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Abstract. The increasingly stringent dependability requirements on
communication networks as well as the need to render these networks
more adaptive to improve performance, demand for more automated
approaches to operate networks. We present AllSynth, a symbolic syn-
thesis tool for updating communication networks in a provably correct
and efficient manner. AllSynth automatically synthesizes network up-
date schedules which transiently ensure a wide range of policy properties
(expressed in the LTL logic), also during the reconfiguration process.
In particular, in contrast to existing approaches, AllSynth symbolically
computes and compactly represents all feasible solutions. At its heart,
AllSynth relies on a novel, two-level and parameterized use of BDDs
which greatly improves performance. Indeed, AllSynth not only provides
formal correctness guarantees and outperforms existing state-of-the-art
tools in terms of generality, but often also in terms of runtime as docu-
mented by experiments on a benchmark of real-world network topologies.

1 Introduction

A more automated operation of communication networks is considered one of the
most important research problems in networking today, for two main reasons.
First, communication networks and their configurations are highly complex, forc-
ing operators to become “masters of complexity” [24]; many major Internet out-
ages over the last years were caused by human errors [BJI2I15]. Today’s manual
approach hence stands in stark contrast to the increasingly stringent dependabil-
ity requirements on communication networks, which are a critical infrastructure
of our digital society. Second, network traffic is not only growing explosively but
also features much temporal and spatial structure [4J6J48]; this introduces a sig-
nificant potential to improve operational efficiency by rendering networks more
adaptive towards the actual traffic patterns they serve.

Motivated by the vision of more automated networks [I7], over the last years,
great efforts were made in laying the foundations for automated network verifi-
cation, and in designing synthesis tools [BI2742J45/T6]. Furthermore, motivated
by the benefits of more adaptive network operations, e.g., to improve availabil-
ity and performance [28], automated tools for consistently updating network
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configurations have been developed [38I2346J43[11] which overcome the limita-
tions of existing hand-crafted algorithms [342J37]. However, the computation of
provably consistent network update schedules remains challenging, due to the re-
quired performance and expressiveness. The performance requirements are mul-
tidimensional: network update schedules should not only be quickly computable
but also account for operator preferences, like requiring that certain switches or
routers are updated first. However, existing approaches only provide one update
sequence that may not be preferred by the network operator.

Our Contributions. We present an automated network update synthesis tool,
AllSynth, that computes and represents in a compact BDD form all correct
update sequences that respect various logical properties expressible in linear
temporal logic (LTL) [4I] like reachability, waypointing and service chaining.
AllSynth comes with formal correctness guarantees and for situations in which
provably no simple update schedule exists, it can make suggestions for alternative
solutions (where the same switch is updated multiple times).

Despite being more general, AllSynth significantly outperforms state-of-the-
art tools in terms of runtime on all non-trivial real-world networks from the
standard Topology Zoo benchmark [29]. The update synthesis problem solved
by AllSynth is NP-hard, even if restricted to preserving the basic loop-freedom
and waypointing properties [34]. To combat the complexity of the problem, All-
Synth exploits a novel two-level use of binary decision diagrams (BDDs) [32] to
compactly encode not only the network topology and policy invariant, but also
the set of all correct update sequences.

The fact that AllSynth computes all feasible update sequences enables future
use cases for the tool, such as finding an optimal schedule, providing multi-
ple alternative solutions and filtering based on operator requirements (e.g some
switches must be updated before the rest or in a certain order). The source code
of AllSynth and all our experimental artefacts are available at [31].

Related Work. Motivated by the benefits of adaptive and software-defined (i.e.,
programmable) communication networks [30], as well as the increasingly strin-
gent dependability requirements, the question of how to correctly update network
configurations has received much attention over the last years. A recent survey
summarizes over one hundred approaches [19].

In their seminal work, Reitblatt et al. [43] showed that a strong per-
packet consistency can be achieved using packet versioning during reconfigu-
rations. Their approach, which was subsequently studied intensively in the lit-
erature [RI332002526/T0/40], has the drawback that it requires packet header
modifications and additional memory at the nodes: switches and routers need to
store forwarding rules for each version.

