
O’Reach: Even Faster Reachability in Large Graphs

KATHRIN HANAUER, University of Vienna, Faculty of Computer Science

CHRISTIAN SCHULZ, Heidelberg University

JONATHAN TRUMMER, University of Vienna, Faculty of Computer Science

One of the most fundamental problems in computer science is the reachability problem: Given a directed
graph and two vertices s and t , can s reach t via a path? We revisit existing techniques and combine them
with new approaches to support a large portion of reachability queries in constant time using a linear-
sized reachability index. Our new algorithm O’Reach can be easily combined with previously developed
solutions for the problem or run standalone.

In a detailed experimental study, we compare a variety of algorithms with respect to their index-building
and query times as well as their memory footprint on a diverse set of instances. Our experiments indicate
that the query performance often depends strongly not only on the type of graph but also on the result, i.e.,
reachable or unreachable. Furthermore, we show that previous algorithms are significantly sped up when
combined with our new approach in almost all scenarios. Surprisingly, due to cache effects, a higher in-
vestment in space doesn’t necessarily pay off: Reachability queries can often be answered even faster than
single memory accesses in a precomputed full reachability matrix.

CCS Concepts: • Theory of computation → Graph algorithms analysis;

Additional Key Words and Phrases: Reachability, static graphs, graph algorithms, reachability index, al-
gorithm engineering

ACM Reference format:

Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2022. O’Reach: Even Faster Reachability in Large
Graphs. J. Exp. Algorithmics 27, 4, Article 4.2 (October 2022), 27 pages.
https://doi.org/10.1145/3556540

1 INTRODUCTION

Graphs are used to model problem settings of various different disciplines. A natural question
that arises frequently is whether one vertex of the graph can reach another vertex via a path of

A preliminary and shorter version of this article has appeared in the proceedings of the Symposium on Experimental
Algorithms [12].

This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Frame-
work Programme (FP7-2007-2013) (Grant agreement No. 340506).
Authors’ addresses: K. Hanauer and J. Trummer, University of Vienna Faculty of Computer Science Waehringer
Str. 29, 1090 Vienna, Austria; emails: {kathrin.hanauer, jonathan.trummer}@univie.ac.at; C. Schulz, Heidelberg Uni-
versity Faculty of Mathematics and Computer Science Im Neuenheimer Feld 205 69120 Heidelberg Germany; email:
christian.schulz@informatik.uni-heidelberg.de.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1084-6654/2022/10-ART4.2
https://doi.org/10.1145/3556540

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://orcid.org/0000-0002-5945-837X
https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-1086-4756
https://doi.org/10.1145/3556540
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3556540

4.2:2 K. Hanauer et al.

directed edges. Reachability finds application in a wide variety of fields, such as program and
dataflow analysis [24, 25], user-input dependence analysis [27], XML query processing [34], and
more [40]. Another prominent example is the Semantic Web which is composed of RDF/OWL
data. These are often very huge graphs with rich content. Here, reachability queries are often
necessary to deduce relationships among the objects.

There are two straightforward solutions to the reachability problem: The first is to answer
each query individually with a graph traversal algorithm, such as breadth-first search (BFS)
or depth-first search (DFS), in worst-case O (m + n) time and O (n) space. Secondly, we can pre-
compute a full all-pairs reachability matrix in an initialization step and answer all ensuing queries
in worst-case constant time. In return, this approach suffers from a space complexity of O (n2) and
an initialization time of O (n ·m) using the Floyd–Warshall algorithm [6, 7, 35] or starting a graph
traversal at each vertex in turn. Alternatively, the initialization step can be performed in O (nω)
via fast matrix multiplication, where O (nω) is the time required to multiply two n × n matrices
(2 ≤ ω < 2.38 [20]). With increasing graph size however, both the initialization time and space
complexity of this approach become impractical. We, therefore, strive for alternative algorithms
which decrease these complexities whilst still providing fast query lookups.

Contribution. In this article, we study a variety of approaches that are able to support fast reachabil-

ity queries. All of these algorithms perform some kind of preprocessing on the graph and then use
the collected data to answer reachability queries in a timely manner. Based on simple observations,
we provide a new algorithm, O’Reach, that can improve the query time for a wide range of cases
over state-of-the-art reachability algorithms at the expense of some additional precomputation
time and space or be run standalone. Furthermore, we show that previous algorithms are signifi-
cantly sped up when combined with our new approach in almost all scenarios. In addition, we show
that the expected query performance of various algorithms does not only depend on the type of
graph, but also on the ratio of successful queries, i.e., with result reachable. Surprisingly, through
cache effects and a significantly smaller memory footprint, especially unsuccessful reachability

queries can be answered faster than single memory accesses in a precomputed reachability matrix.

2 PRELIMINARIES

Terms and Definitions. Let G = (V ,E) be a simple directed graph with vertex set V and edge
set E ⊆ V × V . As usual, n = |V | and m = |E |. An edge (u,v) is said to be outgoing at u and
incoming at v , and u and v are called adjacent. The out-degree deg+ (u) (in-degree deg− (u)) of a
vertex u is its number of outgoing (incoming) edges. A vertex without incoming (outgoing) edges
is called a source (sink). The out-neighborhood N+ (v) (in-neighborhood N− (v)) of a vertex u is the
set of all vertices v such that (u,v) ∈ E ((v,u) ∈ E). The reverse of an edge (u,v) is an edge
(v,u) = (u,v)R. The reverse GR of a graph G is obtained by keeping the vertices of G, but substi-
tuting each edge (u,v) ∈ E by its reverse, i.e., GR = (V ,ER).

A sequence of vertices s = v0 → · · · → vk = t , k ≥ 0, such that for each pair of con-
secutive vertices vi → vi+1, (vi ,vi+1) ∈ E, is called an s-t path. If such a path exists, s is
said to reach t and we write s →∗ t for short, and s �→∗ t otherwise. The out-reachability

R+ (u) = {v | u →∗ v} (in-reachability R− (u) = {v | v →∗ u}) of a vertex u ∈ V is the set
of all vertices that u can reach (that can reach u).

A weakly connected component (WCC) of G is a maximal set of vertices C ⊆ V such that
∀u,v ∈ C : u →∗ v inG = (V ,E ∪ER), i.e., also using the reverse of edges. Note that if two vertices
u,v reside in different WCCs, then u �→∗ v and v �→∗ u. A strongly connected component

(SCC) of G denotes a maximal set of vertices S ⊆ V such that ∀u,v ∈ S : u →∗ v ∧ v →∗ u in
G. Contracting each SCC S of G to a single vertex vS , called its representative, while preserving

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:3

edges between different SCCs as edges between their corresponding representatives, yields the
condensation GC of G. We denote the SCC a vertex v ∈ V belongs to by S (v). A directed graph G
is strongly connected if it only has a single SCC and acyclic if each SCC is a singleton, i.e., if G has
n SCCs. Observe that G and GR have exactly the same WCCs and SCCs and that GC is a directed

acyclic graph (DAG). WCCs of a graph can be computed in O (n +m) time, e.g., via a BFS that
ignores edge directions. The SCCs of a graph can be computed in linear time [29] as well.

A topological ordering τ : V → N0 of a DAG G is a total ordering of its vertices such that
∀(u,v) ∈ E : τ (u) < τ (v). Note that the topological ordering of G isn’t necessarily unique, i.e.,
there can be multiple different topological orderings. For a vertex u ∈ V , the forward topologi-

cal level F (u) = minτ τ (u), i.e., the minimum value of τ (u) among all topological orderings τ of
G. Consequently, F (u) = 0 if and only if u is a source. The backward topological level B (u) of
u ∈ V is the topological level of u with respect to GR and B (u) = 0 if and only if u is a sink. A
topological ordering, as well as the forward and backward topological levels, can be computed
in linear time [6, 19, 30], see also Section 4.

