
Deterministic Self-Adjusting Tree Networks
Using Rotor Walks

Chen Avin
School of Electrical and Computer Engineering

Ben Gurion University of the Negev
Beer Sheva, Israel
avin@cse.bgu.ac.il

Marcin Bienkowski
Institute of Computer Science

University of Wroclaw
Wroclaw, Poland

marcin.bienkowski@cs.uni.wroc.pl

Iosif Salem
Faculty of Computer Science

University of Vienna
Vienna, Austria

iosif.salem@univie.ac.at

Robert Sama
Faculty of Computer Science

University of Vienna
Vienna, Austria

robert.sama@outlook.com

Stefan Schmid
Department of Telecommunication Systems

TU Berlin, Germany & University of Vienna, Austria
Berlin, Germany

stefan.schmid@tu-berlin.de

Paweł Schmidt
Institute of Computer Science

University of Wroclaw
Wroclaw, Poland

pawel.schmidt@cs.uni.wroc.pl

Abstract—We revisit the design of self-adjusting single-source
tree networks. The problem can be seen as a generalization of
the classic list update problem to trees, and finds applications
in reconfigurable datacenter networks. We are given a balanced
binary tree T connecting n nodes V = {v1, . . . , vn}. A source
node v0, attached to the root of the tree, issues communication
requests to nodes in V , in an online and adversarial manner; the
access cost of a request to a node v, is given by the current depth
of v in T . The online algorithm can try to reduce the access cost
by performing swap operations, with which the position of a node
is exchanged with the position of its parent in the tree; a swap
operation costs one unit. The objective is to design an online
algorithm which minimizes the total access cost plus adjustment
cost (swapping). Avin et al. [10] (LATIN 2020) recently presented
RANDOM-PUSH, a constant competitive online algorithm for this
problem, based on random walks, together with a sophisticated
analysis exploiting the working set property.

This paper studies analytically and empirically, online al-
gorithms for this problem. In particular, we explore how to
derandomize RANDOM-PUSH. In the analytical part, we consider
a simple derandomized algorithm which we call ROTOR-PUSH, as
its behavior is reminiscent of rotor walks. Our first contribution is
a proof that ROTOR-PUSH is constant competitive: its competitive
ratio is 12 and hence by a factor of five lower than the best
existing competitive ratio. Interestingly, in contrast to RANDOM-
PUSH, the algorithm does not feature the working set property,
which requires a new analysis. We further present a significantly
improved and simpler analysis for the randomized algorithm,
showing that it is 16-competitive.

In the empirical part, we compare all self-adjusting single-
source tree networks, using both synthetic and real data. In
particular, we shed light on the extent to which these self-
adjusting trees can exploit temporal and spatial structure in
the workload. As a contribution to the research community
and to ensure reproducibility, we will make available all our
experimental artefacts and source codes.

I. INTRODUCTION

One of the initially studied and fundamental online prob-
lems is known as the list update problem: There is a set of
elements E = {e1, . . . , en} organized in a linked list where
the cost of accessing an element is equal to its distance from

the front of the list. Given a request sequence of accesses
σ = σ1, σ2, . . ., where σt = ei ∈ E denotes that element
ei is requested, the problem is to come up with a strategy
of reordering the list so that the total cost of accesses and re-
ordering is minimized. The basic reordering operation involves
swapping two adjacent elements which costs one unit.

The problem is inherently online, that is, decisions of
an algorithm have to be made immediately upon arrival of
the request and without the knowledge of future ones. The
efficiency of an algorithm is then analyzed by comparing
its cost to the cost of an optimal offline strategy OPT, and
the ratio of these costs, called competitive ratio, is subject
to minimization. Many constant competitive algorithms are
known for the list update problem today, most prominently
the MOVE-TO-FRONT algorithm [27] and its variants [2],
[3], [5], [19], [19], [21], [22], [24]; all basically moving
an accessed element to (or towards) the front of the list. The
prevalent model in the literature assumes that the movement
of an accessed element towards the list head is free [27],
which however affects the achievable competitive ratios only
by constant factors.
Tree structure. This paper revisits the list update problem
but replaces the list with a complete and balanced binary
tree. That is, there is an underlying and fixed structure of
n nodes forming a complete binary tree T and n elements
E = {e1, . . . , en}, where each node has to be occupied
exactly by one element. We denote the node currently holding
element e by nd(e) and the unique element stored currently
at node v by el(v). For any node v we denote its tree level by
`(v), where the root node has level 0.

Analogously to the list update problem, the access cost to an
element e stored currently at v = nd(e) is given by `(v) + 1,
and at a unit cost it is possible to swap elements ei and ej
occupying adjacent nodes (i.e., nd(ei) is the parent of nd(ej)).
Again, the objective is to design an online algorithm which
minimizes the total cost defined as the cost of all accesses

and swaps.
Reconfigurable optical networks. Besides being theoreti-
cally interesting as a natural generalization of the list update
problem, such self-adjusting single-source tree structures have
recently gained interest due to their applications in recon-
figurable optical networks [10]. There, the sequence σ =
σ1, σ2, . . . corresponds to communication requests arriving
from a source node which is attached to the root node of the
tree. These single-source tree networks can be combined to
form self-adjusting networks which serve multiple sources and
whose topology can be an arbitrary degree-bounded graph [8],
[11]. Therefore, the insights gained from analyzing single-
source tree networks can assist the design of more efficient
self-adjusting networks.

A. Previous results

A natural idea to design self-adjusting balanced tree net-
works could be to consider an immediate generalization of
the MOVE-TO-FRONT strategy: upon a request to element e,
we perform swaps along the path from nd(e) to the root
node. This moves accessed element e to the root node and
pushes all remaining elements on this path one level down.
However, it is easy to observe [10] that this solution would
yield a competitive ratio of Ω(log n/ log log n)1: If σ only
consists of the elements along the path which are accessed in
a round robin manner, always requesting the leaf entails a cost
of Θ(log n) to such an online algorithm. In contrast, a feasible
strategy for OPT is to place all these Θ(log n) elements in
the first Θ(log log n) levels, resulting in an access cost of
O(log log n) per request.

To overcome the problem above, Avin et al. [10] proposed a
randomized algorithm RANDOM-PUSH. In a nutshell, it moves
the accessed element e to the root node, but to make space
for it, it chooses a random path of nodes starting at the root
node and pushes elements on this path one level down. More
precisely, let v = nd(e) and d = `(v). RANDOM-PUSH
chooses a random node v′ uniformly on level d, which induces
a random path of nodes s1, s2, . . . , sd−1, sd = v′, where s1 is
the root note. Now for a cycle of nodes s1 → s2 → . . . →
sd−1 → v′ → v → s1, each of the corresponding elements is
moved to the next node on the cycle. (That is, for i < d, an
element e = el(si) is pushed down by one level to a random
child of nd(e).) It is easy to observe (cf. Section II) that the
cyclic-shift of elements can be executed using O(`(v)) swaps
of adjacent elements.

