arXiv:2204.03413v1 [cs.DC] 7 Apr 2022

On the Price of Locality in Static Fast Rerouting

Klaus-Tycho Foerster* Juho Hirvonen'
*TU Dortmund, Germany

Abstract—Modern communication networks feature fully de-
centralized flow rerouting mechanisms which allow them to
quickly react to link failures. This paper revisits the fundamental
algorithmic problem underlying such local fast rerouting mech-
anisms. Is it possible to achieve perfect resilience, i.e., to define
local routing tables which preserve connectivity as long as the
underlying network is still connected? Feigenbaum et al. [1] and
Foerster et al. [2]] showed that, unfortunately, it is impossible in
general.

This paper charts a more complete landscape of the feasibility
of perfect resilience. We first show a perhaps surprisingly large
price of locality in static fast rerouting mechanisms: even when
source and destination remain connected by a linear number of
link-disjoint paths after link failures, local rerouting algorithms
cannot find any of them which leads to a disconnection on the
routing level. This motivates us to study resilience in graphs
which exclude certain dense minors, such as cliques or a complete
bipartite graphs, and in particular, provide characterizations of
the possibility of perfect resilience in different routing models.
We provide further insights into the price of locality by showing
impossibility results for few failures and investigate perfect
resilience on Topology Zoo networks.

I. INTRODUCTION

Traditional communication networks can be modelled as
distributed systems in which routers cooperate to compute
efficient routes. In particular, using protocols based on link
state or distance vector algorithms, routers can—in a dis-
tributed manner—compute routing tables which induce shortest
paths [3]. These protocols can also naturally cope with failures:
whenever one or multiple links fail, the distributed routing pro-
tocol is simply invoked again, triggered by the nodes incident to
a failed link. The protocols are hence in some sense “perfectly
resilient” [1]: After reconvergence, the protocol re-establishes
a path between any pair of nodes still physically connected,
by dynamically updating their routing tables. Unfortunately,
however, the recomputation and dynamic update of routing
tables comes at the cost of slow reaction time [4].

Modern dependable communication networks hence addi-
tionally feature fully decentralized flow rerouting mechanisms
which rely on static routing tables and allow to react to
link failures orders of magnitudes faster than traditional
networks [4]. Rather than invoking the distributed routing
protocol when detecting a failure, these static fast rerouting
mechanisms allow to predefine conditional failover rules at
each router: these rules can depend only on local information
at a node v, and can hence be conditioned on the status of links
incident to v or the header of packets arriving at v, but not
on failures in other parts of the network. While this enables a
very fast reaction, it raises the question of how such local rules

Yvonne-Anne Pignolett
fAalto University, Finland
ATU Berlin, Germany & University of Vienna, Austria

Stefan Schmid® Gilles Tredan®
IDFINITY, Switzerland
OLAAS—CNRS, France

can be defined to maintain a high resilience under multiple
link failures. Feigenbaum et al. [1] showed that achieving a
perfect resilience using static fast rerouting mechanisms is
unfortunately impossible in general: the authors presented an
example network in which it is not possible to predefine local
failover rules which ensure that as long as the underlying graph
is connected, the routing tables induce a valid routing path
to the destination. In other words, there is a price of locality:
local fast rerouting comes at a cost of reduced resilience under
multiple link failures.

This paper provides a systematic analysis aiming to char-
acterize the feasibility of perfect resilience using static fast
rerouting, motivated by Feigenbaum et al.’s counterexample.
Indeed, their work raises a number of interesting research
questions, such as:

o How significant is the price of locality? Is it at least
possible to compute local failover rules which ensure
connectivity on the routing level if the underlying network
remains highly connected after the link failures?

o How does the resilience depend on the model? What
happens if we include the promise of high connectivity or
few failures, respectively, if we aim for smaller routing
tables and do not match on the packet source or not even
on the destination—where are the boundaries between
working algorithms and impossibility? This question is
particularly interesting in the light of emerging software-
defined networks which allow routers to match different
header parts and thus implement different routing models.

A. Contributions

This paper aims to chart a more complete picture of
the feasibility of perfect resilience with local fast rerouting,
focusing on the most fundamental aspect: reachability. We
first show a perhaps surprisingly general negative result: even
when a large number of link-disjoint paths survive after link
failures, local failover routes cannot leverage them to reach
the destination. Specifically, we prove the following price of
locality: even if we are promised that there remain §2(n) disjoint
paths between source and destination after failures (we refer to
this scenario as r-folerant where r = {)(n)), it is impossible
to pre-define static routing tables ahead of time which ensure
connectivity without knowing these failures; here n refers to the
of nodes (§I). Prior work only showed impossibility for 1-
tolerance and left higher connectivity guarantees to future work.

Motivated by this result, we study the feasibility of perfect
resilience in graphs which exclude certain dense minors, such
as cliques or a complete bipartite graphs. We present an almost

optimal characterization of resilience in the different models.
First, for a model in which routers can match both the source
and the destination of a packet, we show that perfect resilience
is impossible on any graph which has a minor K7 or a minor
K44 which misses one link, but possible on K5 and K33
networks and their minors (E]

In a model where routing rules can only match the packet
destination, it is impossible to achieve perfect resilience on
networks with minors K5 and K3 3 which miss one link; this
characterization is complete in the sense that we can show that
perfect resilience is always possible on K5 and K3 3 networks
which only miss two links, and their minors (.

We also study the price of locality in scenarios in which
the number of link failures is bounded (§VI) as well as in
scenarios in which the local routing rules do not even depend
on the destination but where a packet needs to tour the entire
network, i.e., visit all nodes under failures (rather than routing
to a specific destination); we provide an exact characterization
of perfect resilience in this model as well, touring is possible
if and only if G is outerplanar (§VII).

Lastly, we also perform a small case study in §VIII| on
more than 250 Topology Zoo networks: around a third of
all networks allow for perfect resilience in all models, while
the classification of the remaining topologies depends on the
routing model considered. For destination-based routing, our
contributions allow us to to classify more than 30% additional
topologies than with previous results.

B. Background and Related Work

The question of how to provide resilient routing in networks
is a fundamental one and has been explored intensively in
the literature already [4]. In particular, failover resiliency can
impose a trade-off on, e.g., stretch or latency [S]-[7]: “a robust
route is not necessarily the shortest route” [8]. Hence, it can
be worthwhile to consider detours through highly connected
components, in case further failures appear downstream [9]], and
to such an end also investigate on how to rank the connectivity
properties of nodes [10]]. While such detours or failover routes
can also be enhanced by shortcutting the paths before global
convergence kicks in [11], we in this paper focus on the aspect
of resilience under rapid (instantaneous) reaction times.

Many existing approaches require dynamic routing ta-
bles [[12[]-[14] which implies slow reaction times [4], or the
ability to rewrite or extend packet headers which introduces
overheads and is not always possible [[15]—[17]. Our require-
ment of static failover tables and immutable headers also
rules out the application of graph exploration techniques such
as [18|]-[21]] or the use of rotor routers [22]]-[24]. Also classic
routing algorithms for sensor networks, such as geographic
routing [25]—-[29], require memory and are hence not applicable
in our context. Furthermore, while there exist graph exploration
algorithms which do not require any memory, e.g., for mazes
consisting of a single wall (see e.g., the well-known right-hand
rule [30]), these algorithms are transferrable only (if at all) to

' A K, is a complete graph with n nodes, whereas a K p is a complete
bipartite graph with a respectively b nodes in its two partitions.

very simple graphs such as outerplanar graphs [2]]. Our model
hence assumes an interesting new position in the problem
space: while it is not possible to use dynamic memory during
routing (neither in the packet header nor in the routing table),
it is possible to pre-proces conditional routing rules ahead
of time, without knowing the actual failure scenarios.

The model considered in this paper was introduced by
Feigenbaum et al. [1]], [34] and, in a slightly more restricted
version, by Borokhovich et al. [[35] in parallel work. While there
has been interesting applied work on this problem, e.g., [|36]-
[39]], in the following, we will focus on related works providing
theoretical insights.

1) Ideal versus Perfect Resilience: Several interesting results
are due to Chiesa et al. who presented a technique which
relies on a decomposition of the network into arc-disjoint
arborescence covers [40]-[42]: any k-connected graph can be
decomposed into a set of k directed spanning trees [43] (rooted
at the same node, the destination) such that no pair of spanning
trees shares a link in the same direction. This allows to route
packets along some arborescence until hitting a failure, after
which the packet can be rerouted along a different arborescence.
This technique is particularly well-suited to provide a weaker
notion of resilience, known as ideal resilience [42]], which is
defined for k-connected graphs (while the notion of perfect
resilience applies to arbitrary graphs): given a k-connected
network, static failover tables are called ideally resilient if they
can tolerate any set of k£ — 1 link failures. In contrast, perfect
resilience is defined for all graphs: static failover tables are
called perfectly resilient if they can tolerate any set of failures,
as long as the destination is still connected to the packet’s
source after failures. As thus perfect resilience is stronger
than ideal resilience: perfect resilience implies ideal resilience,
but not vice versa. While Chiesa et al.’s paper already led to
several follow up works [3], [6]], [44]-[46], it remains an open
question whether ideal resilience can be achieved in general
k-connected graphs.

As mentioned above, already Feigenbaum et al. [1]], [34]
proved that perfect resilience is impossible to achieve in general,
by presenting a counterexample with 12 nodes. Foerster et
al. [2] recently generalized this negative result by showing
that it is impossible to achieve perfect resilience on any non-
planar graph; furthermore, planarity is also not sufficient for
perfect resilience. On the positive side, [2]] showed that perfect
resilience can always be achieved in outerplanar graphs, and
also initiated the study of routing rules which can depend on
the source. In this paper, we significantly extend these results
along several dimensions.

C. Overview

The remainder of this paper is organized as follows. We
introduce our formal model in In §Il we show that
maintaining connectivity with local failover rules is challenging
already in highly connected graphs, and even if routing rules
can depend on the source. This motivates us to study perfect

2 Here we also refer to the SUPPORTED model [31]-[33], which investigates
on a fundamental level what can and what cannot be pre-processed.

resilience on graphs with dense minors, in a model where
routing tables can (§IV) or cannot (§V) depend on the source.
We then investigate the problem of perfect resilience under
a bounded number of link failures (§VI) and study a novel
failover model, where routing cannot depend on source and
destination but where a packet needs to visit the entire graph
(§VII). In we then perform a case study on Topology Zoo
networks to classify them w.r.t. perfect resilience. We conclude
our contribution and discuss future directions in For better
readability, some proof details and figures are deferred to the
Appendix, beginning on page [I3]

II. MODEL

We are given a communication network which we model as
an undirected graph G = (V, E), where the nodes represent
routers that are connected via links E. We define n = |V,
m = |E|, and write Vg (v) and Eg(v) for the neighbors and
incident links of node v, respectively; if clear from the context,
we will omit the subscript G. We will also write V(G) and
E(QG) for the nodes V, respectively links E, of a graph G =
(V, E). When talking about connectivity, we always refer to
link connectivity, i.e., two nodes v, w € V(G) are k-connected
if there are k paths between v and w that do not share any links,
such paths are also called link-disjoint paths. The notations K,
and K, refer to the complete graph with n nodes, respectively
the complete bipartite graph with a and b nodes in its partitions.
For the latter notations, when adding the superscript —c, i.e.,
K, ¢ and Ka_lf, we remove c links from the respective graphs.

The network is subject to link failures, which however are
not known ahead of time, when the routers are configured.
We will refer to the set of links which will fail by F' C
FE; failures are undirected. The graph G without links F' is
denoted by G\ F := G(V,E \ F). Similarly, G \ E’ and
G\ V' denote the graph G without the set of links in £/ C E,
respectively, the graph G without the set of nodes V' C V and
their incident links.