A clever alternative approach, introduced by Mahajan and Wattenhofer [37],
schedules batches of updates over time, where the set of updates within a batch
can take effect in any order without harming consistency. This approach has
also been explored extensively already [3BI2TI34I36/T4I472], however, it can only
be used to provide a subset of the consistency properties of [43]. This in turn
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motivated hybrid approaches such as FLIP [40]. Interestingly, similar to All-
Synth, FLIP also supports alternative solutions in case a simple update cannot
be found. However, in contrast to FLIP which relies on a heuristic algorithm,
AllSynth only presents alternative solutions in case a simple solution provably
does not exist. Furthermore, while FLIP resorts to a packet tagging alternative
(which consumes header space and switch memory), AllSynth is light-weight and
fully symbolic approach aiming at updating nodes multiple times.

The need for supporting more general or even customizable consistency prop-
erties [49] as well as more automated synthesis approaches [39/T823] has already
received attention in the literature as well. However, our approach is the first
one that is using the BDD-based technology for the synthesis and representa-
tion of all correct network updates. The competing tool NetSynth [38] for update
synthesis is relying on an incremental enumeration of candidates of update se-
quences that are then verified by external model checkers, like NuSMV [13], and
the tool terminates as soon as the first correct update sequence is found.

2 A Model for Update Synthesis

Before we formally define our problem, we shall provide an intuitive motivation
for the update synthesis problem. In Figure [I] we see a simple network with
four nodes (routers). Packets from the source node s are forwarded to the des-
tination node d along the solid edges (links) that represent the initial routing
configuration. The network operator aims to change this routing to an alterna-
tive one represented by the dashed edges. The task is to schedule the order of
node updates (changing the forwarding function at the updated node from the
solid edge to the dashed one) so that in every intermediate routing configuration
we preserve the reachability between s and d and at the same time always visit
the waypoint node v; (representing for example a firewall).
If the node s is updated first, the

new routing will follow the pzlmt.h S, v2,d o P "3 o
which preserves the reachability prop- s R Vg rd
erty but not the waypointing. On the Tt -7

other hand, if we first update the

node vy, we create an undesirable for- Fig.1: Update Synthesis Problem

warding loop s,vs,v1,v9,v1,... which
breaks the reachability property. Hence the only option is to update first the
node vy, after which we have a correct forwarding path s, v, d satisfying both
reachability and waypointing. After this we can update the node vy because this
update does not change the forwarding path and lastly, we update the node s
that completes the update sequence from the initial to the final routing. We are
now ready to provide the formalization of the update synthesis problem.

We model the network as a multigraph, allowing us to describe multiple con-
nections between nodes (i.e., switches or routers, which are treated as synonyms
in the following); these connections can have different quantitative attributes
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(e.g. latency). Henceforth, we adopt graph-theory terminology and refer to such
connections or links as edges.

Definition 1 (Network Topology). A network topology is a directed multi-
graph G = (V, E,src, tgt) where V is the set of nodes, E is the set of edges and
src,tgt: £ — V are respectively the source and target functions.

In order to route traffic from a node vy to a node v’, each node v has a
forwarding rule that specifies an appropriate outgoing edge e such that src(e) =
v. This rule can be per-flow or apply to multiple flows; in the following, we do
not explicitly distinguish between the two scenarios. Not all nodes need to have
defined their forwarding edge (e.g. the target node v" or the nodes that are not
involved in packet forwarding from vy to v’). We capture this formally by the
notion of a routing configuration.

Definition 2 (Routing Configuration). A routing configuration, or routing
for short, in a network topology G = (V, E, src, tgt) is a partial function p: V —
E such that src(p(v)) = v for all v € V where p(v) is defined.

For a given network topology G = (V, E, src, tgt) with the source node vy € V,
a routing configuration p defines a unique sequence of edges (a path) that is finite
if the routing is loop free; otherwise it is infinite. In the finite case, the path is
given by m = egey - - - e,, such that p(tgt(e;—1)) = e; for all ¢, 0 < ¢ < n, where by
convention tgt(e_1) = vg and where p(tgt(e,)) is undefined. The corresponding
sequence of traversed nodes is then T = src(eg)src(ey) - - - src(ey, )tgt(e,). In the
infinite case, the path is given by m = egey - - - such that p(tgt(e;—1)) = e; for all
i > 0 where as before tgt(e_1) = vg. The sequence of traversed nodes is given by
the infinite sequence T = src(eg)src(ey) - --. If T = vgvy ... is a (finite or infinite)
sequence of nodes then we refer to its suffix v;v;41... by 7; and to the initial
node vy by 7[0]. For a node vy € V and routing p, we let m,(vo) denote the
unique (finite or infinite) path induced by p from the source node vy and let
T,(vo) be the corresponding sequence of traversed nodes.