By a careful analysis of working set properties of the
algorithm, Avin et al. [10] showed that RANDOM-PUSH is
O(1)-competitive. Specifically, their analysis revolved around
the notion of a Most Recently Used (MRU) tree (where for
any two nodes u and v, if u was accessed more recently than
v, then it is not further away from the root than v). Such a tree
has the working set property: the cost of accessing element e at
time t depends logarithmically on the number of distinct items

1Note that the ratio of O(logn) is trivially achievable by an algorithm that
performs no swaps as each access incurs cost at least 1 to OPT and at most
O(logn) (tree depth) to an online algorithm.

accessed since the last access of e prior to time t, including e.
Avin et al. [10] showed that the working set bound is a cost
lower bound for any (also offline) algorithm, and proved that
RANDOM-PUSH approximates (in expectation) an MRU tree
at any time requiring low swapping costs.

B. Our contribution

This paper studies whether the RANDOM-PUSH algorithm
can be derandomized while maintaining the constant competi-
tive ratio. We propose a natural approach to imitate the random
walk executed implicitly by RANDOM-PUSH by the following
rotor walk [1], [12], [13], [17], [23]. In our approach, each
non-leaf node in the binary tree maintains a two-state pointer
pointing to one of its two children. Whenever an element
stored at this node is pushed down, the direction is according
to this pointer and, right after that, the pointer is toggled, now
pointing at the other child node.

Perhaps surprisingly, it turns out that this algorithm, to
which we refer to as ROTOR-PUSH, has fairly different proper-
ties from the algorithm based on random walks. In particular,
unlike RANDOM-PUSH, an adversary can fool ROTOR-PUSH
so that it does not fulfill the working set property: using
ROTOR-PUSH, the depth of a node can be as high as linear in
its working set size (see Lemma 8, Section IV-C), while for
RANDOM-PUSH it was at most logarithmic.

Despite these differences, we show that the deterministic
ROTOR-PUSH algorithm still achieves a constant competi-
tive ratio. Specifically, we show that ROTOR-PUSH achieves
a competitive ratio of 12, while the best known existing com-
petitive ratio was 60 (achieved by RANDOM-PUSH): a factor of
5 improvement. Compared to MOVE-HALF, the currently best
deterministic algorithm also presented in [10], the improve-
ment is even larger. To derive this result, we present a novel
analysis. We show how to reuse our techniques to provide
a significantly simpler analysis of the constant-competitive
ratio of RANDOM-PUSH, also improving the competitive ratio
from 60 to 16.

Our second contribution is an empirical study and compar-
ison of self-adjusting single-source tree networks, using both
synthetic and real data. In particular, we shed light on the
extent to which these self-adjusting trees can exploit temporal
and spatial structure in the workload. As a contribution to
the research community and to ensure reproducibility, we will
make all our experimental artefacts and source codes publicly
available.

Table I summarizes the properties of the different algorithms
studied in this paper (details will follow). In bold blue we
highlight our contributions in this paper.

Due to space constraints, some technical details will be
made available in a technical report.

C. Related work

Our work considers a generalization of the list access prob-
lem to trees. Previous work on self-adjusting trees primarily
focused on binary search trees (BSTs) such as splay trees
[28]. In contrast to our model, self-adjustments in BSTs are

Algorithm Access Cost: Total Cost: Deterministic Competitive Ratio
WS Property WS Bound

Random-Push [10] X X 7 60, 16 (Thm. 11)
Move-Half [10] 7 X X 64
Strict-MRU [10] X ? X ?

Rotor-Push 7 (Lem. 8) ? X 12 (Thm. 7)

TABLE I: Overview of algorithms and the properties each has (X) or not (7); question marks refer to open problems. In blue
the new results of this paper.

based on rotations (which are assumed to have constant cost).
While self-adjusting binary search trees such as splay trees
have the working set property, it is still unknown whether
they are constant competitive. Our model differs from this
line of research in that our trees are not searchable and
the working set property implies constant competitiveness, as
shown in [10]. Non-searchable trees have already been studied
in a model where trees can be changed using rotations, and it
is known that existing lower bounds for (offline) algorithms on
BSTs also apply to rotation-based unordered trees [15]. This
correspondence between ordered and unordered trees however
no longer holds under weaker measures [18]. In contrast to
rotation models, the swap operations considered in our work
do not automatically pull subtrees along, which renders the
problem different.

In previous work, Avin et al. [10] presented the first
constant-competitive online algorithms for self-adjusting tree
networks. In addition to RANDOM-PUSH which provides prob-
abilistic guarantees, they also presented a constant-competitive
deterministic algorithm MOVE-HALF (cf. Algorithm 1) and
introduced the notion of STRICT-MRU which stores nodes in
MRU order, i.e., keeps more recently accessed elements closer
to the root.2 While STRICT-MRU provides optimal access
costs, it is currently not known how to maintain MRU order
deterministically and efficiently, i.e., at low swapping cost.
Our paper is motivated by the observation that a rotor walk
approach to derandomize RANDOM-PUSH on the one hand
provides a simple and elegant algorithm, but at the same time
does not ensure the working set property.

Rotor walks have received much attention over the last
years and are known under different names, e.g., Eulerian
walker [23], edge ant walk [29], whirling tour [14], Propp
machines [17], rotor routers [20], or deterministic random
walks [16]. Their appeal stems from the remarkable similarity
to the expectation of random walks, and their resulting appli-
cation domains, including load-balancing [1].

II. PRELIMINARIES

We are given a complete binary tree T of n nodes. Slightly
abusing notation, we use T also to denote the set of all tree
nodes. There is a set E of n elements and an algorithm has
to maintain a bijective mapping nd : E → T . An inverse of
function nd is denoted el.
Nodes and levels. We denote the tree root by rT . For a node
u, we denote the subtree rooted at u by T [u]. The levels of T

2The authors called the corresponding algorithm MAX-PUSH (cf. Algorithm
2).

are numbered from 0, i.e., the only node at level 0 is rT . We
denote the maximal level in T by LT . We extend the notion
of levels to elements, `(e) = `(nd(e)); note that the level of
a node is fixed, while the level of an element may change as
the algorithm rearranges elements in T .
Costs. There are two types of costs incurred by any algorithm,
when serving a single request:
• Whenever an element e is accessed, an algorithm pays
`(e) + 1.

• Afterwards, an algorithm may perform an arbitrary num-
ber of swaps, each of cost 1 and involving two elements
occupying adjacent nodes.

Arbitrary swaps. Assuming that an algorithm can swap two
arbitrary adjacent elements at cost only 1 is rather contro-
versial: this would require a random access to arbitrary tree
nodes. We resolve this issue by making such swaps possible
only for OPT3 (potentially making it unrealistically strong) and
using swaps only in a limited manner in our algorithms. That
is, in a single round, whenever we access some element (and
pay the corresponding access cost), we mark all elements on
the access path. Subsequent swaps in this round are allowed
only if one of the swapped nodes is marked; after the swap
we mark both involved nodes.
Working set bound and working set property. Given a
sequence σ = σ1, σ2, . . ., the working set of an element e at
round t is the set of distinct elements (including e) accessed
since the last access of e before round t. We call the size of
this working set the rank of e, and denote it as rank(t)(e).
We drop superscript (t) when it is clear from context. The
working set bound of sequence σ of m requests is defined as
WS(σ) =

∑m
t=1 log(rank(t)(σt)). In [10], the authors proved

that, up to a constant factor, the working set bound is a lower
bound on the cost of any algorithm, even the optimal one.