Each node v € V is configured with a local forwarding
function 7 (v), essentially a forwarding table. This forwarding
table (or synonymously, routing tableﬂ) is essentially a set of
forwarding rules which include conditional failover rules that
depend on the incident link failures. Specifically, the rules 7(v)
of node v can depend on (a subset of) the following information:

« the set of incident failed links F' N E(v)

« the source s of the to-be-forwarded packet at v

o the destination ¢ of the to-be-forwarded packet at v

« the incoming port (in-port) from which the packet arrives

at v

In this paper we aim to chart a landscape of resiliency results
for different models, and we hence consider multiple combi-
nations of the above information. However, all these models
have in common that the routing table is pre-configured and
static, and forwarding rules do not change the packet header.

A local routing algorithm is hence simply a forwarding
function m, for each node v. For example, in the most general

3 While forwarding table is the technically correct term, we will use the term
interchangeably with the term routing table.

_- A
V4

N

1

1

. v)

‘ / \ :
\\ \‘/_
U3 U2

T~ -

(%1
\
\
\

V4 U1

s \
1 \
] \ / \
1 1
1 v 1
\ 1
://"\>u

V3 1 (%)

Y~ . iPhe

Fig. 1. On the left is an example for a forwarding pattern for the node
v that follows a cyclic permutation (v1,v2,vs3,v4): packets coming from
v1 are forwarded to va, packets from vo to vs3, from v3 to v4, and from
v4 to v1. Other examples for cyclic permutations for the node v would be,
e.g., (v1,v3,v4,v2) or (v1,v4,v3,v2). On the right is an example for a
forwarding pattern for the node v that does not follow a cyclic permutation,
as, e.g., v will not route any incoming packet to vy or v4.

model where all information can be accounted for, given a
graph G and a destination ¢t € V(G), the function is

T 2PO XV xV x BE(v) U{L}— E(v)

at each node v € V(G), where L represents the empty in-port,
i.e. the starting node of the packet. In other words, given the set
of failed links FNE(v) incident to a node v, the source and the
destination, as well as the in-port, the forwarding function 7,
maps each incoming port (link) e = (u, v) to the corresponding
outgoing port (link). We will call the union of the forwarding
functions 7™ = (m,)yev the forwarding pattern, or simply the
routing. In the following, we will use the notation

nt(e,F) resp. wi(u, F)

to denote the link to which a packet arriving at v via the link
e = (u,v) will be forwarded, given a failure set F' and in a
model where the rule matches both source s and destination
t. We will refer to these types of rules as source-destination-
based routing. Similarly, we will use the notation 7! (e, F')
resp. 7 (u, F) to denote the link to which a packet arriving at
v from a link e = (u, v) will be forwarded, given a failure set
F' and in a model where the rule matches only the destination
t. We refer to these types of rules as destination-based routing.

Note that we do not require these forwarding patterns to
follow some sort of cyclic permutation (as in, e.g., Figure [I))
of the out-ports for neither of the routing flavours .

We will call a forwarding pattern 7 r-resilient if for all
G and all F, where |F| < r, the forwarding pattern routes
the packet from all v € V' to any destination ¢ when v and ¢
are connected in G \ F. Note that the restriction that source
and destination must remain connected when removing the
links in the failure set F' implies that the connectivity of the
graph does not play a big role. E.g., consider a graph G which
consists of a cliques of size | an one extra node connected
to the clique with one link. While the connectivity of G is
one, it is easy to construct forwarding patterns that tolerate
two failures for packets originating from the extra node if
the remaining graph stays connected. A forwarding pattern is
perfectly resilient if it is oo-resilient: the forwarding always
succeeds in the connected component of the destination, for

all destinations. Let A,(G, s,t) be the set of such perfectly
resilient patterns (algorithms), respectively A,(G,t), A,(G)
for the different models depending only on the destination or
not even that; we abbreviate these versions by Ap when the
context is clear.

To explore the achievable resilience of local fast rerouting
algorithms beyond perfect resilience, we in this paper are also
interested in a relaxed notion of resiliency, where we are given
the promise of high connectivity after failures:

Definition 1 (r-tolerant). A forwarding pattern 75t is called

r-tolerant on a graph G, if it can guarantee reaching the
destination t from source s under the assumption that s and t
remain r-connected under failures.

Observe that » = 1-tolerance corresponds to perfect re-
silience and that, for » < r’, if we have r-tolerance, we also
obtain r’-tolerance: the failure sets F,. that retain r-connectivity
are a superset of the failure sets 7, that retain r’-connectivity.
For example, a perfectly resilient algorithm (1-tolerant) is also
2-tolerant.

III. ON THE PRICE OF LOCALITY

Before studying perfect resilience in detail, we first consider
a weaker notion of resilience: the design of local rerouting
functions for scenarios where the connectivity remains larger
than one after failures. We derive a surprisingly strong negative
result on what can be achieved with static fast rerouting:

It is generally impossible to be §)(n)-tolerant, even when
forwarding rules can depend on both source and destination.

Prior work just showed that 1-tolerance is impossible in
general, but the details for higher connectivity promises were
left unanswered. Indeed, at first it seems that if we are
guaranteed that a linear number of paths exist after failures
between source and destination, then surely fast failover
mechanisms should be able to leverage this high connectivity.
However, we show next that this intuition is false.

A. Intuition and Example

Intuitively, the more highly connected the topology is after
failures, the easier it should be to ensure connectivity also with
local static rerouting. However, as we will illustrate here on
complete networks, this additional topological connectivity
is only marginally useful. Concretely, while an r-tolerant
algorithm in principle has more flexibility, in the sense that it
can afford to not explore a certain route at all (as there are for
sure alternative routes), and hence e.g., avoid potential loops,
this additional connectivity is hard to exploit locally: such a
choice can only be made r—1 times for an r-tolerant algorithm,
among all nodes in the graph. In other words, the flexibility is
restricted globally, while decision making is inherently local.
We refer to Fig. [2| for an illustration.

B. Impossibility of r-Tolerance in General

We show the following general impossibility result, namely
that r-tolerance is impossible in general, already on instances
that only grow linearly with 7:

Fig. 2. After failures (in dashed red), s and ¢ remain 2-connected, as there
are two crossings across the blue dotted cut. Assume v does not forward to
v} and vz does not forward to v5. Then, as the link between v3 and v4 has
failed, it is impossible to reach ¢ from s. Note that from a local point of view,
v1,v2,v3 are unaware of the failures at each other, and hence to guarantee
2-tolerance, at least two of vy, va, v3 must forward across the blue dotted cut,
to their respective v}, v}, v}, if still possible after failures.

Theorem 1. Let r € N. The complete graph with 3+ 5r nodes
does not allow for an r-tolerant forwarding pattern 7.

Proof: From Ks,5. we choose 5 nodes V5 =
{v1, va, V3,04, v5} not including s and ¢. Consider all triples
a,b,c € Vs, such that, if b has a degree 2 after failures
(connected to only a, c), then b will not forward a packet from
a to c. If such a triple exists, then leave the path s —a—b—c—t
intact after failures and remove all other links of a,b, and c. We
have constructed a partial failure set and a path from source
to target that is not used by the forwarding pattern under this
partial failure set.

If such a triple does not exist, then all nodes in Vj, with
degree 2 after failures, will route in a permutation, assuming
their neighbors are from V5. Without loss of generality
(W.l.o.g.), leave the path s — v; — vy intact after failures, but
fail all other links of v;. Then, for vs, leave only the links to
vs, Vg, U5 alive after failures. If the routing of v,, coming from
v1, does not enter a permutation containing all 4 neighbors,
with v; # v, missing, then we fail all links incident to vs, vy,
and vs, except the links to vy and the link between v; and t.
Now, the packet coming from v; to vy will not reach v;, and
hence we lose one path to destination. On the other hand, if
v; = vy is missing, then we fail all links incident to vs, vy,
and vs and the packet is trapped in the 5-node construction
without returning to s via v1.

Else the routing is a cyclic permutation. Assume w.l.o.g. the
cyclic ordering for vy is v1,vs3,v4,v5. We then fail all links
incident to wvs, vy, and vs, except the link to vo and the links
(v4,t) and (vg,vs). Now, the packet is routed s — v; — vy —
vs3 — vs — V2. The packet will then go to v; and start a loop —
we lose one path to the destination, namely via vy.

We repeat the construction above 7 times in total, always
picking a new set of 5 nodes. Each time we either lose one
path to the destination or find a routing loop. If we lose r
paths, then the construction is complete, but we also need to
consider the case where we are trapped in a routing loop in a
5-node gadget, as then the st-connectivity is — 1. To this end,

we use the one remaining node v from Kjs,5,, and leave it

connected to s, but fail all its other incident links except (v, t).

W.l.o.g., we can assume that v is last in the visiting order of
s. If we lose r paths, then we disconnect v from ¢ and hence
the packet loops permanently, as none of the other 5 node
constructions allow passing to the destination. If we do not
lose r paths, then the path s — v — t restores st-connectivity
to r, as promised, but the packet loops in one of the 5 node
constructions. [|

Note that r-tolerance is preserved under iteratively taking
subgraphs, i.e., if G allows for r-tolerance, then every G’ C G
allows for r-tolerance as well. The reason is that we can obtain
G’ as a component of G by failing the missing links.

Corollary 1. Let r € N. If a graph G has K35, as a subgraph,
then G has no r-tolerant forwarding pattern w5t

C. r-Tolerance and Minors

Even though r-tolerance is preserved under taking subgraphs,
we next show that r-tolerance is not preserved for graph minors,
for all » > 2. This is in contrast to the result of Foerster et
al. [2]], who showed that it is preserved for » = 1. In other
words, there is a fundamental distinction between r = 1 and
all larger r, which is to be investigated in future work:

Theorem 2. For each r € N: r > 2 holds: There exists an
r-tolerant graph G with a minor G’ that is not r-tolerant.

Proof: Given parameter r > 1, let the construction from
Theorem [1| be denoted by G’. We will next show how to build
a graph G, s.t. G is r-tolerant and G’ is a minor of G: Given
G’, add a new source node s’, connect it with r — 1 paths to s,
and add the link (s, t). An algorithm that is r-tolerant on this
new graph simply routes from s’ to ¢ via the direct link; if that
link fails, the r-tolerance promise does not hold. Now, observe
that the graph construction from Theorem [I] is a minor of the
above construction (obtained by merging s’, s, as well as the
paths between them, and removing the link between s’ and
t), i.e., the existence of an r-tolerant forwarding pattern does
not imply the existence of an r-tolerant forwarding pattern for
minors, for any r > 2. [|

We note that if s and ¢ are less than r-connected before
the failures occur, r-tolerance trivially holds: r-tolerance is
a promise problem, only considered under high connectivity.
On complete graphs, r-tolerance is also trivial for K, 1, as
a removal of the source-destination link removes the promise
of r-connectivity. We can slightly extend this result and give
promises for connectivity beyond 7:

Theorem 3. For each r € N Ky, admits r-tolerance.

Proof: Foerster et al. [2, Theorem 6.1] showed that perfect
resilience can be maintained if source and destination have
distance at most two after failures, and we now leverage their
algorithm. Assume that the link between source and destination
fails on Ko,41 — else the statement holds by routing in a single
direct hop. When source s and destination ¢ on K5, remain
r-connected, then s is connected to at least r neighbors V;

different from ¢ and ¢ is connected to at least r neighbors V5
different from s. Besides source and destination, Ko, has
only 27 — 1 nodes, and hence |V; N V3| > 1, i.e., a path of
length 2 exists between source s and destination ¢. []

We next briefly investigate complete bipartite graphs. If
source and destination are in the same part, then the distance-
2 algorithm [2, Theorem 6.1] applies if the other part has
at most 2r — 1 nodes, as in the proof above. If source and
destination are in different parts, then the distance-2 algorithm
is no longer directly applicable, as every route besides the direct
source-destination link has a length of at least 3. However, we
can extend the distance-2 forwarding pattern to distance 3 in
complete bipartite graphs, as described in the following proof:

Theorem 4. For all bipartite graphs G there is a forwarding
pattern wt that can guarantee reaching the destination t from
source s, if s and t are at distance at most 3 in G \ F.

