O’Reach: Even Faster Reachability in Large Graphs

KATHRIN HANAUER, University of Vienna, Faculty of Computer Science
CHRISTIAN SCHULZ, Heidelberg University
JONATHAN TRUMMER, University of Vienna, Faculty of Computer Science

One of the most fundamental problems in computer science is the reachability problem: Given a directed
graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and combine them
with new approaches to support a large portion of reachability queries in constant time using a linear-
sized reachability index. Our new algorithm 0’Reach can be easily combined with previously developed
solutions for the problem or run standalone.

In a detailed experimental study, we compare a variety of algorithms with respect to their index-building
and query times as well as their memory footprint on a diverse set of instances. Our experiments indicate
that the query performance often depends strongly not only on the type of graph but also on the result, i.e.,
reachable or unreachable. Furthermore, we show that previous algorithms are significantly sped up when
combined with our new approach in almost all scenarios. Surprisingly, due to cache effects, a higher in-
vestment in space doesn’t necessarily pay off: Reachability queries can often be answered even faster than
single memory accesses in a precomputed full reachability matrix.

CCS Concepts: « Theory of computation — Graph algorithms analysis;

Additional Key Words and Phrases: Reachability, static graphs, graph algorithms, reachability index, al-
gorithm engineering

ACM Reference format:

Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2022. O’Reach: Even Faster Reachability in Large
Graphs. J. Exp. Algorithmics 27, 4, Article 4.2 (October 2022), 27 pages.

https://doi.org/10.1145/3556540

1 INTRODUCTION

Graphs are used to model problem settings of various different disciplines. A natural question
that arises frequently is whether one vertex of the graph can reach another vertex via a path of

A preliminary and shorter version of this article has appeared in the proceedings of the Symposium on Experimental
Algorithms [12].

European Research Cor

This project has received funding from the European Research Council (ERC) under the European Union’s Seventh Frame-
work Programme (FP7-2007-2013) (Grant agreement No. 340506).

Authors’ addresses: K. Hanauer and J. Trummer, University of Vienna Faculty of Computer Science Waehringer
Str. 29, 1090 Vienna, Austria; emails: {kathrinhanauer, jonathan.trummer}@univie.ac.at; C. Schulz, Heidelberg Uni-
versity Faculty of Mathematics and Computer Science Im Neuenheimer Feld 205 69120 Heidelberg Germany; email:
christian.schulz@informatik.uni-heidelberg.de.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1084-6654/2022/10-ART4.2
https://doi.org/10.1145/3556540

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://orcid.org/0000-0002-5945-837X
https://orcid.org/0000-0002-2823-3506
https://orcid.org/0000-0002-1086-4756
https://doi.org/10.1145/3556540
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3556540

4.2:2 K. Hanauer et al.

directed edges. Reachability finds application in a wide variety of fields, such as program and
dataflow analysis [24, 25], user-input dependence analysis [27], XML query processing [34], and
more [40]. Another prominent example is the Semantic Web which is composed of RDF/OWL
data. These are often very huge graphs with rich content. Here, reachability queries are often
necessary to deduce relationships among the objects.

There are two straightforward solutions to the reachability problem: The first is to answer
each query individually with a graph traversal algorithm, such as breadth-first search (BFS)
or depth-first search (DFS), in worst-case O(m + n) time and O(n) space. Secondly, we can pre-
compute a full all-pairs reachability matrix in an initialization step and answer all ensuing queries
in worst-case constant time. In return, this approach suffers from a space complexity of O(n?) and
an initialization time of O(n - m) using the Floyd-Warshall algorithm [6, 7, 35] or starting a graph
traversal at each vertex in turn. Alternatively, the initialization step can be performed in O(n®)
via fast matrix multiplication, where O(n®) is the time required to multiply two n X n matrices
(2 < w < 2.38 [20]). With increasing graph size however, both the initialization time and space
complexity of this approach become impractical. We, therefore, strive for alternative algorithms
which decrease these complexities whilst still providing fast query lookups.

Contribution. In this article, we study a variety of approaches that are able to support fast reachabil-
ity queries. All of these algorithms perform some kind of preprocessing on the graph and then use
the collected data to answer reachability queries in a timely manner. Based on simple observations,
we provide a new algorithm, 0’Reach, that can improve the query time for a wide range of cases
over state-of-the-art reachability algorithms at the expense of some additional precomputation
time and space or be run standalone. Furthermore, we show that previous algorithms are signifi-
cantly sped up when combined with our new approach in almost all scenarios. In addition, we show
that the expected query performance of various algorithms does not only depend on the type of
graph, but also on the ratio of successful queries, i.e., with result reachable. Surprisingly, through
cache effects and a significantly smaller memory footprint, especially unsuccessful reachability
queries can be answered faster than single memory accesses in a precomputed reachability matrix.

2 PRELIMINARIES

Terms and Definitions. Let G = (V,E) be a simple directed graph with vertex set V and edge
set E C VXV.Asusual, n = |V| and m = |E|. An edge (u,v) is said to be outgoing at u and
incoming at v, and u and v are called adjacent. The out-degree deg”(u) (in-degree deg (u)) of a
vertex u is its number of outgoing (incoming) edges. A vertex without incoming (outgoing) edges
is called a source (sink). The out-neighborhood N*(v) (in-neighborhood N™(v)) of a vertex u is the
set of all vertices v such that (u,v) € E ((v,u) € E). The reverse of an edge (u,v) is an edge
(v,u) = (u,v)". The reverse G* of a graph G is obtained by keeping the vertices of G, but substi-
tuting each edge (u,v) € E by its reverse, ie., G = (V,E}).

A sequence of vertices s = vy — -+ — v = t, k > 0, such that for each pair of con-
secutive vertices v; — viy1, (V;,vi41) € E, is called an s-t path. If such a path exists, s is
said to reach t and we write s —* t for short, and s /" t otherwise. The out-reachability
R*(u) = {v | u =" v} (in-reachability R (u) = {v | v = u}) of a vertex u € V is the set
of all vertices that u can reach (that can reach u).

A weakly connected component (WCC) of G is a maximal set of vertices C € V such that
Yu,v € C:u - vinG = (V,EUER), ie., also using the reverse of edges. Note that if two vertices
u, v reside in different WCCs, then u /A" v and v /" u. A strongly connected component
(SCC) of G denotes a maximal set of vertices S € V such that Vu,v € S: u - v Av =" uin
G. Contracting each SCC S of G to a single vertex vg, called its representative, while preserving

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:3

edges between different SCCs as edges between their corresponding representatives, yields the
condensation G¢ of G. We denote the SCC a vertex v € V belongs to by S(v). A directed graph G
is strongly connected if it only has a single SCC and acyclic if each SCC is a singleton, i.e., if G has
n SCCs. Observe that G and G* have exactly the same WCCs and SCCs and that G° is a directed
acyclic graph (DAG). WCCs of a graph can be computed in O(n + m) time, e.g., via a BFS that
ignores edge directions. The SCCs of a graph can be computed in linear time [29] as well.

A topological ordering T : V. — Nj of a DAG G is a total ordering of its vertices such that
¥Y(u,v) € E : 7(u) < 7(v). Note that the topological ordering of G isn’t necessarily unique, i.e.,
there can be multiple different topological orderings. For a vertex u € V, the forward topologi-
cal level ¥ (u) = min, r(u), i.e., the minimum value of 7(u) among all topological orderings 7 of
G. Consequently, ¥ (u) = 0 if and only if u is a source. The backward topological level B(u) of
u € V is the topological level of u with respect to G* and B(u) = 0 if and only if u is a sink. A
topological ordering, as well as the forward and backward topological levels, can be computed
in linear time [6, 19, 30], see also Section 4.

A reachability query QUERY(s, t) for a pair of vertices s, t € V is called positive and answered with
true if s —* t, and otherwise negative and answered with false. Trivially, QUERY(v, v) is always
true, which is why we only consider non-trivial queries between distinct vertices s # ¢t € V from
here on. Let (V) denote the set of all positive (negative) non-trivial queries of G, i.e., the set of all
(s,t) € VXV,s # t, such that QUERY(s, t) is positive (negative). The reachability p in G is the ratio
of positive queries among all non-trivial queries, i.e., p = % Note, that due to the restriction
to non-trivial queries,! 0 < p < 1. The Reachability problem, studied in this article, consists in an-
swering a sequence of reachability queries for arbitrary pairs of vertices on a given input graph G.

Basic Observations. With respect to processing a reachability QUERY(s, t) in a graph G for an ar-
bitrary pair of vertices s # t € V, the following basic observations are immediate and have
partially also been noted elsewhere [22]:

(B1) If s is a sink or t is a source, then s /% t.

(B2) If s and t belong to different WCCs of G, then s /A" t.

(B3) If s and t belong to the same SCC of G, then s —* t.

(B4) If £(S(t)) < 7(S(s)) for any topological ordering 7 of G, then s /* .
As mentioned above, the precomputations necessary for Observations (B2) and (B3) can be per-
formed in O(n + m) time. Note, however, that Observations (B3) and (B4) together are equivalent
to asking whether s —* t: If s —* t and S(s) # S(t), then for every topological ordering r,
7(8(s)) < 7(S(t)). Otherwise, if s /5 ¢, a topological ordering 7 with 7(S(t)) < 7(S(s)) can be
computed by topologically sorting G U {(S(t), S(s))}. Hence, the precomputations necessary for
Observation (B4) would require solving the Reachability problem for all pairs of vertices already.
Furthermore, a DAG can have exponentially many different topological orderings. In consequence,
weaker forms are employed, such as the following [22, 38, 39] (see also Section 4):

(B5) If F(S(t)) < F(S(s)) w.r.t. G, then s /* ¢.

(B6) If B(S(s) < B(S(t)) w.r.t. G, then s * ¢.

Assumptions. Following the convention introduced in the preceding work [3, 22, 38, 39] (cf.
Section 3), we only consider Reachability on DAGs from here on and implicitly assume that the
condensation, if necessary, has already been computed and Observation (B3) has been applied.
For better readability, we also drop the use of S(:).

10therwise, % <p.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:4 K. Hanauer et al.

3 RELATED WORK

A large amount of research on reachability indices has been conducted. Existing approaches can
roughly be put into three categories: compression of transitive closure [2, 13-15, 32, 34], hop-
labeling-based algorithms [4, 5, 16, 26, 37], as well as pruned search [18, 22, 28, 31, 33, 36, 38, 39].
As Merz and Sanders [22] noted, the first category gives very good query times for small networks
but doesn’t scale very well to large networks (which is the focus of this work). Therefore, we do
not consider approaches based on this technique more closely. Hop labeling algorithms typically
build paths from labels that are stored for each vertex. For example, in 2-hop labeling, each vertex
stores two sets containing vertices it can reach in the given graph as well as in the reverse graph.
A query can then be reduced to the set intersection problem. Pruned-search-based approaches
precompute information to speed up queries by pruning the search.

Due to its volume, it is impossible to compare against all previous work. We mostly follow
the methodology of Merz and Sanders [22] and focus on five recent techniques. The two most
recent hop-labeling-based approaches are TF [3] and PPL [37]. In the pruned search category,
the three most recent approaches are PReaCH [22], IP [36], and BFL [28]. We now go into more
detail:

TF. The work by Cheng et al. [3] uses a data structure called topological folding. On the con-
densation DAG, the authors define a topological structure that is obtained by recursively folding
the structure in half each time. Using this topological structure, the authors create labels that
help to quickly answer reachability queries.

PPL. Yano et al. [37] use pruned landmark labeling and pruned path labeling as labels for
their reachability queries. In general, the method follows the 2-hop labeling technique mentioned
above, which stores sets of vertices for each vertex v and reduces queries to the set intersec-
tion problem. Their techniques are able to reduce the size of the stored labels and hence im-
prove query time and space consumption.

PReaCH. Merz and Sanders [22] apply the approach of contraction hierarchies [9, 10] known for
shortest-path queries to the reachability problem. The method first tries to answer queries by using
pruning and precomputed information such as topological levels (Observation (B5) and (B6)). It
adopts and improves techniques from GRAIL [38, 39] for that task, which is distinctly outperformed
by PReaCH in the subsequent experiments. Should these techniques not answer the query, PReaCH
instead performs a bidirectional BFS using the computed hierarchy, i.e., for a QUERY(s, t) the BFS
only considers neighboring vertices with larger topological levels and along the CH. The overall
approach is simple and guarantees linear space and near linear preprocessing time.

IP. Wei et al. [36] use a randomized labeling approach by applying independent permutations
on the labels. Contrary to other labeling approaches, IP checks for set-containment instead of set-
intersection. Therefore, IP tries to answer negative queries by checking for at least one vertex that
it is contained in only one of the two sets, where each set can consist of at most krp vertices. If
this test fails, IP checks another label, which contains precomputed reachability information from
the hrp vertices with largest out-degree, and otherwise falls back to DFS.

BFL. Su et al. [28] propose a labeling method which is based on IP, but additionally uses Bloom
filters for storing and comparing labels, which are then used to answer negative queries. As pa-
rameters, BFL accepts sgr. and dgr, where sgr. denotes the length of the Bloom filters stored for
each vertex and dgr controls the false positive rate. By default, dgrp = 10 - sgpL.

Table 1 subsumes the time and space complexities of the new algorithm 0’Reach that we in-
troduce in Section 4 as well as all algorithms mentioned in this article except for TF, where the
expressions describing the theoretical complexities are bulky and quite complex themselves.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:5

Table 1. Time and Space Complexity of Reachability Algorithms

Algorithm Initialization Time Index Size (Byte) Queries: Time Space
BFS/DFS o(1) 0 O(n+m) O(n)
Full matrix O(n-(n+m)) n?/8 o(1) o(1)
PPL [37] O(nlogn + m) O(nlogn) O(logn) O(logn)
PReaCH [22] O(m + nlogn) 56n O(1)/ O(n+m) O(n)
IP(kp, h1p) [36] O((krp + hip)(n+m)) O((kip + hip)n) O(kip) / O(krp - 1+ p?) O(n)
BFL(serL) [28] O(sgrL - (n +m)) 2[ELn O(sgrL) / O(sgrL -n+m) O(n)

0’Reach(d, k, p) (Section4) O((d + kp)(n+m)) (12+ 12d+2|'§'|)n O(k+d+1)/0(n+m) O(n)

Parameters: krp: #permutations, hyp: #vertices with precomputed R*(-), sgr_: size of Bloom filter (bits), p: reachability
in G, d: #topological orderings, k: #supportive vertices, p: #candidates per supportive vertex.