A reachability query Query(s, t) for a pair of vertices s, t ∈ V is called positive and answered with
true if s →∗ t , and otherwise negative and answered with false. Trivially, Query(v,v) is always
true, which is why we only consider non-trivial queries between distinct vertices s � t ∈ V from
here on. Let P (N) denote the set of all positive (negative) non-trivial queries ofG, i.e., the set of all
(s, t) ∈ V ×V , s � t , such that Query(s, t) is positive (negative). The reachability ρ inG is the ratio
of positive queries among all non-trivial queries, i.e., ρ = |P |

n (n−1) . Note, that due to the restriction

to non-trivial queries,1 0 ≤ ρ ≤ 1. The Reachability problem, studied in this article, consists in an-
swering a sequence of reachability queries for arbitrary pairs of vertices on a given input graphG.

Basic Observations. With respect to processing a reachability Query(s, t) in a graph G for an ar-
bitrary pair of vertices s � t ∈ V , the following basic observations are immediate and have
partially also been noted elsewhere [22]:

(B1) If s is a sink or t is a source, then s �→∗ t .
(B2) If s and t belong to different WCCs of G, then s �→∗ t .
(B3) If s and t belong to the same SCC of G, then s →∗ t .
(B4) If τ (S (t)) < τ (S (s)) for any topological ordering τ of GC, then s �→∗ t .

As mentioned above, the precomputations necessary for Observations (B2) and (B3) can be per-
formed in O (n +m) time. Note, however, that Observations (B3) and (B4) together are equivalent

to asking whether s →∗ t : If s →∗ t and S (s) � S (t), then for every topological ordering τ ,
τ (S (s)) < τ (S (t)). Otherwise, if s �→∗ t , a topological ordering τ with τ (S (t)) < τ (S (s)) can be
computed by topologically sorting GC ∪ {(S (t),S (s))}. Hence, the precomputations necessary for
Observation (B4) would require solving the Reachability problem for all pairs of vertices already.
Furthermore, a DAG can have exponentially many different topological orderings. In consequence,
weaker forms are employed, such as the following [22, 38, 39] (see also Section 4):

(B5) If F (S (t)) < F (S (s)) w. r. t. GC, then s �→∗ t .
(B6) If B (S (s) < B (S (t)) w. r. t. GC, then s �→∗ t .

Assumptions. Following the convention introduced in the preceding work [3, 22, 38, 39] (cf.
Section 3), we only consider Reachability on DAGs from here on and implicitly assume that the
condensation, if necessary, has already been computed and Observation (B3) has been applied.
For better readability, we also drop the use of S (·).

1Otherwise, 1
n
≤ ρ .

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:4 K. Hanauer et al.

3 RELATED WORK

A large amount of research on reachability indices has been conducted. Existing approaches can
roughly be put into three categories: compression of transitive closure [2, 13–15, 32, 34], hop-
labeling-based algorithms [4, 5, 16, 26, 37], as well as pruned search [18, 22, 28, 31, 33, 36, 38, 39].
As Merz and Sanders [22] noted, the first category gives very good query times for small networks
but doesn’t scale very well to large networks (which is the focus of this work). Therefore, we do
not consider approaches based on this technique more closely. Hop labeling algorithms typically
build paths from labels that are stored for each vertex. For example, in 2-hop labeling, each vertex
stores two sets containing vertices it can reach in the given graph as well as in the reverse graph.
A query can then be reduced to the set intersection problem. Pruned-search-based approaches
precompute information to speed up queries by pruning the search.

Due to its volume, it is impossible to compare against all previous work. We mostly follow
the methodology of Merz and Sanders [22] and focus on five recent techniques. The two most
recent hop-labeling-based approaches are TF [3] and PPL [37]. In the pruned search category,
the three most recent approaches are PReaCH [22], IP [36], and BFL [28]. We now go into more
detail:
TF. The work by Cheng et al. [3] uses a data structure called topological folding. On the con-

densation DAG, the authors define a topological structure that is obtained by recursively folding
the structure in half each time. Using this topological structure, the authors create labels that
help to quickly answer reachability queries.
PPL. Yano et al. [37] use pruned landmark labeling and pruned path labeling as labels for

their reachability queries. In general, the method follows the 2-hop labeling technique mentioned
above, which stores sets of vertices for each vertex v and reduces queries to the set intersec-
tion problem. Their techniques are able to reduce the size of the stored labels and hence im-
prove query time and space consumption.
PReaCH. Merz and Sanders [22] apply the approach of contraction hierarchies [9, 10] known for

shortest-path queries to the reachability problem. The method first tries to answer queries by using
pruning and precomputed information such as topological levels (Observation (B5) and (B6)). It
adopts and improves techniques from GRAIL [38, 39] for that task, which is distinctly outperformed
by PReaCH in the subsequent experiments. Should these techniques not answer the query, PReaCH
instead performs a bidirectional BFS using the computed hierarchy, i.e., for a Query(s, t) the BFS
only considers neighboring vertices with larger topological levels and along the CH. The overall
approach is simple and guarantees linear space and near linear preprocessing time.
IP. Wei et al. [36] use a randomized labeling approach by applying independent permutations

on the labels. Contrary to other labeling approaches, IP checks for set-containment instead of set-
intersection. Therefore, IP tries to answer negative queries by checking for at least one vertex that
it is contained in only one of the two sets, where each set can consist of at most kIP vertices. If
this test fails, IP checks another label, which contains precomputed reachability information from
the hIP vertices with largest out-degree, and otherwise falls back to DFS.
BFL. Su et al. [28] propose a labeling method which is based on IP, but additionally uses Bloom

filters for storing and comparing labels, which are then used to answer negative queries. As pa-
rameters, BFL accepts sBFL and dBFL, where sBFL denotes the length of the Bloom filters stored for
each vertex and dBFL controls the false positive rate. By default, dBFL = 10 · sBFL.

Table 1 subsumes the time and space complexities of the new algorithm O’Reach that we in-
troduce in Section 4 as well as all algorithms mentioned in this article except for TF, where the
expressions describing the theoretical complexities are bulky and quite complex themselves.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:5

Table 1. Time and Space Complexity of Reachability Algorithms

Algorithm Initialization Time Index Size (Byte) Queries: Time Space

BFS/DFS O (1) 0 O (n +m) O (n)
Full matrix O (n · (n +m)) n2/8 O (1) O (1)
PPL [37] O (n logn +m) O (n logn) O (logn) O (logn)
PReaCH [22] O (m + n logn) 56n O (1) / O (n +m) O (n)
IP(kIP, hIP) [36] O ((kIP + hIP) (n +m)) O ((kIP + hIP)n) O (kIP) / O (kIP · n · ρ2) O (n)
BFL(sBFL) [28] O (sBFL · (n +m)) 2� sBFL

8
n O (sBFL) / O (sBFL · n +m) O (n)

O’Reach(d,k,p) (Section 4) O ((d + kp) (n +m)) (12 + 12d + 2�k
8
)n O (k + d + 1) / O (n +m) O (n)

Parameters: kIP: #permutations, hIP: #vertices with precomputed R+ (·), sBFL: size of Bloom filter (bits), ρ : reachability
in G , d : #topological orderings, k : #supportive vertices, p : #candidates per supportive vertex.

4 O’REACH: FASTER REACHABILITY VIA OBSERVATIONS

In this section, we propose our new algorithm O’Reach, which is based on a set of simple, yet
powerful observations that enable us to answer a large proportion of reachability queries in
constant time and brings together techniques from both hop labeling and pruned search. Un-
like regular hop-labeling-approaches, however, its initialization time is linear. As a further plus,
our algorithm is configurable via multiple parameters and extremely space-efficient with an in-
dex of only 38n Byte in the most space-saving configuration that could handle all instances used
in Section 5 and uses all features.

Overview. The hop labeling technique used in our algorithm is inspired by a recent result for
experimentally faster reachability queries in a dynamic graph by Hanauer et al. [11]. The idea
here is to speed up reachability queries based on a selected set of so-called supportive vertices, for
which complete out- and in-reachability is maintained explicitly. This information is used in three
simple observations, which allow to answer matching queries in constant time. In our algorithm,
we transfer this idea to the static setting. We further increase the ratio of queries answerable in
constant time by a new perspective on topological orderings and their conflation with DFS, which
provides additional reachability information and further increases the ratio of queries answerable
in constant time. In case we cannot answer a query via an observation, we fall back to either a
pruning bidirectional BFS or one of the existing algorithms.