Proof: First, whenever the destination is a neighbor, we
route to it, as highest priority. Else, the source and each
neighbor of the source routes in a cyclic permutation. If a
node is not the source or a neighbor of the source, then the
packet bounces back (distance to source = 2). We only visit
a node v of distance 3 if v = ¢t. Moreover, if the st-distance
is at most 3, we will also reach ¢ from s, as (without the hop
to the destination or stopping when finding the destination),
our algorithm traverses all links £; incident to the destination
and all links E5 adjacent to those in FEjy, i.e., t is found with
a distance of at most 2, and if the distance is exactly 3, the
last link is adjacent to a link in Fj. []

Applying Theorem [] to complete bipartite graph yields:

Theorem S. For each r € N Ko, _1 2,1 admits r-tolerance.

Proof: Let A and B be the two parts of the bipartite graph
Koy_1,2,—1. Assume w.l.o.g s € A. We now perform a case
distinction whether ¢t € A. We start with the case where this is
true. Due to r-connectivity after failures, the source s retains
at least r neighbors V; in B, and the destination ¢ retains at
least neighbors V; in B as well. Hence, |V; NV;| > 1 due to
B having at most 27 — 1 nodes, i.e., a route of length 2 exists
between s and t.

We next consider the remaining case where w.l.o.g. the
destination is in B the second part. If the link (s,¢) exists we
are done immediately and hence assume it has failed. Else, s
has at least r neighbors V; in B and ¢ has at least r neighbors
Vi in A. Pick u € V;: u has at least 7 — 1 neighbors V,, in
A —{s}. Since |[A—{s}| =2r—2, V;N(A—{s}) (of size r)
and V, N (A — {s}) (of size r — 1) necessarily intersect. Let
w a node in this intersection: w is neighbor of both « and %,
hence source and destination have a distance of at most 3 via
the path s —u —w —t. []

We recall that r-tolerance is preserved for all subgraphs and
obtain the following corollary:

Corollary 2. For each r € N it holds that Ko,.11 and
Kor_1,20r—1 and all their respective subgraphs admit r-
tolerance.

IV. PERFECT RESILIENCE WITH SOURCE

Given our insights on the feasibility of local fast rerouting in
more highly connected graphs, we now turn to studying perfect
resilience: resilience in scenarios where arbitrary links can fail,
as long as the graph remains connected. Recall that we aim
to chart a landscape of perfect resilience in this paper, and in
this section, we start analyzing a model where routing rules
can depend both on the source and the destination of a packet.
In the next section, we will then consider the scenario where
rules can only depend on the destination. Given the result of
the previous section, our characterization will revolve around
graphs which feature dense minors before failures occur.

A. Impossibility Results

We first show that it is impossible to achieve perfect
resilience on complete graphs with seven nodes.

Theorem 6. The complete graph with seven nodes, minus one
link, does not allow perfect resilience, i.e., A,(K; "', s,t) = 0.

Note that when considering perfect resilience, it is at most
as hard to route in a subgraph as one can treat the missing
edges as failed edges to simulate a forwarding pattern of a
supergraph. We will see in our case study in Section that
removing one link makes a difference for the applicability of
our results.

Proof Sketch: The proof idea is depicted in Fig. [3} as
any of the neighbors of vy could be the only way to reach ¢,
v9 must route in a cyclic permutation if no incident links fail,
analogously for the neighbors of vs if they have a degree of
two and do not neighbor s,t after failures. Hence, for every
permutation chosen for ve, the failures of the surrounding
nodes can be adjusted such that a routing loop occurs. [|

The above proof never removes more than 15 links, hence:

Corollary 3. Even under the promise that at most 15 links
fail and there is an st-path, the complete graph K7 with seven
nodes does not allow for a forwarding pattern 7 that can
guarantee reaching the destination t from source s if |F'| < 15.

The impossibility can be shown on the K, 4 analogously,
however, as it is much sparser than the K7, we need to remove
fewer links. We refer to the Appendix for details.

Theorem 7. The complete bipartite graph with eight nodes,
four in each part, minus one link, does not allow for perfect
resiliency, i.e., it holds that Ap(K4_71, s,t) = 0.

Vs ——— U3
S V2 t
U1 V4
Fig. 3. K7 (without s-t link) impossibility, when v routes with the

permutation v1,v3, v4,vs5,v1. As v3,vs also route in a cyclic permutation,
due to local indistinguishability, packets loops permanently in vo —v3 —v5 —va.

Algorithm 1 Perfectly resilient algorithm for K5 and its minors
Input: packet from source s to be delivered to destination ¢,
local failure set Fj;, identifiers u < v < w
Qutput: forwarding port decision at node i
1. if (i,t) ¢ F; then
2 send to ¢
3: else if i = s then
4: if exactly one neighbor v is reachable then
5
6

send to v
else if exactly two neighbors wu, v are reachable, u < v
then

7: if inport = L then send to u

8: else send to v > ignore inport

9: else if exactly three neighbors w, v, w are reachable,
u < v < w then

10 if inport = L then send to u

11: else if inport = w then send to v

12: else then send to w > coming from u or v

13: else

14: if inport = s then send to the neighbor with lowest
ID (not s) or send back to s if no other choice

15: else if there is a reachable neighbor x and inport # x
then send to z

16: else if s is reachable then send to s

17: else send back to inport

Corollary 4. Even under the promise that at most 11 link
fail and that there is an st-path, the complete bipartite graph
Ky 4 does not allow for a forwarding pattern 7' that can
guarantee reaching the destination t from source s if |F| < 11.

1) Generalization of Impossibility: Minor Relationships:
It was previously shown that if a graph G allows for perfect
resiliency with the source, so do all minors of G [2, §4]. Hence
and in particular, all graphs containing a K4 4 or a K7 minus
one link as a minor do not allow for perfect resilience.

B. Possibility Results

We now provide positive results on when perfect resilience
is achievable. Interestingly, as we will see, we can almost
perfectly complement above impossibility results, by providing
algorithms for graphs characterized by less dense minors. We
start by giving an algorithm for the K5 and its subgraphs:

Theorem 8. For all graphs with at most five nodes Algo-
rithm|l| describes a forwarding pattern matching on the source
guaranteeing perfect resilience.

Proof: We proceed by showing that packets routed with
Algorithm [I] reach the destination for all possible distances
between source and destination after failures.

By showing it for K5, we directly show correctness for all
minors of K5 as well, due to [2| Corollary 4.2].

If the distance between source and destination is one, Line
2 of the algorithm ensures the packet arrives at its destination
directly.

If the distance is two, there are four non-isomorphic
candidate graphs on which a packet could visit all other
nodes before visiting t, G1, G2, G5, G4 with V = {s,t,z,y, 2}
and link sets By = {(z,v),(y,s),(s,2),(z,t)}, B2 =
EyU{(z,5)}, By = {(2,9),(5,9), (4:2), (2,1), (s,2)} and
E, = {(s,2),(s,9), (s, 2),(2,t))}, after removing the failed
links respectively. Depending on how we order the IDs for
x,y, z for £, the algorithm may first explore x before returning
to s but it will definitely visit z via y and thus find ¢. For Ej,
the algorithm will head straight towards ¢ if z has the lowest
identifier. If y is the lowest identifier, the algorithm will visit
the nodes in the order s,y, x, s, z,t regardless of the order of
the identifiers of x,y. For Fs3, the sequence of nodes visited
starts with s,x, s if « has the lowest identifier, followed by
y,z,tif y = v and z = w or z,t otherwise. If y has the lowest
identifier the sequence is s,y, z,t, if z =y itis s, z,t. For Ey
the algorithm guarantees that all neighbors of the source are
visited if the previous ones did not connect to the destination
as the nodes will send the message back if they cannot forward
it to t. Note that for subgraphs of G1, G, G3, G4 where (s,)
is missing and/or (s,y) is missing from G4 the destination is
reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

If the distance is three, six non-isomorphic candidate graphs
exist where a packet could visit all other nodes before
visiting ¢, G, G%, G4, G, GL, G with V. = {s,t,z,y,z}
and link sets Ff = {(x,s),(s,y),(y,2),(z,t)}, B =
Ey U {(@,9)}. By = {(s.2), (), (0 0), (z0)}. B} =
{(s.2), (,9), (5.1), (z.2))}, B = By U{(2,9)}. and Ef =
E5 U{(z,t)}, after removing failed link respectively. For E}
the algorithm will forward packets on its direct path to the
destination if y = u. Otherwise there might be a detour to
x first. For E), if x = wu then the sequence of nodes visited
is s,x,y,2,t, if y = u,x = v then it is s,y,x, s, x,y, 2, t, if
Yy =u,z =7 or z=u,y = v then no detour is taken and it the

remaining case with z = u, x = v the path used Is s, z,y, 2, t.

For E, the path taken is s, z,y, t and for E, a visit to z might
be included but no loop introduced. For Ef, z is visited if
z < y leading to a path of s,z,2,y,t and s, x,y,t otherwise.
In the last graph Ej, visiting z would lead to a shortcut to ¢
and in both cases ¢ is reached. Note that for subgraphs of G
without (s,z) and G%, G, without link to z the destination is
reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

If the distance is four, the nodes form a chain and the
algorithm ensures that all nodes forward the packet until it
reaches it destination. [|
We obtain further positive results for complete bipartite graphs
and refer to the Appendix for proof details.

Theorem 9. There exists a forwarding pattern matching on
the source and guaranteeing perfect resilience for the complete
bipartite graph with three nodes in each part, and its minors.

V. PERFECT RESILIENCE WITHOUT SOURCE

Given our characterization of when perfect resilience is
possible in a model where both the source and the destination

of a packet can be matched, we now continue charting the
landscape of perfect resilience by considering a model where
forwarding rules can only depend on the destination. We are
able to provide an almost perfect characterization with respect
to complete and complete bipartite graphs.

A. Impossibility Results

Foerster et al. [2]] showed that K5 and K33 do not allow
for perfect resilience in the destination-based model, i.e.,
Ap(Ks,t) =0 and Ap(K3 3,t) = 0. Their proof construction
for K starts at some node v # t, where the link (v,t) is
removed, leaving all other links incident to v intact. In their
construction, all nodes, except the one node connected to t,
must route in a cyclic permutation, a fact retained even if the
link (v,t) never existed. Hence:

Theorem 10. A complete graph with five nodes, minus one
link, K5 L does not allow for a perfectly resilient forwarding
pattern, ie., A,(K5't)=0.

For K3 3, Foerster et al. [2] start their construction on a
node v which is in the same part as the destination, and
hence there was no link (v,t) to begin with. However, we
can observe that in their construction, the permanent loop also
traverses nodes of the other part (without ¢) and the routing
behavior remains unchanged if we remove one link incident
to t (cyclic permutations are enforced for all non-neighbors of
the destination).

Theorem 11. A complete bipartite graph with three nodes in
each part, minus one link, K5 ; does not allow for a perfectly
resilient forwarding pattern, i.e., A,,(Kg;, t)=10.

Whereas K5 and K33 are not planar, both K ' and K. 3, a
are planar [47]. We note that K ! is a minor of the planar
7-node construction to show impossibility in [2, Theorem 5.3]
and hence Theorem [T0] improves their planar result with a
smaller number of link and nodes.

1) Generalization of Impossibility: Minor Relationships:
It was previously shown that if a graph G allows for perfect
resiliency in destination-based routing, so do all minors of
G [2| §4]. Hence all graphs containing a K33 or a K5 minus
one link as a minor do not allow for perfect resilience.