4 O’REACH: FASTER REACHABILITY VIA OBSERVATIONS

In this section, we propose our new algorithm 0’Reach, which is based on a set of simple, yet
powerful observations that enable us to answer a large proportion of reachability queries in
constant time and brings together techniques from both hop labeling and pruned search. Un-
like regular hop-labeling-approaches, however, its initialization time is linear. As a further plus,
our algorithm is configurable via multiple parameters and extremely space-efficient with an in-
dex of only 38n Byte in the most space-saving configuration that could handle all instances used
in Section 5 and uses all features.

Overview. The hop labeling technique used in our algorithm is inspired by a recent result for
experimentally faster reachability queries in a dynamic graph by Hanauer et al. [11]. The idea
here is to speed up reachability queries based on a selected set of so-called supportive vertices, for
which complete out- and in-reachability is maintained explicitly. This information is used in three
simple observations, which allow to answer matching queries in constant time. In our algorithm,
we transfer this idea to the static setting. We further increase the ratio of queries answerable in
constant time by a new perspective on topological orderings and their conflation with DFS, which
provides additional reachability information and further increases the ratio of queries answerable
in constant time. In case we cannot answer a query via an observation, we fall back to either a
pruning bidirectional BFS or one of the existing algorithms.

In the following, we switch the order and first discuss topological orderings in depth, followed
by our adaptation of supportive vertices. For both parts, consider a reachability QUERY(s, t) for
two vertices s,t € V with s # .

4.1 Extended Topological Orderings

Taking up the observation that topological orderings can be used to answer a reachability query
decisively negative, we first investigate how Observation (B4) can be used most effectively in prac-
tice. Before we dive deeper into this subject, let us briefly review some facts concerning topo-
logical orderings and reachability in general.

THEOREM 4.1. Let N (t) C N denote the set of negative queries a topological ordering T can answer,
ie, thesetofall (s,t) € N suchthatt(t) < 7(s), andlet p~(r) = N (r)/N be the answerable negative
query ratio.

(i) The reachability in any DAG is at most 50%. In this case, the topological ordering is unique.

(ii) Any topological ordering T witnesses the non-reachability between exactly 50% of all pairs of
distinct vertices. Therefore, p~(t) > 50%.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:6 K. Hanauer et al.

(iii) Every topological ordering of the same DAG can answer the same ratio of all negative queries
via Observation (B4), i.e., for two topological orderings T, ’: p~(r) = p~(z’).
(iv) For two different topological orderings T # t’ of a DAG, N (t) # N (t').

Proor. Let G be a DAG.

(i) As Gisacyclic, there is at least one topological ordering 7 of G. Then, for every edge (u, v) of
G, 7(u) < 7(v), which implies that each vertex u can reach at most all those vertices w # u
with 7(u) < 7(w). Consequently, a vertex u with 7(u) = i can reach at most n — i — 1 other
vertices (note that i > 0). Thus, the reachability in G is at most ﬁ in—i-1) =

1 n-1; _ n(n-1)

a(n-1) 24j=0] = n{n-1)2

vertex u with 7(u) = i reaches exactly all n — i — 1 other vertices ordered after it, which

implies that there exists no other topological ordering 7” with 7’(u) > 7(u). By induction on

i, the topological ordering of G is unique.

= % Conversely, assume that the reachability in G is % Then, each

(ii) Let 7 be an arbitrary topological ordering of G. Then, each vertex u with 7(u) = i can
certainly reach those vertices v with 7(v) < 7(u). Hence, t witnesses the non-reachability
of exactly ¥} i = 22D

(iii) As Observation (B4) corresponds exactly to the non-reachability between those pairs of ver-
tices witnessed by the topological ordering, the claim follows directly from (ii).

(iv) As v # 7/, there is at least one i € Ny such that 7(u) =i = 7'(v) and u # v. Let j = r(v). If
Jj > i, the number of non-reachabilities from v to another vertex witnessed by 7 exceeds the
number of those witnessed by 7', and falls behind it otherwise. In both cases, the difference
in numbers immediately implies a difference in the set of vertex pairs, which proves the
claim. O

pairs of distinct vertices.

In consequence, it is pointless to look for one particularly good topological ordering. Instead,
to get the most out of Observation (B4), we need topological orderings whose sets of answerable
negative queries differ greatly, such that their union covers a large fraction of N. Note that both
forward and backward topological levels each represent the set of topological orderings that can
be obtained by ordering the vertices in blocks grouped by their level and arbitrarily permuting
the vertices in each block. Different algorithms [6, 19, 29] for computing a topological ordering in
linear time have been proposed over the years, with Kahn’s algorithm [19] in combination with
a queue being one that always yields a topological ordering represented by forward topological
levels. We, therefore, complement the forward and backward topological levels by stack-based
approaches, as in Kahn’s algorithm [19] in combination with a stack or Tarjan’s DFS-based algo-
rithm [29] for computing the SCCs of a graph, which as a by-product also yields a topological
ordering of the condensation. To diversify the set of answerable negative queries further, we ad-
ditionally randomize the order in which vertices are processed in case of ties and also compute
topological orderings on the reverse graph, in analogy to backward topological levels.

We next show how, with a small extension, the stack-based topological orderings mentioned
above can be used to additionally answer positive queries. To keep the description concise, we
concentrate on Tarjan’s algorithm [29] in the following and reduce it to the part relevant for ob-
taining a topological ordering of a DAG. In short, the algorithm starts a DFS at an arbitrary vertex
s € S, where S C V is a given set of vertices to start from. Whenever it visits a vertex v, it
marks v as visited and recursively visits all unvisited vertices in its out-neighborhood. On return,
it prepends v to the topological ordering. A loop over S = V ensures that all vertices are visited.
Note that although the vertices are visited in DFS order, the topological ordering is different from
a DFS numbering as it is constructed “from back to front” and corresponds to a reverse sorting
according to what is also called finishing time of each vertex.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:7

b

(a)

procedure EXTENDEDTOPSORT(G = (V, E), S) (b)I
: for all v € V do v.visited < false

—

— OO0

1:

2

3 i< n—1; initialize 7, 7g, 7x empty

4 for all s € S in random order do VIsIT(s)

5: procedure VIsIT(v) I
6 if v.visited then return

7

8

9

—O—0O0—"0—0—0

v.visited + true; Tp(v) +i; 7x(v) i@ T
for u € N*(v) in random order do
VisiT(u); 7x(v) + max(7x (v), 7x (u)) I 1O
10: T)+—i; 1+i—1
11: return 7, 7, Tx I@J LOJ 10O

Fig. 1. (a) Extended Topological Sorting. (b) Three extended topological orderings of two graphs: The labels
correspond to the order in the start set S. If the label is empty, the vertex need not be in S or can have
any larger number. The brackets to the left show the range [7(v), 7 (v)], the braces to the right the range

[7(v), zx ()]

To answer positive queries, we exploit the invariant that when visiting a vertex v, all yet un-
visited vertices reachable from v will be prepended to the topological ordering prior to v being
prepended. Consequently, v can certainly reach all vertices in the topological ordering between
v and, exclusively, the vertex w that was at the front of the topological ordering when v was vis-
ited. Let x denote the vertex preceding w in the final topological ordering, i.e., the vertex with
the largest index that was reached recursively from v. For a topological ordering 7 constructed
in this way, we call 7(x) the high index of v and denote it with 7y (v). Furthermore, v may be
able to also reach w and vertices beyond, which occurs if v —* y for some vertex y, but y had
already been visited earlier. We, therefore, additionally track the max index, the largest index of
any vertex that v can reach, and denote it with zx (v). Figure 1(a) shows how to compute an ex-
tended topological ordering with both high and max indices in pseudo-code and highlights our
extensions. Compared to Tarjan’s original version [29], the running time remains unaffected by
our modifications and is still in O(n + m).

Note that neither max nor high indices yield an ordering of V: Every vertex that is visited re-
cursively starting from v and before vertex x with 7(x) = ry(v), inclusively, has the same high
index as v, and the high index of each vertex in a graph consisting of a single path, e.g., would be
n — 1. In particular, neither max nor high index forms a DFS numbering and also differ in definition
and use from the DFS finishing times ¢A used in PReaCH, where a vertex v can certainly reach ver-
tices with DFS number up to q§ and certainly none beyond. Conversely, v may be able to also reach
vertices with a smaller DFS number than its own, which cannot occur in a topological ordering.

If ExTENDEDTOPSORT is run on the reverse graph, it yields a topological ordering 7" and high
and max indices 7;; and 74, such that reversing 7’ yields again a topological ordering 7 of the
original graph. Furthermore, 77 (v) := n — 1 — 7/,(v) is a low index for each vertex v, which de-
notes the smallest index of a vertex in 7 that can certainly reach v, i.e., the out-reachability of
v is replaced by in-reachability. Analogously, 7x(v) := n — 1 — 74(v) is a min index in 7 and
no vertex u with 7(u) < 7n(v) can reach v.

The following observations show how such an extended topological ordering 7 can be used
to answer both positive and negative reachability queries:

(T1) If z(s) < 7(t) < ty(s), thens =" 1. (T4) If 7 () < 7(s) < 7(t), thens =" 1.
(T2) If 7(t) > 7x(s), thens /" t. (T5) If 7(s) < =n(t), thens /A7 ¢.
(T3) If 7(t) = 7x(s), thens =" ¢. (T6) If 7(s) = n(t), thens =" t.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:8 K. Hanauer et al.

Recall that by definition, 7(s) < rg(s) < 7x(s) and 75(¢) < 71.(t) < (). Figure 1(b) depicts three
examples of extended topological orderings. In contrast to negative queries, not every extended
topological ordering is equally effective in answering positive queries, and it can be arbitrarily bad,
as shown in the extremes on the left (worst) and at the center (best) of Figure 1(b):

THEOREM 4.2. Let P(t) C P be the set of positive queries an extended topological ordering T can
answer and let p*(t) = P(r)/P be the answerable positive query ratio. Then, 0 < p*(r) < 1.

Instead, the effectiveness of an extended topological ordering depends positively on the size
of the ranges [7(v), 7y (v)] and [71.(v), 7(v)], and negatively on [z (v), 7x (v)] and [zn(v), 71.(v)]
which in turn depend on the recursion depths during construction and the order of recursive
calls. The former two can be maximized if the first, non-recursive call to VisIT in line 4 in
ExTENDEDTOPSORT always has a source as its argument, i.e., if the algorithm’s parameter S corre-
sponds to the set of all sources. Clearly, this still guarantees that every vertex is visited.

In addition to the forward and backward topological levels, 0’Reach thus computes a set
of d extended topological orderings starting from sources, where d is a tuning parameter, and
d/2 of them are obtained via the reverse graph. It then applies Observation (B4) as well as
Observations (T1)-(T6) to all extended topological orderings.

4.2 Supportive Vertices

We now show how to apply and improve the idea of supportive vertices in the static setting. A
vertex v is supportive if the set of vertices that v can reach and that can reach v, R*(v) and R (v),
respectively, have been precomputed and membership queries can be performed in sublinear time.
We can then answer reachability queries using the following simple observations [11]:

(S1) If s € R (v) and t € R*(v) for anyv € V, then s - t.

(S2) If s e R*(v) and t ¢ R*(v) for any v € V, thens /5 ¢.

(S3) If s¢ R (v) and t € R (v) for any v € V, thens /5 ¢.
To apply these observations, our algorithm selects a set of k supportive vertices during the ini-
tialization phase. In contrast to the original use scenario in the dynamic setting, where the graph
changes over time and it is difficult to choose “good” supportive vertices that can help to answer
many queries, the static setting leaves room for further optimizations here: With respect to Obser-
vation (S1), we consider a supportive vertex v “good” if |R*(v)| - |R™(v)] is large as it maximizes
the possibility that s € R"(v) At € R*(v). With respect to Observation (S2) and (S3), we expect
a “good” supportive vertex to have out- or in-reachability sets, respectively, of size close to %,
ie., when [R*(v)| - |V \ R*(v)| or |[R"(v)| - |V \ R (v)|, respectively, are maximal. Furthermore,
to increase total coverage and avoid redundancy, the set of queries QUERY(s, t) covered by two
different supportive vertices should ideally overlap as little as possible.

0’Reach takes a parameter k specifying the number of supportive vertices to pick. Intuitively

speaking, we expect vertices in the topological “mid-levels” to be better candidates than those
at the ends, as their out- and in-reachabilities (or non-reachabilities) are likely to be more bal-
anced. Furthermore, if all vertices on one forward (backward) level i were supportive, then every
QUERY(s, 1) with F(s) < i < F(t) (B(t) < i < B(s)) could be answered using only Observa-
tion (S1). As finding a “perfect” set of supportive vertices is computationally expensive and we
strive for linear preprocessing time, we experimentally evaluated different strategies for the selec-
tion process. Due to page limits, we only describe the most successful one: A forward (backward)
level i is called central, if %Lmax <i< %Lmax, where Ly is the maximum topological level. A level
i is called slim if there are at most h vertices having this level, where h is a parameter to 0’Reach.
We first compute a set of candidates of size at most k - p that contains all vertices on the slim

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:9

forward or backward levels, arbitrarily discarding vertices as soon as the threshold k - p is reached.
p is another parameter to 0’Reach and together with k controls the size of the candidate set. If
the threshold is not reached, we fill up the set of candidates by picking the missing number of ver-
tices uniformly at random from all other vertices whose forward level is central. In the next step,
the out- and in-reachabilities of all candidates are obtained and the k vertices v with the largest
|[R*(v)| - [R™(v)| are chosen as supportive vertices. This strategy primarily optimizes for Observa-
tion (S1), but worked better in experiments than strategies that additionally tried to optimize for
Observations (S2) and (S3). The time complexity of this process is in O(kp(n + m) + kp log(kp)).