We say that a self-adjusting tree has the working set property
if the cost of each access of an element v is logarithmic
in the element’s rank. The working set property is hence
stricter than the working set bound, which considers the total
cost only. Any algorithm with the working set property also
has the working set bound (if we ignore swapping cost) and
therefore is constant-competitive (this is for instance the case
for RANDOM-PUSH [10]). However, the working set property
does not directly imply the working set bound if we account
also for the swapping cost: the implication only holds if the
reconfiguration cost is proportional to the access cost.

3It is worth noting that the existing analysis of RANDOM-PUSH [10]
explicitly forbids OPT to make such arbitrary swaps.

That said, perhaps surprisingly at first sight, online algo-
rithms can also be optimal without the working set property,
as we for example demonstrate with ROTOR-PUSH.
Augmented push-down operation. The following operation
will be a main building block of the presented algorithms.

Definition 1. Fix a tree level d and two d-level nodes u, v.
The augmented push-down operation PD(u, v) rearranges the
elements as follows. Let rT = v0, v1, . . . , vd−1, vd = v be the
simple path from root rT to v. Then, we fix a cycle of nodes:
v0 → v1 → · · · → vd−1 → vd → u → v0 and for each
element at a cycle node, we move it to the next node of the
cycle.4

In the next section we show that the augmented push-down
operation can be implemented effectively, using O(d) swaps.

III. ALGORITHMS

This section introduces our randomized and deterministic
algorithms. To this end, we will apply our augmented push-
down operation and derive first analytical insights.
Randomized algorithm. We start with the definition of a
randomized algorithm RANDOM-PUSH (RAND) [10]. Upon
a request to a d∗-level element e∗, RANDOM-PUSH chooses
node v uniformly at random among all d∗-level nodes (in-
cluding nd(e∗)) and rearranges the elements by executing the
augmented push-down operation PD(nd(e∗), v).
Rotor pointers. The random d∗-level node chosen by
RANDOM-PUSH can be picked as a result of d∗ indepen-
dent left-or-right choices. A natural derandomization of this
approach would be to make these choices completely deter-
ministic, i.e., to maintain a rotor pointer at each non-leaf
node, pointing to one of its children (initially to the left one).
Informally speaking, we will use such a pointer instead of a
random choice and toggle the pointer right after it has been
used.

In a tree T , given a current state of pointers, we define a
global path, denoted PT , as the root-to-leaf path obtained by
starting at rT and following the pointers. We denote the unique
d-level node of PT by PT

d . To describe our deterministic
algorithm, we define a flip operation that updates the pointers
along the global path.

Definition 2 (Flip). Fix a tree level d. The operation flipT (d)
toggles pointers at all nodes PT

d′ for d′ < d.

Deterministic algorithm. Fix any complete binary tree T
with rotor pointers. Upon a request to an d∗-level element
e∗, ROTOR-PUSH (RTR) fixes node v = PT

d∗ (possibly
v = nd(e∗)) and rearranges the elements by executing the
augmented push-down operation PD(nd(e∗), v). Then, it up-
dates nodes’ pointers executing flipT (d∗). An example tree
reorganization performed by RTR is given in Figure 1.
Access cost. Note that both algorithms (RAND and RTR),
upon request to an element e∗ at level d∗, execute operation

4Note that vd → u and u→ v0 represent the unique paths between those
nodes.

PD(nd(e∗), v) for a node v from level d∗. Thus, their total cost
can be bounded in the same way, by adding the access cost
d∗+1 to the swap cost of the augmented push-down operation.
The latter operation can be implemented efficiently.

Lemma 1. It is possible to implement both considered algo-
rithms (RAND and RTR), so that they incur cost at most 4 ·d∗
for a request to d∗-level element e∗.

Proof. If d = 0, the observation holds trivially, and thus
we assume that d ≥ 1. Either algorithm executes operation
PD(u = nd(e∗), v) for a node v from level d∗. Let e = el(v).
We first access element e (at cost d∗ + 1). Then, we move e
to the root, swapping d∗− 1 element pairs on the path from v
to rT . If u = v, then we are done. Otherwise, we move e to
node u, swapping d∗ − 1 element pairs on the path from rT
to u. At this point the element e∗ occupies the parent node of
u. It remains to move it to the root, swapping d∗− 2 element
pairs. In total, there are 3d∗−4 swaps. Adding the access cost
of d∗ + 1 yields the lemma.

For completeness we give the pseudocodes of the two re-
maining single-source tree network algorithms; MOVE-HALF
and MAX-PUSH (STRICT-MRU) [10].

Algorithm 1: MOVE-HALF

1 access σt = ei = el(u) along the tree branches;
2 let ej = el(v) be the element with the highest rank at

depth b`(ei)/2c;
3 swap ei along tree branches to node v;
4 swap ej along tree branches to node u;

Algorithm 2: MAX-PUSH (STRICT-MRU)

1 access σt = e at depth k = `(e);
2 move e to the root;
3 for depth j = 1, 2, . . . , k − 1 do
4 move ej = argmaxe∈E:`(e)=jrank

(t)(e), i.e., the
least recently used element in level j, to level
j + 1 to node nd(ej+1);

5 move ek to nd(e);

IV. ANALYSIS OF ROTOR-PUSH

We start with structural properties of rotor walks. In par-
ticular, node pointers induce a specific ordering of nodes on
each level, which allows us to define their respective flip-ranks.
Flip-ranks and levels play a crucial role in the amortized analy-
sis of ROTOR-PUSH that we present in subsequent subsections.

A. Flip-Ranks

We say that a node u is contained in the global path P if
P`(u) = u.

Definition 3 (Flip-Ranks). For any state of pointers in T and
a d-level node u, frnkT (u) ≥ 0 is the smallest number of

e4

e8 e9

e5

e10 e11

e2

e6

e12 e13

e7

e14 e15

e3

e1

0 4 12 356 7

0 12 3

0 1

0

e2

e8 e9

e5

e10 e11

e1

e4

e12 e13

e7

e14 e15

e3

e6

3 7 01 245 6

3 01 2

1 0

0

Fig. 1: Complete binary tree with rotor initial state of pointers (left) and after ROTOR-PUSH serves a request to element e6
(right). Each node is represented by a rectangle and its label denotes the element stored at this node. Arrows represent states
of rotor pointers. The number below a node denotes its flip rank: nodes with flip rank 0 constitute the global path.
Serving element e6 induces the following changes: Elements e1 and e2 are moved one level down along the global path, e4
is moved to the initial position of e6, and e6 is moved to the root. The states of rotor pointers of the two topmost nodes on
the global path are flipped and the nodes’ flip ranks are updated accordingly.

consecutive operations flipT (d) after which u is contained
in PT .