B. Possibility Results

1) One Link Less Gives Perfect Resilience: We next show
that the results from are tight in the sense that removing
one additional link from these graphs allows for perfect
resilience. We will need the following result:

Corollary 5 (Corollary 6.2 [2]). Let G' = (V \ {t}, E) be
outerplanar. Then G = (V, E) allows for perfectly resilient
forwarding patterns wt without the source.

We start with Ky 2 in Theorem and K. 3. g in Theorem

Theorem 12. A complete graph with five nodes, minus two
links, K5 2 allows for a perfectly resilient forwarding pattern
wt, as well as for all minors of K5_2.

U1

U3

@ vy L:vg,v3,v4 V3 :U2,V4,V3 Vg :U2,V3,V4 (v2: When we visit both we are done) /

@ vy L:vy,vs,v4 V3 :U,VU4,V3 V4 :U1,U3,v04 (vi: When we visit both we are done) P

@ V3 1: V2,V1, V4 V1 1 V2,04, 01 Vg ! VU1,U4, Vg Vg4 : V1, 0V2,04 \

@ (2 1: V1, V2, U4 V1 V2,033,071 Vg 1 VU1,U3, U2 V3 1 U2,V1,U3 v2 V4

Fig. 4. Routing table to visit both neighbors of ¢ in Fig. [[T] under perfect resilience.

Proof: Let the nodes of K§2 be v1, V3, v3,v4,v5 = t. We
proceed by case distinction. If ¢ has one or zero links removed,
then the remaining 4-node graph is a proper subgraph of K4 and
hence is outerplanar, i.e., Corollary [3] yields perfect resilience.

If ¢ has two links removed, then let w.l.o.g. v1,v2 be the
neighbors of t. Note that the graph without ¢ is a K4 and
hence is not outerplanar. In order to obtain perfect resilience,
we need to visit, from the starting node v, all of v1, vy being
in the same component as v, which we can obtain by using the
following forwarding pattern, where we state in the table in
Fig. [for each inport in which order outports are considered
(using the table notation introduced in the proof of Theorem [J):

The correctness of our algorithm follows by careful case
distinction, showing that v; or vy will be visited. Lastly, the
proof extends to all minors of Ky 2 due to [2l Thm 4.3]. =

Theorem 13. A complete bipartite graph with three nodes
in each part, minus two links, Kj § allows for a perfectly
resilient forwarding pattern ©t, as well as for all minors of
K33,

Proof: Denote nodes of the first part as vy, v, vs = t and
second part as vy, vs, vg. If v3 = t has zero or one link removed,
then the remaining 5-node graph is a proper subgraph of K> 3
and hence is outerplanar, i.e., we obtain perfect resilience with
Corollary E} If ¢ has two link removed, then there is only one
node connected to ¢, w.l.o.g. vg, and the graph without ¢, vg is a
K o, which is outerplanar. We hence obtain perfect resilience
by first routing to vg with Corollary [5|and then to ¢. The proof
extends to all minors of K. 3. § 2l Theorem 4.3]. [|

VI. RESILIENCE WITH FEW FAILURES

We now study failover routing given a promise that only a
small fraction of link are removed. It should be noted that in
general we can use any constant-sized graph that does not have
a perfectly resilient forwarding pattern, and pad it with extra
unhelpful link (and nodes) such that the fraction of link that
fail can be made arbitrarily small. Therefore the general case
is uninteresting, and we must consider specific graph classes.

We consider routing with source and destination information
on complete graphs and complete bipartite graphs. In this
setting, there are no perfectly resilient forwarding patterns
for K7 and Ky 4 (§IV-A). We use a simulation argument to
extend these results to graphs of any size: complete graphs and
complete bipartite graphs do not have forwarding patterns even
if only O(+/|E]) links fail. In the context of routing without
source information slightly better constants can be achieved
using the constructions of Foerster et al. [2].

Fig. 5. K5 with 2 edges incident to ¢ removed.

Theorem 14. For every forwarding pattern on the complete
graph K, on n > 8 nodes, there is a set of link failures of
size at most 6n — 33 such that the forwarding pattern fails.

Proof: Assume that the claim does not hold for some n.
Then there must exist a forwarding pattern 7%-* that succeeds
even if any r(n) links fail. We simulate 75! on the complete
graph K7 and reach a contradiction with the impossibility of
perfectly resilient routing on K7 (§[V-A). Given K7, construct
a virtual K,, by adding n — 7 virtual nodes and virtual links
between all pairs of nodes. We construct a failure pattern for
K, that contains the real failure pattern on K as a subset, and
simulate 7. The failure set F' on K,, is defined as follows.

1) Fail all links between the non-destination nodes of K,
and the virtual nodes (6(n — 8) links in total).
2) Fail all links that can fail in K7 (< 15 links by
Corollary [3).
We do not need to fail any additional links incident to the
destination. Each node v in K7 can use the forwarding function
7rf;t as if it were on K. Since only the destination is connected
to the virtual nodes, the packet will never leave the real network
K. Since we assumed 7! forwards correctly on K, it must
also forward correctly on this particular failure set. Therefore it
forwards correctly on K7, a contradiction. In total, the number
of links in F' is 6(n — 8) + 15 = 6n — 33. [|
The result is asymptotically the best possible. For example
Foerster et al. showed that forwarding with source and
destination is always possible if the distance between s and
tin G\ F' is at most 2 [2, Theorem 6.1]. This holds on the
complete graph when |F| <n — 2.
We can give a similar construction for complete bipartite
graphs. The proof is a simulation argument based on the

impossibility of the Ky 4 (§IV-A):

Theorem 15. For every forwarding pattern on the complete
bipartite graph K, where a > b > 4, there is a set of link
failures of size 3a + 4b — 21 s.t. the forwarding pattern fails.

Proof: Consider an instance of K4 4 such that the node that
has the packet initially is on the same side as the destination.
Create the virtual graph K, ; by adding a + b — 8 nodes and
the corresponding links. If a > b, we let the larger part be on
the opposite side of the source and the destination.

The failure set F' is the union of the following sets.
1) The real failure set of K4 4 (in total 11 links by Cor. E[)
2) All links from the non-destination nodes of Ky 4 to the

virtual nodes (in total 3(a — 4) + 4(b — 4) links).
Again we can simulate the forwarding pattern 7% for K,
in K4 4 since the packet will never enter the virtual part of the

graph. Assuming the packet is forwarded correctly on K, p, it
is forwarded to the destination on the subgraph that corresponds
to K 4, a contradiction (§IV-A). The total size of the failure
set F' is at most 3a + 4b — 21.]

Chiesa et al. [48] §B.2, B.3] showed how to survive k—1 link
failures in k-connected complete and complete bipartite graphs.
This implies that our result is asymptotically best possible on
balanced complete bipartite graphs.

We further briefly investigate the transfer of resilience under
few failures to subgraphs and minors. More precisely, if a
graph G allows for a k-resilient forwarding pattern, do the
subgraphs (respectively, minors) of G then also allow for a
k-resilient forwarding pattern? This property does not hold
in general. We know that, e.g., the Kjqg is 99-connected and
thus 98-resilient [48, §B.2]. On the other hand, we know that
K7 is not perfectly resilient (§IV-A)), and K is a subgraph of
the K100. However, |E(K7)| < 98, and hence 98-resilience is
equivalent to perfect resilience on K7, i.e., the 98-resilience
of Kjgo does not carry over to its subgraphs. An analogous
statement can be made, e.g., with K09 100, applying [48, §B.3]
and impossibility of perfect resilience on Ky 4 (§IV-A), As
subgraphs are also minors, we hence answer the question in
the negative for both complete and complete bipartite graphs.

VII. FROM ROUTING TO TOURING: PERFECT RESILIENCE
WITHOUT SOURCE AND DESTINATION

While we have so far focused on the standard routing
problem, namely delivering a packet from the source to the
destination, in this section, we extend our investigations to
a fundamental touring problem: Can local rerouting rules be
defined which ensure that a packet will visit all nodes in a
graph, even under failures? At first this problem seems quite
different to normal routing, but touring and routing are deeply
connected on complete graphs: in order to reach the destination
t, we need to tour all of its neighbors, as an adversary could
disconnect ¢ from all neighbors except one.

Our results match the above intuition: as we will show in
this section, the borders of (im)possibility move by exactly
one node between touring and destination-based routing on
complete graphs. What’s more, we will provide a complete
classification of touring under perfect resilience in Corollary [6]

Beyond the above theoretical motivation, touring can also
help in a practical context, by saving expensive routing table
space: we deploy the same routing rules, no matter which
source or destination a packet has. First, for destination-based
routing, the packet will eventually reach the destination, and
can then be removed from the network. Second, if we also
have the source, we can use touring to implement a broadcast
or flooding protocol. Once the source gets the packet again, it
checks if the next outport is the same outport as for _L: if yes,
the packet has toured the whole network (assuming resilience),
and if not, it is still underway in its tour.

A. Complete Touring Characterization in Perfect Resilience

We will now present a complete characterization of touring.
Let us first introduce some terminology. We will denote a

forwarding pattern 77 as k-resilient if for all G and all F
where |F| < k the forwarding pattern 77 routes the packet
from all v € V to all nodes v’ in the connected component of
v in G\ F and then back to v. We call a forwarding pattern
77 perfectly resilient if it is co-resilient: all nodes are visited
in the tour through the connected component. Let A,(G,V) be
the set of such perfectly resilient touring patterns (algorithms).

We can now state our main technical result of this section,
yielding a complete classification in Corollary [6]

Theorem 16. If G is not outerplanar, then it does not support

a perfectly resilient touring pattern 7" .

It follows from the arguments of Foerster et al. [2| §6.2]
that every outerplanar graph can be toured, by providing a
planar embedding and routing according to the right-hand rule,
starting on the outer face. In combination with Theorem [I6|
we hence obtain a complete classification of the possibility of
touring all nodes:

Corollary 6. A graph G allows for a perfectly resilient touring
pattern if and only if G is outerplanar.

It remains to prove Theorem @ To this end, we first state
the auxiliary Lemma [T which we use to show that K4 and
K5 3 do not allow for a perfectly resilient forwarding pattern,
its correctness follows analogously as for [2, Lemma 3.1]:

Lemma 1. Let G = (V,E) with |E| > 0 and let A €
Ap(G,Y), ie., A is a perfectly resilient touring pattern. For
all F holds: every node routes under A according to a cyclic
permutation of all its neighbors, no matter the failure set F.

As K4 and K 3 are the forbidden minors of outerplanar
graphs, we can then show that no non-outerplanar graph can
be toured under perfect resilience. We next study the forbidden
minors of outerplanar graphs, as first described by Chartrand
and Harary [49, Thm. 1], which we restate as Lemma @

Lemma 2. A graph G is outerplanar if and only if it contains
no Ky or Ko 3 as a minor.

The arguments for the next lemmas follow analogously as
for Theorems [I0] and [T} leveraging the fact that in order to
reach the destination therein, all other nodes need to be visited.

Lemma 3. The complete graph K4 with four nodes does not

support a perfectly resilient touring pattern .

Lemma 4. The complete bipartite graph Ko 3 with five nodes,
two in one part and three in the other, does not support a

perfectly resilient touring pattern " .

Foerster et al. [2, §4] showed that perfect resilience for the
destination-based model on a graph G is also valid for minors
G’ of G. Their technique relies on taking a perfectly resilient
forwarding pattern and showing that for the two fundamental
operations in the minor relationship, namely 1) contracting
two neighboring nodes and 2)subsetting (taking a subgraph),
that the pattern can be naturally adapted to stay perfectly
resilient on the obtained minor. Note that a forwarding pattern

— U3

/\
\/
\/

Fig. 6. Detailed view of the Netrail topology. This topology is not outerplanar:
merging nodes v3 and v allows to realize the forbidden K2 3 minor between
v1,v2 and ve, v7,v34 and the corresponding red edges. Hence, Touring is
marked as impossible. However, for the destination- and source-destination-
based settings, the topology is marked as sometimes: e.g., when considering
ve as the destination, the remaining graph is outerplanar. Hence the neighbors
of the destination can be toured.

can also be understood as a port mapping, where packets are
forwarded from an inport to an outport, independent of source
or destination, and hence the following holds:

Corollary 7. Given two graphs G and G' such that G’
is a minor of G, it holds that A,(G,Y) # 0 implies that
Ay (G'.Y) # 0: if G permits a perfectly resilient touring
pattern, so do its minors.