We remark that this is a general-purpose approach that has shown to work well across dif-
ferent types of instances, albeit possibly at the expense of an increased initialization time. It
seems natural that more specialized routines for different graph classes can improve both run-
ning time and coverage.

4.3 The Complete Algorithm

Given a graph G and a sequence of queries Q, we summarize in the following how 0’Reach pro-
ceeds. During initialization, it performs the following steps:

Step 1: Compute the WCCs.

Step 2: Compute forward/backward topological levels.
Step 3: Obtain d random extended topological orderings.
Step 4: Pick k supportive vertices, compute R*(-) and R (-).

Steps 1 and 2 run in linear time. As shown in Sections 4.1 and 4.2, the same applies to Steps 3
and 4, assuming that all parameters are constants. The required space is linear for all steps. The
reachability index consists of the following information for each vertex v: one integer for the
WCC, one integer each for ¥ (v) and B(v), three integers for each of the d extended topologi-
cal orderings 7 (z(v), g (v)/7L(v), 7x (v) /TN (V)), two bits for each of the k supportive vertices,
indicating its reachability to/from v. For graphs with and n < 2%, 4Byte per integer suffice.
Furthermore, we group the bits encoding the reachabilities to and from the supportive vertices,
respectively, and represent them each by one suitably sized integer, e.g., using uint8_t (8 bit),
for k < 8 supportive vertices. As the smallest integer has at least 8 bit on most architectures,
we store 12+ 12d +2- |']§'| Byte per vertex.

For each query QUERY(s, t), 0’Reach tries to answer it using one of the observations in the or-
der given below, which on the one hand has been optimized by some preliminary experiments
on a small subset of benchmark instances (see Section 5 for details) and on the other hand strives
for a fair alternation between “positive” and “negative” observations to avoid overfitting. Note
that all observation-based tests run in constant time. As soon as one of them can answer the
query affirmatively, the result is returned immediately. A test leading to a positive or negative
answer is marked as O or @, respectively.

Test1: O s =t?

Test 2: @ @ topological levels (B5), (B6).

Test 3: O k supportive vertices, positive (S1).

Test 4: @ O @ O first topological ordering (B4), (T1), (T2), (T3).

Test 5: @ @ k supportive vertices, negative (S2), (S3).

Test 6: ® O @ O remaining d — 1 topological orderings (B4), (T1)/(T4), (T2)/(T5), (T3)/(T6).
Test 7: @ different WCCs (B2).

Observe that the tests for Observations (S1)—(S3) can each be implemented easily using boolean
logic, which allows for a concurrent test of all supports whose reachability information is encoded

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:10 K. Hanauer et al.

in one accordingly-sized integer: For Observation (S1), it suffices to test whether r~(s) Ar*(¢) > 0,
and r*(s) A =r*(t) > 0 and -r (s) A r (t) > 0 for Observations (S2) and (S3), where r* and
r~ hold the respective forward and backward reachability information in the same order for all
supports. Each test hence requires at most one comparison of two integers plus at most two ele-
mentary bit operations. Also, note that Observation (B1) is implicitly tested by Observations (B5)
and (B6). Using the data structure described above, our algorithm requires at most one mem-
ory transfer for s and one for ¢ for each QUERY(s, t) that is answerable by one of the observa-
tions. Note that there are more observations that allow to identify a negative query than a pos-
itive query, which is why we expect a more pronounced speedup for the former. However, as
stated in Theorem 4.1, the reachability in DAGs is always less than 50%, which justifies a bias
towards an optimization for negative queries.

If the query can not be answered using any of these tests, we instead fall back to either another
algorithm or a bidirectional BFS with pruning, which uses these tests for each newly encountered
vertex v in a subquery QUERY(v, t) (forward step) or QUERY(s, v) (backward step). If a subquery can
be answered decisively positive by a test, the bidirectional BFS can immediately answer QUERY(s, ¢)
positively. Otherwise, if a subquery is answered decisively negative by a test, the encountered
vertex v is no longer considered (pruning step). If the subquery could not be answered by a test,
the vertex v is added to the queue as in a regular (bidirectional) BFS.

5 EXPERIMENTAL EVALUATION

We evaluated our new algorithm 0’Reach as a preprocessor to various recent state-of-the-art al-
gorithms listed below against running these algorithms on their own. Furthermore, we use as an
additional fallback solution the pruned bidirectional BFS (pBiBFS). Our experimental study fol-
lows the methodology in [22] and comprises the algorithms PPL [37], TF [3], PReaCH [22], IP [36],
and BFL [28]. Moreover, our evaluation is the first that directly relates IP and BFL to PReaCH and
studies the performance of IP and BFL separately for successful (positive) and unsuccessful (neg-
ative) reachability queries. For reasons of comparison, we also assess the query performance of
a full reachability matrix by computing the transitive closure of the input graph entirely during
initialization, storing it in a matrix using 1 bit per pair of vertices, and answering each query by a
single memory lookup. We refer to this algorithm simply as Matrix. As the reachability in DAGs
is small and cache locality can influence lookup times, we also experimented with various hash
set implementations. However, none was faster or more memory-efficient than Matrix.

5.1 Setup and Methodology

We implemented 0’Reach in C+14? with pBiBFS as a built-in fallback strategy. For PPL,> TF3?
PReaCH,* IP,> and BFL® we used the original C+ implementation in each case. All source code was
compiled with GCC 7.5.0 and full optimization (-03). The experiments were run on a Linux ma-
chine under Ubuntu 18.04 with kernel 4.15 on four AMD Opteron 6174 CPUs clocked at 2.2 GHz
with 512kB and 6 MB L2 and L3 cache, respectively, and 12 cores per CPU. Overall, the machine
has 48 cores and a total of 256 GB of RAM. Unless indicated otherwise, each experiment was run
sequentially and exclusively on one processor and its local memory. As non-local memory ac-
cesses incur a much higher cost, an exception to this rule was only made for Matrix, where we

2Source code and instances are available from https://oreach.taa.univie.ac.at.
3Provided directly by the authors.
4https://github.com/fiji-flo/preach2014/tree/master/original_code.
Shttps://github.com/datourat/IP-label-for-graph-reachability.
®https://github.com/BoleynSu/bfl.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://oreach.taa.univie.ac.at
https://github.com/fiji-flo/preach2014/tree/master/original_code
https://github.com/datourat/IP-label-for-graph-reachability
https://github.com/BoleynSu/bfl

O’Reach: Even Faster Reachability in Large Graphs 4.2:11

would otherwise have been able to only run twelve instead of 29 instances. We also parallelized
the initialization phase for Matrix, where the transitive closure is computed, using 48 threads.
However, all queries were processed sequentially.

To counteract artifacts of measurement and accuracy, we ran each algorithm five times on each
instance and in general use the median for the evaluation. As 0’Reach uses randomization during
initialization, we instead report the average running time over five different seeds. For IP and
BFL, which are randomized in the same way, but do not accept a seed, we just give the average
over five repetitions. We note that also taking the median instead or increasing the number of
repetitions or seeds does not change the overall picture.

Instances. To facilitate comparability, we adopt the instances used in the articles introducing
PReaCH [22] and TF [3], which overlap with those used to evaluate IP [36] and BFL [28], and
which are available either from the GRAIL code repository’ or the Stanford Network Analysis
Platform SNAP [21]. Furthermore, we extended the set of benchmark graphs by further instance
sizes and Delaunay graphs. Table A.4 provides a detailed overview. As we only consider DAGs,
all instances are condensations of their respective originals, if they were not acyclic already. We
also adopt the grouping of the instances as in [22, 39] and provide only a short description of
the different sets in the following.

Kronecker. These instances were generated by the RMAT generator for the Graph500 bench-
mark [23] and oriented acyclically from smaller to larger node ID. The name encodes the number
of vertices 2’ as kron_logni. Random: Graphs generated according to the Erdés-Renyi model G(n, m)
and oriented acyclically from smaller to larger node ID. The name encodes n = 2" and m = 2/ as
randni-j. Delaunay: Delaunay graphs from the 10th DIMACS Challenge [1, 8]. delaunay_ni is a De-
launay triangulation of 2! random points in the unit square. Large real: Introduced in [39], these
instances represent citation networks (citeseer.scc, citeseerx, cit-Patents), a taxonomy graph (go-
uniprot), as well as excerpts from the RDF graph of a protein database (uniprotm22, uniprotm100,
uniprotm150). Small real dense: Among these instances, introduced in [17], are again citation net-
works (arXiv, pubmed_sub, citeseer_sub), a taxonomy graph (go_sub), as well as one obtained from
a semantic knowledge database (yago_sub). Small real sparse: These instances were introduced
in [18] and represent XML documents (xmark, nasa), metabolic networks (amaze, kegg) or originate
from pathway and genome databases (all others). SNAP: The e-mail network graph (e-mail-EuAll),
peer-to-peer network (p2p-Gnutella31), social network (soc-LiveJournall), web graph (web-Google),
as well as the communication network (wiki-Talk) are part of SNAP and were first used in [3].

Queries. Following the methodology of [22], we generated three sets of 100,000 queries each:
positive, negative, and random. Each set consists of random queries, which were generated by pick-
ing two vertices uniformly at random and filtering out negative or positive queries for the positive
and negative query sets, respectively. The fourth query set, mixed, is a randomly shuffled union of
all queries from positive and negative and hence contains 200,000 pairs of vertices. As the order of
the queries within each set had an observable effect on the running time due to caching effects and
memory layout, we randomly shuffled every query set five times and used a different permutation
for each repetition of an experiment to ensure equal conditions for all algorithms.

5.2 Experimental Results

We ran 0’ Reach with k = 16 supportive vertices, picked from 1,200 candidates (p = 75, h = 8)
and d = 4 extended topological orderings. We ran IP with the two configurations used also by the

"https://code.google.com/archive/p/grail/.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://code.google.com/archive/p/grail/

4.2:12 K. Hanauer et al.

authors [36] and refer to the resulting algorithms as IP(s) (sparse, hip = kip = 2) and IP(d) (dense,
hip = kip = 5). Similarly, we evaluated BFL [28] with configuration sparse as BFL(S) (sgrL = 64)
and dense as BFL(d) (sgr. = 160), following the presets given by the authors.

Average query times. Table A.5 lists the average time per query for the query sets negative and
positive. All missing values are due to a memory requirement of more than 32 GB (TF) and Matrix
(256 GB). For each instance and query set, the running time of the fastest algorithm is printed
in bold. If Matrix was fastest, also the running time of the second-best algorithm is highlighted.
Besides Matrix, the table shows the running times of PReaCH, PPL, IP(d), and BFL (d) alone as well
as multiple versions for 0’Reach: one with a pruned bidirectional BFS (0’R +pBiBFS) as fallback
as well as one per competitor (0’R +...), where 0’ Reach was run without fallback and the queries
left unanswered were fed to the competitor. Analogously, the running times for IP(s), BFL(s),
and TF alone and as a fallback for 0’Reach are given in Table A.7.

Our results by and large confirm the performance comparison of PReaCH, PPL, and TF conducted
by Merz and Sanders [22]. PReaCH was the fastest on three out of five Kronecker graphs for the
negative query set, once beaten by 0’R+PReaCH and 0’R +PPL each, whereas PPL and O’R +PPL
dominated all others on the positive query set in this class as well as on three of the five ran-
dom graphs, while 0’R+TF was slightly faster on the other two. In contrast to the study in [22],
TF is outperformed slightly by PPL on random instances for the positive query set. PReaCH was
also the dominating approach on the small real sparse and SNAP instances in the aforementioned
study [22]. By contrast, it was outperformed on these classes here by 0’Reach with almost any
fallback on all instances for the positive query set, and by either IP(d) or BFL(s) on almost all
instances for the negative query set. On the Delaunay and large real instances, BFL(s) often was
the fastest algorithm on the set of negative queries. The results also reveal that BFL and in par-
ticular IP have a weak spot in answering positive queries. On average over all instances, 0’ R +PPL
had the fastest average query time both for negative and positive queries.

Notably, Matrix was outperformed quite often, especially for queries in the set negative, which
correlates with the fact that a large portion of these queries could be answered by constant-time
observations (see also the detailed analysis of observation effectiveness below) and is due to its
larger memory footprint. Across all instances and seeds, more than 95 % of all queries in this set
could be answered by 0’Reach directly. On the set positive, the average query time for Matrix
was in almost all cases less than on the negative query set, which is explained by the small reach-
ability of the instances and a resulting higher spatial locality and better cacheability of the few
and naturally clustered one-entries in the matrix. Consequently, this effect was distinctly reduced
for the mixed query set, as shown in Table A.6.

There are some instances where 0’Reach had a fallback rate of over 90 % for the positive query
set, e.g., on cit-Patents, which is clearly reflected in the running time. Except for PPL, all algo-
rithms had difficulties with positive queries on this instance. Conversely, the fallback rate on all
uniprotenc_* instances and citeseer.scc, e.g., was 0%. On average across all instances and seeds,
0’Reach could answer over 70 % of all positive queries by constant-time observations.

The results on the query sets random and mixed are similar and listed in Tables A.6 and A.8.
Once again, 0’R +PPL showed the fastest query time on average across all instances for both query
sets. As the reachability in a DAG is low in general (see also Theorem 4.1) and particularly in
the benchmark instances, the average query times for random resemble those for negative. On the
other hand, the results for the mixed query set are more similar to those for the positive query
set, as the relative differences in performance among the algorithms are more pronounced there.
Table 2 compactly shows the average query time over all instances for each query set. Only PPL
and 0’R +PPL achieved an average query time of less than 1 us (and even less than 0.35 ps).