2.1 Routing Policies

We shall now define an LTL-based logic [41] that allows us to describe the policy
of acceptable routings (both statically and transiently).

Definition 3 (Policy Syntax). For a network topology G = (V, E, src, tgt),
a policy ¢ is constructed according to the following LTL-based abstract syntax,
where v € V:

pu=true |v|—¢ | A¢|NoLoop | X ¢ |pUep.

In addition to the classical LTL operators, our logic includes a loop freedom
predicate. We now give the formal semantics of our logic, interpreted both on
infinite and finite paths [22].
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Reach(d) = trueU d
Waypoint(v, d) = =Reach(d) V (=d U v A Reach(d))

MultiWaypoint(W, d) = \/ Waypoint(v, d)

veWw
true if w| =0
Service(w, d) = { —Reach(d) v ifwu=vouw

(Aycwr ~v' A—d) U (v AService(w',d))  where v e V

Fig. 2: Encoding of standard policies where v,d € V, 0 # W CV and w € V*

Definition 4 (Policy Semantics). For a network topology G = (V, E, src, tgt),
satisfaction of a policy ¢ by a path m € E* U EY¥, written 7 |= ¢, holds iff the
corresponding sequence of traversed nodes T satisfies T = o, defined inductively
on the structure of ¢ as follows:

T = true always TEv iff w0l =wv

TE e iff THEe FeiAps iff TE@ andT | o2
7T |= NoLoop  iff T is finite TEXe if TEe
TEeUp if 3jVi<jizmj = e and 7, = 1.

Bl

We now formulate some standard routing policies as presented in Figure
The simplest policy, Reach(d), specifies that the destination node d must eventu-
ally be reached while Waypoint(v, d) asks that any path reaching the destination
d must necessarily pass through waypoint node v. For multiple alternative way-
points, MultiWaypoint(W, d) specifies that any path reaching destination d must
necessarily pass through either of the waypoints in W. Finally, Service(w, d)
ensures that the sequence of waypoints in w is visited in this fixed order.

2.2 Update Synthesis

In the following we assume a fixed network topology G = (V, E,src, tgt). An
update uw € F' UV on G under a current routing configuration p specifies that
the source node of edge v (if v € E) must now forward its traffic along u or that
the routing for the node u (if u € V) is set to undefined. We write p* for the
new routing configuration, defined for any v € V' as

u if u e E and v = src(u)
p"(v) = < undefined if u = v

p(v) otherwise.

We inductively extend this notation to sequences of updates by letting p* = p
and p¥* = (p*)* for any w € (FUV)* and u € EUV. An update sequence may
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in general contain an arbitrary number of updates that change multiple times the
routing of the same node, however an important set of update sequences is the
class of simple update sequences, meaning that each update changes the routing
for a given node v from its initial routing p;(v) directly to its final routing ps(v).

Definition 5 (Simple Updates). Let p; be the final routing. An update u is
simple if p¢(src(u)) = u whenever uw € E and py(src(u)) is undefined whenever
u € V. A simple update sequence is then a sequence of simple updates, where
each update appears at most once.

A basic property of simple update sequences is that any reordering results
in the same final routing configuration i.e, if w is a simple update sequence and
w’ is any permutation of w, then p¥ = pw/ for any routing p.

Although any reordering of a simple update sequence yields the same final
routing configuration, the intermediate routing configurations induced by each
update may not respect a given policy invariant. This is also the case for general
update sequences. We therefore say that an update sequence is correct with
respect to a policy ¢ and a node v, if the unique path from v induced by any
intermediate routing configuration satisfies ¢.

Definition 6 (Update Correctness). An update sequence w € (EUV)* on
network topology G with initial routing configuration p is correct with respect to
source node vo and a policy ¢, if T ,ur (vo) E ¢ for any prefix w' of w.

The network update synthesis problem is thus the problem of constructing a
correct update sequence that updates an initial routing to a desired final routing.

Definition 7 ((Simple) Update Synthesis Problem). Given a topology G,
an initial routing configuration p;, a final routing configuration py, source node
vg € V and a policy v, the simple update synthesis problem asks to construct a
simple update sequence w that is correct with respect to vo and ¢ such that pi’ =
ps- The update synthesis problem omits the requirement that the constructed
update sequence is simple.