Combining Lemma 2} Lemma 3] Lemma] and Corollary [7]
we obtain the desired proof of Theorem [I6}

Proof of Theorem [I6]: Lemma 2] states that outerplanar
graphs are characterized by not having a K4 or Ko 3 as a
minor. Moreover, K4 and K5 3 do not allow perfectly resilient
touring schemes according to Lemmas [3] and] As perfect
touring resiliency transfers to graph minors, due to Corollary
the theorem statement holds.]

a) k-Resilient Touring: As touring is limited to outer-
planar graphs, only very small complete (K<3) and complete
bipartite graphs (K3 > and K, ;) can be toured perfectly. We
thus also investigate touring under k-resilience:

Theorem 17. Let k € N and let G = (V, E) be a 2k-connected
complete or complete bipartite graph. There is a forwarding
pattern ¥ s.t. G can be toured under every F with |F| < k—1.

Proof: A 2k-connected complete or complete bipartite
graph contains k link-disjoint Hamiltonian cycles, following
the results of Walecki and Laskar and Auerbach [51]]. We
generate routing rules as follows, inspired by Chiesa et al.
§B.6]: we enumerate the k¥ Hamiltonian cycles as Hy, ..., H.
Starting with H, the forwarding pattern routes along H; until
a failure is encountered in the next link of H,; at some node
v, upon which we switch to the next H;, where j > i is
chosen to be minimum at v (the current Hamiltonian cycle can
be identified based in the incoming port). Hence, after k£ — 1
failures, at least one Hamiltonian cycle will be without failures
(there are k such cycles), and upon entering this Hamiltonian
cycle in our routing, we continuously tour all nodes.]

10

Unknown

Possibility: [Jll mpossivle

Sometimes . Possible

Non Planar
Planar
o 75
.0
D
o
o
o
£ 50
o
o
N
-
) — — ., _ o ____._
E . Outerplanar
0
Touring Destination Only Source-Dest.
Task
Fig. 7. Perfect resilience classification of Internet Topology Zoo [52] instances.

VIII. TOPOLOGY Z00O CASE STUDY

In order to better understand the possibility of perfect
resilience on real-world networks, we performed a case study
on 260 networks from the Internet Topology Zoo [52]. This
data set collects information provided by network operators.
The networks in this data set have between 3 and 754
nodes and between 4 and 895 links. We used SageMath
9.3E| to compute if a network is outerplanar or (non-)-planar,
respectively minorminer O.2.(ﬂ to compute if it contains
a forbidden minor for the respective routing model: K !
K 3 for destination-based routing and K5 ' or K 4, 1 for source-
destination based routing. The code for this analysis has been
opensourced In case a forbidden minor was found, or if the
graph was not outerplanar for touring, we marked the graph
as impossible w.r.t. perfect resilience—on the other hand, if
the network was outerplanar, we marked it as possible. From
the remaining graphs, if there exists a forwarding pattern for a
subset of destinationsﬂ we marked them as ﬂ, with
the remaining networks marked as .

The results are shown in Fig.[7} Even though minorminer
relies on a heuristic to solve the computationally hard minor
search problem, most instances can be classified quickly.

In general, we see that roughly one third of all topologies
allow for perfect resilience. Regarding impossibility, the
remaining networks cannot be toured under perfect resilience,
whereas for the other two routing models 42.5% and 2.7%
are impossible, with 1.1% and 31.8% being unknown, and
23.4% and 32.6% allow forwarding patterns for some desti-
nations, for routing algorithms matching on destination and
source-destination, respectively. For the topologies marked as
sometimes, on average 21.3% of the destinations are reaching
perfect resilience.

Fig. [§] presents a detailed perspective on those results:
sparse, tree-like topologies all support perfect resilience. As
density |E|/|V| increases, perfect resilience becomes only

4 https://www.sagemath.org/ > https://github.com/dwavesystems/minorminer
6 https://github.com/yvonneanne/dsn22 7 Le, if the graph is outerplanar
after removing the destination, because then we can tour all neighbors of the
destination. 8 We give an example in Fig.

Model Minor Possible Impossible

Subgraph

r-Tolerance: 7 > 1 [
Bounded # link failures

Yes [§

Korp1/ Kor—1,27—1 [
K, :f<n-—1][48]§B.
K, : f < min{a, b} — 1 [48] §B.3]

]
§ Kp,,n>8:f

Kop,a,b>4:

2
> a+4b— 21 [§VT]

TABLE 1
LANDSCAPE OF FEASIBILITY OF LOCAL FAST REROUTING IN DIFFERENT FAILURE MODELS.

Possibility: ™ Possible Sometimes Unknown @ Impossible
Destination Only Source-Destination
) [] [)
(] []
2.04
e o
(]
e ° o °
£ ® o0 °
i 151 t 14 ':02. °® °
= H B RIS n S
£ [l L] e o
2 Q0p o Tge o Ao
) 2 de] e o Rt n
0 104 FuE = g LS B
[] []
0.54
n []

25 50 75

Number of Nodes: n

Fig. 8. Detailed view of Internet Topology Zoo [52] instances. Each topology
is located by its size (n, x-axis) and its density (| E|/n, y-axis). For readability,
large n > 100 and dense |E|/n > 3 outlier topologies are omitted (in total
12 out of 260 topologies are omitted).

possible for some nodes (sometimes). The densest topologies
generally do not support perfect resilience. For routing with
source and destination the lowest density with guaranteed
impossibility is considerably higher than for destination only
routing. Interestingly, the impact of density has exceptions,
for instance with sparse topologies classified as impossible
and dense topologies classified as sometimes, confirming the
importance of the local structure within each topology on
enabling perfect resilience.

Moreover, 55.8% of all topologies are planar but not
outerplanar. In this context the seemingly small jump in
impossibility classification for destination-based routing, from
Ky or K33 [2] to Kgl or K3_§ in this work, hence allows us
to classify 31.3% of the Topology Zoo instances as planar and
impossible—previous work cannot show the impossibility of
perfect resilience for them.

This implies that our classification measures really lie at the
frontiers of (im-)possibility for the Topology Zoo data set and
our new results let us classify a lot more real-world topologies.

Our analysis and code can also be used by future research
to check for what further networks it would be fruitful to
look for a perfectly resilient routing scheme, respectively if
it is better to invest time in heuristics that work in many but
not all cases. If so far a destination-based routing algorithm
has been used the analysis can reveal if a source-destination-
based routing scheme can improve the resilience of the routing
scheme. Furthermore, if network usage data is available, the
most important source-destination pairs can be analysed in
more detail efficiently even for very large topologies.

11

K, K, K3 K,y Ks Kg Ky
o o o o ———o———e—e— Densily
L Ky3 Ks3 Ky
Header info
Source and Destination Ks/s.3 T TK7/4,4 =@
§4.2 §4.1
Destination only K533 — e

K33 — 2¢ |
§5.2T T§5.1

Touring |
[23, §6.2] T T§7.1

N

- 7

Negative instances transfered
to supergraphs/“majors”

Positive instances transfered

to subgraphs/minors

Fig. 9. Feasibility landscape of local fast rerouting in different routing models.

IX. CONCLUSION

Motivated by increasingly stringent dependability require-
ments, e.g., of merging 6G communication networks, we
revisited the algorithmic problem of realizing highly resilient
fast rerouting in the data plane. On the negative side, we proved
that providing resilience locally can be impossible, even in
scenarios where the network remains highly connected after
link failures. On the positive side, we presented improved
characterizations of resilience in various different models,
and devised novel algorithms accordingly. We summarize our
classification results in Table [and Figure [9]

While our work presents a fairly complete landscape of the
achievable perfect resilience, there remain several interesting
directions for future research. In particular, it would be
interesting to chart a similar landscape for the practically
relevant scenarios in which links failures are random, or where
the routing rules themselves can be subject to randomization.
It would further be interesting to account for additional aspects
which influence dependability in practice, and e.g., optimize
the “hazard value” [53]], [54] of the network more generally.

Acknowledgments. We would like to thank our shepherd Elias
P. Duarte Jr. as well as the anonymous reviewers for their
feedback and suggestions. This work was (in part) supported
by the Federal Ministry of Education and Research (BMBF,
Germany) as part of the 6G Research and Innovation Cluster
6G-RIC under Grant 16KISK020K, as well as by the Vienna
Science and Technology Fund (WWTF), project ICT19-045
(WHATIF), 2020-2024.

Reproducibility. Our source code will be made available at
https://github.com/yvonneanne/dsn22.

Bibliographical Information. An extended abstract of this
technical report appears at DSN’22 [55].

https://github.com/yvonneanne/dsn22

[1]

[2]

[3]

[4

=

[5]

[6]

[8

=

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “Brief announcement: on the resilience of routing tables,” in
PODC. ACM, 2012, pp. 237-238.

K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Trédan,
“On the feasibility of perfect resilience with local fast failover,” in APOCS.
SIAM, 2021, pp. 55-69.

M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” IEEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 779-792, 2016.

M. Chiesa, A. Kamisinski, J. Rak, G. Rétvdri, and S. Schmid, “A survey of
fast-recovery mechanisms in packet-switched networks,” IEEE Commun.
Surv. Tutorials, vol. 23, no. 2, pp. 1253-1301, 2021.

K.-T. Foerster, Y. A. Pignolet, S. Schmid, and G. Trédan, “Local fast
failover routing with low stretch,” Computer Communication Review,
vol. 48, no. 1, pp. 35-41, 2018.

, “CASA: congestion and stretch aware static fast rerouting,” in
INFOCOM. 1EEE, 2019, pp. 469-477.

O. Schweiger, K. Foerster, and S. Schmid, “Improving the resilience of
fast failover routing: TREE (tree routing to extend edge disjoint paths),”
in ANCS. ACM, 2021, pp. 1-7.

J. Schroeder and E. P. Duarte, “Fault-tolerant dynamic routing based on
maximum flow evaluation,” in LADC. Springer, 2007, pp. 7-24.

E. P. Duarte, R. Santini, and J. Cohen, “Delivering packets during the
routing convergence latency interval through highly connected detours,”
in DSN. IEEE, 2004, pp. 495-504.

J. Cohen, E. P. Duarte, and J. Schroeder, “Connectivity criteria for ranking
network nodes,” in CompleNet, ser. Communications in Computer and
Information Science, vol. 116. Springer, 2010, pp. 35-45.

A. Shukla and K. Foerster, “Shortcutting fast failover routes in the data
plane,” in ANCS. ACM, 2021, pp. 15-22.

E. Gafni and D. Bertsekas, “Distributed algorithms for generating loop-
free routes in networks with frequently changing topology,” Trans.
Commun., vol. 29, no. 1, pp. 11-18, 1981.

M. S. Corson and A. Ephremides, “A distributed routing algorithm for
mobile wireless networks,” Wireless netw., vol. 1, no. 1, pp. 61-81, 1995.
C. Busch, S. Surapaneni, and S. Tirthapura, “Analysis of link reversal
routing algorithms for mobile ad hoc networks,” in SPAA. ACM, 2003,
pp- 210-219.

T. Elhourani, A. Gopalan, and S. Ramasubramanian, “IP fast rerouting
for multi-link failures,” in INFOCOM. IEEE, 2014, pp. 2148-2156.
M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A distributed
and robust SDN control plane for transactional network updates,” in
INFOCOM. 1IEEE, 2015, pp. 190-198.