In the following, we switch the order and first discuss topological orderings in depth, followed
by our adaptation of supportive vertices. For both parts, consider a reachability Query(s, t) for
two vertices s, t ∈ V with s � t .

4.1 Extended Topological Orderings

Taking up the observation that topological orderings can be used to answer a reachability query
decisively negative, we first investigate how Observation (B4) can be used most effectively in prac-
tice. Before we dive deeper into this subject, let us briefly review some facts concerning topo-
logical orderings and reachability in general.

Theorem 4.1. LetN (τ) ⊆ N denote the set of negative queries a topological ordering τ can answer,

i.e., the set of all (s, t) ∈ N such that τ (t) < τ (s), and let ρ− (τ) = N (τ)/N be the answerable negative

query ratio.

(i) The reachability in any DAG is at most 50%. In this case, the topological ordering is unique.

(ii) Any topological ordering τ witnesses the non-reachability between exactly 50% of all pairs of

distinct vertices. Therefore, ρ− (τ) ≥ 50%.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:6 K. Hanauer et al.

(iii) Every topological ordering of the same DAG can answer the same ratio of all negative queries

via Observation (B4), i.e., for two topological orderings τ , τ ′: ρ− (τ) = ρ− (τ ′).

(iv) For two different topological orderings τ � τ ′ of a DAG, N (τ) � N (τ ′).

Proof. Let G be a DAG.

(i) AsG is acyclic, there is at least one topological ordering τ ofG. Then, for every edge (u,v) of
G, τ (u) < τ (v), which implies that each vertex u can reach at most all those vertices w � u
with τ (u) < τ (w). Consequently, a vertex u with τ (u) = i can reach at most n − i − 1 other

vertices (note that i ≥ 0). Thus, the reachability in G is at most 1
n (n−1)

∑n−1
i=0 (n − i − 1) =

1
n (n−1)

∑n−1
j=0 j = n (n−1)

n (n−1) ·2 =
1
2 . Conversely, assume that the reachability in G is 1

2 . Then, each
vertex u with τ (u) = i reaches exactly all n − i − 1 other vertices ordered after it, which
implies that there exists no other topological ordering τ ′ with τ ′(u) > τ (u). By induction on
i , the topological ordering of G is unique.

(ii) Let τ be an arbitrary topological ordering of G. Then, each vertex u with τ (u) = i can
certainly reach those vertices v with τ (v) < τ (u). Hence, τ witnesses the non-reachability

of exactly
∑n−1

i=1 i = n (n−1)
2 pairs of distinct vertices.

(iii) As Observation (B4) corresponds exactly to the non-reachability between those pairs of ver-
tices witnessed by the topological ordering, the claim follows directly from (ii).

(iv) As τ � τ ′, there is at least one i ∈ N0 such that τ (u) = i = τ ′(v) and u � v . Let j = τ (v). If
j > i , the number of non-reachabilities from v to another vertex witnessed by τ exceeds the
number of those witnessed by τ ′, and falls behind it otherwise. In both cases, the difference
in numbers immediately implies a difference in the set of vertex pairs, which proves the
claim. �

In consequence, it is pointless to look for one particularly good topological ordering. Instead,
to get the most out of Observation (B4), we need topological orderings whose sets of answerable
negative queries differ greatly, such that their union covers a large fraction of N . Note that both
forward and backward topological levels each represent the set of topological orderings that can
be obtained by ordering the vertices in blocks grouped by their level and arbitrarily permuting
the vertices in each block. Different algorithms [6, 19, 29] for computing a topological ordering in
linear time have been proposed over the years, with Kahn’s algorithm [19] in combination with
a queue being one that always yields a topological ordering represented by forward topological
levels. We, therefore, complement the forward and backward topological levels by stack-based
approaches, as in Kahn’s algorithm [19] in combination with a stack or Tarjan’s DFS-based algo-
rithm [29] for computing the SCCs of a graph, which as a by-product also yields a topological
ordering of the condensation. To diversify the set of answerable negative queries further, we ad-
ditionally randomize the order in which vertices are processed in case of ties and also compute
topological orderings on the reverse graph, in analogy to backward topological levels.

We next show how, with a small extension, the stack-based topological orderings mentioned
above can be used to additionally answer positive queries. To keep the description concise, we
concentrate on Tarjan’s algorithm [29] in the following and reduce it to the part relevant for ob-
taining a topological ordering of a DAG. In short, the algorithm starts a DFS at an arbitrary vertex
s ∈ S , where S ⊆ V is a given set of vertices to start from. Whenever it visits a vertex v , it
marks v as visited and recursively visits all unvisited vertices in its out-neighborhood. On return,
it prepends v to the topological ordering. A loop over S = V ensures that all vertices are visited.
Note that although the vertices are visited in DFS order, the topological ordering is different from
a DFS numbering as it is constructed “from back to front” and corresponds to a reverse sorting
according to what is also called finishing time of each vertex.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:7

Fig. 1. (a) Extended Topological Sorting. (b) Three extended topological orderings of two graphs: The labels

correspond to the order in the start set S . If the label is empty, the vertex need not be in S or can have

any larger number. The brackets to the left show the range [τ (v),τH (v)], the braces to the right the range

[τ (v),τX (v)].

To answer positive queries, we exploit the invariant that when visiting a vertex v , all yet un-
visited vertices reachable from v will be prepended to the topological ordering prior to v being
prepended. Consequently, v can certainly reach all vertices in the topological ordering between
v and, exclusively, the vertex w that was at the front of the topological ordering when v was vis-
ited. Let x denote the vertex preceding w in the final topological ordering, i.e., the vertex with
the largest index that was reached recursively from v . For a topological ordering τ constructed
in this way, we call τ (x) the high index of v and denote it with τH (v). Furthermore, v may be
able to also reach w and vertices beyond, which occurs if v →∗ y for some vertex y, but y had
already been visited earlier. We, therefore, additionally track the max index, the largest index of
any vertex that v can reach, and denote it with τX (v). Figure 1(a) shows how to compute an ex-
tended topological ordering with both high and max indices in pseudo-code and highlights our
extensions. Compared to Tarjan’s original version [29], the running time remains unaffected by
our modifications and is still in O (n + m).

Note that neither max nor high indices yield an ordering of V : Every vertex that is visited re-
cursively starting from v and before vertex x with τ (x) = τH (v), inclusively, has the same high
index as v , and the high index of each vertex in a graph consisting of a single path, e.g., would be
n – 1. In particular, neither max nor high index forms a DFS numbering and also differ in definition
and use from the DFS finishing times ϕ̂ used in PReaCH, where a vertex v can certainly reach ver-
tices with DFS number up to ϕ̂ and certainly none beyond. Conversely,v may be able to also reach
vertices with a smaller DFS number than its own, which cannot occur in a topological ordering.

If ExtendedTopSort is run on the reverse graph, it yields a topological ordering τ ′ and high
and max indices τ ′H and τ ′X , such that reversing τ ′ yields again a topological ordering τ of the
original graph. Furthermore, τL (v) := n − 1 − τ ′H (v) is a low index for each vertex v , which de-
notes the smallest index of a vertex in τ that can certainly reach v , i.e., the out-reachability of
v is replaced by in-reachability. Analogously, τN (v) := n − 1 − τ ′X (v) is a min index in τ and
no vertex u with τ (u) < τN (v) can reach v .

The following observations show how such an extended topological ordering τ can be used
to answer both positive and negative reachability queries:

(T1) If τ (s) ≤ τ (t) ≤ τH (s), then s →∗ t .
(T2) If τ (t) > τX (s), then s �→∗ t .
(T3) If τ (t) = τX (s), then s →∗ t .

(T4) If τL (t) ≤ τ (s) ≤ τ (t), then s →∗ t .
(T5) If τ (s) < τN (t), then s �→∗ t .
(T6) If τ (s) = τN (t), then s →∗ t .

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:8 K. Hanauer et al.

Recall that by definition, τ (s) ≤ τH (s) ≤ τX (s) and τN (t) ≤ τL (t) ≤ τ (t). Figure 1(b) depicts three
examples of extended topological orderings. In contrast to negative queries, not every extended
topological ordering is equally effective in answering positive queries, and it can be arbitrarily bad,
as shown in the extremes on the left (worst) and at the center (best) of Figure 1(b):

Theorem 4.2. Let P (τ) ⊆ P be the set of positive queries an extended topological ordering τ can

answer and let ρ+ (τ) = P (τ)/P be the answerable positive query ratio. Then, 0 ≤ ρ+ (τ) ≤ 1.