In the following, we let P = (G, p;, pf,vo, ¢) denote a (simple) update syn-
thesis problem and say that a constructed update sequence w that satisfies the
conditions above is a solution. For any simple update synthesis problem P, the
set of solutions is always finite. This is not the case for the general problem as
there may be infinitely many (longer and longer) solutions.

While much prior work focused on simple update problems, there are ex-
amples which are only solvable with a general solution (as supported by our
approach). To see this, consider the network topology in Figure [3a] with initial
and final routings visualised respectively as solid and dashed lines in Figure 35}
We fix the source node s and the policy ¢ = Waypoint(vs, d) A Reach(d) requir-
ing that waypoint vo must be visited before reaching d. An update of any node
v from the initial to the final routing violates ¢p—either by introducing a loop
or it bypasses the waypoint. Hence there is no correct simple update sequence.
However, the update sequence that first updates s to route to vs, followed by
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- =~

O O C- z O = },O O
s U1 V2 v3 d s \@1‘ - ’.52' -7 s rd
(a) Network topology (b) Initial (solid) and final (dashed) routings

Fig. 3: Update synthesis problem with only a general solution

the update of the nodes vy, vy and vs and finally updating s again to route to
v3 is a correct update sequence.

2.3 Simple Update Sequence Reordering

In case of simple update sequences, we shall now argue that for routing policies
that (i) include the preservation of reachability between the source and a target,
and (ii) for which it holds that once a packet is delivered, no further routing is
defined from the target node, we can reorder certain updates in the sequence
without invalidating the correctness of the sequence. More specifically, we shall
show that if a node routing is to be changed from undefined to some concrete
edge, we can safely schedule such updates (in any order) to the very beginning of
the update sequence. Similarly, all nodes that change their current routing into
undefined can be scheduled (again in arbitrary order) at the end of the update
sequence.

Lemma 1. Let w be a solution to a simple update synthesis problem P =
(G, pi,pg,vo, ) where ¢ = Reach(d) A ¢’ for any policy ¢’ and where p;(d)
and ps(d) are undefined.

1. If w = wy ouowy where u € E is an update s.t. p;(src(u)) is undefined then
uowy 0w 18 a solution to P.

2. If w = wy ouowy where uw € V updates the routing in u to undefined then
w1 © Wy o U 8 a solution to P.

Lemma [If can be used to identify all nodes er Ul ey
that have an undefined forwarding function in ~ ° O\\—>CA)— _____ >0 d
p; and schedule them to the beginning of the \6‘2\ | €3
update sequence. Symmetrically, all updates “é

that change a node forwarding to an undefined
value (in the routing py), can be placed at the
end of the update sequence. This may sim-
plify the synthesis of the update sequence by
analysing only the nodes that have a defined
forwarding function both in the initial and final routing.

The requirement in Lemmal/[I]that the policy must enforce at least the reacha-
bilty of d is essential, as illustrated in Figure@where ep0€e30e4 is a correct update

Fig.4: Counter example for
Waypoint(ve,d);  initial/final
routing is in solid/dashed lines
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AllSynth
[ BDD 1.“(x7 z,y) of ]
parameterized transitions

—
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routings satisfying ¢
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y
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BDD U (z, 2z) of all
correct updates '
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1

Initial/final routing

—_— Size of solution space

Fig.5: AllSynth workflow

sequence preserving Waypoint(ve, d). This is because until the last update, the
destination d is not reachable and hence the waypointing policy trivially holds.
However, even though the routing of v; is undefined in the initial routing, mov-
ing the update e4 to the beginning of the update sequence creates a transient
forwarding following the path ejes and violates Waypoint(vs, d).

3 The AllSynth Tool and the Synthesis Algorithm

The diagram in Figure[f]illustrates the main components of AllSynth. The inputs
to AllSynth are the network topology G, a policy of interest ¢, as well as the
initial routing p; and final routing py from the node vy.

From the input network topology G, a BDD representation of the edges
in G is combined with the input policy ¢ and a source node vy to produce a
BDD representing all routing configurations p where the unique path m,(vp)
satisfies . This BDD is then in turn combined with the initial and final routing
configurations p; and py, to construct a BDD representation of all correct update
sequences.