P. G. Jensen, D. Kristiansen, S. Schmid, M. K. Schou, B. C. Schrenk,
and J. Srba, “Aalwines: a fast and quantitative what-if analysis tool for
MPLS networks,” in CoNEXT. ACM, 2020, pp. 474-481.

M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: introducing openflow graph algorithms,”
in HotSDN. ACM, 2014, pp. 121-126.

0. Reingold, “Undirected connectivity in log-space,” J. ACM, vol. 55,
no. 4, pp. 17:1-17:24, 2008.

K.-T. Foerster and R. Wattenhofer, “Lower and upper competitive bounds
for online directed graph exploration,” Theor. Comput. Sci., vol. 655, pp.
15-29, 2016.

N. Megow, K. Mehlhorn, and P. Schweitzer, “Online graph exploration:
New results on old and new algorithms,” Theor. Comput. Sci., vol. 463,
pp. 62-72, 2012.

E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and
A. Kosowski, “Euler tour lock-in problem in the rotor-router model,” in
DISC. Springer, 2009, pp. 423-435.

D. Dereniowski, A. Kosowski, D. Pajak, and P. Uznanski, “Bounds on
the cover time of parallel rotor walks,” J. Comput. Syst. Sci., vol. 82,
no. 5, pp. 802-816, 2016.

P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and
P. Uznanski, “Improved analysis of deterministic load-balancing schemes,”
ACM Trans. Algorithms, vol. 15, no. 1, pp. 10:1-10:22, 2019.

B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in MobiCom. ACM, 2000, pp. 243-254.

F. Kuhn, R. Wattenhofer, and A. Zollinger, “An algorithmic approach to
geographic routing in ad hoc and sensor networks,” IEEE/ACM Trans.

Netw., vol. 16, no. 1, pp. 51-62, 2008.
, “Worst-case optimal and average-case efficient geometric ad-hoc

routing,” in MobiHoc. ACM, 2003, pp. 267-278.

12

(28]
[29]
[30]
[31]

(32]

(33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

43

—_

[44]

[45]

[46]

[47]

[48]

[49]
[50]

(51]

[52]

[53

—

[54]

[55]

R. Wattenhofer and A. Zollinger, “XTC: A practical topology control
algorithm for ad-hoc networks,” in IPDPS. 1EEE, 2004, pp. 216:1-216:8.
A. Zollinger, “Geographic routing,” in Algorithms for Sensor and Ad
Hoc Networks. Springer, 2007, pp. 161-185.

M. Behrend, “How to solve a maze,” Caerdroia Journal, vol. 36, pp.
10-17, 2006.

S. Schmid and J. Suomela, “Exploiting locality in distributed SDN
control,” in HotSDN. ACM, 2013, pp. 121-126.

K.-T. Foerster, J. Hirvonen, S. Schmid, and J. Suomela, “On the power
of preprocessing in decentralized network optimization,” in INFOCOM.
IEEE, 2019, pp. 1450-1458.

K.-T. Foerster, J. H. Korhonen, A. Paz, J. Rybicki, and S. Schmid, “Input-
dynamic distributed algorithms for communication networks,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 5, no. 1, pp. 06:1-06:33, 2021.

J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “On the resilience of routing tables (v2),” arXiv:1207.3732
[cs.DC], 2012.

M. Borokhovich and S. Schmid, “How (not) to shoot in your foot with
SDN local fast failover - A load-connectivity tradeoff,” in OPODIS.
Springer, 2013, pp. 68-82.

B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng, “Keep forwarding:
Towards k-link failure resilient routing,” in INFOCOM. 1EEE, 2014,
pp. 1617-1625.

B. E. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast
failover via forwarding table compression,” in SOSR. ACM, 2016, p. 9.
J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjgrner, A. Valadarsky,
and M. Schapira, “TEAVAR: striking the right utilization-availability
balance in WAN traffic engineering,” in SIGCOMM. ACM, 2019, pp.
29-43.

T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira, “PCC proteus:
Scavenger transport and beyond,” in SIGCOMM. ACM, 2020, pp.
615-631.

M. Chiesa, A. V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Schapira, and S. Shenker, “On the resiliency of randomized routing
against multiple edge failures,” in JCALP. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2016, pp. 134:1-134:15.

M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “The quest for resilient (static) forwarding
tables,” in INFOCOM. 1IEEE, 2016, pp. 1-9.

M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. V. Gurtov, A. Madry,
M. Schapira, and S. Shenker, “On the resiliency of static forwarding
tables,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1133-1146, 2017.
J. Edmonds, “Edge-disjoint branchings,” Combinatorial algorithms, vol. 9,
no. 91-96, p. 2, 1973.

K.-T. Foerster, A. Kamisinski, Y. A. Pignolet, S. Schmid, and G. Trédan,
“Bonsai: Efficient fast failover routing using small arborescences,” in
DSN. 1IEEE, 2019, pp. 276-288.

——, “Improved fast rerouting using postprocessing,” in SRDS.
2019, pp. 173-182.

K.-T. Foerster, A. Kamisinski, Y.-A. Pignolet, S. Schmid, and G. Trédan,
“Grafting arborescences for extra resilience of fast rerouting schemes,”
in INFOCOM. IEEE, 2021, pp. 1-10.

K. Wagner, “Ueber eine eigenschaft der ebenen komplexe,” Mathematis-
che Annalen, vol. 114, pp. 570-590, 1937.

M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevkiy, A. Panda,
M. Schapira, and S. Shenker, “Exploring the limits of static failover
routing (v4),” arXiv:1409.0034 [cs.NI], 2016.

G. Chartrand and F. Harary, “Planar permutation graphs,” Annales de
U'LH.P. Probabilités et statistiques, vol. 3, no. 4, pp. 433438, 1967.
B. Alspach, “The wonderful walecki construction,” Bull. Inst. Combin.
Appl, vol. 52, pp. 7-20, 2008.

R. Laskar and B. Auerbach, “On decomposition of r-partite graphs into
edge-disjoint hamilton circuits,” Discrete Mathematics, vol. 14, no. 3,
pp. 265-268, 1976.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765-1775, 2011.

P. Cuijpers, S. Schmid, N. Schnepf, and J. Srba, “The hazard value: A
quantitative network connectivity measure accounting for failures,” in
DSN. 1IEEE, 2022.

S. Schmid, N. Schnepf, and J. Srba, “Resilient capacity-aware routing,”
in TACAS (1). Springer, 2021, pp. 411-429.

K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan,
“On the price of locality in static fast rerouting,” in DSN. 1EEE, 2022.

IEEE,

APPENDIX

X. DETAILED PROOFS FOR SECTION|[V]

For our proofs, we will apply a corollary from [2]], which
we repeat here for the reader’s convenience, along with some
necessary definitions and notation.

Definition 2 (Definition 3.1 [2[]). For any node i € G, i # t,
and a failure set F, define F; as the failures in F' incident to 1,
i.e., F; is the only failure set the node 1 is aware of. Moreover,
let G' be the original graph G without the links in F}, i.e.,
G' = G\ F;. A neighboring node j € Vg (i) is relevant for
routing from t under the failure set F' iff there is a path from i
totin G'\V', where V' = Ve (i) \ {j} is the set of all other
nodes still connected to i. In other words, j is a potential relay
to reach t from i’s perspective, if, in addition to F, all links
incident to other neighbors of i have failed.

When talking about the repeated use of a forwarding function
of the node v under a specific failure set F', we will also use
the notation style (-, F'), where for a € N>1, (! (-, F))* (u)
is recursively defined as

(w3 () (w3t F)) =

(e F) T (mt) () et

Definition 3 (Adapted from Definition 3.2 in [2]). Let w5t (-, F)
be the forwarding pattern of a node v for some set of failed
links F. We say a set of neighbors V' C V (v) is in the same
orbit w.r.t. w8t (-, F), if for all pairs vi,ve € V' it holds: there
is some k € N s.t. (Wﬁt(,F))k (v1) = va.

Corollary 8. [Lemma 3.1 in [2|]] Let G = (V,E),A €
Ay(G,s,t), where s # i is connected to k > 2 relevant
neighbors vy,...,vx, € V of v € V. For all F where
|F N A{(v1,1),...,(vk,9)}| <k — 2 it holds that all relevant
neighbors of i under F' must be part of the same orbit in A’s
forwarding function 75" (-, F).

A. Proof of Theorem []
Lemma 5. The complete graph with seven nodes does not
allow for perfect resilience, i.e., Ap(Kz,s,t) = 0.

N N

Fig. 10. K7 impossibility: the nodes vz, v3, vs route in a cyclic permutation,
due to local indistinguishability of non-local failures.

The main idea of the proof is shown in Fig. [I0] where we
illustrate the situation after failures.

Proof: Let V(K7) = {vg,v1, v, U3, V4, Vs, Vg }, Where we

assume w.l.o.g. vy to be the source s and vg to be the destination

13

t. To prove the lemma, we construct sets of link failures in
which we leave destination ¢ = vg connected to only one of the
non-destination nodes, and “fine-tune” the set of link failures
so that a packet emitted by s will cross v; and not visit all
of v1’s 5 neighbors. By contradiction, let A € A,(K7,s,t).
For Fy, = {(Uo, ’UQ), (Uo, 1}3), (’Uo, ’U4), (vo, ’U6)}, the starting
node vy is connected only to v; and vs and w.l.o.g, we
assume it sends the packet to vp first. Let ﬂi;t(-,Fl) be
the port mapping produced by A at node v; given F}
{(v1,v3), (v1,v4), (v1,05), (v1,v6)}, then 75" (vo, F1) = v2
as the only surviving path could be s = vg — vy — vy —vg = t.

Since A is perfectly resilient, we know by Corollary [§] that
myt(-, F1) is a cyclic permutation over its relevant neighbors,
as long as vy has at least two relevant neighbors, with vs not
being connected to s, t. Hence, under F» = {(vg,v2), (vs, v2)},
the perfect resilient routing forms a cyclic permutation at
vo and we can directly identify the predecessor of v; of
mt (-, F3). It cannot be vy as then we would not have a
cyclic permutation and therefore we define the predecessor
to be vs: wﬁ’zt(vg),Fg) = v; and the successor to be vs:
w5t (v1, Fo) = w3 w.lo.g. Construct further sets of link
failures as follows, F3 = {(vs,vo), (vs,v1), (v3,v4), (v3,06)},
F4 = {(1}47 Uo), (’U4, ’Ul)7 (1)4, ’Ug), (1)47 U5)}, and 1astly F5 =
{(U57 ’Uo), (’1)5, Ul)v (’U5a '04), (U57 UG)}'

Let F = Fy U Fy U Fy, U F3U Fy U Fy, as shown in Fig.
Note that from the perspective of v; for ¢ = 0,1,2,3,4,5,
only the local failures are visible, and hence F; and F' are
locally indistinguishable. Node v3 has two relevant neighbors
and both of them are connected to the source in GG. The same
holds for vs, thus the conditions for Corollary [8| are satisfied
and hence packets received on one port are forwarded on the
other port under F'. Let us follow the network traversal of
a packet emitted by vyg. When reaching v it is passed to
v9, where is must be forwarded to vs due to Corollary B} V3
sends the packet to vs, then vs to vs, and then vy to v due
to the same argument, where we assumed the latter due to
myt(v1, Fy) = vz and 75 (vs, Fo) = vy w.l.o.g. Upon arriving
at vy, the packet will eventually be sent back to vy, either
directly or via v; — s — v; — v9, hence A causes a permanent
loop. F' leaves the path s = vg —v1 — v9 — v4 — vg = t intact,
and yet A loops, leading to the desired contradiction. []

The proof arguments also hold for the graph consisting of
K¢ and a node connected to all other nodes but one, resulting
in Theorem

B. Proof of Corollary 3]

Proof: The biggest failure set removed directly in the
proof of Lemma [5| had 14 links, leaving only the 7 links alive
shown in Fig. [I0] However, we also called upon Corollary [§]
which has no restrictions on the number of links removed. The
proof of Corollary [§] relies on the fact that the node ¢, with
k > 2 relevant neighbors, all initially connected to the source,
cannot tell which of these k neighbors relied the message from
the source to it and which one is responsible for forwarding
to the destination. Hence, the assumption is that the remaining
graph could just consist of the & links to ¢’s k neighbors, and

one link from the source and one from the destination, leaving
just k£ + 2 links alive. For small k£, we can improve this bound
by observing that the remaining nodes might be a disconnected
component respectively where ¢ is an articulation point, but
can retain the links within each other. As thus, we require at
least k£ + 2 links to be alive, but the nodes not neighboring %

can retain all their links, except those to s or neighbors of i.