Instead, the effectiveness of an extended topological ordering depends positively on the size
of the ranges [τ (v),τH (v)] and [τL (v),τ (v)], and negatively on [τH (v),τX (v)] and [τN (v),τL (v)]
which in turn depend on the recursion depths during construction and the order of recursive
calls. The former two can be maximized if the first, non-recursive call to Visit in line 4 in
ExtendedTopSort always has a source as its argument, i.e., if the algorithm’s parameter S corre-
sponds to the set of all sources. Clearly, this still guarantees that every vertex is visited.

In addition to the forward and backward topological levels, O’Reach thus computes a set
of d extended topological orderings starting from sources, where d is a tuning parameter, and
d/2 of them are obtained via the reverse graph. It then applies Observation (B4) as well as
Observations (T1)–(T6) to all extended topological orderings.

4.2 Supportive Vertices

We now show how to apply and improve the idea of supportive vertices in the static setting. A
vertex v is supportive if the set of vertices that v can reach and that can reach v , R+ (v) and R− (v),
respectively, have been precomputed and membership queries can be performed in sublinear time.
We can then answer reachability queries using the following simple observations [11]:

(S1) If s ∈ R− (v) and t ∈ R+ (v) for any v ∈ V , then s →∗ t .
(S2) If s ∈ R+ (v) and t � R+ (v) for any v ∈ V , then s �→∗ t .
(S3) If s � R− (v) and t ∈ R− (v) for any v ∈ V , then s �→∗ t .

To apply these observations, our algorithm selects a set of k supportive vertices during the ini-
tialization phase. In contrast to the original use scenario in the dynamic setting, where the graph
changes over time and it is difficult to choose “good” supportive vertices that can help to answer
many queries, the static setting leaves room for further optimizations here: With respect to Obser-
vation (S1), we consider a supportive vertex v “good” if |R+ (v) | · |R− (v) | is large as it maximizes
the possibility that s ∈ R− (v) ∧ t ∈ R+ (v). With respect to Observation (S2) and (S3), we expect
a “good” supportive vertex to have out- or in-reachability sets, respectively, of size close to n

2 ,
i.e., when |R+ (v) | · |V \ R+ (v) | or |R− (v) | · |V \ R− (v) |, respectively, are maximal. Furthermore,
to increase total coverage and avoid redundancy, the set of queries Query(s, t) covered by two
different supportive vertices should ideally overlap as little as possible.
O’Reach takes a parameter k specifying the number of supportive vertices to pick. Intuitively

speaking, we expect vertices in the topological “mid-levels” to be better candidates than those
at the ends, as their out- and in-reachabilities (or non-reachabilities) are likely to be more bal-
anced. Furthermore, if all vertices on one forward (backward) level i were supportive, then every

Query(s, t) with F (s) < i < F (t) (B (t) < i < B (s)) could be answered using only Observa-
tion (S1). As finding a “perfect” set of supportive vertices is computationally expensive and we
strive for linear preprocessing time, we experimentally evaluated different strategies for the selec-
tion process. Due to page limits, we only describe the most successful one: A forward (backward)
level i is called central, if 1

5Lmax ≤ i ≤ 4
5Lmax, where Lmax is the maximum topological level. A level

i is called slim if there are at most h vertices having this level, where h is a parameter to O’Reach.
We first compute a set of candidates of size at most k · p that contains all vertices on the slim

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:9

forward or backward levels, arbitrarily discarding vertices as soon as the threshold k ·p is reached.
p is another parameter to O’Reach and together with k controls the size of the candidate set. If
the threshold is not reached, we fill up the set of candidates by picking the missing number of ver-
tices uniformly at random from all other vertices whose forward level is central. In the next step,
the out- and in-reachabilities of all candidates are obtained and the k vertices v with the largest
|R+ (v) | · |R− (v) | are chosen as supportive vertices. This strategy primarily optimizes for Observa-
tion (S1), but worked better in experiments than strategies that additionally tried to optimize for
Observations (S2) and (S3). The time complexity of this process is in O (kp (n +m) + kp log(kp)).

We remark that this is a general-purpose approach that has shown to work well across dif-
ferent types of instances, albeit possibly at the expense of an increased initialization time. It
seems natural that more specialized routines for different graph classes can improve both run-
ning time and coverage.

4.3 The Complete Algorithm

Given a graph G and a sequence of queries Q , we summarize in the following how O’Reach pro-
ceeds. During initialization, it performs the following steps:

Step 1: Compute the WCCs.

Step 2: Compute forward/backward topological levels.

Step 3: Obtain d random extended topological orderings.

Step 4: Pick k supportive vertices, compute R+ (·) and R− (·).
Steps 1 and 2 run in linear time. As shown in Sections 4.1 and 4.2, the same applies to Steps 3
and 4, assuming that all parameters are constants. The required space is linear for all steps. The
reachability index consists of the following information for each vertex v : one integer for the
WCC, one integer each for F (v) and B (v), three integers for each of the d extended topologi-
cal orderings τ (τ (v),τH (v)/τL (v),τX (v)/τN (v)), two bits for each of the k supportive vertices,
indicating its reachability to/from v . For graphs with and n ≤ 232, 4 Byte per integer suffice.
Furthermore, we group the bits encoding the reachabilities to and from the supportive vertices,
respectively, and represent them each by one suitably sized integer, e.g., using uint8_t (8 bit),
for k ≤ 8 supportive vertices. As the smallest integer has at least 8 bit on most architectures,
we store 12 + 12d + 2 · � k

8
 Byte per vertex.
For each query Query(s, t), O’Reach tries to answer it using one of the observations in the or-

der given below, which on the one hand has been optimized by some preliminary experiments
on a small subset of benchmark instances (see Section 5 for details) and on the other hand strives
for a fair alternation between “positive” and “negative” observations to avoid overfitting. Note
that all observation-based tests run in constant time. As soon as one of them can answer the
query affirmatively, the result is returned immediately. A test leading to a positive or negative
answer is marked as or , respectively.

Test 1: s = t?

Test 2: topological levels (B5), (B6).

Test 3: k supportive vertices, positive (S1).

Test 4: first topological ordering (B4), (T1), (T2), (T3).

Test 5: k supportive vertices, negative (S2), (S3).

Test 6: remaining d − 1 topological orderings (B4), (T1)/(T4), (T2)/(T5), (T3)/(T6).

Test 7: different WCCs (B2).

Observe that the tests for Observations (S1)–(S3) can each be implemented easily using boolean
logic, which allows for a concurrent test of all supports whose reachability information is encoded

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:10 K. Hanauer et al.

in one accordingly-sized integer: For Observation (S1), it suffices to test whether r− (s) ∧ r+ (t) > 0,
and r+ (s) ∧ ¬r+ (t) > 0 and ¬r− (s) ∧ r− (t) > 0 for Observations (S2) and (S3), where r+ and
r− hold the respective forward and backward reachability information in the same order for all
supports. Each test hence requires at most one comparison of two integers plus at most two ele-
mentary bit operations. Also, note that Observation (B1) is implicitly tested by Observations (B5)
and (B6). Using the data structure described above, our algorithm requires at most one mem-
ory transfer for s and one for t for each Query(s, t) that is answerable by one of the observa-
tions. Note that there are more observations that allow to identify a negative query than a pos-
itive query, which is why we expect a more pronounced speedup for the former. However, as
stated in Theorem 4.1, the reachability in DAGs is always less than 50%, which justifies a bias
towards an optimization for negative queries.

If the query can not be answered using any of these tests, we instead fall back to either another
algorithm or a bidirectional BFS with pruning, which uses these tests for each newly encountered
vertexv in a subquery Query(v, t) (forward step) or Query(s,v) (backward step). If a subquery can
be answered decisively positive by a test, the bidirectional BFS can immediately answer Query(s, t)
positively. Otherwise, if a subquery is answered decisively negative by a test, the encountered
vertex v is no longer considered (pruning step). If the subquery could not be answered by a test,
the vertex v is added to the queue as in a regular (bidirectional) BFS.