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:13

Table 2. Average Query Time Per Algorithm and Query Set

0°R+ 0’R+ 0’R+ 0°R+ 0°R+ 0’R+ 0°R+
Query set pBiBFS PReaCH PReaCH PPL PPL IP(s) IP(s) 1IP(d) 1IP(d) BFL(s) BFL(s) BFL(d) BFL(d)

random 3.523 1.596 1.483 0.271 0.149 12.865 11.193 9.778 8.516 6.645 5.073 5.063 3.361
mixed 19.964 6.351 6.102 0.352 0.258 80.572 73.625 60.352 56.433 32.456 28.496 22.002 17.541
positive 37.554 11.508 11.069 0.399 0.345 156.016 145.532 118.835 109.014 62.338 54.329 42.632 33.699
negative 2.382 1.188 1.154 0.260 0.149 5.342 5.059 3.727 3.793 2496 2.506 1.345 1.358

The fastest time for each query set is highlighted.

Table 3. Mean Speedups with 0’Reach Plus Fallback Over Pure Fallback Algorithm

— negative — — positive — — random — — mixed —

Instance PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d)

GEOMETRIC MEAN 1.10 2.22 092 1.06 1.33 1.90 3.98 3.14 1.29 2.53 1.26 2.40 1.29 2.04 2.77 2.31
Rario Runtive Aves 1.03 1.75 098 0.99 1.04 1.16 1.09 1.27 1.08 1.82 1.15 1.51 1.04 1.36 1.07 1.25
AVERAGE 1.13 2.32 098 1.35 1.41 2.25 5.87 6.25 1.33 2.69 1.41 8.22 1.33 2.23 3.37 3.63

Values greater 1.00 are highlighted.

Speedups by 0’ Reach. We next investigate the relative speedup of 0’Reach with different fall-
back solutions over running only the fallback algorithms. Table A.9 lists the ratios of the average
query time of each competitor algorithm run standalone divided by the average query time of
0’Reach plus that algorithm as fallback, for all four query sets. A compact version is also given
in Table 3. In the large majority of cases, using 0’Reach as a preprocessor resulted in a speedup,
except in case of negative or random queries for BFL and partially IP on the large real instances
as well as for PReaCH and partially again IP on the small real sparse and SNAP instances. The
largest speedup of around 105 could be achieved for BFL on kegg for random queries. The mean
speedup (geometric) is at least 1.29 for all fallback algorithms on the query sets positive, random,
and mixed, where the maximum was reached for IP(s) on positive queries with a factor of 4.21.
Only for purely negative queries, IP(d) and BFL(s) were a bit faster alone in the mean values.
Figure A.2 gives some more insight into the distribution of the values and shows that the combina-
tion with 0’Reach led to distinct speedups for all algorithms on a large majority of the instances
on the positive and mixed query set, and also for random. For the negative query set, the combi-
nation with 0’ Reach could in particular speed up the average query time for PPL on all instances,
for TF on more than 75 % of the instances, and for PReaCH and BFL(d) still on around half of
the instances. In summary, given that the algorithms are often already faster than single memory
lookups, the speedups achieved by 0’Reach are quite high.

Initialization Times (Table A.10). On all graphs, BFL(s) had the fastest initialization time, fol-
lowed by BFL(d) and PReaCH. For 0’ Reach, the overhead of computing the comparatively large
out- and in-reachabilities of all 1,200 candidates for k = 16 supportive vertices is clearly reflected
in the running time on denser instances and can be reduced greatly if lower parameters are chosen,
albeit at the expense of a slightly reduced query performance, e.g., for k = 8. PPL often consumed
a lot of time in this step, especially on denser instances, with a maximum of 2.6 h on randn20-23.

Based on the average query time per instance, the minimum number of random queries neces-
sary to amortize the additional investment in initialization time if 0’Reach is run as preprocessor
is between 9.6 thousand (0’R+BFL(d)) and 499 thousand (0’R +PReaCH). Counting cases where
0’Reach could not achieve a speedup in the average query time as infinity, the median number
of random queries required for amortization is between 2.5 million (0’R +BFL(d)) and 101 million
(0’R+IP(d)). For the on average fastest algorithm, 0’R+PPL, the initialization cost is recovered
after 210 thousand (nasa) to 6.15 billion (kron_logn21) random queries, which equals about 0.77 %
(nasa) and 0.14 % (kron_logn21) of all vertex pairs, respectively.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:14 K. Hanauer et al.

Effectiveness of Observations. We collected a vast amount of statistical data to perform an anal-
ysis of the effectiveness of the different observations used in 0’ Reach. To make the analysis more
robust, we added additional seeds and increased the number to 25 here. For each observation, we
maintained a separate counter, which was increased whenever a query could be answered by an
observation. If an observation included multiple tests, as in case of those based on topological
orderings ((B4), (T1)-(T6)) or on supportive vertices ((S1)—(S3)), the counter was only increased
once per observation, even if, e.g., (B4) applied for two topological orderings or (S1) applied for
multiple supportive vertices. We then obtained the average effectiveness for each observation as
the mean ratio of the counter value over the number of queries we want to consider, taken over
all seeds and all instances.® The results are also shown in Table A.12.

First, we look only at fast queries, i.e., those queries that could be answered without a fallback.
We increased the counter for all observations that could answer a query for this analysis, not
just the first in order, which is why there may be overlaps (one query can be answered multiple
times). Across all query sets, the most effective observation was the negative basic observation on
topological orderings, (B4), which could answer 54 % of all fast queries. As the average reachability
in the random query set is very low, negative queries predominate in the overall picture. It thus
does not come as a surprise that the most effective observation is a negative one. On the negative
query set, it could answer even 84 % of all fast queries. The negative observations second to (B4) in
effectiveness were those looking at the forward and backward topological levels, Observation (B5)
and (B6), which could answer around 74.5 % each on the negative query set and around 47.5 % of all
fast queries. The observations using the max and min indices of extended topological orderings,
(T2) and (T5), could answer 26 % and 19 % of the fast queries in the negative query set, and the
observations based on supportive vertices, (52) and (S3), 19 % and 12 %, respectively.

After lowering the number of topological orderings from d = 4 to d = 2, (B4) was equally
effective as (B5) and (B6), each of which could answer around 48 % of all fast queries and 75 %
of those in the negative query set. Observe that decreasing d negatively affects the number of
fast queries, which in turn leads to slightly increased ratios for (B5) and (B6). For Observations
(T2) and (T5), the effectiveness was reduced to 21% and 16 % on the negative query set, and to
13% and 10 % across all query sets.

The most effective positive observation and the second-best among all query sets, was the
supportive-vertices-based Observation (S1), which could answer around 25 % of all fast queries
and 66 % in the positive query set. Follow-up observations were the ones using high and low in-
dices, (T1) and (T4), with 21 % and 23 % effectiveness for the positive query set, and around 7.5 %
across all query sets. The remaining two, (T3) and (T6), could answer 10 % and 5 % in the positive set.

Reducing the number of supportive vertices from k = 16 to k = 8 led to a small diminution
of the effectiveness of Observation (S1) to around 64.5 % on the set of positive queries, both if the
number of candidates to choose from was kept equal (p = 150) or reduced analogously (p = 75).
Reducing the number of topological orderings to d = 2 resulted in a slight deterioration in case of
(T1) and (T4) to 19% and 21 %, and to 5 % with respect to the positive query set.

Among all fast queries that could be answered by only one observation, the most effective ob-
servation was the positive supportive-vertices-based Observation (S1) with 38 % for all query sets
and 65 % for the positive query set, followed by the negative basic observation using topological
orderings, (B4), with around 29 % for all query sets and 63 % for the negative query set.

Looking now at the entire query sets, our statistics show that 95 % of all queries could be an-
swered via an observation on the negative set. In 70 % of all cases, (B5) in the second test, which
uses topological forward levels, could already answer the query. In further 16 % of all cases, the

8The statistics were obtained in a slightly different way in [12].

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:15

observation based on topological backward levels, (B6), was successful. On the positive query
set, the fallback rate was around 29 % and hence higher than on the negative query set. 52 % of
all queries in this set could be answered by the supportive-vertices-based observation (S1), and
the high and low indices of extended topological orderings (T1) and (T4) were responsible for
another 7 % and 4 %, respectively. Observe that here, the first observation in the order that can
answer a query “wins the point”, i.e., the effectiveness here depends on the order and there are
no overlaps in the reported effectiveness.

Memory Consumption. Table A.11 lists the memory each algorithm used for their reachability
index. As 0’ Reach was configured with k = 16 and d = 4, its index size is 64n Byte. Consequently,
the reachability indices of 0’Reach, PReaCH, PPL, IP, BFL, and, with one exception for TF, fit in
the L3 cache of 6 MB for all small real instances. For Matrix, this was only the case for the four
smallest instances from the small real sparse set, three of the small real dense ones, and the small-
est Kronecker graph, which is clearly reflected in its average query time for the negative, random,
and, to a slightly lesser extent, mixed query sets. Whereas for 0’Reach, PReaCH, and Matrix, the
index size depends solely on the number of vertices, IP, BFL, PPL, and TF consumed more mem-
ory the larger the density 7. IP(s) usually was the most space-efficient and never used more
than 395 MB, followed by BFL(s) (429 MB), IP(d) (440 MB), BFL(d) (754 MB), PReaCH (1.3 GB),
0’Reach (1.5 GB), and PPL (4.4 GB). All these algorithms are hence suitable to handle graphs with
several millions of vertices even on hardware with relatively little memory (with respect to current
standards). TF used up to 3.8 GB (randn23-25), but required even more than 64 GB at least during
initialization on all instances where the data is missing in the table.

6 CONCLUSION

In this article, we revisited existing techniques for the static reachability problem and combined
them with new approaches to support a large portion of reachability queries in constant time us-
ing a linear-sized reachability index. Our extensive experimental evaluation shows that in almost
all scenarios, combining any of the existing algorithms with our new techniques implemented
in 0’Reach can speed up the query time by several factors. In particular supportive vertices have
proven to be effective to answer positive queries quickly. As a further plus, 0’Reach is flexible:
memory usage, initialization time, and expected query time can be influenced directly by three
parameters, which allow to trade space for time or initialization time for query time. Moreover,
our study demonstrates that, due to cache effects, a high investment in space does not neces-
sarily pay off: Reachability queries can often be answered even significantly faster than single
memory accesses in a precomputed full reachability matrix.

The on average fastest algorithm across all instances and types of queries was a combination
of 0’Reach and PPL with an average query time of less than 0.35ps. As the initialization time
of PPL is relatively high, we also recommend 0’Reach combined with PReaCH as a less expen-
sive alternative solution with respect to initialization time and partially also memory, which still
achieved an average query time of at most 11.1us on all query sets.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:16 K. Hanauer et al.

APPENDIX
A TABLES AND FIGURES

Table A.4. Instances Used in Our Experiments (read /1x10%: in thousands)

Instance n/103 m/103 m S% T% I% #WCCs(large) Lmax %
Kronecker

kron_logn12 41 1170 2855 108 109 7.8 1(1) 281 27.4760
kron_lognl6 65.5 2456.1 3748 12,5 12,6 15.6 2(1) 1002 21.2187
kron_lognl7 131.1 5114.0 39.02 12.0 12.1 17.7 5(1) 1361 19.4544
kron_logn20 1048.6 44619.4 42.55 12.7 124 24.2 45(1) 3234 5.8195
kron_logn21 2097.2 910409 43.41 126 12,5 26.4 94(1) 4340 1.2150
Random

randn20-21 1048.6 20972 2.00 22.7 227 1.8 808(1) 19 0.0012
randn20-22 1048.6 4194.3 4.00 124 124 0.0 2(1) 31 0.0352
randn20-23 1048.6 8388.6 8.00 6.2 6.3 0.0 1(1) 48 1.9067
randn23-24 8388.6 16777.2 2.00 22.7 22.7 1.8 6019(1) 20 0.0001
randn23-25 8388.6 33554.4 4.00 12.5 124 0.0 6(1) 29 0.0044
Delaunay

delaunay nl5 32.8 98.3 3.00 13.1 7.7 0.0 1(1) 393 0.4380
delaunay 120 1048.6 3145.7 3.00 13.3 8.1 0.0 1(1) 788 0.0093
delaunay n22 4194.3 125829 3.00 13.3 8.1 0.0 1(1) 1084 0.0020
Large real

citeseer.scc 693.9 3123 045 375 4.1 509 28663(1) 13 0.0002
citeseerx 6540.4 15011.3 2.30 8.7 878 0.0 47076(1) 59 0.1367
cit-Patents 3774.8 16518.9 4.38 13.7 44.6 0.0 3627(1) 32 0.0409
g0 _ uniprot 6968.0 34769.3 4.99 99.7 0.0 0.0 1(1) 20 0.0004
uniprotenc_ 22m 1595.4 15954 1.00 97.5 0.0 0.0 1(1) 4 0.0001
uniprotenc_ 100m 16087.3 16087.3 1.00 90.7 0.0 0.0 1(1) 9 0.0000
uniprotenc_150m 25037.6 25037.6 1.00 86.5 0.0 0.0 1(1) 10 0.0000
Small real dense

go_sub 6.8 134 197 09 454 0.0 1(1) 16 0.2258
pubmed _sub 9.0 40.0 445 29.0 522 0.0 1(1) 19 0.6458
yago_sub 6.6 424 6.38 77.9 4.0 0.0 1(1) 13 0.1506
citeseer_sub 10.7 44.3 413 426 174 0.0 1(1) 36 0.3672
arXiv 6.0 66.7 11.12 16.0 10.4 0.0 1(1) 167 15.4643
Small real sparse

amaze 3.7 3.6 097 321 41.8 9.9 22(1) 16 17.2337
kegg 3.6 44 1.22 326 452 0.1 22(1) 26 20.1636
nasa 5.6 65 117 0.0 556 0.0 1(1) 35 0.5284
xmark 6.1 7.1 1.16 0.0 58.3 0.0 1(1) 38 1.4513
vchocyc 9.5 10.3 1.09 0.0 928 0.0 1(1) 21 0.1517
mtbrv 9.6 10.4 1.09 0.0 93.0 0.0 1(1) 22 0.1511
anthra 12.5 13.1 1.05 0.0 94.7 0.0 2(1) 16 0.0951
€coo 12.6 13.4 1.06 0.0 94.1 0.0 1(1) 22 0.1088
agrocyc 12.7 13.4 1.06 0.0 94.1 0.0 1(1) 16 0.1060
human 38.8 39.6 1.02 0.0 98.1 0.0 1(1) 18 0.0231
SNAP

p2p-Gnutella3l 48.4 55.3 1.14 06 954 0.0 12(1) 14 0.7725
email-EuAll 230.8 223.0 0.97 826 17.3 0.0 15631(1) 7 5.0732
web-Google 371.8 517.8 1.39 43.7 379 0.0 2585(1) 34 14.8090
soc-LiveJournall 970.3 1024.1 1.06 39.9 57.7 0.0 521(1) 24 5.3781
wiki-Talk 2281.9 2311.6 1.01 1.1 985 0.0 2487(1) 8 0.8117