It is easy to observe that when flip(d) is executed 2d − 1
times, all nodes of level d are at some point (i.e., before
all flips or after one of them) contained in PT . That is,
flip-ranks of d-level nodes are distinct numbers from the set
{0, . . . , 2d−1}. An example of assigned flip-ranks is presented
in Figure 1. Furthermore, flip-ranks satisfy the following
recursive definition. (Recall that T [u] is the tree rooted at u).

Lemma 2. Fix a tree T and let a node v be a descendant of
a node u. Then, frnkT (v) = frnkT (u) + frnkT [u](v) · 2`(u).

Proof. Observe that executing flipT (`(v)) is equivalent to
finding a node w = PT

`(u) (on the same level as u) and then

• executing flipT [w](`(v)− `(u)) and
• executing flipT (`(u)).

We will refer to operation flipT (`(v)) simply as flip. We now
compute frnkT (v), i.e., the number of flips after which PT

contains v for the first time. A necessary condition is that PT

must contain its ancestor u: this occurs for the first time after
frnkT (u) flips, and more generally after frnkT (u) + k · 2`(u)
flips, where k ∈ N≥0. At each such time, pointers are toggled
in the subtree T [u] (i.e., we execute operation flipT [u](`(v)−
`(u))). It takes frnkT [u](v) such operations to make path PT [u]

contain v, and thus the path PT contains v for the first time
after frnkT (u) + frnkT [u](v) · 2`(u) flips.

Lemma 3. Fix any state of pointers in T and an d′-level node
u. Fix level d and execute operation flip(d).
• If d′ ≤ d, then the flip-rank of u becomes 2d−1 if it was

0 and decreases by 1 otherwise.
• If d′ > d, then the flip-rank of u can either increase by

2d − 1 or decrease by 1.

Proof. First assume d′ ≤ d. Note that the operation flip(d)
is equivalent to operation flip(d′) and toggling pointers of
nodes Pd′ , Pd′+1, . . . , Pd−1. Thus, the first property follows
immediately by the definitions of flip-ranks.

For the second part of the lemma, let w be the d-level ances-
tor of u. As the pointers inside subtree T [w] are unaffected by

flip(d), frnkT [w](v) remains unchanged. Thus, by Lemma 2,
the change of frnkT (u) is exactly the same as the change of
frnkT (w); by the previous argument it can either grow by
2d − 1 or decrease by 1.

Flip-ranks and Push-Down Operations. Finally, we can
combine the effects of flip and push-down operations to de-
termine the way flip-ranks of elements change when ROTOR-
PUSH rearranges its tree.

Observation 1. When ROTOR-PUSH rearranges its tree upon
seeing a request to an d∗-level element e∗, then

1) for all d < d∗, element el(PT
d) is moved to level d + 1

and its flip-rank changes from 0 to 2d+1 − 1,
2) if el(PT

d∗) 6= e∗, then its flip-rank changes from 0 to
frnkT (nd(e∗))− 1,

3) element e∗ is moved to the root and its flip-rank becomes
0,

4) other elements remain on their levels, and their flip-ranks
may decrease at most by 1.

B. Credits and Analysis Framework

From now on, we fix a single complete binary tree T . Thus,
we drop superscript T in notations P , flip and frnk as it is
clear from the context. While `(e) denotes the level of e in
the tree of RTR, we use `OPT(e) to denote its level in the tree
of OPT.

We define level-weight of e as

wLEV(e) =

{
`(e)− 2 · `OPT(e)− 1 if `(e) ≥ 2 · `OPT(e) + 2,

0 otherwise,
(1)

and (flip-)rank-weight of e as

wFRNK(e) =

1− frnk(e)

2`(e)
if `(e) ≥ 2 · `OPT(e) + 1,

0 otherwise.
(2)

Finally, we fix f = 4 and let credit of e be

c(e) = f · (wLEV(e) + wFRNK(e)).

As at the beginning trees of RTR and OPT are identical, credits
of all elements are zero. Thus, our goal is to show that at any

step the amortized cost of RAND, defined as its actual cost
plus the total change of elements’ credits, is at most O(1)
times the cost of OPT. We do not strive at minimizing the
constant hidden in the O-notation, but rather at the simplicity
of the argument.

We split each round into two parts. In the first part, OPT
performs an arbitrary number of swaps, each exchanging
positions of two adjacent elements and pays 1 for each swap.
In the second part, both RTR and OPT access a queried ele-
ment and RTR reorganizes its tree according to its definition.
Without loss of generality, we may assume that OPT does not
reorganize its tree in the second stage as it may postpone such
changes to the first stage of the next step.

In the following, we use RTR and OPT to denote also their
costs in the respective parts and we use ∆c(e), ∆wLEV(e), and
∆wFRNK(e) to denote the change in the credit and weights of
element e within considered part.

Part 1: OPT swaps
Lemma 4. For any swap performed by OPT, it holds that∑

e∈E ∆c(e) ≤ 3 · f · OPT.

Proof. Assume that OPT swaps a pair (e1, e2), by moving e1
one level down and e2 one level up. The weights associated
with e1 can only decrease, and hence we only upper-bound
∆c(e2). As h(e2) decreases by 1, wLEV(e2) may grow at most
by 2 and wFRNK(e2) may grow at most by 1. Hence, ∆c(e1)+
∆c(e2) ≤ 3 · f . This concludes the proof as OPT pays 1 for
the swap.

Part 2: Requests are served
We fix a requested element e∗. and denote its level in the

tree of RTR by d∗ = `(e∗). For d ≤ d∗, we denote the d-level
element on the global path by ed, i.e., ed = el(Pd). Recall
that when RTR rearranges its tree, elements e∗, e0, e1, . . . , ed∗
change their respective nodes. We define three sets of el-
ements: {e∗}, P ′ = {e0, e1, . . . , ed∗} \ {e∗}, and the set
of remaining elements, denoted by B. We first estimate the
change in the elements’ credits for sets P ′ and B.

Lemma 5. It holds that
∑

e∈P ′ ∆c(e) ≤ f .

Proof. We first observe that if ed∗ is in the set P ′, then it must
be different from e∗. In such a case, it remains on its level,
its flip-rank can only grow (cf. Case 2 of Observation 1), and
thus ∆c(ed∗) ≤ 0.

In the following, we therefore estimate ∆c(ed) for d < d∗.
The level of ed increases by 1 and its flip-rank changes from
0 to 2d+1−1 (cf. Case 1 of Observation 1). We consider three
cases.

• d ≤ 2 · h(ed)− 1. Both wLEV(ed) and wFRNK(ed) remain
zero, and thus ∆c(ed) = 0.

• d = 2 · h(ed). Then, wLEV(ed) remains zero, while
wFRNK(ed) increases from 0 to 1 − (2d+1 − 1)/2d+1 =
1/2d+1. Thus, ∆c(ed) = f/2d+1.

• d ≥ 2 · h(ed) + 1. Then, wLEV(ed) increases by 1, while
wFRNK(ed) changes from 1 − 0/2d = 1 to 1 − (2d+1 −
1)/2d+1 = 2−d−1. Thus, ∆c(ed) = f/2d+1.