5 EXPERIMENTAL EVALUATION

We evaluated our new algorithm O’Reach as a preprocessor to various recent state-of-the-art al-
gorithms listed below against running these algorithms on their own. Furthermore, we use as an
additional fallback solution the pruned bidirectional BFS (pBiBFS). Our experimental study fol-
lows the methodology in [22] and comprises the algorithms PPL [37], TF [3], PReaCH [22], IP [36],
and BFL [28]. Moreover, our evaluation is the first that directly relates IP and BFL to PReaCH and
studies the performance of IP and BFL separately for successful (positive) and unsuccessful (neg-

ative) reachability queries. For reasons of comparison, we also assess the query performance of
a full reachability matrix by computing the transitive closure of the input graph entirely during
initialization, storing it in a matrix using 1 bit per pair of vertices, and answering each query by a
single memory lookup. We refer to this algorithm simply as Matrix. As the reachability in DAGs
is small and cache locality can influence lookup times, we also experimented with various hash
set implementations. However, none was faster or more memory-efficient than Matrix.

5.1 Setup and Methodology

We implemented O’Reach in C++142 with pBiBFS as a built-in fallback strategy. For PPL,3 TF,3

PReaCH,4 IP,5 and BFL6 we used the original C++ implementation in each case. All source code was
compiled with GCC 7.5.0 and full optimization (-O3). The experiments were run on a Linux ma-
chine under Ubuntu 18.04 with kernel 4.15 on four AMD Opteron 6174 CPUs clocked at 2.2 GHz
with 512 kB and 6 MB L2 and L3 cache, respectively, and 12 cores per CPU. Overall, the machine
has 48 cores and a total of 256 GB of RAM. Unless indicated otherwise, each experiment was run
sequentially and exclusively on one processor and its local memory. As non-local memory ac-
cesses incur a much higher cost, an exception to this rule was only made for Matrix, where we

2Source code and instances are available from https://oreach.taa.univie.ac.at.
3Provided directly by the authors.
4https://github.com/fiji-flo/preach2014/tree/master/original_code.
5https://github.com/datourat/IP-label-for-graph-reachability.
6https://github.com/BoleynSu/bfl.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://oreach.taa.univie.ac.at
https://github.com/fiji-flo/preach2014/tree/master/original_code
https://github.com/datourat/IP-label-for-graph-reachability
https://github.com/BoleynSu/bfl

O’Reach: Even Faster Reachability in Large Graphs 4.2:11

would otherwise have been able to only run twelve instead of 29 instances. We also parallelized
the initialization phase for Matrix, where the transitive closure is computed, using 48 threads.
However, all queries were processed sequentially.

To counteract artifacts of measurement and accuracy, we ran each algorithm five times on each
instance and in general use the median for the evaluation. As O’Reach uses randomization during
initialization, we instead report the average running time over five different seeds. For IP and
BFL, which are randomized in the same way, but do not accept a seed, we just give the average
over five repetitions. We note that also taking the median instead or increasing the number of
repetitions or seeds does not change the overall picture.

Instances. To facilitate comparability, we adopt the instances used in the articles introducing
PReaCH [22] and TF [3], which overlap with those used to evaluate IP [36] and BFL [28], and
which are available either from the GRAIL code repository7 or the Stanford Network Analysis
Platform SNAP [21]. Furthermore, we extended the set of benchmark graphs by further instance
sizes and Delaunay graphs. Table A.4 provides a detailed overview. As we only consider DAGs,
all instances are condensations of their respective originals, if they were not acyclic already. We
also adopt the grouping of the instances as in [22, 39] and provide only a short description of
the different sets in the following.

Kronecker. These instances were generated by the RMAT generator for the Graph500 bench-
mark [23] and oriented acyclically from smaller to larger node ID. The name encodes the number
of vertices 2i as kron_logni . Random: Graphs generated according to the Erdős-Renyí modelG (n,m)
and oriented acyclically from smaller to larger node ID. The name encodes n = 2i and m = 2j as
randni-j. Delaunay: Delaunay graphs from the 10th DIMACS Challenge [1, 8]. delaunay_ni is a De-
launay triangulation of 2i random points in the unit square. Large real: Introduced in [39], these
instances represent citation networks (citeseer.scc, citeseerx, cit-Patents), a taxonomy graph (go-

uniprot), as well as excerpts from the RDF graph of a protein database (uniprotm22, uniprotm100,
uniprotm150). Small real dense: Among these instances, introduced in [17], are again citation net-
works (arXiv, pubmed_sub, citeseer_sub), a taxonomy graph (go_sub), as well as one obtained from
a semantic knowledge database (yago_sub). Small real sparse: These instances were introduced
in [18] and represent XML documents (xmark, nasa), metabolic networks (amaze, kegg) or originate
from pathway and genome databases (all others). SNAP: The e-mail network graph (e-mail-EuAll),
peer-to-peer network (p2p-Gnutella31), social network (soc-LiveJournal1), web graph (web-Google),
as well as the communication network (wiki-Talk) are part of SNAP and were first used in [3].

Queries. Following the methodology of [22], we generated three sets of 100,000 queries each:
positive, negative, and random. Each set consists of random queries, which were generated by pick-
ing two vertices uniformly at random and filtering out negative or positive queries for the positive

and negative query sets, respectively. The fourth query set, mixed, is a randomly shuffled union of
all queries from positive and negative and hence contains 200,000 pairs of vertices. As the order of
the queries within each set had an observable effect on the running time due to caching effects and
memory layout, we randomly shuffled every query set five times and used a different permutation
for each repetition of an experiment to ensure equal conditions for all algorithms.

5.2 Experimental Results

We ran O’Reach with k = 16 supportive vertices, picked from 1,200 candidates (p = 75, h = 8)
and d = 4 extended topological orderings. We ran IP with the two configurations used also by the

7https://code.google.com/archive/p/grail/.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://code.google.com/archive/p/grail/

4.2:12 K. Hanauer et al.

authors [36] and refer to the resulting algorithms as IP(s) (sparse,hIP = kIP = 2) and IP(d) (dense,
hIP = kIP = 5). Similarly, we evaluated BFL [28] with configuration sparse as BFL(s) (sBFL = 64)
and dense as BFL(d) (sBFL = 160), following the presets given by the authors.

Average query times. Table A.5 lists the average time per query for the query sets negative and
positive. All missing values are due to a memory requirement of more than 32 GB (TF) and Matrix
(256 GB). For each instance and query set, the running time of the fastest algorithm is printed
in bold. If Matrix was fastest, also the running time of the second-best algorithm is highlighted.
Besides Matrix, the table shows the running times of PReaCH, PPL, IP(d), and BFL(d) alone as well
as multiple versions for O’Reach: one with a pruned bidirectional BFS (O’R +pBiBFS) as fallback
as well as one per competitor (O’R +. . .), where O’Reach was run without fallback and the queries
left unanswered were fed to the competitor. Analogously, the running times for IP(s), BFL(s),
and TF alone and as a fallback for O’Reach are given in Table A.7.

Our results by and large confirm the performance comparison of PReaCH, PPL, and TF conducted
by Merz and Sanders [22]. PReaCH was the fastest on three out of five Kronecker graphs for the
negative query set, once beaten by O’R +PReaCH and O’R +PPL each, whereas PPL and O’R +PPL
dominated all others on the positive query set in this class as well as on three of the five ran-
dom graphs, while O’R +TF was slightly faster on the other two. In contrast to the study in [22],
TF is outperformed slightly by PPL on random instances for the positive query set. PReaCH was
also the dominating approach on the small real sparse and SNAP instances in the aforementioned
study [22]. By contrast, it was outperformed on these classes here by O’Reach with almost any
fallback on all instances for the positive query set, and by either IP(d) or BFL(s) on almost all
instances for the negative query set. On the Delaunay and large real instances, BFL(s) often was
the fastest algorithm on the set of negative queries. The results also reveal that BFL and in par-
ticular IP have a weak spot in answering positive queries. On average over all instances, O’R +PPL
had the fastest average query time both for negative and positive queries.