S%/T %/ I %: ratios of (non-isolated) sources/sinks, and isolated vertices. #WCCs(large): #WCCs
total(#WCCs with at least {j vertices). Lyay: maximum topological forward/backward level, equals the
diameter. p: reachability by experiments.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

Even Faster Reachability in Large Graphs

O’Reach

"SUIYITIOSTe Pa1sa) J1p 19A0 1as A1onb 19d X TUe) I19)J8 1S9q-PU0IIS/1Sa(] [[BIIA0 I} dT€ S NSAI PAIYSYSIH

92S VY6 LOR'IL6 O6LTIVE VELVESE GLLY STOF SITOVE 00L'LVG LRLOL8 9¥0'1S GTITS TELTPT VPSGET 6FPT T60'E GEI'OE €619 0968 XVIY

TOO'RPT ZSTTOT LLO'OES 8RVLPE 8IR0 694°0 069'TF SS6'TF 669°0PT 898 CL®'L €86'IC T6VIC GLE'0 TLV0 GLE'S 189S OLLET AU “ALS @IdWVS

669°¢ V10601 GER'BTT SPE€°0 6660 690°TT 8OS'TT PeaTLE 8CET areT €6L°¢ LeLle 6710 09270 PET'T 88T'T T8ET ADVHANY

6000 1800 600'0 6800 600°0 I£00 600°0 1000 0100 €100 00 €100 TTO0 €100 0800 €100 PI00 100 NIV

L80°0 G0 48070 9980 LS0°0 0€£°0 LS0°0 LL0°0 8900 €800 P00 €80°0 6F00 €80°0 69T0 €800 €400 SL0°0 AEL-P

908'T 8S0°0 T0Z0 890°0 9FF'0 8S0'0 OFG0 8S0°0 LL00 890°0 | SRLE 6900 9WO0 GLO0 LS00 ©L0'0 G6T0 000 @900 9900 T[PUIOLOAIT-008
SOP'T 8P0'0 LECO 8P0'0 8SP0 8F0'0 0610 8V0'0 8900 6VO0 | 0OF'T 000 @00 900 T80 €L0°0 SAT'0 900 600 L0 21300D)-cjom
8S8'C EPO'0 L6T0 EFO'0 CPED P00 WOZ0 EPO'0 RS0 EPO'0 | L9¢°¢ 1900 SRO0 @900 GS00 290°0 T9T0 1900 @900 SO0 [V ng-[reusn
£20°0 920°0 P.Z0 920°0 1610 9TO0 0000 9200 LE0D 920°0 | 0010 9800 9V00 LE00 LTO'0 LEOO TITO LEOO 0E00 TE00 Tee[EInuD-dzd
9000 2200 RIT0 2200 I8¢0 €TO'0 €800 2200 9800 2T0'0 SP0'0 €600 9T0'0 E€0°0 1600 EE00 G200 G200 e
900°0 S10°0 : G100 6720 V100 L20°0 V100 970°0 1200 €10°0 120°0 ¥S0°0 1200 L10°0 81070 o4d018e
900'0 ¥TO0 T1T0 91000 9930 FI00 1200 S100 V00 6100 €T0°0 610°0 €00 6100 L1000 LI0°0 009
9000 FT0'0 1800 GT00 €8¢0 V100 €200 ¥10°0 /00 6100 €T0°0 61000 ¥S00 6100 8100 L10°0 apyue
9000 LI00 SOT0 61000 €660 9100 g200 L1000 LP00 8T00 €100 8100 000 8100 91000 LI00 Arqyu
2000 G100 9600 100 TGO FIOO ¥200 S100 1000 L100 €T0°0 L10°0 0900 LI00 91000 91070 2800124
8000 1200 €91C SO0 EVO PIOO 6700 9€0°0 ge0'0 TE00 ZHO0 92000 200 L200 ZE00 TE00 spreux
8000 ¥¥00 19670 /Y10 L29'T TT0'0 8400 190°0 750°0 1€0°0 €00 L20°0 8700 6200 1€0°0 920°0 Al
0100 600°0 ZOT'0 6000 F600 600°0 9100 0100 €600 €100 PIO0 SI0°0 €600 SI00 ST00 P10 3803
6000 6000 GOT'0 6000 6800 600°0 S100 0100 800 €100 TT0°0 €100 0800 EI00 PIO0 G100 ozvuIe
8T0°0 L199T VOVE 06LT VP9 L1700 9121 010 &0 6620 V0’0 9.0°0 €2E0 8GO LVTO _ A
920°0 SIE0 VLS0 ar90 L8TT 180°0 9820 900 PG00 @00 8E00 1.00 6900 6R00 €800 qns~ 10950910
020'0 ZOI0 SE0 LET0 GED LS00 L60°0 800 €600 2600 €200 8GO0 €200 OL00 G200 qus”oes
6T0°0 66E0 C260 LSO TPFT £20°0 1670 1900 LS00 800 PPO0 8900 9900 900 R8LOO qns~ pourqud
ZI0°0 ¥ST0 SSE0 8PP0 LPPT SS0°0 600 6610 1800 TE00 0900 920°0 8900 8200 9F00 €E00 qns” o3
66T°0 6€T°0 G950 66T°0 60570 1210 77070 €410 91T°0 €ST°0 PFPP0 €ST0 9020 °eT0 Ecmalu:nsokamn:

8IT0 €620 8IT0 ¥0S0 8110 2SF'0 8IT0 80T'0 €000 TET0 8600 TET0 OTF0 TET0 €9T°0 OET°0 wWOOI_ouojordmun

200 9610 TLO0 VEE'D TLO'0 VLZ0 TLO'0 900 €00 9900 GPO'0 9900 FEE'0 9900 8900 290°0 gz dujordiun

TIL0 V0T SEV'0 VESO 2060 970'T TY0'0 860°0 8900 86070 S8E'0 6600 1ZI0 8600 jordyun o8

89978V €R0°ELF €T1C T96°'T OVZLIL LTV'RIT EI6'RET 8890 L6LE GI6E 60 9390 T99T CELT G96'E sjueYed-1o

9ev0 119 S80°0 9620 &EE0 8¥G0 PRS0 W0 890°0 GLT0 09T0 IPT0 8SE0 PIZO 10 1180 X19050110

€99°0 [aaui] 78E0 ¢IT’0 €080 TITo0 680°0 €110 cIe T 960°0 €700 9600 08070 960°0 6220 9%0°0 GLO0 9¢0°0 D0S" 19959310
61CL 6VT6 1960 0960 0660 STP'0 PE'E YET0 P00 Te@0 GTF0 LLT'0 €980 PLZ0 8TFO 08¢0 ggu_Aeunviop

€020 079 0816 6170 LTF0 1680 PEE'0 86T | PE60 PO G600 €810 GEE0 gPT0 8820 L8T0 0G0 L€T0 ogu_Aeunviop
050°0 €697 2089 80T0 ZOT'0 9510 0ST0 Leg'l €900 SO0 €SO0 8800 68T G900 8IT0 900 @LT0 SGI0 gru” Aeunviep
GEVOL LZEO0L GLE'T TITT 80T'GZ 8606C ETLTS 6250 60V0 €T’ LETE 9TV'0 9VG0 TT0E VREE OETF gz-ggupues

oveT TTE 1860 0890 69T'T 99ET LPLT 89T0 G900 ¥9Z0 OI€0 91¢'0 TOVO 9TV0 VKO 99E0 ve-ggupues

[SER 06L29VE VELVESE SLLV ST9 SITOVE 00L'LFC LRLOLR | €66 9V0'IS STITG TELTPI PPSGET 6FP'T T60E GEI'OE €619 096'CR £2-07upues
198°0 TEPES T6G'ES RLET €ST'T CER'TC €LRTE LPL'GE | 90T 6GV0 LS80 6IST 69ST SEE0 VAP0 62T ELVE 910€ gz-0gupues
80 €69°0 948°0 6L T €19°C POV'0 T8F'0 8980 o't 8621 [eani} 9¢0°0 161°0 812°0 PET°0 8LT0 ¥€TO creo erali] Tg-Ogupuet
COSETT G69°C0T TITE6T 8CR90E CSE'0 €IE°0 866'G 9IP'GT PRI'LY 982°0 LEZ'0 1ST0 L080 BET0 0ST0 Z9T0 9FT0 FEE0 TguSo| _uony

8LLT COPTIT SYR'ELE COG'EIT LSSTHE S9T0 PLTO IEE'EC T60'ST 9819V | €TFT €960 GGE0 1050 910 6110 1260 10 ATT0 ¥8T0 oguSo_uowy
1880 PELT 626'6 L6G'F 8PS0Z 00T'0 2ST'0 690 LEST G9ET TITT L1170 AIT0 T€T0 G600 980°0 SET'0 800 @000 @&l L1udor_uoxny
2920 SeL'6 L00'9C 0£5°0T 069°'GC 90T'0 GIT'0 L£9C L9VE OVE'E | €650 €S1°0 1910 €TI0 800 €400 6010 6900 4S0°0 600 gruso]_uony
PIO0 ¥860 RLE FER0 £18C GEO'0 SE00 1SG0 T980 LPE0 | LT0°0 9¥00 L600 8200 8200 SI00 0E00 LTO0 0Z00 I€0°0 gruso] uony
XTI3e (P)1dE (P)1d4 (P)dI (P)dI Tdd Tdd HO®®¥d HO®odd sdgrad |xtaie (P)1dd (P)7Tdd (P)dI (P)dI Tdd Tdd HO®®¥d HO®odd sagrad douejsuy

+4.0 +4c0 +40 +4¢0 +H4c0 +40 +4¢0 +4c0 +40 +40

<—oarysod oarpeSou —

(3y81y) saranp aA1Isod pue (1Ya7) aA13eSaN 000°001L 404 st ul sawir] A1arp a8eiany "Gy d|qe]

October 2022.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date

K. Hanauer et al.

18

4.2

"SWIILI0STE Pa)sa) Jjp 1940 3as A1onb 19d XT3l I9)JE 159¢-PU0DIS /1S [[EIIA0 U} ATe SJNSAT PAYSIYSTH