We shall now present our algorithmic solution to the update synthesis prob-
lem, based on a symbolic encoding of routing configurations using BDDs. This
encoding allows for an efficient fixed-point computation of those routing config-
urations that satisfy a given routing policy, and subsequently to find a correct
update sequence solving the synthesis problem.

Boolean decision diagrams [32] are data structures for the compact represen-
tation of a Boolean function. A BDD is a rooted directed acyclic graph (DAG),
with nonleaf nodes labeled by Boolean variables, and leaf nodes labeled with 0
(false) or 1 (true). Each node that is labelled by a variable has two outgoing
edges, a solid one representing the true assignment to the variable and a dotted
one for the false assignment. By following the paths from the root to the leaf
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(a) Running example with initial (solid
line) and final (dashed line) routings

(mz1 Az Azi Ay Ay2) V
(mx1 A2 Az Ay A —y2) V
(mz1 A2 A2Z2 Ayr Ay2) V
(mz1 Aza Az Ayt A —y2) V
(T1 A T2 A2 Ayr Ayz) V

(acl N —x2 A —zz A—yr A yz)

(b) T as ROBDD

(¢) Expression T'

Fig. 6: Running example and encoding of the transition function

labelled with 1, we obtain all satisfying Boolean assignments. BDDs were intro-
duced by Lee [32] and later Bryant [9] presented their reduced ordered version
(ROBDD), where the ordering between the Boolean variables are fixed along
each path from the root to a leaf, and isomorphic parts are combined. We show
how to exploit ROBDDs for solving the update synthesis problem.

First, let us recall how to encode subsets of a finite set S using Boolean
expressions—hence ROBDDs. The encoding is relative to a given enumeration
50,51,52,...5g]—1 of S and it is based on n = [log(|S|)] Boolean variables
X = X1,%2,...,%Ty. Now, any truth assignment p to x may be seen as a binary
encoding of a natural number n(yx) € N and hence an encoding of the n(u)’th
element s,,(,) € S. We shall use the short notation s(u) for the element s,
as well as the notation x(s) to denote a Boolean expression over x encoding
the singleton-set {s}. Now any Boolean expression ¢(x) over x may be seen as
encoding the subset [t(x)] = { s,(,) | 1 satisfies ¢(x) } € S.

Example 1. Consider the network topology in Figure [6a] with the nodes V =
{vo, v1,v2,v3} enumerated by the given indices. We encode any subset of V by a
Boolean expression over two Boolean variables x1, zo—note that the encoding of
e.g. {v1} is x(v1) = =1 A x2 as the binary encoding of vy is 01. Conversely, the
subset identified by the Boolean expression t = —x1 V —xy is [t] = {vo, v1,v2} as
the binary encoding of vy, vy, vo are 00,01, 10, respectively.

BDD encoding of routing configurations. Let G = (V, E,src,tgt) be a network
topology and let v € V. We denote by E, the set of edges having v as a source-
node, i.e. E, = {e € E | src(e) = v}. Now, a routing configuration p: V. — E
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is isomorphic to indicating for each node v whether p(v) is defined and if so to
identify an element from E,. For the Boolean encoding of (sets of) elements from
E, we use, as described above, [log(|E,|)] Boolean variables z,. To indicate
the definedness of p(v), we use an additional Boolean variable z¢. To encode
the possible transitions between nodes v and v’ enabled by a given routing
configuration p, we use Boolean variables x for encoding the source node v and
equally many Boolean variables y for encoding the target node v'. The following
Boolean expression T encodes the possible transitions:

T(X, 2oy -3 2y 2 - 200 ¥) =\ (x(0) Azo(e) A 20 Ay (tat(e)))
veV ecE,

where V = {vg, ..., v}

Ezample 2. Reconsidering the network topology from Figure [6al we shall use
three Boolean variables 21, 2o, z3 for encoding routing configurations in terms of
their choice of successor-node from vy, vy and vﬂ Using the encoding of nodes
from Example[T] the possible transitions between nodes are given by the Boolean
expression 7" in Figure The resulting unique ROBDD in Figure [6b] with only
11 non-leaf nodes illustrates the compactness of the ROBDD data structure (the
missing edges lead to 0). The highlighted path encodes the transition (routing)
from vy to v; under the initial routing. Here the chosen ordering of the Boolean
variables is crucial. Alternative orderings, e.g. with the z variables being tested
first respectively last results in ROBDDs with 25 respectively 17 non-leaf nodes.