Notably, Matrix was outperformed quite often, especially for queries in the set negative, which
correlates with the fact that a large portion of these queries could be answered by constant-time
observations (see also the detailed analysis of observation effectiveness below) and is due to its
larger memory footprint. Across all instances and seeds, more than 95 % of all queries in this set
could be answered by O’Reach directly. On the set positive, the average query time for Matrix
was in almost all cases less than on the negative query set, which is explained by the small reach-
ability of the instances and a resulting higher spatial locality and better cacheability of the few
and naturally clustered one-entries in the matrix. Consequently, this effect was distinctly reduced
for the mixed query set, as shown in Table A.6.

There are some instances where O’Reach had a fallback rate of over 90 % for the positive query
set, e.g., on cit-Patents, which is clearly reflected in the running time. Except for PPL, all algo-
rithms had difficulties with positive queries on this instance. Conversely, the fallback rate on all
uniprotenc_∗ instances and citeseer.scc, e.g., was 0 %. On average across all instances and seeds,
O’Reach could answer over 70 % of all positive queries by constant-time observations.

The results on the query sets random and mixed are similar and listed in Tables A.6 and A.8.
Once again, O’R +PPL showed the fastest query time on average across all instances for both query
sets. As the reachability in a DAG is low in general (see also Theorem 4.1) and particularly in
the benchmark instances, the average query times for random resemble those for negative. On the
other hand, the results for the mixed query set are more similar to those for the positive query
set, as the relative differences in performance among the algorithms are more pronounced there.
Table 2 compactly shows the average query time over all instances for each query set. Only PPL
and O’R +PPL achieved an average query time of less than 1 µs (and even less than 0.35 µs).

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:13

Table 2. Average Query Time Per Algorithm and Query Set

The fastest time for each query set is highlighted.

Table 3. Mean Speedups with O’Reach Plus Fallback Over Pure Fallback Algorithm

Values greater 1.00 are highlighted.

Speedups by O’Reach. We next investigate the relative speedup of O’Reach with different fall-
back solutions over running only the fallback algorithms. Table A.9 lists the ratios of the average
query time of each competitor algorithm run standalone divided by the average query time of
O’Reach plus that algorithm as fallback, for all four query sets. A compact version is also given
in Table 3. In the large majority of cases, using O’Reach as a preprocessor resulted in a speedup,
except in case of negative or random queries for BFL and partially IP on the large real instances
as well as for PReaCH and partially again IP on the small real sparse and SNAP instances. The
largest speedup of around 105 could be achieved for BFL on kegg for random queries. The mean
speedup (geometric) is at least 1.29 for all fallback algorithms on the query sets positive, random,
and mixed, where the maximum was reached for IP(s) on positive queries with a factor of 4.21.
Only for purely negative queries, IP(d) and BFL(s) were a bit faster alone in the mean values.
Figure A.2 gives some more insight into the distribution of the values and shows that the combina-
tion with O’Reach led to distinct speedups for all algorithms on a large majority of the instances
on the positive and mixed query set, and also for random. For the negative query set, the combi-
nation with O’Reach could in particular speed up the average query time for PPL on all instances,
for TF on more than 75 % of the instances, and for PReaCH and BFL(d) still on around half of
the instances. In summary, given that the algorithms are often already faster than single memory
lookups, the speedups achieved by O’Reach are quite high.

Initialization Times (Table A.10). On all graphs, BFL(s) had the fastest initialization time, fol-
lowed by BFL(d) and PReaCH. For O’Reach, the overhead of computing the comparatively large
out- and in-reachabilities of all 1,200 candidates for k = 16 supportive vertices is clearly reflected
in the running time on denser instances and can be reduced greatly if lower parameters are chosen,
albeit at the expense of a slightly reduced query performance, e.g., for k = 8. PPL often consumed
a lot of time in this step, especially on denser instances, with a maximum of 2.6 h on randn20-23.

Based on the average query time per instance, the minimum number of random queries neces-

sary to amortize the additional investment in initialization time if O’Reach is run as preprocessor
is between 9.6 thousand (O’R +BFL(d)) and 499 thousand (O’R +PReaCH). Counting cases where
O’Reach could not achieve a speedup in the average query time as infinity, the median number

of random queries required for amortization is between 2.5 million (O’R +BFL(d)) and 101 million
(O’R +IP(d)). For the on average fastest algorithm, O’R +PPL, the initialization cost is recovered
after 210 thousand (nasa) to 6.15 billion (kron_logn21) random queries, which equals about 0.77 %
(nasa) and 0.14 % (kron_logn21) of all vertex pairs, respectively.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:14 K. Hanauer et al.

Effectiveness of Observations. We collected a vast amount of statistical data to perform an anal-
ysis of the effectiveness of the different observations used in O’Reach. To make the analysis more
robust, we added additional seeds and increased the number to 25 here. For each observation, we
maintained a separate counter, which was increased whenever a query could be answered by an
observation. If an observation included multiple tests, as in case of those based on topological
orderings ((B4), (T1)–(T6)) or on supportive vertices ((S1)–(S3)), the counter was only increased
once per observation, even if, e.g., (B4) applied for two topological orderings or (S1) applied for
multiple supportive vertices. We then obtained the average effectiveness for each observation as
the mean ratio of the counter value over the number of queries we want to consider, taken over
all seeds and all instances.8 The results are also shown in Table A.12.

First, we look only at fast queries, i.e., those queries that could be answered without a fallback.
We increased the counter for all observations that could answer a query for this analysis, not
just the first in order, which is why there may be overlaps (one query can be answered multiple
times). Across all query sets, the most effective observation was the negative basic observation on
topological orderings, (B4), which could answer 54 % of all fast queries. As the average reachability
in the random query set is very low, negative queries predominate in the overall picture. It thus
does not come as a surprise that the most effective observation is a negative one. On the negative

query set, it could answer even 84 % of all fast queries. The negative observations second to (B4) in
effectiveness were those looking at the forward and backward topological levels, Observation (B5)
and (B6), which could answer around 74.5 % each on the negative query set and around 47.5 % of all
fast queries. The observations using the max and min indices of extended topological orderings,
(T2) and (T5), could answer 26 % and 19 % of the fast queries in the negative query set, and the
observations based on supportive vertices, (S2) and (S3), 19 % and 12 %, respectively.

After lowering the number of topological orderings from d = 4 to d = 2, (B4) was equally
effective as (B5) and (B6), each of which could answer around 48 % of all fast queries and 75 %
of those in the negative query set. Observe that decreasing d negatively affects the number of
fast queries, which in turn leads to slightly increased ratios for (B5) and (B6). For Observations
(T2) and (T5), the effectiveness was reduced to 21 % and 16 % on the negative query set, and to
13 % and 10 % across all query sets.

The most effective positive observation and the second-best among all query sets, was the
supportive-vertices-based Observation (S1), which could answer around 25 % of all fast queries
and 66 % in the positive query set. Follow-up observations were the ones using high and low in-
dices, (T1) and (T4), with 21 % and 23 % effectiveness for the positive query set, and around 7.5 %
across all query sets. The remaining two, (T3) and (T6), could answer 10 % and 5 % in the positive set.

Reducing the number of supportive vertices from k = 16 to k = 8 led to a small diminution
of the effectiveness of Observation (S1) to around 64.5 % on the set of positive queries, both if the
number of candidates to choose from was kept equal (p = 150) or reduced analogously (p = 75).
Reducing the number of topological orderings to d = 2 resulted in a slight deterioration in case of
(T1) and (T4) to 19 % and 21 %, and to 5 % with respect to the positive query set.

Among all fast queries that could be answered by only one observation, the most effective ob-
servation was the positive supportive-vertices-based Observation (S1) with 38 % for all query sets
and 65 % for the positive query set, followed by the negative basic observation using topological
orderings, (B4), with around 29 % for all query sets and 63 % for the negative query set.

Looking now at the entire query sets, our statistics show that 95 % of all queries could be an-

swered via an observation on the negative set. In 70 % of all cases, (B5) in the second test, which
uses topological forward levels, could already answer the query. In further 16 % of all cases, the

8The statistics were obtained in a slightly different way in [12].

