the trace type -t 0 (no trace), -t 1 (any trace), -t 2 (shortest trace), or -t 3
(longest trace). For instance to run the post∗ shortest trace algorithm: pdaaal
--input example.json -e 1 -t 2.

4 Comparison with State-of-the-Art

The first library for weighted pushdown systems, called WPDS [15], was provided
by Schwoon and used in Moped version 2. Later, WPDS++ [7] was developed by
Reps et al. and included further performance optimizations. The state-of-the-
art tool WALi [8] was developed as a successor of WPDS++ and it is used as a
backend in recent static analyzers ICRA [9] and Phasar [14] .

We compare PDAAAL to WALi by running the shortest and longest trace
queries on weighted pushdown systems produced by AalWiNes [5] on a large
benchmark of real communication networks from ISP providers. All together,
we run 16,800 reachability queries on pushdown systems of varying sizes. WALi
does not support a generation of the longest traces, unless a bound on the weight
of the longest trace is known a priori. In order to enable this, we set the bound
to the highest possible value of 32bit integer. On contrary, the implementation
in PDAAAL is able to effectively compute a bound on the number of iterations,
and hence it guarantees the termination even for unbounded longest traces.

Figure 1 shows the results comparing WALi and PDAAAL. We consider both
the computation of shortest traces and longest traces where the weight domain
represents the latency (which is additive along a pushdown trace). PDAAAL



PDAAAL: Library for Reachability Analysis of Weighted Pushdown Systems 5

supports both pre∗, post∗ and dual∗ (interleaving of pre∗ and post∗), while WALi
does not support dual∗. We instead present the minimum of the verification
time of pre∗ and post∗, which shows an improvement on the largest instances for
the longest latency. For the shortest trace experiment, all variants of PDAAAL
saturation algorithms outperform WALi by several orders of magnitude. For the
longest traces, this is also the case for our dual∗ algorithm, even though the
post∗ algorithm times out about at the same instance as WALi. We can also
observe that our pre∗ implementation is in general performing as good (or even
better) than our post∗, while this is not the case for WALi.

PDAAAL is available on https://github.com/DEIS-Tools/PDAAAL to-
gether with specifications of input/output formats and how to run the tool. A re-
producibility package is available at https://doi.org/10.5281/zenodo.6833493.

5 Applications

Pushdown automata find broad and practical applications in many domains
where verification tasks are often reduced to a pushdown reachability analysis.
As an example, PDAAAL can be used to model MPLS networks, a popular
and widely-used type of communication network used by most Internet Service
Providers for efficient traffic engineering [5]. MPLS networks interconnect a set
of routers which forward packets, where packets contain stacks of labels which
can be pushed and popped, and the forwarding is based on the top-of-stack label.
Such networks can hence be modelled as pushdown systems.

PDAAAL can be used in combination with AalWiNes [5] as part of a what-if
analysis tool (behaviour under link failures) to ensure a dependable service and
policy-compliant routing. In particular, PDAAAL’s support for longest traces is
attractive to perform a worst-case analysis of the network’s routing behavior.
For example, PDAAAL can be used to compute the longest possible routes that
may occur under one or multiple link failures, both in terms of the number of
hops (which is directly related to the amount of bandwidth resources consumed
in the network) as well as in terms of the overall delay (an important metric
for latency-critical applications). Furthermore, PDAAAL can also be used to
verify further quantitative metrics of interest. An online demo is available at
http://demo.aalwines.cs.aau.dk.

Similar applications for the longest trace analysis also arise in other domains,
allowing to perform worst-case time analyses of possible control flows in recursive
programs or the execution of parsers of XML streams, shedding light on the
possible overheads of such operations.

6 Conclusion

We presented PDAAAL, a tool for reachability analysis of weighted pushdown
automata over possibly unbounded weight domains. Our tool can be used also
as a library, and it is integrated into a recent network analysis tool AalWiNes
that relies on pushdown systems produced from widely used MPLS networks.

https://github.com/DEIS-Tools/PDAAAL
https://doi.org/10.5281/zenodo.6833493
http://demo.aalwines.cs.aau.dk


6 Jensen, Schmid, Schou and Srba

Apart from being two orders of magnitude faster than the state-of-the-art com-
petitor, it supports the detection of the existence of longest traces which finds
practical applications in e.g., the analysis of network protocols. Our tool uses
unbounded but totally ordered weight domains but despite of this limitation,
it finds numerous applications and can in the case of totally ordered domains
replace the backend weighted engines like Moped, WPDS++ and WALi with a
generic, modern and efficient library.