Still, in the above proof, we applied Corollary [§| to node vs
while node v, has k = 4, and hereby we need to consider a
failure size that leaves only 6 links alive, i.e., of 15. [|

C. Proof of Theorem[/] and Corollary

Lemma 6. The complete bipartite graph with eight nodes, four
in each part, does not allow for perfect resiliency, i.e., it holds

that AP(K4’4, S,t) = (.

Proof: Let Vi = {a,b,c = t,d}, Vo = {vg,v1,v2,03}
and £ = V; x V5, where we assume w.l.o.g. that we start on
Vo = S.

By contradiction, let A € A,(K44,s,t). We will now first
show, as well by contradiction, that if (v, a) fails but the other
links incident to a do not fail, a’s forwarding pattern must be
a cyclic permutation on its neighbors v;, v, vs.

To this end, consider the failure sets

o 1o {(vo, a), (vo, ¢), (v1, ¢), (v2,b), (v3,b), (v3,€),
(UOv d)’ (Ula d)7 (’Ug, d)’ (U37 d)}’
where the only st-pathis s =vg—b—v; —a— vy —c =1,
and
o Fi3 {(vo, a), (vo, ¢), (v1, ¢), (v2,b), (v3,b), (va, €),
(U07 d)’ (Ula d)> (UQ’ d)’ (U37 d)}’
where the only st-pathis s =vg—b—v; —a—v3—c=1.
Hence, 75*'(v1,{(vo,a)}) cannot be v; or L, but must
be vy or vs. If 78t (vy,{(vo,a)}) = vq, then we choose
the failure set Fy3, which implies 75t (vg, {(vg,a)}) = wvs.
Analogously, if 75t (vq, {(vo,a)}) = vs, then we choose the
failure set Fio, i.e., m5%(vg, {(vg,a)}) = vo. W.lo.g. assume
w5t (v, {(vo,a)}) = va, 75t (ve, {(vo,a)}) = vs. It remains
to show 7' (vs,{(vo,a)}) = wvi, where we immediately
discard 75t (vs, {(vo,a)}) =L. If 75 (vs, {(vg,a)}) = wvs,
we consider the failure set

o F33 {(vo, a), (vo, ¢), (v1,b), (va,b), (vs3,), (v, d),
(vlv d)v ('U2a d)’ (U37 d)}’
i.e., every st-path starts with s = vg—b—wv3 —a, and then loops
due to 5t (vs, {(vo,a)}) = vs. If w5t (v3, {(vo,a)}) = va, we
consider the failure set

o F3 {(vo, @), (vo, ¢), (v1,b), (v2,b), (v2,), (vs,),
(’U()7 d)7 (7)1, d)7 (1)27 d)7 (U37 d)}’

i.e., the only st-path is s = vg —b—vs —a—v; —c =
t, which must loop due to 75t(vs,{(vo,a)}) = wvs and
75t (ve, {(vo,a)}) = w3, as vy is a dead end under Fjs.
Hence only 75! (vs, { (v, a)}) = vy remains. Note that we can
choose Fh3 and Fhy analogously for 75 (vy, {(vg,a)}) = vs,
75t (v3, {(vo,a)}) = vy. For the remaining part of the proof,
we can hence assume that when the failure set includes (v, a)
and excludes (v1,a), (va,a), (vs,a), that a routes according to
a cyclic permutation of its neighbors, w.l.o.g. (v1,va, v3).

14

Note that so far, we excluded the node d from our con-
struction, but it will now play a central role. From a’s three
non-source neighbors vy, va, v3, we will use one (w.l.o.g. v1)
to route the packet to it from s, one to “hide” the destination
behind (w.l.o.g. v2), and one to force the packet into a loop
(w.l.o.g. v3). Moreover, due to the graph being bipartite, two
of them require a proxy node to fulfill their goals, in the same
part as a, for which we use the nodes b,d (as ¢ = ¢ is the
destination).

To this end, observe that if a node v from vy, vo, v3 has
exactly two neighbors, taken from a,b,d, then v needs to
route in a cyclic permutation. W.l.o.g. let v = vy and the two
surviving neighbors be a, b. Then, we can construct failure sets
s.t. the only surviving links are on the paths s = vg—a —v; —
b—vy—c=tors=v9g—b—vy —a—vy—c=t, and hence
not routing in a cyclic permutation prevents perfect resilience.
We can use similar arguments for a, b, d where if they have
exactly two surviving neighbors from vy, vs, v3, then a,b,d
must route in a cyclic permutation: w.l.o.g. pick a with two
surviving neighbors v1,vs. Here, if the only surviving path
is s =v9g—b—v1 —a—wvy —c =t, then a must forward
a packet from v; to wve, and if the only surviving path is
s=wv9g—b—vy —a—1vy —c=t, then a must forward a
packet from vy to vy, finishing this argument. Moreover, if a
node from a, b, d, w.l.o.g. a, has exactly the neighbors vy and
one node from vy, vo,vs, w.l.o.g. v1, then a must forward a
packet from s = vy to vy, as the only surviving path could be
s=v9g—a—vy —c=1.

Next, we consider a node v from vy, v9, v3 that has exactly
the three neighbors a, b, d and show that v, w.l.o.g. v, must
route according to a cyclic permutation of its three neighbors,
w.l.o.g. (b,a,c). To this end, observe that from the three
neighbors a, b, c, one of them could be a dead end, one the
“relay” from vy, and one the “relay” to reach the destination.
For example, the only surviving links could be (vq,b) and the
path s = vy —a —v; —d — v3 — c = t, and we can adapt this
failure pattern that each node from a, b, ¢ can play the role of
dead end, “relay” of the source, and “relay” to the destination,
locally indistinguishable for v;, and hence v; must route in a
cyclic permutation of its three neighbors.

We now have all the tools to finish our proof. We let the
surviving links be the walk s = vg—b—v; —a—vy—d—v1—a—
vs — ¢ = t. The path is unique until hitting v;, which routes in
a cyclic permutation, w.l.o.g. (b, a,d), forwarding to a, which
routes in a cyclic permutation as well, w.l.o.g. (v1,v2,v3),
forwarding to vo, which forwards to d, which forwards to vy,
which now forwards to a again, due to its cyclic permutation
being (b, a,d), now trapped in the loop a — vo —d — v1 — a.
On the other hand, a path from s = vy to ¢ = ¢ still exists,
namely s = vg —b— vy —a —v3 —c = t, and hence the lemma
statement holds by contradiction. []

Moreover in the proof of Lemma [f] the link from the source
to the destination was always considered as failed, resulting in
Theorem

We again briefly investigate the number of link failures
in the above proof for Corollary |4} Here we constructed the

failure sets manually for each argument and did not leverage
Corollary [8] using at most 11 link failures

D. Proof of Theorem[§

Proof: We proceed by showing that packets routed with
Algorithm [I] reach the destination for all possible distances
between source and destination after failures. By showing it
for K5, we directly show correctness for all minors of K5 as
well due to [2, Corollary 4.2].

If the distance between source and destination is one, Line
2 of the algorithm ensures the packet arrives at its destination
directly.

If the distance is two, there are four non-isomorphic
candidate graphs on which a packet could visit all other
nodes before visiting t, G1, G2, G, G4 with V = {s,t,2,y, 2}
and link sets By = {(z,v),(v,s),(s,2),(z,t)}, E2
E1 U {(Ia 5)}’ E; = {(SC, S)a (Sa y)7 (ya Z)v (th)a (Sv Z)} and
E, = {(s,2),(s,y),(s,2),(z,t))}, after removing the failed
links respectively. Depending on how we order the IDs for
x,y, z for £y, the algorithm may first explore x before returning
to s but it will definitely visit z via y and thus find . For Ej,
the algorithm will head straight towards ¢ if z has the lowest
identifier. If y is the lowest identifier, the algorithm will visit
the nodes in the order s,y, x, s, z,t regardless of the order of
the identifiers of x,y. For Fs, the sequence of nodes visited
starts with s,x, s if « has the lowest identifier, followed by
y,2,tif y =wvand z = w or z,t otherwise. If y has the lowest
identifier the sequence is s,y, z,t, if z =y it is s, z,t. For Ey
the algorithm guarantees that all neighbors of the source are
visited if the previous ones did not connect to the destination
as the nodes will send the message back if they cannot forward
it to t. Note that for subgraphs of G, G, G3, G4 where (s,)
is missing and/or (s,y) is missing from G, the destination is
reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

If the distance is three, six non-isomorphic candidate graphs
exist where a packet could visit all other nodes before
visiting ¢, G, G4, G4, G, GL, Gy with V' = {s,t,z,y,z}
and link sets Ff = {(x,s),(s,y),(y,2),(z,t)}, B =
Ey U {('ray)}’ Eé {(va)’(x7y)7(yvt)7(zvy)}? Elll
{(s.2), (,9), (5.1), (z.2))}. Bt = By U{(2,9)}. and E} =
Es U{(z,t)}, after removing failed link respectively. For E]
the algorithm will forward packets on its direct path to the
destination if y = u. Otherwise there might be a detour to
x first. For EY, if © = u then the sequence of nodes visited
is s,x,Yy,2,t, if y = u,xr = v then it is s,y,x, s, x,y, 2, t, if
Yy =1u,z =vor z=u,y = v then no detour is taken and it the
remaining case with z = u,x = v the path used is s, z,vy, 2, t.
For F, the path taken is s, z,y, t and for E, a visit to z might
be included but no loop introduced. For Ef, z is visited if
z < y leading to a path of s,z,2,y,t and s, x,y,t otherwise.
In the last graph E}, visiting z would lead to a shortcut to ¢
and in both cases ¢ is reached. Note that for subgraphs of G
without (s, z) and G, G}y without the link to z, the destination
is reached in at most the same number of steps as well by the
same line of arguments, as some detours will not be taken.

15

If the distance is four, the nodes form a chain and the
algorithm ensures that all nodes forward the packet until it
reaches it destination |

E. Proof of Theorem

Proof: We proceed similarly to the K5 case. Let V;
{a,b,c}, Vo = {vy,v9,v3} and E =V} x Va.

We first describe a forwarding pattern for the case where the
source is not in the same part as the target and demonstrate
that a packet forwarded accordingly reaches its destination
under all failure sets if the remaining graph is connected. We
state for each node and inport combination the order in which
a node tries to forward a packet to an outport if w.l.o.g. the
source is s = a and the destination is ¢ = vg:

Qs

1: t,vq,v9 V1 Vg Vg i Vg
@b vy t,ug, v vy 1 t,v1, Vs
Qc wvy: t,v9,vq vy i t,v1, Vs
Qu, s: byes b: ¢,s,b c: b,s,c
Quq s: b,c b: ¢, b c: b

If the degree of the source after failures is three, the source
has a link to the destination and the packet will be sent there
directly. If the degree of the source after failures is two, s will
forward the packet to vy first. Case k: If v; is only connected
to the source, the packet will be sent back to s which in turn
will forward it to vs. In this case, for source and destination to
be connected then (v, b) and (b,) must be up and the pattern
ensures it reaches t. Case [: If v; has a degree of two post
failures and (v1,x) with & € {b,c} is up, then the packet is
sent to x. If x is connected to ¢ we’re done, otherwise the
forwarding pattern will either (i) send the packet to ve, if
(z,v9) ¢ F from where it will reach ¢ via ¢ if x = b or via b
or (ii) the packet will be bouncing back to s and traverse vq
and the remaining node in V) connecting to ¢. Case m: If all
links at vy are up, the packet will first visit b from where it
will either (i) bounce back to v; because the degree of b is one
or (ii) reach ¢ directly or (iii) be forwarded to v and reach ¢
via c. If back at vy, the packet will be forwarded to ¢ next and
get to ¢t from there. If the source is only connected to v; after
the failures, then v; must have a remaining degree 2 or 3 and
the forwarding pattern visit the nodes in V; as described in
Case | .(i) and Case m.(i)-(iii). If the source is only connected
to vo after the failures, then v, must have remaining degree 2
or 3, the arguments from the previous statement hold for this
case too.