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:15

observation based on topological backward levels, (B6), was successful. On the positive query
set, the fallback rate was around 29 % and hence higher than on the negative query set. 52 % of
all queries in this set could be answered by the supportive-vertices-based observation (S1), and
the high and low indices of extended topological orderings (T1) and (T4) were responsible for
another 7 % and 4 %, respectively. Observe that here, the first observation in the order that can
answer a query “wins the point”, i.e., the effectiveness here depends on the order and there are
no overlaps in the reported effectiveness.

Memory Consumption. Table A.11 lists the memory each algorithm used for their reachability

index. As O’Reach was configured with k = 16 and d = 4, its index size is 64n Byte. Consequently,
the reachability indices of O’Reach, PReaCH, PPL, IP, BFL, and, with one exception for TF, fit in
the L3 cache of 6 MB for all small real instances. For Matrix, this was only the case for the four
smallest instances from the small real sparse set, three of the small real dense ones, and the small-
est Kronecker graph, which is clearly reflected in its average query time for the negative, random,
and, to a slightly lesser extent, mixed query sets. Whereas for O’Reach, PReaCH, and Matrix, the
index size depends solely on the number of vertices, IP, BFL, PPL, and TF consumed more mem-
ory the larger the density m

n
. IP(s) usually was the most space-efficient and never used more

than 395 MB, followed by BFL(s) (429 MB), IP(d) (440 MB), BFL(d) (754 MB), PReaCH (1.3 GB),
O’Reach (1.5 GB), and PPL (4.4 GB). All these algorithms are hence suitable to handle graphs with
several millions of vertices even on hardware with relatively little memory (with respect to current
standards). TF used up to 3.8 GB (randn23-25), but required even more than 64 GB at least during
initialization on all instances where the data is missing in the table.

6 CONCLUSION

In this article, we revisited existing techniques for the static reachability problem and combined
them with new approaches to support a large portion of reachability queries in constant time us-
ing a linear-sized reachability index. Our extensive experimental evaluation shows that in almost
all scenarios, combining any of the existing algorithms with our new techniques implemented
in O’Reach can speed up the query time by several factors. In particular supportive vertices have
proven to be effective to answer positive queries quickly. As a further plus, O’Reach is flexible:
memory usage, initialization time, and expected query time can be influenced directly by three
parameters, which allow to trade space for time or initialization time for query time. Moreover,
our study demonstrates that, due to cache effects, a high investment in space does not neces-
sarily pay off: Reachability queries can often be answered even significantly faster than single
memory accesses in a precomputed full reachability matrix.

The on average fastest algorithm across all instances and types of queries was a combination
of O’Reach and PPL with an average query time of less than 0.35 µs. As the initialization time
of PPL is relatively high, we also recommend O’Reach combined with PReaCH as a less expen-
sive alternative solution with respect to initialization time and partially also memory, which still
achieved an average query time of at most 11.1 µs on all query sets.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:16 K. Hanauer et al.

APPENDIX

A TABLES AND FIGURES

Table A.4. Instances Used in Our Experiments (read /1×103: in thousands)

S%/T %/I%: ratios of (non-isolated) sources/sinks, and isolated vertices. #WCCs(large): #WCCs
total(#WCCs with at least n

10 vertices). Lmax: maximum topological forward/backward level, equals the
diameter. ρ : reachability by experiments.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:17

T
a
b

le
A

.5
.

A
ve

ra
g
e

Qu
er

y
T

im
es

in
µs

fo
r

10
0,

00
0

N
eg

a
ti

ve
(L

eft
)

a
n

d
P

o
si

ti
ve

Qu
er

ie
s

(R
ig

h
t)

H
ig

h
li

gh
te

d
re

su
lt

s
ar

e
th

e
ov

er
al

lb
es

t/
se

co
n

d-
be

st
af

te
r
Ma

tr
ix

pe
r

qu
er

y
se

t
ov

er
a
ll

te
st

ed
al

go
ri

th
m

s.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:18 K. Hanauer et al.

T
a
b

le
A

.6
.

A
ve

ra
g
e

Qu
er

y
T

im
es

in
µs

fo
r

10
0,

00
0

R
a
n

d
o
m

(L
eft

)
a
n

d
20

0,
00

0
M

ix
ed

Qu
er

ie
s

(R
ig

h
t)

H
ig

h
li

gh
te

d
re

su
lt

s
ar

e
th

e
ov

er
al

lb
es

t/
se

co
n

d-
be

st
af

te
r
Ma

tr
ix

pe
r

qu
er

y
se

t
ov

er
a
ll

te
st

ed
al

go
ri

th
m

s.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:19

Table A.7. Average Query Times in µs for 100,000 Negative (Left) and Positive Queries (Right)

Highlighted results are the overall best/second-best after Matrix per query set over all tested algorithms.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:20 K. Hanauer et al.

Table A.8. Average Query Times in µs for 100,000 Random (Left) and 200,000 Mixed Queries (Right)

Highlighted results are the overall best/second-best after Matrix per query set over all tested algorithms.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:21

T
a
b

le
A

.9
.

S
p

ee
d

u
p

s
w

it
h
O’
Re
ac
h

P
lu

s
F

a
ll

b
a
ck

O
ve

r
P

u
re

F
a
ll

b
a
ck

A
lg

o
ri

th
m

V
al

u
es

gr
ea

te
r

1.
00

ar
e

h
ig

h
li

gh
te

d.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:22 K. Hanauer et al.

Table A.10. Median Initialization Time in ms in Five Repetitions

Highlighted results are the overall best. As a single exception, the initialization process for Matrix was run in parallel.
The running time reported here corresponds to the maximum running time of one of the 48 threads used and is,
therefore, not directly comparable to the other running times.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:23

Fig. A.2. Speedups achieved if O’Reach is combined with an algorithm. The boxes extend from the first to

the third quartile, the whiskers show additional values beyond the box and within 1.5 times the interquartile

range. Inside each box, the median is shown as a horizontal black bar. For positive, random, and mixed, where

the maximum speedup was over 100 (positive, random) or over 45 (mixed), outliers are omitted for better

readability (see also Table A.9). A red, dashed horizontal line marks a speedup of 1. Values above this line

show where the combination with O’Reach makes the algorithm faster, values below this line show where

the combination makes the algorithm slower. Note the different range on the y-axis for each queryset.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:24 K. Hanauer et al.

Table A.11. Real Index Size in Memory (in MB)

The smallest value per instance is highlighted.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:25

T
a
b

le
A

.1
2.

E
ff

ec
ti

ve
n

es
s

o
f

E
a
ch

O
b

se
rv

a
ti

o
n

a
s

N
u

m
b

er
o

f
T

im
es

th
e

O
b

se
rv

a
ti

o
n

C
o

u
ld

A
n

sw
er

a
Qu

er
y

O
ve

r
th

e
T
o
ta

l
N

u
m

b
er

o
f

C
o
n

si
d

er
ed

Qu
er

ie
s

in
P

er
ce

n
t

fo
r
k
=

16
,p
=

75
,d
=

4
(T

o
p

)
a
n

d
O

th
er

C
o

n
fi

g
u

ra
ti

o
n

s
(B

o
tt

o
m

)

N
ot

e
th

at
ch

an
gi

n
g

th
e

pa
ra

m
et

er
s

aff
ec

ts
bo

th
th

e
n

u
m

be
r

of
qu

er
ie

s
th

at
ca

n
be

an
sw

er
ed

w
it

h
ou

t
fa

llb
ac

k
(“

fa
st

qu
er

ie
s”

)
as

w
el

la
s

ra
n

do
m

ch
oi

ce
s

m
ad

e
du

ri
n

g
in

it
ia

li
za

ti
on

.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:26 K. Hanauer et al.

REFERENCES

[1] D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. 2014. Benchmarking for graph clustering
and partitioning. In Proceedings of the Encyclopedia of Social Network Analysis and Mining. Springer.