Summing up, we obtain
∑

e∈P ′ ∆c(e) ≤
∑d∗

d=0 ∆c(ed) ≤
f ·

∑d∗

d=0 1/2d+1 < f .

Lemma 6. It holds that
∑

e∈B ∆c(e) ≤ f .

Proof. The node mapping of elements from B remain intact,
and thus their level-weights are unaffected. However, their flip-
ranks may change, although by Observation 1 (Case 4) they
may decrease at most by 1.

Fix any level h ≥ 0 and let Bh be the set of
elements of B on level h in the tree of OPT. For an
element e ∈ Bh, if `(e) ≤ 2h, then the flip-rank-
weight of e remains 0. If, however, `(e) ≥ 2h + 1,
then the flip-rank of e decreases at most by 1, and
thus its flip-rank-weight increases at most by 2−`(e). In
total,

∑
e∈Bh

∆wFRNK(e) =
∑

e∈Bh:`(e)≥2h+1 2−`(e) ≤∑
e∈Bh

2−2h−1 ≤ 2−h−1. The last inequality follows as
|Bh| ≤ 2h. Summing the above bound over all levels, we
obtain

∑
e∈B ∆wFRNK(e) =

∑LT

h=0

∑
e∈Bh

∆wFRNK(e) ≤∑LT

h=0 2−h−1 <
∑∞

h=0 2−h−1 = 1. Therefore,∑
e∈B ∆c(e) = f ·

∑
e∈B ∆wFRNK(e) ≤ f .

Main Result
Theorem 7. ROTOR-PUSH is 12-competitive.

Proof. It is sufficient to show that within either part of a single
round, RTR +

∑
e∈E ∆c(e) ≤ 12 · OPT. The theorem follows

then by summing this relation over all rounds, and observing
that credits are zero initially.

In the first part, when OPT performs its swaps, the relation
holds by Lemma 4 as in this case RTR +

∑
e∈E ∆c(e) ≤

0 + 3 · f · OPT = 12 · OPT.
In the rest of the proof, we focus on the second part of the

round. By Lemma 5 and Lemma 6, the amortized cost of RTR
in this part can be upper-bounded by

RTR +
∑
e∈E

∆c(e) ≤ RTR + ∆c(e∗) +
∑
e∈P ′

∆c(e) +
∑
e∈B

∆c(e)

≤ RTR + ∆c(e∗) + 2 · f. (3)

It remains to bound RTR + ∆c(e∗). To this end, let h∗ =
`OPT(e∗) be the level of e∗ in the tree of OPT. By Lemma 1,
the cost of RTR is at most 4 · d∗. We consider two cases.
• d∗ ≤ 2 · h∗ + 1. Then, the initial and the final credit of
e∗ is zero, and thus RTR + ∆c(e∗) = 4 · d∗ ≤ 8 · h∗ + 4.

• d∗ ≥ 2 · h∗ + 2. The initial credit of e∗ is c(e∗) ≥ f ·
wLEV(e∗) = (d∗−2 ·h∗−1) ·f and the final credit of e∗

is zero. Thus, using f = 4, we obtain RTR + ∆c(e∗) ≤
4 · d∗ − f · d∗ + 2 · f · h∗ + f = 8 · h∗ + 4.

Plugging the relation RTR + ∆c(e∗) ≤ 8 · h∗ + 4 to (3),
using that the cost of OPT is h∗ + 1 and f = 4, we obtain
RTR +

∑
e∈E ∆c(e) ≤ 8 · h∗ + 4 + 2 · f ≤ 12 · (h∗ + 1) =

12 · OPT.

C. On the Lack of Working Set Property

The next Lemma shows formally that the ROTOR-PUSH
does not maintain the working set property. This was first
observed informally in [9].

Lemma 8. ROTOR-PUSH does not guarantee the working set
property. The access cost of an element can be linear in its
working set size.

Proof. We construct a sequence σ of requests for which at
some times the access cost in ROTOR-PUSH will be linear
in the working set size of the requested element. Consider
a complete binary tree T of size 2x − 1 and x levels, 0 ≤
` ≤ x − 1. Initially all pointers points to the left. Let S be
the set of nodes consisting of the root and the two left most
nodes in each level. Clearly |S| = 2x− 1. We construct σ by
requesting only elements hosted by nodes in S. At each time
the next request is to el(v) where v both in S and PT and `(v)
is the maximum possible. Formally d∗ = argmaxdP

T
d ∈ S

and v = PT
d∗ .

Note that all elements that move during a request are moving
between nodes in S. Therefore, the working set size is at most
2x − 1 for each request. The first request in the sequence is
to element e = el(PT

x−1) and e is moved to the root. It is not
hard to verify that for each level ` = `(e) < x − 1 after a
finite time e will be pushed to level ` + 1. Therefore after a
finite time e will reach level x−1 and will be requested again.
At that point the access cost will be x while the working set
property require a cost of O(log(2x− 1)).

V. IMPROVED ANALYSIS OF RANDOM-PUSH

In this section, we present a greatly simplified analysis of
the algorithm RANDOM-PUSH (RAND) [10], showing that it
is O(1)-competitive.

We reuse the notation for the argument for ROTOR-PUSH.
We define level-weight of element e as for ROTOR-PUSH
(see (1)). This time, however, we do not use flip-rank-weights,
but we define the credit of element e as c(e) = fR ·wLEV(e),
where fR = 8. We split the analysis of a single round, where
an element e∗ is requested, again into two parts, where the
swaps of OPT are performed only in the former part.

The proof for the following bound is analogous to Lemma 4,
but we get a slightly better bound as we need to analyze the
growth of level-weights only.

Lemma 9. For any swap performed by OPT, it holds that∑
e∈E ∆c(e) ≤ 2 · fR · OPT.

Throughout the rest of the proof, we fix a single requested
element e∗ and denote its level by d∗. Our goal is to prove
that in the considered round

E[RAND] + E[
∑

e∈E ∆c(e)] ≤ 16 · OPT. (4)

where the expected value is taken over random choices of an
algorithm from the beginning of an input till the current round
(inclusively).

Let E′ = E \ {e∗}. We first focus on the expected change
of credits in E′.

Lemma 10. It holds that E[
∑

e∈E′ ∆c(e)] ≤ (d∗/2 + 1) · fR
Proof. We show a stronger property, namely that the lemma
holds even if we fixed the mapping of elements to nodes

(functions el and nd) before the round. That is, we show an
upper bound the expected growth of credits, conditioned on
an arbitrary fixed mapping and using only the randomness
stemming from the choice of a random path chosen in the
considered round.