0L8°L6V OPP'ITS TT6'GO8T ST6V6LT SIL'E LL6E SOLOPT CI9R'TPT 600°LLV SLT'L8 €96°68 99C°6LC G6T'8LC SOV'C €96'C 0TSTP 088°Ch L98°0TL XVIN
I88°LL GETVR 9L9°6LT S09°0 1€9°0 G60° VT €€6°9T L6T°€F 99L°€F 69€°0 ISF0 6959 €199 00T'AT "A9Q "Als TdNVS
WG LT 200°2T £E7°99 8920 TS0 €90°G 91¢'8 ! 6VT°0 1L2°0 €871 96S°T €28 ADVHANY
ST0°0 SLOO S10°0 ST0°0 6£0°0 cv0°0 ¥10°0 Y100 1700 ¥I0°0 9T0°0 G100 NI
880°0 €TI0 880°0 880°0 61€°0 S0T°0 9L0°0 900 8L2°0 9L0°0 GL0°0 920°0 STRL-PIiA
0660 220°0 S€T0 8L0°0 8L0°0 092°0 vL0°€ 899°T GL00 900 6€2°0 ¥L00 LL0°0 GL0°0 ([N =3
¢92’0 0L0°0 LSTO €L0°0 TLO0 ¥CT0 971 L8T'T 6L0°0 6,00 7020 6L0°0 ¥60°0 180°0 9[800D-qom
8I€'0 090°0 TVET0 190°0 090°0 0020 L6V'9 TS7°0 L8070 L90°0 GLT°'0 990°0 690°0 890°0 yng-frews
¢L00 TE0'0 €LT0 €200 2€0°0 9210 2010 voT°0 0£0°0 0€0°0 €21°0 1€0°0 ¥E0'0 0€0°0 rge[Emun-dgd
9¥0°0 L4200 16070 L20°0 420°0 801°0 4200 €€0°0 820°0 ¥L0°0 8%0°0 920°0 920°0 60T°0 9200 920°0 200 (|
9200 0200 0010 020°0 020°0 1900 02T0°0 L2070 020°0 9£0°0 G500 L1070 8100 ¥90°0 8100 8I0°0 L10°0 o4doige
9200 0200 880°0 0z0'0 020°0 0900 0200 L20°0 020°0 GE0°0 950°0 L10°0 LT0°0 ¥90°0 LI0°0 8I0°0 L10°0 0023
G200 0200 €L0°0 020°0 0zZ0'0 1900 6T10°0 L20°0 020°0 G€0°0 750°0 L10°0 L10°0 ¥90°0 1100 610°0 L10°0 rIgjue
7200 0200 S80°0 1200 020°0 900 0zT0°0 920°0 120°0 T€0°0 090°0 9100 €T0°0 9T0°0 8¢0°0 LI0°0 9T0°0 910°0 AL IET
€200 0T0'0 0800 610°0 610°0 9500 6T10°0 620°0 0200 1€0°0 650°0 9100 ¥I0°0 9T0°0 8¢0°0 LI0°0 9T0°0 L10°0 o£dbota
0200 720’0 SIT'T 070°0 220°0 €500 6200 9¥0°0 L£0°0 G200 88T°0 620°0 6%0°0 €20°0 6200 €200 0£0°0 620°0 e
6T0°0 9€0°0 602°0 880°0 G200 9S0°0 L£0°0 160°0 87070 v20°0 760°0 7200 00 1200 ¥€0°0 €200 0€0°0 920°0 eseu
ST0°0 ST0°0 9800 S10°0 ST0°0 6£0°0 STO°0 020°0 910°0 8T0°0 (428 S10°0 G€0°0 ST0°0 €700 ST0°0 LTI0'0 STO0°0 380y
GT0°0 ST0°0 9800 S10°0 ST0°0 6£0°0 ST0°0 020°0 S10°0 610°0 [4tant v10°0 0£0°0 $10°0 1700 ¥TI0°0 LI0°0 S10°0 ozewe
€20°0 LL80 G6L'T 909°T 670°0 8900 €€¥°0 TsL0 €¥L0 920°0 VLLT 2290 qret 670°0 S80°0 €9T°0 LLEO 62€°0 e
620°0 610 0T€0 LVE0 990°0 S60°0 9¥T0 96T°0 8€€°0 €€0°0 880°0 950°0 920°0 P00 €80°0 0900 T60°0 G80°0 qns 19959310
€20°0 7900 LVTO 180°0 I%0°0 900 1500 0L0°0 2600 L300 190°0 8T0°0 cT0'0 810°0 ¥90°0 8I00 I€0°0 G200 qns oged
920°0 0%20 L6V'0 91€°0 6S0°0 6800 S0T°0 962°0 81€°0 0€0°0 811°0 ¥50°0 0L0°0 8€0°0 LL0°0 190°0 €80°0 €80°0 qns pawqnd
T20°0 1600 2IT0 L¥T0 6901 I$0°0 LL00 0900 66070 T 0 L20°0 92070 0£0°0 500 €200 ¥90°0 G200 9¥0°0 €00 qns” o3
0LT°0 TST0 0L1°0 €8€°0 0LT°0 6670 0LT°0 TLT0 0L1°0 7700 9ST°0 9110 9ST°0 PEF°0 9ST°0 0IT0 vST0 E:mﬁuu:ouoamm:
8VYT'0 6VT0 8VT°0 aveo 8YT'0 0SV'0 8¥I'0 [4AN0] 6¥1°0 €700 PET0 860°0 YET'0 61F°0 FET'O G910 ceET0 wQQ_oudjordiun
2600 0610 260°0 €120 260°0 LL2°0 T60°0 660°0 £60°0 €700 890°0 S¥0°0 890°0 092°0 890°0 890°0 L90°0 gz ousjordiun
L8€°0 8LE0 GEV0 019°0 882°0 9870 8¥E0 170 €€9°€01 cv0°0 10T°0 690°0 T0T°0 7660 €0T°0 €0 80T°0 jozdun o3
0T8'8G €969 99V°0VC 99T°9¢C¢ GST'T TOE'T GL6'6S 88V°09 Vv Iet 089°0 688°¢ 866°€ 62€'0 TES'0 LGR'T 6T0°€ L0T'¥ SyuLYR -3
1220 0680 10€°0 L0V'T TZT°0 98¢0 6L1°0 1020 L6€°0 6070 €91°0 Y910 8€T'0 69€°0 8€C’0 €920 802°0 X19959910
G8¢e°0 9010 ve1o 90T°0 €V 0 901°0 ¥62°0 9010 $60°0 <010 L2800 €70°0 LS00 0¢0°0 LS00 S€T0 LS00 LL0°0 L80°0 008719959310
et T09°T TeL’E 0067 L1870 TL8°0 0€7°0 998'T PST0 9500 02z°0 LT7°0 I8T°0 €LE°0 GIE0 0990 0820 ggu_Aeunepp
¥8€'0 T86'0 8TI'T 8TE"E 008 262°0 10€°0 19€°0 6€9°'T ¢66'0 8IT'0 8900 9LT°0 €9€°0 6€T°0 962°0 9220 80V'0 9€T°0 Ogu_Aeunepp
9500 L0€°0 0ZF0 907'T 9¥8°C 080°0 0z1°0 991°0 G89°0 7900 S¥0°0 1600 2010 622°0 ¥S0°0 €6T°0 LL00 SLT0 €eT°0 gru Aeunepp
GLT9 0£T9 ¥16°9¢ 916°9¢ 0260 6091 T1T9T L26°LT 0r¥s’0 6170 0£2°¢ €Te°¢ €EV'0 GEE°0 TL9E 916 09T°% Gg-ggupues
L¥S0 0890 PIET 618'T T07°0 6€L°0 8260 €L0'T TLT0 95070 992°0 01€0 Yo 0 €170 ¥8L°0 €E0'T gge0 V¢-ggupues
GGE°0 OL8'L6V OVF'ITS CT6'C08T ST6TELT SIL'E GOL'OVT GOR'TPT 600°LLV | TVPC'S SLT'L8 €96'68 99C°6LC G6T'8LC SOV'T €96'C 0TSTP 088°CF L98'OTL €g-ogupues
8E€'0 067 788V 970°8C €91°8C 7280 060°¢l LgTal 9561 090'T 02F'0 SS€°0 SPr'e 67T 6€€°0 167°0 €9¢°C TSST L00°¢ ¢g-Ogupues
cLE0 0TV0 9970 S00°T L8€°T 1620 1680 0970 0120 G6L°0 TLLT 9TT°0 9500 681°0 jgéall TST'0 ¥8T°0 90€°0 6IF0 092°0 Tg-0gupuet
T86°9¢ €T0°C0T 8T0°L6 86L'E€ST 992°0 €TE0 G80'E 9082 LL9°€€ 680°LT 8IEEE T6YLZ 999°PP 64T°0 TIE0 F¥90°'T 8SP'T 79€°0T Tguso[_uony
€6€°0 PREI8 9L0LST 910°T8 P8GTILT L0Z°0 S8T'0 €SL'IT 199°CL €81°€T 0EV'Z 8€9°9C 61€6S 6EC9C €98'€S 0ST'0 920 R866'E€ €LTF LTeL 0guso[_uoxy
€LT°0 T€6'0 190°G c9€°T T9€°0T 160°0 9L1°0 68€°0 €eeT 86T'T 9z€T T8Y0 LI9E 100°T 0v0°% T60°0 08T°0 L€20 L09°0 909°0 L1uSo]_uoxy
0IT'0 Te6'¥ PI9TT LIEG EV6TT 880°0 €VT°0 TS€'T 88L'T 89T 900'T ¢ICC V6T'L L6TT €97°S T80°0 SCT°0 8290 1T80 9LL°0 9Tuso[_uony
9100 9190 ¥69'T €EV°0 Tert 620°0 6£0°0 6ET°0 L6T°0 V610 610°0 00€0 VIOE 152°0 4€9°0 820°0 S¥0'0 ¥80°0 0TI'0 0zT°0 gruso[uoxy
XTI3e (P)Tdd (P)1Td4d (P)d1 (P)d1 Tdd Tdd HO®eY¥d HO®oUd sagrad |xtivew (P)T1dd (P)1dd (P)dI (P)dI Tdd T1dd HO®eYd HO®eud sdgrad our)sup
+¥0 +¥0 +¥0 +¥0 +¥.0 +¥0 +¥0 +¥<0 +4c0 +¥0

4—PoXII Wopuel —

(3y8ry) seLI_ITY paxiy 000007 Pue (Jo7) wopuey 000‘00L 10} st ul sawi] A1anp a8esany 9’y 9jqe]

October 2022.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date

O’Reach: Even Faster Reachability in Large Graphs

4.2:19

Table A.7. Average Query Times in pus for 100,000 Negative (Left) and Positive Queries (Right)

< negative positive—

0°R+ 0°R+ 0°R+ 0°R+ 0°R+ 0°R+

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) ‘ TF TF IP(s) IP(s) BFL(s) BFL(s)
kron_lognl2 0.448 0.150 0.025 0.025 0.074 0.039 2.222 0.966 2.214 0.903 3.100 0.992
kron_lognl6 0.072 0.106 0.177 0.179 29.244 12.765 23.413 9.661
kron lognl7 0.091 0.124 0.111 0.119 27.734 6.396 9.437 1.835
kron_logn20 0.164 0.195 0.351 0.388 345.677 167.109 341.645 154.522
kron_logn21 0.204 0.249 0.225 0.281 316.522 191.688 184.889 105.423
randn20-21 0.287 0.150 0.319 0.223 0.044 0.123 0.501 0.364 2.832 1.815 0.837 0.687
randn20-22 0.449 0.299 4.248 4.126 0.840 0.898 1.337 1.160 84.935 83.959 18.779 18.685
randn20-23 198.518 188.459 96.362 95.814 4720.272 4656.298 1683.989 1656.785
randn23-24 0.438 0.211 0.453 0.328 0.046 0.171 0.732 0.513 3.785 2.635 1.045 0.880
randn23-25 0.607 0.396 5.394 5.178 0.950 1.064 1.589 1.404 113.423 112.633 23.804 23.875
delaunay nl5 0.150 0.055 0.336 0.120 0.040 0.045 0.243 0.181 5.105 2.385 0.655 0.490
delaunay _n20 0.367 0.141 0.588 0.223 0.038 0.124 0.664 0.495 8.549 5.864 2.085 1.739
delaunay n22 0.475 0.177 0.667 0.266 0.039 0.154 0.818 0.635 8.575 6.658 2.818 2.403
citeseer.scc 0.023 0.056 0.052 0.056 0.034 0.056 0.301 0.112 0.320 0.112 0.154 0.112
citeseerx 0.450 0.152 0.183 0.183 0.063 0.154 2.615 0.154 2.792 0.678 2.007 0.482
cit-Patents 1.078 0.533 6.259 6.049 1.845 1.904 | 10.640 9.168 701.034 708.037 245.211 244.524
go__uniprot 0.115 0.107 0.069 0.098 0.033 0.098 | 44.738 32.490 0.924 0.637 0.613 0.488
uniprotenc_ 22m 0.080 0.066 0.045 0.066 0.033 0.066 0.180 0.072 0.332 0.072 0.174 0.072
uniprotenc_ 100m 0.187 0.131 0.099 0.131 0.033 0.131 0.348 0.118 0.497 0.118 0.201 0.118
uniprotenc_ 150m 0.229 0.153 0.117 0.153 0.034 0.153 0.411 0.139 0.551 0.139 0.208 0.139
go_sub 0.042 0.026 0.089 0.039 0.044 0.025 | 0.338 0.076 4.302 0.685 0.385 0.158
pubmed _sub 0.069 0.047 0.070 0.066 0.055 0.044 0.228 0.160 1.482 0.714 1.260 0.535
yago_sub 0.024 0.023 0.026 0.024 0.037 0.021| 0.085 0.060 0.250 0.113 0.178 0.091
citeseer _sub 0.066 0.038 0.100 0.066 0.046 0.030 0.155 0.121 1.247 0.666 0.600 0.317
arXiv 0.681 0.255 0.354 0.283 0.173 0.136 1.470 0.915 6.698 3.161 4.315 2.034
amaze 0.011 0.013 0.011 0.013 0.039 0.013 | 0.022 0.009 0.083 0.009 0.071 0.009
kegg 0.013 0.015 0.015 0.015 0.041 0.015 | 0.021 0.009 0.086 0.009 0.068 0.009
nasa 0.039 0.026 0.046 0.034 0.042 0.026| 0.130 0.025 2.216 0.166 0.307 0.048
xmark 0.040 0.025 0.047 0.033 0.043 0.023| 0.081 0.020 0.461 0.049 2.160 0.022
vchocye 0.031 0.017 0.015 0.017 0.037 0.017 | 0.076 0.014 0.571 0.015 0.080 0.015
mtbrv 0.026 0.018 0.015 0.018 0.037 0.018 | 0.071 0.016 0.569 0.019 0.078 0.017
anthra 0.033 0.019 0.014 0.019 0.037 0.019 0.307 0.014 0.385 0.015 0.067 0.014
ecoo 0.034 0.019 0.015 0.019 0.038 0.019 | 0.100 0.014 0.308 0.015 0.084 0.014
agrocyc 0.035 0.021 0.015 0.021 0.037 0.021 0.402 0.014 0.559 0.015 0.118 0.014
human 0.040 0.033 0.015 0.033 0.035 0.033 | 0.496 0.022 0.328 0.022 0.096 0.022
p2p-Gnutella31 0.047 0.037 0.017 0.037 0.035 0.036 0.115 0.026 0.173 0.026 0.215 0.026
email-EuAll 0.036 0.061 0.056 0.062 0.035 0.061 | 0.168 0.042 0.334 0.042 0.160 0.042
web-Google 0.135 0.074 0.086 0.077 0.039 0.070 0.246 0.048 0.442 0.048 0.202 0.048
soc-LiveJournall 0.099 0.071 0.057 0.072 0.034 0.069 | 0.298 0.058 0.432 0.058 0.170 0.058
wiki-Talk 0.095 0.083 0.050 0.083 0.033 0.083 0.297 0.057 0.344 0.057 0.127 0.057
Min 0.011 0.013 0.033 0.013 0.083 0.009 0.067 0.009
AVERAGE 5.342 5.059 2.496 2.506 156.016 145.532 62.338 54.329
SAMPLE STD. DEV. 30.575 29.028 14.845 14.757 732.788 722.441 265.456 257.556
Max 198.518 188.459 96.362 95.814 4720.272 4656.298 1683.989 1656.785

Highlighted results are the overall best/second-best after Matrix per query set over all tested algorithms.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:20

K. Hanauer et al.

Table A.8. Average Query Times in s for 100,000 Random (Left) and 200,000 Mixed Queries (Right)