[2] Yangjun Chen and Yibin Chen. 2008. An efficient algorithm for answering graph reachability queries. In Proceedings

of the 24th International Conference on Data Engineering. Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.),
IEEE Computer Society, 893–902. DOI:https://doi.org/10.1109/ICDE.2008.4497498

[3] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-label: A topological-folding labeling scheme
for reachability querying in a large graph. In Proceedings of the ACM SIGMOD International Conference on Management

of Data. Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.), ACM, 193–204. DOI:https://doi.org/10.1145/
2463676.2465286

[4] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. 2006. Fast computation of reachability
labeling for large graphs. In Proceedings of the Advances in Database Technology - EDBT 2006, 10th International Con-

ference on Extending Database Technology. Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes,
Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten Grust, and Christian Böhm (Eds.), Lecture Notes in
Computer Science, Vol. 3896, Springer, 961–979. DOI:https://doi.org/10.1007/11687238_56

[5] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing 32, 5 (2003), 1338–1355. DOI:https://doi.org/10.1137/S0097539702403098

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (3rd ed.). MIT Press, Chapter
Elementary Data Structures.

[7] R. W. Floyd. 1962. Algorithm 97: Shortest path. Communications of the ACM 5, 6 (1962), 345. DOI:https://doi.org/10.
1145/367766.368168

[8] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz von Looz. 2018.
Communication-free massively distributed graph generation. In Proceedings of the 2018 IEEE International Parallel

and Distributed Processing Symposium.
[9] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction hierarchies: Faster and sim-

pler hierarchical routing in road networks. In Proceedings of the International Workshop on Experimental and Efficient

Algorithms. Springer, 319–333.
[10] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact routing in large road networks

using contraction hierarchies. Transportation Science 46, 3 (2012), 388–404.
[11] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. 2020. Faster fully dynamic transitive closure in practice.

In Proceedings of the18th International Symposium on Experimental Algorithms. Simone Faro and Domenico Cantone
(Eds.), Leibniz International Proceedings in Informatics, Vol. 160, Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 14:1–14:14. DOI:https://doi.org/10.4230/LIPIcs.SEA.2020.14

[12] Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2021. O’reach: Even faster reachability in large graphs.
In Proceedings of the19th International Symposium on Experimental Algorithms. David Coudert and Emanuele Natale
(Eds.), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:24. DOI:https://doi.org/10.4230/LIPIcs.SEA.2021.13

[13] H. V. Jagadish. 1990. A compression technique to materialize transitive closure. ACM Transactions on Database Systems

15, 4 (1990), 558–598. DOI:https://doi.org/10.1145/99935.99944
[14] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. 2012. SCARAB: Scaling reachability computation on large

graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data. K. Selçuk Candan,
Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.), ACM, 169–180. DOI:https://doi.org/10.1145/
2213836.2213856

[15] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An efficient reachability indexing scheme
for large directed graphs. ACM Transactions on Database Systems 36, 1 (2011), 7:1–7:44. DOI:https://doi.org/10.1145/
1929934.1929941

[16] Ruoming Jin and Guan Wang. 2013. Simple, fast, and scalable reachability oracle. Proceedings of the VLDB Endowment

6, 14 (2013), 1978–1989. DOI:https://doi.org/10.14778/2556549.2556578
[17] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: A high-compression indexing scheme for reach-

ability query. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. Association
for Computing Machinery, New York, NY, 813–826. DOI:https://doi.org/10.1145/1559845.1559930

[18] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently answering reachability queries on very large
directed graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Jason Tsong-Li
Wang (Ed.), ACM, 595–608. DOI:https://doi.org/10.1145/1376616.1376677

[19] A. B. Kahn. 1962. Topological sorting of large networks. Communications of the ACM 5, 11 (1962), 558–562. DOI:https:
//doi.org/10.1145/368996.369025

[20] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on

Symbolic and Algebraic Computation. K. Nabeshima, K. Nagasaka, F. Winkler, and Á. Szántó (Eds.), ACM, 296–303.
DOI:https://doi.org/10.1145/2608628.2608664

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1007/11687238_56
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/367766.368168
https://doi.org/10.4230/LIPIcs.SEA.2020.14
https://doi.org/10.4230/LIPIcs.SEA.2021.13
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2608628.2608664

O’Reach: Even Faster Reachability in Large Graphs 4.2:27

[21] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved Feb 1,
2021 from http://snap.stanford.edu/data.

[22] F. Merz and P. Sanders. 2014. PReaCH: A fast lightweight reachability index using pruning and contraction hierarchies.
In Proceedings of the European Symposium on Algorithms. A. S. Schulz and D. Wagner (Eds.), Springer, Berlin, 701–712.

[23] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010. Introducing the graph 500. Cray Users

Group 19 (2010), 45–74.
[24] Thomas Reps. 1998. Program analysis via graph reachability. Information and Software Technology 40, 11–12 (1998),

701–726.
[25] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 49–61.
[26] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2004. HOPI: An efficient connection index for complex XML doc-

ument collections. In Proceedings of the Advances in Database Technology - EDBT 2004, 9th International Conference on

Extending Database Technology. Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides,
Manolis Koubarakis, Klemens Böhm, and Elena Ferrari (Eds.), Lecture Notes in Computer Science, Vol. 2992, Springer,
237–255. DOI:https://doi.org/10.1007/978-3-540-24741-8_15

[27] B. Scholz, C. Zhang, and C. Cifuentes. 2008. User-input dependence analysis via graph reachability. In Proceedings of

the 2008 8th IEEE International Working Conference on Source Code Analysis and Manipulation. 25–34.
[28] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. 2017. Reachability querying: Can it be even faster? IEEE Transactions

on Knowledge and Data Engineering 29, 3 (2017), 683–697. DOI:https://doi.org/10.1109/TKDE.2016.2631160
[29] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 2 (1972), 146–160.

DOI:https://doi.org/10.1137/0201010
[30] Robert Endre Tarjan. 1976. Edge-disjoint spanning trees and depth-first search. Acta Informatica 6, 2 (1976), 171–185.
[31] Silke Trißl and Ulf Leser. 2007. Fast and practical indexing and querying of very large graphs. In Proceedings of the

ACM SIGMOD International Conference on Management of Data. Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou
(Eds.), ACM, 845–856. DOI:https://doi.org/10.1145/1247480.1247573

[32] Sebastiaan J. van Schaik and Oege de Moor. 2011. A memory efficient reachability data structure through bit vector
compression. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Timos K. Sellis,
Renée J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis (Eds.), ACM, 913–924. DOI:https://doi.org/10.1145/
1989323.1989419

[33] Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira, and Mohammed J. Zaki. 2014. Reachability queries in very large
graphs: A fast refined online search approach. In Proceedings of the EDBT. 511–522.

[34] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006. Dual labeling: Answering graph reachability
queries in constant time. In Proceedings of the 22nd International Conference on Data Engineering. Ling Liu, Andreas
Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.), IEEE Computer Society, 75. DOI:https://doi.org/10.1109/ICDE.
2006.53

[35] S. Warshall. 1962. A theorem on boolean matrices. Journal of the ACM 9, 1 (1962), 11–12. DOI:https://doi.org/10.1145/
321105.321107

[36] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying: An independent permutation labeling
approach. The VLDB Journal 27, 1 (2018), 1–26. DOI:https://doi.org/10.1007/s00778-017-0468-3

[37] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and scalable reachability queries on graphs by
pruned labeling with landmarks and paths. In Proceedings of the 22nd ACM International Conference on Information and

Knowledge Management. Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi (Eds.), ACM, 1601–1606.
DOI:https://doi.org/10.1145/2505515.2505724

[38] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2010. GRAIL: Scalable reachability index for large graphs.
Proceedings of the VLDB Endowment 3, 1–2 (2010), 276–284. DOI:https://doi.org/10.14778/1920841.1920879

[39] Hilmi Yıldırım, Vineet Chaoji, and Mohammed J. Zaki. 2012. GRAIL: A scalable index for reachability queries in very
large graphs. The VLDB Journal 21, 4 (2012), 509–534.

[40] Jeffrey Xu Yu and Jiefeng Cheng. 2010. Graph reachability queries: A survey. In Proceedings of the Managing and

Mining Graph Data. Charu C. Aggarwal and Haixun Wang (Eds.), Advances in Database Systems, Vol. 40. Springer,
181–215. DOI:https://doi.org/10.1007/978-1-4419-6045-0_6

Received 15 December 2021; accepted 21 July 2022

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-24741-8_15
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/321105.321107
https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1007/978-1-4419-6045-0_6