In particular, we assume that the level d∗ of requested
element e∗ is fixed. Recall that to serve e∗, RAND performs
an augmented push-down operation along a random path of
nodes v0, v1, . . . , vd∗ , where `(vi) = i. Let E′d be the set
of elements of E′ on level d. We upper-bound the value
of E[

∑
e∈E′d

∆c(e)]. This value is clearly 0 for d ≥ d∗,
as elements from such sets E′d do not change their levels.
(Element el(vd∗) might be moved to another node, but remains
on level d∗.) Furthermore, as at most one element from level
d increases its level (and its level-weight can thus grow by
at most 1), E[

∑
e∈E′0

∆c(e)] and E[
∑

e∈E′1
∆c(e)] can be

trivially upper-bounded by fR each. Thus, we fix any level
d ∈ {2, . . . , d∗ − 1} and we look where the elements of E′d
are stored in the tree of OPT: let Ad ⊆ E′d be those elements
whose level in the tree of OPT is at most d − 2. To bound
E[

∑
e∈E′d

∆c(e)], we consider two cases.

• e ∈ E′d \ Ad. Even if the level of e increases to d + 1
because of the augmented push-down operation, using
d ≥ 2, we have `(e) ≤ d + 1 < 2 · (d − 1) + 2 ≤
2 · `OPT(e) + 2. Thus, by the definition of level-weight
(see (1)), the credit of e remains 0 and ∆c(e) = 0.

• e ∈ Ad. The growth of level-weight of e is upper-bounded
by 1 and thus the increase of its credit upper-bounded by
fR. The increase however happens only if nd(vd) = e.
As vd is chosen randomly within level d, this probability
is equal to 1/2d, and therefore E[∆c(e)] ≤ fR · 2d.

Summing up, by the linearity of expectation,
E[

∑
e∈E′ ∆c(e)] = E[

∑
e∈E′0

∆c(e)] + E[
∑

e∈E′1
∆c(e)]

+
∑d∗−1

d=2 E[
∑

e∈E′d
∆c(e)]. Thus,

E[
∑

e∈E′ ∆c(e)] ≤ 2 · fR +
∑d∗−1

d=2

∑
e∈Ad

E [∆c(e)]

= 2 · fR +
∑d∗−1

d=2 |Ad| · fR · 2−d.

Using |Ad| = 2d−1 − 1, we get E[
∑

e∈E′ ∆c(e)] ≤ 2 · fR +
(d∗ − 2) · fR/2 = (d∗/2 + 1) · fR.

The result now follows by combining the above lemmas
essentially in the same way as we did in Theorem 7 for RTR:
a simple argument shows that the decrease of c(e∗) is able
to compensate for E[RAND] and the increase of remaining
credits.

Theorem 11. Algorithm RANDOM-PUSH is 16-competitive.

VI. EMPIRICAL EVALUATION

Although we have proven dynamic optimality for
RANDOM-PUSH and ROTOR-PUSH, the question of which of
the existing single-source tree network algorithms performs
best in practice remains. In this section we turn to answer this
question by empirically studying six algorithms: all the known
single-source tree network algorithms, i.e., ROTOR-PUSH,

RANDOM-PUSH, MOVE-HALF, and MAX-PUSH (cf. Section
III), as well as the static offline balanced tree5 (STATIC-
OPT), and the demand-oblivious initial tree that performs no
adjustments (STATIC-OBLIVIOUS).

We compare all algorithms with synthetic and real access
sequences with varying degrees of temporal and spatial local-
ity. Specifically we address the following five questions:
(Q1) How does the benefit of self-adjustment depend on the

network size?
(Q2) Which algorithm performs best with increasing temporal

locality?
(Q3) Which algorithm performs best with increasing spatial

locality?
(Q4) How does ROTOR-PUSH compare to RANDOM-PUSH in

combined settings of temporal and spatial locality and
how does it compare to STATIC-OBLIVIOUS?

(Q5) Do experiments with real data reflect the insights gained
from those with synthetic data (Q1–Q4)?

We elaborate on our empirical evaluation by presenting our
assumptions on locality and methodology in Section VI-A, our
results together with their implications in Section VI-B, and
the main takeaways in Section VI-C.

A. Methodology

We implemented all algorithms and the experimental setup
in Python 3.8. We tested all algorithms with synthetic and
real data of varying locality. The initial trees were always
constructed by placing the nodes uniformly at random. In
Q2–Q4, we tested the scenario of 65,535 nodes (complete
binary tree of depth 15) and 106 requests thoroughly, but we
also experimented with different tree sizes. Our experiments
showed that focusing on one scenario is representative of
the algorithms behaviour. We repeated each experiment with
synthetic data ten times and plotted the average values of the
ten experiments for each case (per plot details follow).
Temporal Locality. Following [7], we relate the degree of
temporal locality of a sequence with the probability of repeat-
ing request σi, i.e., p = Pr[σi+1 = σi]. Given p, we start
by generating a sequence σ of requests drawn uniformly at
random. Then we post-process the sequence by the following
rule: for i = 2, . . . , 106 with probability p, we set σi = σi−1
and otherwise σi stays intact.
Spatial Locality. We used the Zipf distribution [26] (discrete,
power law distribution) to generate sequences of increasing
spatial locality and decreasing empirical entropy. In our con-
text, a sequence with high spatial locality draws most requests
from a small subset of nodes (the subset decreases as the skew-
ness increases), but requests for any node are allowed as well.
The probability mass function is f(k, a) = 1/(ka

∑N
i=1 i

−a),
for an element with weight k and parameter a, where N is
the number of nodes and a defines the skewness. We set the
weight of the ith element to i−a and normalized all weights.
These sequences differ from the ones with controlled temporal

5A static tree where elements are placed in decreasing frequency in a BFS
order. STATIC-OPT performs no adjustments.

locality in that we don’t have any guarantees on the probability
of repeating the previous request.

For Q1, we run experiments for trees with sizes 255, 1023,
4095, 16383, and 65535 nodes (i.e. tree depths 7, 9, 11, 13, 15)
and 106 requests. We computed the difference of the average
total cost of each of the four self-adjusting algorithms minus
the total cost of STATIC-OBLIVIOUS, in high temporal (p =
0.9) and spatial (a = 2.2) locality scenarios.

For Q2, we generated synthetic request sequences with
increasing temporal locality. For each value of p ∈
(0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9), the respective (average per
ten samples for every case) empirical entropies6 were
(15.95, 15.94, 15.91, 15.87, 15.81, 15.67, 15.16). Thus, by in-
creasing p we indeed increase the degree of temporal locality
of the sequence σ.

For Q3, we defined a standard Zipf distribution over a
fixed set of N = 65, 535 nodes and changed the dis-
tribution parameter to increase skewness. For a we used
values from (1.001, 1.3, 1.6, 1.9, 2.2), where the distribu-
tion skewness increases with a. For each a we drew se-
quences of length 106 with respective empirical entropies
(11.07, 6.47, 3.88, 2.63, 1.92).

For Q4, we focused on the performance of ROTOR-PUSH,
as it had the best performance in Q2 and Q3, together with
RANDOM-PUSH. We first considered 65,535 nodes and 106

requests that we constructed by combinations of temporal and
spatial locality scenarios. We started with sequences drawn
from Zipf distributions for a ∈ {1.001, 1.3, 1.6, 1.9, 2.2} (as
in Q3), which we post-processed as in Q2: we repeated the
next element with probability p ∈ {0, 0.25, 0.5, 0.75, 0.9}. For
each sequence (defined by a and p), we computed the average
(total) cost difference between ROTOR-PUSH and the oblivious
static initial tree. We repeated each experiment ten times and
computed the averages.