< random mixed—

0°R+ 0°R+ 0°R+ 0°R+ 0°R+ 0°R+

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) TF TF IP(s) IP(s) BFL(s) BFL(s)

kron_logn12 0.995 0.385 0.631 0.269 2.933 0.297 1.349 0.564 1.128 0.469 1.594 0.520
kron_logn16 6.212 2.731 6.794 2.148 14.705 6.440 11.845 4.923
kron_lognl7 5.507 1.385 3.515 0.508 13.973 3.269 4.795 0.983
kron_logn20 54.122 26.731 54.180 25.126 173.231 83.873 170.936 77.473
kron_logn21 45.584 27.339 30.225 15.939 158.059 95.937 92.489 52.906
randn20-21 0.293 0.147 0.329 0.228 0.047 0.118 0.413 0.269 1.593 1.160 0.450 0.417
randn20-22 0.452 0.297 4.161 3.978 0.840 0.895 0.921 0.747 44.638 43.895 9.833 9.813
randn20-23 393.758 382.669 161.427 157.768 2454174 2367.299 891.487 879.033
randn23-24 0.449 0.218 0.450 0.306 0.044 0.173 0.610 0.377 2.139 1.513 0.556 0.542
randn23-25 0.619 0.405 5.551 4.324 0.993 1.106 1.131 0.919 59.395 59.119 12.398 12.506
delaunay nl5 0.168 0.055 0.371 0.135 0.077 0.045| 0.212 0.116 2.742 1.292 0.359 0.271
delaunay _n20 0.372 0.138 0.604 0.217 0.041 0.118 0.533 0.330 4.657 3.064 1.075 0.946
delaunay n22 0.479 0.180 0.671 0.265 0.040 0.154 0.669 0.415 4.744 3.268 1.429 1.290
citeseer.scc 0.029 0.057 0.052 0.057 0.035 0.057 0.215 0.106 0.213 0.106 0.104 0.106
citeseerx 0.448 0.149 0.184 0.174 0.078 0.143 1.587 0.164 1.543 0.440 1.048 0.329
cit-Patents 1.064 0.525 6.626 6.270 1.869 1.911 5.937 4.717 353.571 343.027 123.587 123.261
go_ uniprot 0.109 0.101 0.069 0.101 0.033 0.101 | 22.618 16.328 0.540 0.397 0.342 0.322
uniprotenc_ 22m 0.081 0.068 0.046 0.068 0.033 0.068 0.163 0.092 0.213 0.092 0.104 0.092
uniprotenc_ 100m 0.191 0.134 0.098 0.134 0.033 0.134 0.311 0.148 0.337 0.148 0.124 0.148
uniprotenc_150m 0.236 0.156 0.118 0.156 0.034 0.156 0.365 0.170 0.382 0.170 0.126 0.170
go_sub 0.047 0.023 0.091 0.039 0.063 0.022| 0.196 0.052 2.166 0.351 0.220 0.094
pubmed _sub 0.080 0.042 0.084 0.062 0.115 0.039 0.158 0.103 0.787 0.398 0.667 0.290
yago_sub 0.030 0.018 0.027 0.019 0.050 0.016| 0.062 0.043 0.145 0.070 0.115 0.059
citeseer_sub 0.077 0.040 0.106 0.068 0.078 0.031 0.119 0.083 0.693 0.364 0.330 0.179
arXiv 0.751 0.311 1.291 0.674 1.929 0.408 1.112 0.545 3.571 1.832 2.253 1.088
amaze 0.019 0.014 0.028 0.014 1.232 0.014| 0.024 0.015 0.053 0.015 0.061 0.015
kegg 0.020 0.015 0.034 0.015 1.545 0.015| 0.024 0.015 0.056 0.015 0.060 0.015
nasa 0.044 0.020 0.055 0.027 0.083 0.019| 0.092 0.026 1.150 0.100 0.181 0.037
xmark 0.044 0.022 0.053 0.029 0.174 0.020| 0.067 0.025 0.261 0.043 1.106 0.025
vchocyc 0.037 0.016 0.016 0.016 0.049 0.016 0.063 0.019 0.294 0.019 0.064 0.020
mtbrv 0.031 0.016 0.016 0.016 0.050 0.016 0.058 0.020 0.307 0.021 0.063 0.020
anthra 0.041 0.017 0.014 0.017 0.045 0.017 0.183 0.019 0.219 0.020 0.056 0.020
€coo 0.043 0.017 0.015 0.017 0.045 0.017 0.079 0.020 0.165 0.020 0.065 0.020
agrocyc 0.043 0.017 0.018 0.018 0.046 0.017 0.232 0.020 0.287 0.020 0.082 0.020
human 0.051 0.026 0.015 0.026 0.037 0.026 0.290 0.027 0.184 0.027 0.070 0.027
p2p-Gnutella31 0.058 0.030 0.019 0.030 0.093 0.030 0.102 0.032 0.106 0.033 0.138 0.032
email-EuAll 0.059 0.057 0.074 0.057 0.452 0.056| 0.150 0.060 0.213 0.061 0.103 0.060
web-Google 0.175 0.078 0.147 0.080 1.231 0.074| 0.229 0.072 0.285 0.073 0.127 0.070
soc-LiveJournall 0.172 0.075 0.148 0.075 1.748 0.073| 0.246 0.078 0.266 0.078 0.105 0.077
wiki-Talk 0.102 0.076 0.054 0.076 0.093 0.076 0.253 0.088 0.221 0.088 0.093 0.088
Min 0.014 0.014 0.033 0.014 0.053 0.015 0.056 0.015
AVERAGE 12.865 11.193 6.645 5.073 80.572 73.625 32.456 28.496
SAMPLE STD. DEV. 61.174 59.026 26.218 24.561 380.719 366.967 140.125 136.479
Max 393.758 382.669 161.427 157.768 2454.174 2367.299 891.487 879.033

Highlighted results are the overall best/second-best after Matrix per query set over all tested algorithms.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

21

4.2

Even Faster Reachability in Large Graphs

O’Reach

"PAYSIYSIY 318 00" T 1978213 Sanfep

or'st 66'€ TP'E L0'SOT 6Z°S0T FO'F 86'€ 9% 19T LT'S0T 06'26 ¥9'8T 9ue L9 86z FI'T 08T ¥T'T xep
86°€ 02T TET €08 ALL 6ET 6V 99T €T CI'9 LE'G : T 6E'T 80T 960 80T art ADVHAAY
60°T 9€'T FOT IST IET STT ST 28T 80T LT ST 9T FO'T 00T 860 90°T €0°'T SHOVHAAY H0 OLVY
98'Z 6V’ 10T 8CT 8TT 00T PET LT S8T 6VE 8CT SOE TLT ST'E LT TET S0 060 860 £S'T 60°T NVAY ORILANOAD)
00'T 860 680 80 20 150 650 €T 160 00T 00T 880 2L0 w0 SF0 970 8L°0 NI
(%4 €9t 60'T 8ET gET I1L0 0L0 PET S9E 860 00 TTT iT's 9L'S gE 650 090 ST'T 68°0 SABL-PA
or'e ¢g'e SU'T 9L'%C P8'EC 10T 96T 68T SI'E VOL FPE 06T 60's TI'¥ TET 670 080 080 OF'T 68°0 T[EUmOLaAr-008
88°E €T'€ 8T'T €0°9T 29'9T 98T PRI P&T 8YT 61T 067 STV 80'¢ T6'E 0T 950 L0T TTT I8'T ¥0'T 9[800D-com
0g'g T€'e 0T'T PO'R 908 IE€T O0£T FOT LOE €TT GLF 98 S0F 26T 0T 160 680 160 650 20°1 [y ng-rewe
<T'§ z6'¢ OT'T Ig'e SIS ¥90 €90 PET 60F OT'T LSOT I€'8 Wy 0LT SV 160 9F0 9¥0 8T 18°0 TgeeImun-dzd
64’9 0LOT 66'€ 0TT 98T 9%’ LS0 650 66'T 9T IO LPS TP 00'€Z 98'€ 99T 0TGP0 9F0 €21 8L°0 weumny
2TPT L8TT €16 86T ST'§ €9C 640 001 SP'Z S9E 660 8T6 618 €062 F0'§ 16'T LT T90 120 29T 80 ohd0i3e
I8 €0F BO'E 6E'T OE'€ S9T 8L0 L8O BPT ELE €0 LLL T8RS 60'L 88T 96T €0Z 690 080 S8'T 06'0 0099
1801 TF'6 TI'§ 98T 8I'E €9C 8L0 6.0 THT TLE OL'T LE9 L8F €9°7C 61'S P8 6T L0 TL0 8LT 96°0 eaqyue
TWPT 88T IR'C LET 9LE TI'E R0 660 96T 6S'E 860 ST9 19V 1€V 98T 6V S0T 690 €80 9V'T 180 Axqyu
0TSt I€€ 6T TET 89'E E0'E G0 160 I€T 69E 160 €59 PEQ L6 98T TLT 12T L0 180 P8I £6°0 2£2000A
€79 69T L&T 09T OV'6 LL8 TILT IS8T L6'T €9% T&T LT'E0T 06'L6 66'€ 61T AR'T ST 98T TPT LST 8T'T
6VIT S9'€ 92T LET I6F 98F ILT 90T €2T 19T SE'T 68'L RED LTS 66T €T €9°T FO'T PET 09T S0°T
€46 19T 29T I§T L0°90T 6Z°S0T €8°C ¥TT 96T 18T LT'T 88°0L 6TL 82T FE'E 99T LT V60 T0T 680 160
69 TYT T9T VET T006 TE'LR OI'T V6T ST 16T ATT ITTT 9LL 8E'T OV'E 89T 86'C ERD 90 IR0 S0°T
6T ¥0'T 88T PLT TYS gLV 96T 6T TFT SLT 6VT 60T TIT 19T 860 16T 8T FTT STT 9T 9T'T
06'T PFT PPT VET 06T 6P'C 98T ST T6'T £0C EYT IR 68T 82T OT'T 8T TET €T TST LT 0g°1
L0z T 98T LT 64€ OL'€ ST EFT F9T S9€ ILT 61T 96T oFT TST IET PLT €60 SOT €0°T 821
86'T €S'T TIST ST T9€ 16 62T VET 26T S0T SE'T I€T 9ET €T 2T WPT ¥TT 20T 90T 9V'T vTT qns~ powqnd
LT'9 6L'E 88T 99T PP'E PRT €8T PET FOT 9LT 8T 1T PPT 9T L9T 89T LLT 09T 8TT €9'T 99°T qns” 08
sz’ ¥I'T €6C T0T 80 @0 G40 9L0 IST 2T SET TLT 09T 16T L9°E 80 TT0 90 LU0 0S'T se'T wipg_puojordyun
12Tz 01T €0'€ €0 €0 S0 €40 PLO €FT PL'E PET L6T 0L S6'C €8'€ 60 S0 G40 9L0 E€P'T <T'1 wQ_dusjordiun
€€ BLT TO'E 8OT €90 6F0 L90 190 0T €€ 00T TLT IP'T 6V'C 08'E 90T 0g0 890 890 02T 20T uigg ouoordiun
98'T 68T 89T BI'T PO €80 890 890 L0'T 68'€ 0TT €T 9T 8E'T €TT PI'T PEO 040 0L0 80T 2T'1 joxdpun” o3
€0'T 92T FOT TOT 260 860 €0°T 90T €07 9T 90T T0T 00T 9T'T 260 10T 160 €0'T €0 T0T L0°T ELCIEE Sic)
T¢E 996 0Z'€ PI'T 650 S0 TOT 90T TOE 19T L0T 6L'S LTV 6691 L¥'e TI'T W0 €60 00T L6 66'0 X1095990
00Z 20T LLT 680 SL0 090 I80 060 1¢0 TP SET 09T LE'T 89 04T 6.0 290 680 €60 ar0 Ge'T 05°19989310
SPT 19T LTT 9T 920 68T £9°T 99T 90 90T OTT LTI 62T 00T L0 0 88T 1T 89T 2g'1 ggu_feuneop
e 29T 9TT 0T'T ce'0 907 84% 0LT €T'T 18T 0T 0T'1 PET 00T ¥80 €0 F6'T €9T 69T L8°T 0Ogu_ feuneiop
2T ER'T T9T 68T €L4°T PET 9T TOE 9V'T 9TT VET VET YET V60 9610 880 VI'T 08T LT T gTu” Aeunvop
00T €2T 860 10T L0 060 €0°T 8TT €T 8T 0T 00T 00T €T 880 00T 680 €0°T FOT €51 80°T Ge-ggupuEL
T 29T 8T 98T €60 920 LAT'T LPT 90T PR'T €T 08T 6T e ZTT LTI 10 LT'T 8€'T 80T 9T'T YE-ggupues
LOR 401 10T €0°T ZO'T 00T €01 €1 10T €0T 20T 160 10°T T0T 860 SO'T 00'T £2-0gupued
20T €ZT 860 TIOT S0 ¥60 20T SOT 2T LT 80T 00T T0°T ST 060 00T 760 20T §0°'T 0S'T 80°T g-0gupue:
Le'T ST PET LT 6P0 680 61T PPT 00C LR'T LE'T €21 2T'T 8T 6I'T TTT 980 VI EVT T6'T 9p'1 1z-0zupues
99°1 2Tl €5 96T 06T TOT L9°T LT 18T 64T ST 99°1 880 29T 080 080 80 06°0 Tgusol _uony
L0z 86’ 80T €2C 91T S0T 20T PRI L0T 0£T 12T L0z £0'T 8O'T 060 €80 P80 60 0gusol_uony
g Z8T TH'E 09'L T6'9 FOT 86'E 6T 49T TLS PTG yEY 26T L9°€ €60 €40 €40 w60 L7uS0|_uony
82T 19T TET 9TE 9T'E 8E'T LTT 06'T TET LT TPT 622 RO'T TET SOT 660 690 890 £8°0 9rusol _uony
e 66T TET THT 9001 986 €9C PET 8T 8T €T €8'€ EI'E ez 08T IT'T €T IT'Z A48T 00T 160 66T 9T'T grusol uony
(P)1dg (8)Td8 (P)dI (S)dI 4L Tdd HO®o¥d (P)1dg (S)T1dd (P)dI (S)dI 4L Tdd HO®o¥d (P)1dd (S)Tdd (P)dI (S)dI 4L Tdd HO®RMd (P)Tdd (S)Tdd (P)dI (S)dI 4L Tdd HO®oud ouejsup
— poxur — = wopuer — — aarpsod — — aarpeson —

wyHod)y ydeq|ed ind JoAQ oBq|[e4 SN|d Yoeay 0 yim sdnpaadg 6’y djqeL

October 2022.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date

4.2:22 K. Hanauer et al.