Thus we have shown that for s and ¢ in different parts the
forwarding pattern routes a packet successfully or the failures
disconnect the source from the destination.

If the source and the destination are in the same part, the
following forwarding pattern allows packets to reach their
destination if w.l.o.g. the source is s = a and the destination
is t = c the graph remains connected under failures.

@ s 1: vy,v9,v3 v1: U3,V Vg I U3 V3 Vg
@b V1 U2,V3,V1 V2! V3,V1,V2 V3. V1,V2,VU3

@uv; s: tbs b: t,s,b

@ vy, s:tbs b: t,b,s

@uwvz s: tbs b: t,s,b

Let us assume there is a failure set under which a packet
will not reach the destination with this forwarding pattern.
If the degree of the source after failures is three, the packet
will first go to v1. (v1,t) must be in the failure set, as the
destination would be reached in the next hop otherwise. Thus
the remaining degree of v; is either one or two. In the first
case the packet is sent back to s from where it is sent to vs.

If (v3,b) is up, the packet is sent to b and if possible
forwarded to vy from where it would reach the destination.
Hence, (v2,b) must be down and the packet is sent back to vg
from b and then forwarded back to s from where it will be
sent to vo and reach the destination.

On the other hand, if (vy,b) is available, then the packet will
be sent to b. There are four possibilities for b. If b has no other
neighbors the packet will go back to the source via v1, then visit
vs and finally reach the destination from wvo. If b is connected
to v9 but not vs after failures, the packet will bounce back to
b, and then reach the destination via v1, s, v3. If b is connected
to v3 but not v, after failures, the packet will forwarded to the
destination along the sequence b — v3 — s —ve — t . If (b, vg)
and (b, vs) are up, then the packet will reach the destination
via vy if (ve,t) is available or go back to b and visit vz to
achieve the same end result.

If the degree of the source after failures is two, (s,) and
(s,y) for x,y € V5 are up. If the remaining degree of x is one,
then the packet is sent to y via s. From there it will either reach
the destination directly or via b and z € V5 \ {z, y} unless the
graph is disconnected. If the remaining degree of = is two,
then the packet is sent to b and we can distinguish between
three cases for b. If b has no other neighbors the packet will
go back to the source via z, then visit y. From there it will
either reach the destination directly or via b and z € Vo \ {z, y}
unless the graph is disconnected. If b is connected to y but not
z after failures, the packet will reach the destination from y
unless the graph is disconnected. If b is connected to y and z
after failures, the packet will be forwarded to the destination
as both y and z will visited since the forwarding pattern at b
is a cyclic permutation without any locally incident failures,
either directly or via a detour to s.

If the remaining degree of x is three, then the packet is sent
to ¢ directly and hence there is no failure set that causes a loop
in this case.

If the degree of the source after failures is one, the node
x € V5 the packet is sent to first must have remaining degree
at two, as the destination could be reached directly from there
or the graph would be either disconnected otherwise. Thus the
packet will be forwarded to b which may be still connected to
one or two nodes in V5. In the former case the messages is
sent to y € V7, x! = y which must be connected to ¢ and the
pacet will reach its destination. In the latter case, it will bounce
back from from the next node visited and since the forwarding
pattern at b without any locally incident failures forms a cyclic
permutation the last remaining node in V; is explored next.
Thus the destination is reached in this last remaining case as
well and we have demonstrated that there is no failure set that
doesn’t disconnect source and destination leading to a loop.

16

U1

S

t

AN

V2

U3

V4

Fig. 11. Only non-outerplanar case for K5_2, as it is a K4 when ignoring t.
As one of the link (v1,t), (v2,t) could fail, both v1,v2 need to be visited
from any starting node in Ky (if both links connected to ¢ fail, the destination
is unreachable).

Lastly, the statement extends to all minors of K3 3 due to [2]
Corollary 4.2]. []

XI. DETAILED PROOFS FOR SECTION[Y]
A. Deferred Proof Parts for Theorem

We show correctness of our algorithm, i.e., all of v1, vy will
be visited if possible, by case distinction as well.

First, assume the link (v1,v2) does not fail. Then we have
correctness when starting on v or vo. When starting on vs3, we
have correctness when v3 is still neighboring v or vs, else vs
is neighboring v4 or vs is disconnected from all nodes. Then,
routing proceeds to vy or vy if vy is still neighboring v, or
Vg, else vs, vy is disconnected from vy, vy. The argument is
analogous for starting on vy.

Second, assume the link (vy,v2) does fail. If we start on
vy, we need to reach vo via vs,v4. If (v1,v3) is up we send
to vz, else to vg, where we can omit the case where v; is
disconnected from all neighbors. Next, for (v1,v3) being up, if
both (v3,v2) and (v4,v;) are down, then the packet proceeds
V1 — U3 — U4 — Vg, Unless vy, vo are in separate components
after failures. Else, for (v, v3) being up, if (v3, vg) is up, we
reach vy from vy via vy — vg — vy. Lastly, for (v, v3) being
up, if (v4,v1) is up, but (vs,vs) is down, then we can reach
vy only via vy and if (vg,v2) is up, else vy, vy are in separate
components after failures: if (vs,v4) is up, via v1 —v3 —v4—va,
and if (vs,vs) is down, via vy —v3 —v1 — v4 — vo. For starting
on vy, the case is analogous and symmetrical, with wvs, vy
switching places in the proof arguments. Hence, if vy, vy are
in the same component, they reach each other.

We next cover the case of starting on v3,v4. Again, the
argument will be analogous and symmetrical for both, so hence
we also only do the case distinction for vs.

First, assume the link (vq, v2) does not fail. If (vs,vs) is up,
then we proceed to v and then to vy are done. Else, if (v3,vs)
is down, we are done if (vs, v1) is up, and else proceed to vy:
here, if one of vy, vs is a neighbor of v, we are done, and else
v1, Vg are not in the same component as vs.

Next, assume (vq,v2) is down. If (vs,vs) is up, then we
proceed to vy and distinguish 2 cases. 1) if (ve,v4) is up, we
go to v4, Where we go to vy if (vg,v1) is up (done), else to
vs, if (v4,v3) is up to v directly and if (vy4,vs) is down, to
v3 via v4 — vy — v3, where we reach vy, as if (vs,v1) is not
up, v1 is disconnected from vy, v3,v4. 2) if (vg,v4) is down,

then we bounce back to vz. If (vs,v1) is up we are done. Else,
if (vs,v4) is up, we reach vy, and as (vo,v4) is down, we
try (vg,vyp): if it is up, we are done, if it is down, then v, is
disconnected from vs, v3, v4.

Else, if (vs,v2) is down, we consider the case whether
(vs,v1) is up. If (v3,v1) is up, we proceed to vy, and if vy
is a neighbor, we go to vy: if vy is a neighbor of vy we are
done, and else, v5 has lost all its neighbors from vy, vs, v4.
Should (v3,v1) be down, then vs has a degree of O (done) or
has v4 as a neighbor, in which case we proceed to vy. There,
if both vy, vy are neighbors of v4, we reach them (in total)
via vg — vqg — vg — v4 — vy, and if just one of vy,vy 1S a
neighbor of vs, then we reach that one as well (the other one
is disconnected), where the case of none of v;,vs being a
neighbor of vy means that both vy, vy are disconnected.

XI1I. DETAILED PROOFS FOR SEcTION [VII]
A. Detailed Proof for Lemma [I]

Proof: The statement holds immediately for degree 1
nodes, as the packet must bounce back. Hence, we consider
graphs with at least 2 links and 3 nodes, and only investigate
nodes with at least two neighbors after failures (where the
failure set can also be empty). Let v be such a node with
neighbors vy, ..., v, k > 2 after failures. Fail all surviving
links that are not incident to v, meaning that the local view of
v stays unchanged. Consider a packet that starts its tour at vy,
then it must visit all neighbors of v in some order and then

return to vy, €.g., V1 —V—Vg —V—V3—...— VU —v—v1. This is
impossible without v routing according to a cyclic permutation
of all its neighbors. u

B. Detailed Proofs for Lemma [3| and Lemma

Proof: Let V(Ky) = {v1,v2,v3,v4} Where we assume
w.lo.g. that we start on v;. Assume by Lemma [T] and w.l.o.g.
that v1’s cyclic forwarding permutation is vov4v3, forwarding
to vz with inport L. Consider the failure of links (v, v3)
and (vq,v4), as shown in Fig. [12] As the cyclic forwarding
permutation of v3 is now v1vy4, and viv3 for vy, again due to
Lemma |1} the routing gets stuck in the loop v1 — v3 — vy — v1
as by assumption v; routes packets from vy to vs. Node vs is
never visited and as thus K4 cannot be toured under perfect
resilience.]

Proof: Let V(Ka 3) = {v1,v2,vs,v4,v5}, with the first
part containing v; and vs. Assume that the packet starts in
the first part, w.l.o.g. at v1. Assume due to Theorem [I] again
w.l.o.g., that v;’s cyclic forwarding permutation is vsv4vs,
sending to v3 with inport L. We now fail the link (vg,vs), as
shown in Fig. As the cyclic forwarding permutation of v3
is v1v2, the cyclic forwarding permutation of v4 is v1vs, and
the cyclic forwarding permutation of v, is vsvs (Lemma [I)),
the routing gets stuck in the loop vy —vs — vy — vy — v1 (V1
routes packets from vy to vws by assumption). Hence vs is
never visited and as thus K> 3 cannot be toured under perfect
resilience.]

Fig. 12. K4 is impossible to tour.

U1

U3

Fig. 13. K> 3 is impossible to tour

17

	I Introduction
	I-A Contributions
	I-B Background and Related Work
	I-B1 Ideal versus Perfect Resilience

	I-C Overview

	II Model
	III On the Price of Locality
	III-A Intuition and Example
	III-B Impossibility of r-Tolerance in General
	III-C r-Tolerance and Minors

	IV Perfect Resilience with Source
	IV-A Impossibility Results
	IV-A1 Generalization of Impossibility: Minor Relationships

	IV-B Possibility Results

	V Perfect Resilience without Source
	V-A Impossibility Results
	V-A1 Generalization of Impossibility: Minor Relationships

	V-B Possibility Results
	V-B1 One Link Less Gives Perfect Resilience

	VI Resilience with Few Failures
	VII From Routing to Touring: Perfect Resilience Without Source and Destination
	VII-A Complete Touring Characterization in Perfect Resilience

	VIII Topology Zoo Case Study
	IX Conclusion
	References
	X Detailed Proofs for Section IV
	X-A Proof of thm:nok7-1
	X-B Proof of corr:edge-removal-k7
	X-C Proof of corr:nok44withsource-1 and corr:edge-removal-k44
	X-D Proof of thm:k5withsource
	X-E Proof of thm:k33withsource

	XI Detailed Proofs For Section V
	XI-A Deferred Proof Parts for thm:k5-2-does-work

	XII Detailed Proofs For Section VII
	XII-A Detailed Proof for thm:all-permutation
	XII-B Detailed Proofs for thm:all-k4-no and thm:all-k23-no