We constructed a three-dimensional plot, where x-axis in-
cludes the values of p (temporal locality), the y-axis includes
the values of a (spatial locality), and the z-axis shows the
corresponding cost difference (ROTOR-PUSH minus STATIC-
OBLIVIOUS). We plotted the cost in a wireframe, where the
data points form a grid (cf. Section VI-B and Figure 5a).
Moreover, for ten sequences of 106 requests drawn uniformly
at random from the set of 65,535 nodes, we plotted a histogram
of the cost differences of ROTOR-PUSH and RANDOM-PUSH,
to show the extent to which they differ.

For Q5 we used data from the Canterbury corpus [6] (as in
[4]). We used five books with the largest number of words. To
increase the dataset sizes, we considered the string containing
the sequence of words as they appear in each book, from which
we extracted a sequence of requests by a sliding window of
three letters, sliding by one character. That is, the first triple
includes letters 1 to 3, the second 2 to 4, and so on, until
the last three letters. The set of nodes (elements) for each
sequence is derived by the set of unique triples appearing

6The empirical entropy of a sequence σ is defined using the frequency
f(σi) of each element σi in σ:

∑
σi
f(σi) log2(1/f(σi)) [25].

in each sequence. Following this methodology for the five
largest books of the corpus, we got (7,218; 6,962; 8,873; 6,225;
10,303) nodes and (3,128,781; 590,592; 261,829; 361,994;
1,627,137) requests, respectively.

To get an indication of the locality of these datasets we
plotted them on a complexity map as it was defined in [7].
A complexity map shows the pairs of temporal and non-
temporal complexity of each dataset. These quantities are
computed using the size of compressed files, each containing a
variant of the original sequence reflecting the two complexity
dimensions. This method is different from the definitions of
locality that we used in the synthetic data experiments and
hence serves only as an indication.

B. Results

We demonstrate and discuss our results for Q1–Q5.
Q1: Network Size and Adjustment Benefit In figures 2a
and 2b we can see that as the tree size increases the benefit
of reconfiguration increases as well. This is expected as
in larger trees, requests of non-frequent elements are more
expensive and adjustment is more beneficial. Therefore, in
the following plots, the thresholds after which our adaptive
algorithms perform better than STATIC-OPT, are not absolute,
as they improve with network size.
Q2: Temporal Locality. In Figure 3 we present our results
for Q2. We plotted the total cost for each algorithm. We
observe that ROTOR-PUSH and RANDOM-PUSH have the
best performance and that all self-adjusting algorithms exploit
temporal locality, as expected, but with varying efficiency.
Interestingly, ROTOR-PUSH and RANDOM-PUSH outperform
all other algorithms a bit after p = 0.75, while MOVE-HALF is
only marginally more costly. On the other hand, the adjustment
cost of MAX-PUSH is quite high in all scenarios.
Q3: Spatial Locality. In Figure 4 we show our results for
the spatial locality experiments. For the sequence of Zipf
distributions with parameters a ∈ (1.001, 1.3, 1.6, 1.9, 2.2),
the respective average empirical entropies of the sequences
that we sampled are (11.07, 6.47, 3.88, 2.63, 1.92). That is,
as a increases, the sequences are more skewed, and the
entropy decreases. Similarly to the temporal locality results,
we observe that indeed all self-adjusting algorithms exploit
spatial locality (ROTOR-PUSH, RANDOM-PUSH, and MAX-
PUSH have similar performance), and the reconfiguration cost
pays off already from a = 1.6 (when compared to STATIC-
OBLIVIOUS). However, STATIC-OPT has the best performance
in all scenarios.
Q4: ROTOR-PUSH Performance. In Q4 we take a closer look
on the performance of ROTOR-PUSH, as in Q2 and Q3 it has
the best performance, together with RANDOM-PUSH. In Fig-
ure 5a we plot the total cost difference between ROTOR-PUSH
and the oblivious static initial tree (STATIC-OBLIVIOUS), in
various scenarios of temporal and spatial locality. As expected,
their combination has a more dramatic effect in cost reduction.
Moreover, for ten sample sequences (each of length 106) we
observed (Figure 5b) that the difference between the cost of
ROTOR-PUSH and RANDOM-PUSH is at most 4 (mean is

255 1023 4095 16383 65535
Tree size

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Di
ffe

re
nc

e

Rotor
Random

Half
Max

(a) p = 0.9

255 1023 4095 16383 65535
Tree size

10

8

6

4

2

0

Di
ffe

re
nc

e

Rotor
Random

Half
Max

(b) a = 2.2

Fig. 2: Q1: Total cost difference of the self-adjusting algo-
rithms minus STATIC-OBLIVIOUS, for high temporal (p =
0.9) and spatial (a = 2.2) locality.

−0.0003). Thus, the variance in their performance difference
is also rather small (in the previous sections we observed that
the means are almost equal).
Q5: Evaluation with corpus data. The complexity map
computation [7] of the five datasets showed that their temporal
complexity is in the interval [0.3, 0.5] and their non-temporal
complexity is in the interval [0.8, 1] (Figure 6). This plot
indicates that the datasets have moderate to high locality. In
Figure 7 we plotted the performance of all six algorithms

0 0.15 0.3 0.45 0.6 0.75 0.9
Temporal p

0

50

100

150

200
Co

st
Rotor_access
Rotor_adjust
Random_access
Random_adjust
Half_access
Half_adjust
Max_access
Max_adjust
Static_oblivious
Static_opt

Fig. 3: Q2: results for temporal locality. The x-axis shows the
probability of repeating the last element and y-axis shows the
costs.

1.001 1.3 1.6 1.9 2.2
Zipf-a

0

20

40

60

80

100

Co
st

Rotor_access
Rotor_adjust
Random_access
Random_adjust
Half_access
Half_adjust
Max_access
Max_adjust
Static_oblivious
Static_opt

Fig. 4: Q3: results for spatial locality. The x-axis shows the
Zipf distributions parameters and the y-axis the average cost.

over these datasets. As in the synthetic data, we observe
that (i) ROTOR-PUSH and RANDOM-PUSH are the best self-
adjusting algorithms with similar performance, (ii) the access
cost of ROTOR-PUSH, RANDOM-PUSH, and MOVE-HALF is
similar to the one of STATIC-OPT, and that (iii) the selected
dataset doesn’t have high locality and hence the adjustment
cost remains high.