BDD encoding of routing policies. Now let G = (V, E,src,tgt) be a network
topology and let ¢ be a routing policy expressed in the LTL logic of Defini-
tion 3] Using Boolean variables x for encoding nodes and Boolean variables z for
encoding routing conﬁgurationﬂ we shall construct an ROBDD B, (x,z) such
that: (v, p) € [By(x,2)] if and only if 7,(v) = ¢ where 7,(v) is the unique path
starting in the node v following the the routing configuration p.

Definition 8. Let G = (V, E,src,tgt) be a network topology and ¢ a routing
policy. We define the ROBDD B, (x,z) inductively on ¢ as follows:

Bie(x,2) = 1
B,(x,z) = x(v)
B, (x,2) -B,(x,2)
By, ngy (X,2) = By, (x,2) A By, (X, 2)
BNoLoop(X,2) = Vy.(T(x,2,y) = BNoLoop(Y:2))
Bxy(x,2) = Hy.(T(X,z,y) A Bg,(y,z))

By v, (%, z) = B, (x,2) V (Bw(xvz) A HY~(T(XvZaY) A By U, (¥ z)))

3 In this running example, we shall for simplicity assume that routing configurations
are total functions, e.g. that the variables z¢ are true.
4 Recall that z consists of variables Zy sy 2oy, and szl ey z,‘fk
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(b) Bgeach(ug) (c) B;each(ug)

Fig. 7: Increasing approximants Bg_, ch(vs)

In the above definition we exploit that ROBDDs are closed under Boolean
operations as well as Boolean quantification. In the cases NoLoop and ¢ U 2,
the changes of Boolean variables used in the parameter lists in the right-hand
sides are obtained by simple substitution of variables, an operation that may
efficiently be performed on ROBDDs. Finally, note that the definitions of Bnoloop
and B, v, are given as minimal fixed points. These fixed points, e.g. BNoLoop;
are obtained after a finite number of applications of the corresponding right-

. . . . . n . . 0 o
hand sides on increasing approximations By o, starting with By, .., = 0,

n+1 — Bn

and terminating when By o, NoLoop-

Lemma 2. We have (v,p) € [By(x,2)] if and only if 7,(v) = ¢.

Ezample 3. Consider the network topology from Figure [fa] with the routing pol-
icy Reach(vz). Given the LTL-definition of Reach(vs), the ROBDD Bgeach(v,) 18

given by the limit of the following inductively defined sequence: Bg;ih(vs) (x,2z) =

x(v3) V3y.(T(x,2,y) A B{{each(vs)(y, z)) with Bgeach(vs) = 0. Figure E provides

some of the approximants with Béea ch(vs) found to be the least fixed point.

We shall denote by Bj(z) the ROBDD 3x.B,(x,2) A x(vo), where vg € V/
is the source node. Rather than using BDDs for model-checking that individual
routing configurations satisfy a given policy ¢ one by one, B;(z) characterizes
exactly in one single ROBDD the full set of routing configurations satisfying ¢.

Ezample 4. Recall the network topology from Figure [6a] and the Boolean en-
coding of routing configurations and nodes from Example 2] Now consider the
routing policies W = Waypoint(ve,v3) and R = Reach(vs). The resulting ROB-
DDs for By, By, and Bijj,Ap are given in Figure [8| It can be concluded that
there are 6, 6 respectively 4 routing configurations satisfying the policies R, W
respectively R A W. Moreover, both p; and py satisfy all three policies.
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(c) WAR

Fig. 8: Encoding of different routing policies

BDD encoding of update sequences. Again let G = (V, E,src,tgt) be a network
topology and let ¢ be a routing policy, with p; respectively p; being initial
respectively final routing configuration. We shall show how to symbolically syn-
thesize correct (simple) update sequences using BDD encodings. The basis of
the synthesis is the ROBDD B;(z) encoding all routing configurations that are
correct with respect to ¢ using Boolean variables z = z,, ...2,,, 2% ..., 20 .
For simple updates it suffices to use single Boolean variables z,,, with z,, en-
coding p;(v;) and —z,, encoding py(v;), i.e. in case py(v;) # pi(v;). To encode a
simple update between configurations p and p’ we shall use Boolean variables z
for encoding p and a corresponding (distinct) sequence of Boolean variables zz
for encoding p’. The following Boolean expression U encodes the set of possible
simple updates that preserve correctness with respect to ¢.