References
1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

Application to model-checking. In: CONCUR’97. LNCS, vol. 1243, pp. 135–150.
Springer (1997)

2. Büchi, J.R.: Regular canonical systems. Archiv für mathematische Logik und
Grundlagenforschung 6(3-4), 91–111 (1964)

3. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-
flow analysis. In: FOSSACS’99. LNCS, vol. 1578, pp. 14–30. Springer (1999)

4. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. In: INFINITY’97. ENTCS, vol. 9, pp. 27–37. Elsevier (1997)

5. Jensen, P.G., Kristiansen, D., Schmid, S., Schou, M.K., Schrenk, B.C., Srba, J.:
AalWiNes: A fast and quantitative what-if analysis tool for MPLS networks. In:
CoNEXT’20. p. 474–481. ACM (2020)

6. Jensen, P., Schmid, S., Schou, M., Srba, J., Vanerio, J., van Duijn, I.: Faster push-
down reachability analysis with applications in network verification. In: ATVA’21.
LNCS, vol. 12971, pp. 170–186. Springer-Verlag (2021)

7. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted
pushdown systems. Univ. of Wisconsin (2004)

8. Kidd, N., Lal, A., Reps, T.: Wali: The weighted automaton library (2007), https:
//research.cs.wisc.edu/wpis/wpds/wali/

9. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.: Compositional recurrence analysis
revisited. In: Conference on Programming Language Design and Implementation.
pp. 248–262. PLDI (2017)

10. Kühnrich, M., Schwoon, S., Srba, J., Kiefer, S.: Interprocedural dataflow analy-
sis over weight domains with infinite descending chains. In: FOSSACS’09. LNCS,
vol. 5504, pp. 440–455. Springer-Verlag (2009)

11. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: WWW’07. pp. 1053–1062. ACM (2007)

12. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Science of Computer Program-
ming 58(1-2), 206–263 (2005)

13. Schmid, S., Srba, J.: Polynomial-time what-if analysis for prefix-manipulating
MPLS networks. In: IEEE INFOCOM’18. pp. 1799–1807. IEEE (2018)

14. Schubert, P.D., Hermann, B., Bodden, E.: PhASAR: An inter-procedural static
analysis framework for C/C++. In: TACAS’19. pp. 393–410. Springer (2019)

15. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis, Technische Univer-
sität München (2002)

16. Schwoon, S.: Moped. In: http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/
moped/ (2002)

17. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A java bytecode checker
based on Moped. In: TACAS’05. LNCS, vol. 3440, pp. 541–545. Springer (2005)

https://research.cs.wisc.edu/wpis/wpds/wali/
https://research.cs.wisc.edu/wpis/wpds/wali/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/


PDAAAL: Library for Reachability Analysis of Weighted Pushdown Systems 7

Appendix

Recall that a monoid is an algebraic structure (M, •), where M is a set and
• : M × M → M is a binary operator on M , such that the following two
properties hold:

– Associativity: ∀a, b, c ∈M, (a • b) • c = a • (b • c),
– Identity: ∃e ∈ M, ∀a ∈ M, e • a = a = a • e. Here e is called the identity

element.

In a commutative monoid, the following additional property holds:

– Commutativity: ∀a, b ∈M, a • b = b • a

A totally ordered idempotent semiring is a tuple S = (D,u,⊕,>,⊥) where
D is a set, > and ⊥ are elements in D, and u and ⊕ are binary operators on D,
such that:

– (D,u) is a commutative monoid with the identity element >.
– (D,⊕) is a monoid with the identity element ⊥.
– ⊕ distributes over u: ∀a, b, c ∈ D we have a⊕ (b u c) = (a⊕ b) u (a⊕ c) and

(a u b)⊕ c = (a⊕ c) u (b⊕ c).
– > is an annihilator for ⊕: ∀a ∈ D, a⊕> = > = >⊕ a.
– ⊥ is an annihilator for u: ∀a ∈ D,⊥ u a = ⊥.
– The order v defined by: ∀a, b ∈ D, a v b iff a u b = a is a total order.

Further, the totally ordered idempotent semiring is bounded, if the order (D,v)
has no infinite descending chains.


	PDAAAL: A Library for Reachability Analysis of Weighted Pushdown Systems 