C. Discussion

We discuss the main takeaways of our evaluation. From the
plots that address Q1 we derived that in high locality scenarios,
self-adjusting algorithms perform better as the network size
increases, since the access cost for static algorithms increases

temporal_p
0

0.25
0.5

0.750.9zipf-a

1.001 1.3 1.6 1.9
2.2

difference

5.0
2.5

0.0
2.5
5.0
7.5

10.0
12.5

(a) ROTOR-PUSH minus STATIC-OBLIVIOUS

4 2 0 2 4
access cost difference (mean = -0.0003)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

pr
ob

ab
ilit

y

(b) ROTOR-PUSH minus RANDOM-PUSH

Fig. 5: Q4: ROTOR-PUSH performance. Figure 5a shows the
difference of average cost between ROTOR-PUSH and STATIC-
OBLIVIOUS in combined scenarios of temporal and spatial
locality of Q2 and Q3 (negative values have lighter color).
Figure 5b shows a histogram of the access cost difference
distribution per request between ROTOR-PUSH and RANDOM-
PUSH, taken over ten sequences of uniform data. The mean is
-0.0003 (marked with a red vertical line).

as well (i.e. the tree size increases). We then fixed the tree
size to 65,535 nodes (depth 15) and observed that the cost
of adjustment pays off in high locality sequences (temporal,
spatial, or combined). We observed that ROTOR-PUSH and
RANDOM-PUSH have almost identical performance, both in
synthetic and real data, despite their different properties.
Recall that RANDOM-PUSH has the working set property
[10], but ROTOR-PUSH doesn’t (cf. Section IV-C, Lemma
8). Specifically, even though the cost of ROTOR-PUSH can
be linear in the working set in theory, we did not observe
this in any of the tested scenarios. Also, we found that the
performance of all algorithms over corpus data follows the
one observed with synthetic data.

0.0 0.2 0.4 0.6 0.8 1.0
temporal complexity

0.75

0.80

0.85

0.90

0.95

1.00

no
n-

te
m

po
ra

l c
om

pl
ex

ity

1

2
3

4

5

Fig. 6: Q5: Complexity map [7] of the five datasets extracted
from the five largest books in the corpus data.

book1 book2 book3 book4 book50

20

40

60

80

Co
st

Rotor_access
Rotor_adjust
Random_access
Random_adjust
Half_access

Half_adjust
Max_access
Max_adjust
Static_oblivious
Static_opt

Fig. 7: Q5: Performance of the corpus data.

VII. FUTURE WORK

Our paper leaves open several interesting directions for
future research. On the theoretical front, it would be interesting
to provide tight constant bounds on the competitive ratio of
our algorithm and the problem in general. On the applied front,
it remains to engineer our algorithms further to improve per-
formance in practical applications, potentially also supporting
concurrency.

REFERENCES

[1] H. Akbari and P. Berenbrink. Parallel rotor walks on finite graphs and
applications in discrete load balancing. In Proc. 25th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 186–195, 2013.

[2] S. Albers. Online algorithms: a survey. Math. Program., 97(1-2):3–26,
2003.

[3] S. Albers and M. Janke. New bounds for randomized list update in the
paid exchange model. In Proceedings of the International Symposium
on Theoretical Aspects of Computer Science, STACS, volume 154, pages
1–17, 2020.

[4] S. Albers and S. Lauer. On list update with locality of reference. In
International Colloquium on Automata, Languages, and Programming,
pages 96–107. Springer, 2008.

[5] S. Albers and M. Mitzenmacher. Revisiting the counter algorithms for
list update. Information processing letters, 64(3):155–160, 1997.

[6] R. Arnold and T. Bell. A corpus for the evaluation of lossless
compression algorithms. In Proceedings DCC’97. Data Compression
Conference, pages 201–210. IEEE, 1997.

[7] C. Avin, M. Ghobadi, C. Griner, and S. Schmid. On the complexity of
traffic traces and implications. Proc. ACM Meas. Anal. Comput. Syst.,
4(1), May 2020.

[8] C. Avin, K. Mondal, and S. Schmid. Demand-aware network designs
of bounded degree. In Proc. International Symposium on Distributed
Computing (DISC), 2017.

[9] C. Avin, K. Mondal, and S. Schmid. Push-down trees: Optimal self-
adjusting complete trees. CoRR, abs/1807.04613, 2018.

[10] C. Avin, K. Mondal, and S. Schmid. Dynamically optimal self-adjusting
single-source tree networks. In LATIN 2020: Theoretical Informatics -
14th Latin American Symposium, pages 143–154, 2020.

[11] C. Avin and S. Schmid. Renets: Statically-optimal demand-aware
networks. In Proc. SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), 2021.

[12] J. N. Cooper, B. Doerr, T. Friedrich, and J. Spencer. Deterministic
random walks on regular trees. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 766–772,
2008.

[13] J. N. Cooper and J. Spencer. Simulating a random walk with constant
error. Comb. Probab. Comput., 15(6):815–822, 2006.

[14] I. Dumitriu, P. Tetali, and P. Winkler. On playing golf with two balls.
SIAM Journal on Discrete Mathematics, 16(4):604–615, 2003.

[15] M. L. Fredman. Generalizing a theorem of wilber on rotations in
binary search trees to encompass unordered binary trees. Algorithmica,
62(3):863–878, 2012.

[16] T. Friedrich and T. Sauerwald. The cover time of deterministic random
walks. In International Computing and Combinatorics Conference,
pages 130–139. Springer, 2010.

[17] A. E. Holroyd and J. Propp. Rotor walks and markov chains. Algorithmic
probability and combinatorics, 520:105–126, 2010.

[18] J. Iacono. Key-independent optimality. Algorithmica, 42(1):3–10, 2005.
[19] S. Kamali and A. López-Ortiz. A survey of algorithms and models for

list update. In Space-Efficient Data Structures, Streams, and Algorithms -
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday,
volume 8066 of Lecture Notes in Computer Science, pages 251–266.
Springer, 2013.

[20] I. Landau and L. Levine. The rotor–router model on regular trees.
Journal of Combinatorial Theory, Series A, 116(2):421–433, 2009.

[21] A. López-Ortiz, M. P. Renault, and A. Rosén. Paid exchanges are worth
the price. Theor. Comput. Sci., 824-825:1–10, 2020.

[22] J. I. Munro. On the competitiveness of linear search. In Proceedings of
the European Symposium, ESA, volume 1879, pages 338–345, 2000.

[23] V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. Eulerian
walkers as a model of self-organized criticality. Physical Review Letters,
77(25):5079, 1996.

[24] N. Reingold, J. R. Westbrook, and D. D. Sleator. Randomized compet-
itive algorithms for the list update problem. Algorithmica, 11(1):15–32,
1994.

[25] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler, and
Z. Lotker. Splaynet: Towards locally self-adjusting networks. IEEE/ACM
Transactions on Networking, 24(3):1421–1433, 2015.

[26] K. Siegrist. Probability, mathematical statistics, stochastic processes,
2017.

[27] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[28] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

[29] I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Distributed
covering by ant-robots using evaporating traces. IEEE Transactions on
Robotics and Automation, 15(5):918–933, 1999.

	Introduction
	Previous results
	Our contribution
	Related work

	Preliminaries
	Algorithms
	Analysis of Rotor-Push
	Flip-Ranks
	Credits and Analysis Framework
	On the Lack of Working Set Property

	Improved Analysis of Random-Push
	Empirical Evaluation
	Methodology
	Results
	Discussion

	Future Work
	References