U:(z,22) = B} (2) A B (22) A Ji. [z, A =22y, A /\ 2y, = 22y, |

J#i
Note that in this simple update the routing configuration changes for exactly
one node v; from the setting in the initial configuration p;, encoded as z,,, to
the setting in final configuration py, encoded as —zz,,. In the general case, the

update can change the setting of any node arbitrarily, as given by the following
Boolean expression U,.

Uy(z,22) = B (z) A\ B (zz) A Ji. 2y, # 22, A /\ Zy, = ZZy, |
i

Lemma 3. We have (p,p') € [Uy(z,22)] (resp. [Uj(z,22)]) iff p # p' and
there exists an update (resp. simple update) u such that p* = p’, w,(vo) = ¢ and
T (Vo) = @, where vy is the given source node.

To enable synthesis of correct (simple) update sequences, the following re-
cursively defined ROBDD is key.

R, (z,2z) = z(pf) V Jzzz. U;(z,2z) A\ R (zz, z2z)) (1)
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The expression encodes the set of simple updates that preserve correctness
with respect to ¢ while ensuring reachability of the final routing configuration.

Lemma 4. We have (p, p') € [R;,(z,22)] iff there exists a correct simple update
sequence w = uguy - - - up, with respect to p and ¢ such that p’ = p*° and p* = py.

All correct, simple update sequences of length N may now be characterized
by the following Boolean expression, where z* are (distinct) Boolean variables
encoding the routing configuration after ¢ updates:

N-1
S5(2°,...,2N) =2%(pi) N2V (p) A\ RL(2,Z) (2)
=0

Theorem 1. We have (po, p1, ..., pn) € [S5(2°,...,2N)] iff there exists a sim-
ple correct update sequence w = uguy - - - uy—_1 with respect to @ and pg such that
Pr+1 = pp~ for all k with 0 < k < N, po = p; and py = py.

For the synthesis in the general case: simply replace Uj in with U, to
get a ROBDD R, characterizing (general) update sequences leading to p¢. Now,
replace R;, with R, in to get a characterization of all correct (general) update
sequences of length N.

Ezample 5. Consider again the network topology from Figure[6a]and the routing
policies W = Waypoint(vs, v3) and R = Reach(vs). The full sets of correct simple
update-steps with respect to W, R and W A R are given by the ROBDDs Ry, Ry
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and Rjy, g given in Figure El(a—c). Instantiating Equation with these ROB-
DDs reveals that there are 3, 3 respectively 1 correct simple update sequences
of length 3 with respect to the routing policies W, R respectively W A R.

The unique simple update sequence for W A R (ignoring the initial and final
routing configurations) is given by the ROBDD in Figure @(d)ﬂ Here the values
suggested for the first three Boolean variables z{, 23, 23 indicate that the routing
configuration after the first update is given by the edges (v, v2), (v1,v2), (ve,vs).
Similarly, the values of the last three Boolean variables 27, 23,22 indicate the
edges (vg, v2), (v1,v3), (v2,v3) as the configuration after the second update. Note,
that in case there is no correct (simple) update sequence the resulting ROBDD
becomes empty (just consisting of the node false).

4 Implementation and Evaluation

Our tool AllSynth is implemented in Python and relies on a Cython wrapper [I]
of the CUDD [44] package for manipulation of ROBDD. From a given network
topology with the initial and final routing, the tool produces either a simple
or general update sequence satisfying a given policy, as well as the information
about the number of possible solutions. As all such correct solutions are sym-
bolically represented in a compact way as an ROBDD, it is possible to generate
alternative solutions without any additional computational effort.

We evaluate AllSynth against two state-of-the-art update synthesis tools,
NetSynth [38] and FLIP [46]. NetSynth can compute only a simple update se-
quence or inform the user that there is no solution; the synthesis of general up-
date sequences is not supported. FLIP can synthesise sequences of steps (groups
of switches or routers) in which order the network can be updated, however, if
such a sequence does not exist, the tool may introduce additional forwarding
rules and use tagging of packets. As NetSynth and FLIP do not support general
update sequences, compare the running times only for simple updates.

All experiments are executed on Ubuntu 14.04 cluster with 2.3 GHz AMD
Opteron 6376 processors with 2 hour timeout and 14 GB memory limit. A re-
producibility package is available in [31].

We consider a scalable synthetic topology and the standard benchmark of
261 real-world network topologies from the Topology Zoo dataset [29]. The class
of synthetic topologies, referred to as diamond topologies, are overtaken from the
NetSynth evaluation benchmark [38] and are formed by disjoint initial and final
routing paths that only share the initial and final node. The size of the problem
is defined to be the sum of the lengths of the two paths—we include instances of
sizes up to 2000. The Topology Zoo instances are five times sequentially concate-
nated in order to obtain larger topologies where the size of the update problems
ranges from 20 to 679. We display the 50 most difficult instances of the problem.

We cousider three classes of update policies: Reach(d), MultiWaypoint(W, d)
and Service(w, d). For MultiWaypoint(W, d), we let every 5th node on both the

® Note that zij in the figure is to be read as the variable z7.
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Fig. 10: Experimental Results

initial and final path be included in W. For Service(w, d), the sequence w is gen-
erated by including every 5th node that is traversed by both the initial and final
path. Because the diamond update problem consists of two disjoint paths, the
service chaining policy is not considered here. The policy language of NetSynth is
identical to our LTL-based specifications and hence it is able to directly express
all these properties. On the other hand, the policy input to FLIP enumerates all
admissible subpaths that are considered, in logical disjunction. The encoding of
the service chaining policy then entails an exhaustive enumeration of all paths
that satisfy the service chaining policy and we therefore do not include FLIP in
our service chaining experiments.
Results. The experiments are summarized in a number of so-called cactus
plots [1] in Figure where for each method all instances of the problem are
independently sorted from the fastest to the slowest one and plotted on the x-
axis, and the y-axis (note the logarithmic scale) shows the increasing running
time. If some curve does not reach to the right end of the plot, this means that
the corresponding tool is not able to solve the remaining instances within the
given timeout and memory limit. While cactus plots do not provide instance-to-
instance runtime comparison, they provide an overall performance evaluation of
the different tools.

For the experiments on the collection of real networks from the Topology
Zoo presented in Figures and we notice that none of the tools has
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difficulty solving the synthesis of the plain reachability policy and it takes less
than 10 seconds for all instances—here our approach has a slight margin. For
waypointing, while FLIP is performing well on small instances, it shows a no-
ticeable penalty once it reaches the most difficult problems where its running
time quickly deteriorates and it is as the only tool not able to solve some of the
largest instances. We maintain about one order of magnitude advantage over
NetSynth (NS), which is the case also for service chaining.

Results for diamond topologies are given in Figures and We observe
that for reachability our computation of all solutions is almost one order of mag-
nitude faster than FLIP and several orders of magnitude faster than NetSynth
(both tools terminate as soon as they find the first correct update sequence).
For waypointing, we still significantly outperform NetSynth and we are almost
comparable with FLIP which shows better performance at the largest instances.

In conclusion, our experiments demonstrate that AllSynth, based on the sym-
bolic BDD technology, not only significantly outperforms state-of-the-art tools
on all non-trivial real-world networks, but also provides higher generality. In-
deed, AllSynth computes all solutions, compared to only one solution returned
by NetSynth or a more general sequence of update steps generated by FLIP. This
aspect is important for the practical usage by network operators as it allows them
to iteratively choose the most suitable update sequence.

5 Conclusion

We presented an efficient approach for synthesizing correct update sequences for
software-defined networks. In contrast to existing tools, our approach is fully
symbolic and relies on BDD technology. As a result, we are able to represent all
solutions to the update synthesis problem in a succinct binary tree, preserving
generic routing policies (e.g., service chaining) that can be described in the LTL
logic. Our prototype implementation of AllSynth outperforms the state-of-the-
art tools NetSynth and FLIP in many scenarios (e.g., on the real-world Internet
topologies), while at the same time extending the generality.

Our experiments focused on the generation of simple update sequences (at
most one update per flow per switch), similar to the methodology used in Net-
Synth and FLIP. AllSynth however also supports a novel generalization where
a switch can be updated several times. This is particularly useful for the in-
stances of the update synthesis problem that do not have any simple solution.
In this case, NetSynth does not provide any alternative (and in fact does not
terminate even on relatively small negative instances); FLIP may degrade to a
two-phase commit strategy that is less preferable as it requires the duplication
of forwarding rules as well as additional packet header space. AllSynth instead
tries to suggest a general update sequence that does not require packet tagging.
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