Table A.10. Median Initialization Time in ms in Five Repetitions

Instance 0’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d)

kron lognl2 451.0 13.5 56.5 46555.2 22.6 53.0 2.0 4.0
kron lognl6 13045.7 602.4 1869.5 685.5 1283.0 88.8 118.3
kron lognl7 31835.0 1425.8 4268.9 1611.7 2897.9 228.1 288.1
kron_logn20 380698.0 207919 62836.0 22788.2 37103.7 3301.1 3999.0
kron logn21 812416.0 46559.0 151870.0 49988.1 79226.0 7513.1 9014.9
randn20-21 42727 2878.3 11579.3 11615.8 2434.7 2635.1 626.1 677.2
randn20-22 5706.9 4459.6 43761.5 47679.2 3364.6 3704.3 892.0 976.9
randn20-23 13724.7 7128.3 9348510.0 4830.2 5311.5 1287.7 1449.3
randn23-24 46043.5 28959.1 132570.0 122270.0 24566.7 25906.9 6094.8 6580.6
randn23-25 61206.2 45573.7 413684.0 465300.0 34145.7 36815.0 8964.7 9715.1
delaunay nl5 104.4 38.9 174.2 602.1 42.5 55.3 7.0 9.0
delaunay n20 2816.5 1788.4 9350.5 24563.9 2339.1 2785.1 299.8 351.5
delaunay n22 11402.7 7363.9 38674.1 108297.0 10106.6 11911.6 1203.1 1394.5
citeseer.scc 865.9 503.4 1185.3 1579.7 602.5 613.4 107.0 122.5
citeseerx 90695.8 12545.7 73061.0 145773.0 11208.0 11807.4 2349.2 2700.0
cit-Patents 22358.6 15989.7 393412.0 342680.0 13098.4 14384.0 2905.4 3210.1
go__uniprot 28270.0 11858.8 34660.6 90942.4 11935.8 13381.6 3137.0 3701.2
uniprotenc_ 22m 2802.5 714.8 2762.0 3446.0 13226 1313.7 147.8 189.3

uniprotenc_100m 39539.9 10420.6 30967.4 59660.2 16089.1 16194.7 2169.6 2639.2
uniprotenc 150m 65983.9 17612.9 50254.7 86052.0 26453.4 26730.9 3830.4 4548.6

go_sub 10.4 4.0 16.6 37.6 5.0 6.2 1.0 1.0
pubmed sub 19.4 9.1 31.3 101.5 8.9 10.8 2.0 3.0
yago_sub 105 6.0 18.9 61.5 (5 10.4 1.1 2.0
citeseer sub 25.3 11.3 48.4 131.9 11.8 15.3 2.3 3.0
arXiv 223.2 9.7 60.8 10008.7 14.9 26.3 2.0 3.0
amaze 12.0 1.2 5.3 25.9 2.2 2.4 0.0 0.4
kegg 16.3 1.4 6.8 18.3 2.7 2.8 0.3 0.5
nasa 7.0 2.4 11.6 27.3 3.3 3.8 1.0 1.0
xmark 10.7 2.3 12.9 24.2 3.9 4.3 1.0 1.0
vchocyc 12.0 2.9 13.4 53.7 5.4 5.9 1.0 1.0
mtbrv 11.1 3.0 13.7 24.0 5.4 6.0 1.0 1.0
anthra 15.4 3.8 18.3 62.5 7.1 7.8 1.0 1.0
€coo 15.9 3.9 18.8 41.4 7.4 8.0 1.0 1.0
agrocyc 16.1 3.9 19.1 48.1 7.4 8.1 1.0 1.0
human 49.1 1IN 56.5 104.1 23.7 25.8 3.0 4.0
p2p-Gnutella31l 120.6 28.4 89.2 52.3 43.8 44.5 5.0 7.0
email-EuAll 945.2 115:3 340.5 241.3 170.1 171.4 24.8 32.0
web-Google 5783.6 369.3 928.1 918.4 452.6 472.0 73.8 88.0
soc-LiveJournall 3663.5 739.6 2086.3 18279 1160.5 1181.4 142.3 173.0
wiki-Talk 6347.0 1492.1 4317.8 27154 2597.7 2620.7 269.9 343.5
Min 7.0 1.2 5.3 2.2 2.4 0.0 0.4
AVERAGE 40282.0 5854.9 263747.0 5906.8 7286.6 1114.4 1277.0
Max 812416.0 46559.0 9348510.0 49988.1 79226.0 8964.7 9715.1

Highlighted results are the overall best. As a single exception, the initialization process for Matrix was run in parallel.
The running time reported here corresponds to the maximum running time of one of the 48 threads used and is,
therefore, not directly comparable to the other running times.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

O’Reach: Even Faster Reachability in Large Graphs 4.2:23

Negative Queries Positive Queries (outliers omitted)

2.0 20.0
535 5175
B 3
& &
o 3.0 Ny o 15.0
s M £
= 2125
Z25 3 Z
z ' N ’ z
3 3 10.0

2.0
£ ’ 4 £
s . < 75
S 15 o
S S
3 T 50
9 1.0 - ————— —_—— g >
wn v

0.5 25 =

0.0
PReaCH PPL IP(d) BFL(d) BFL(s) IP(s) TF PReaCH PPL IP(d) BFL(d) BFL(s) IP(s) TF
Algorithm Algorithm
Random Queries (outliers omitted) Mixed Queries (outliers omitted)
10 8

o

Speedup if combined with O'Reach
Speedup if combined with O'Reach

-

PReaCH PPL IP(d) BFL(d) BFL(s) IP(s) TF PReaCH PPL IP(d) BFL(d) BFL(s) IP(s) TF
Algorithm Algorithm

;
-

Fig. A.2. Speedups achieved if 0’Reach is combined with an algorithm. The boxes extend from the first to
the third quartile, the whiskers show additional values beyond the box and within 1.5 times the interquartile
range. Inside each box, the median is shown as a horizontal black bar. For positive, random, and mixed, where
the maximum speedup was over 100 (positive, random) or over 45 (mixed), outliers are omitted for better
readability (see also Table A.9). A red, dashed horizontal line marks a speedup of 1. Values above this line
show where the combination with 0’Reach makes the algorithm faster, values below this line show where
the combination makes the algorithm slower. Note the different range on the y-axis for each queryset.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

4.2:24 K. Hanauer et al.

Table A.11. Real Index Size in Memory (in MB)

Instance 0’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d) Matrix

kron lognl2 0.3 0.2 0.1 19.2 0.1 0.2 0.1 0.2 2.0
kron_lognl6 4.0 3.5 1.5 0.0 1.5 3.1 1.3 2.3 512.0
kron_lognl7 8.0 7.0 3.0 0.0 2.9 6.1 2.5 4.6 2047.9
kron_logn20 64.0 56.0 25.1 0.0 22.1 44.8 18.9 34.1 131070

kron_logn21 128.0 112.0 50.4 0.0 43.5 87.3 37.1 66.4 0.0
randn20-21 64.0 56.0 24.2 64.8 18.0 31.5 20.6 38.7 131070

randn20-22 64.0 56.0 136.8 482.3 19.0 37.6 22.3 43.3 131070

randn20-23 64.0 56.0 4380.3 0.0 19.5 40.8 23.1 45.6 131070

randn23-24 512.0 448.0 193.7 518.2 144.3 252.3 164.5 309.4 0.0
randn23-25 512.0 448.0 1073.3 3844.1 152.0 300.7 178.0 346.0 0.0
delaunay nl5 2.0 1.7 0.8 4.7 0.6 1.2 0.7 14 128.0
delaunay n20 64.0 56.0 33.0 126.7 19.1 38.1 22.5 43.9 131070

delaunay n22 256.0 224.0 135.0 497.9 76.6 152.5 90.0 175.8 0.0
citeseer.scc 42.4 37.1 7.1 28.3 9.4 11.3 9.2 13.7 57406.5
citeseerx 399.2 349.3 1209 1773.0 111.8 151.0 107.6 185.1 0.0
cit-Patents 230.4 201.6 659.2 780.0 72.9 138.0 71.7 132.9 0.0
go__uniprot 425.3 372.1 261.0 680.2 106.4 184.7 113.1 193.1 0.0
uniprotenc_ 22m 97.4 85.2 18.5 67.2 24.5 24.7 26.1 44.8 0.0
uniprotenc_ 100m 981.9 859.2 197.2 690.4 251.2 269.1 270.8 471.9 0.0
uniprotenc_ 150m 1528.2 1337.1 318.5 1087.0 395.0 439.6 428.5 753.8 0.0
go_sub 0.4 0.4 0.2 0.4 0.1 0.2 0.1 0.3 5.5
pubmed _sub 0.5 0.5 0.3 1.1 0.1 0.2 0.2 0.3 9.7
yago_sub 0.4 0.4 0.2 0.5 0.1 0.2 0.1 0.2 5.3
citeseer _sub 0.7 0.6 0.3 1.2 0.2 0.3 0.2 0.4 13.7
arXiv 0.4 0.7 0.3 14.9 0.1 0.3 0.1 0.2 4.3
amaze 0.2 0.2 0.0 0.2 0.1 0.1 0.1 0.1 1.6
kegg 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 1.6
nasa 0.3 0.3 0.1 0.3 0.1 0.2 0.1 0.2 3.7
xmark 0.4 0.3 0.2 0.4 0.1 0.2 0.1 0.2 4.4
vchocyc 0.6 0.5 0.2 0.7 0.2 0.3 0.2 0.3 10.7
mtbrv 0.6 0.5 0.2 0.4 0.2 0.3 0.2 0.3 11.0
anthra 0.8 0.7 0.2 0.8 0.2 0.4 0.2 0.4 18.6
ecoo 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.0
agrocyc 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.2
human 2.4 2.1 0.6 2.1 0.7 1.2 0.6 1.1 179.6
p2p-Gnutella3l 3.0 2.6 0.7 2.1 0.9 1.5 0.8 14 279.7
email-EuAll 14.1 12.3 2.6 9.7 3.7 5.8 3.7 6.4 6349.8
web-Google 22.7 199 5.4 16.7 7.0 11.2 6.5 11.5 16475.5
soc-LiveJournall 59.2 51.8 13.0 41.0 19.1 31.8 15.9 27.2 112225

wiki-Talk 139.3 121.9 26.2 95.9 52.0 103.5 37.1 63.3 0.0

The smallest value per instance is highlighted.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

25

4.2

Even Faster Reachability in Large Graphs

O’Reach

"UOTJRZITBI}TUT SULIND 9PBUW SIIT0YD

WIOpUeRI S [[oM sk (saranb 5.y,) yorq[rey Inoyjim paramsue 3¢ ued Jey) sarranb jo Joquinu ay) y1oq s}oaye siajourered ay) Surdueyo ey ajoN

000 000 00°0 100 000 000 000 100 000 000 000 100 H=s50
LT 88T 10°0 60°G LT 88T 10°0 90°G €T L1 000 6LF (wrw=) Sutsspio peardojodog, o
0t 68T 100 1201 v 68T 100 L1701 0g'e 8TF 000 08°6 (xew=) Suropio eorgoodo], O
I8 9978 200 88'€T 808 9978 200 99'€% 0z'L 6L 10°0 4t (aoy) Surtepio [eorsojodor, O
6T°L LGL £0°0 9112 oL LGL £0°0 1018 079 899 £0°0 0061 (q8ry) Surwpao eordojodo], O
68'€ 8€LT T6E ST 9 Q0% 19LE T6E GLP9 €I'se 198 S0F a8'L9 s0013104 oa1I0ddng O
1¢°¢ 0T°¢ 718 e 0T'¢C 71’8 T8¢ L0 £1'8 78'8 SOOM JUIYP @
099 66'¢ 01°01 8L9 619 8€°01 09°L 969 18°TT 98'TT (-37) seon10) PATI0ddNG @
€11 68°0T €881 6¢°TT 9T°0T 96'LT €6l S%°0T €061 0761 (+37) s0om10A PanI0ddng @
9RTT €11 PILI 9RTT 0911 PI'LI 286 96 L0771 0L°GT (urm) uropao eordojodoy, @
9L9T 9LFT 9T'9T 9L9T GLYT LT'9T 9€'¢T GLTT 80T e80T (xew) Surtopio [eorsojodor, @
90'8F 8GFV L6TL GO'8F €SFF L6'TL 988y €9°Ch 66'€L £8°GL [0A9] premspeq [eardojodog, @
1¢LF I8P 98°0L 0S°LF GLFP 98°0L T€8F LRGP L8'TL TgGL [0A9] premioj reatsorodog, @
9Trs eL1S IT'I8 vers 9918 el'I8 €0'8F 089V 6VIL {557 (xopur) Sunopio (eardojodog, @

e poxym wopuel oanisod eanedeu e poxtu wopuel aanisod aAneSou e poxru wopuel aanisod sAneou Uo1RAIOSq)
— y=plaL=dg=y - = y=pogt=dg=y - = g=peL=d9r=1y — sde[AQ yNM ‘sorond) Iseq
000 000 000 100 000 000 000 000 000 000 000 100 W=s50
910 120 000 €70 890 €60 10°0 LLT LT 8T 10°0 667 (=) Sutepio [eo18ojodor, O
987 I8¢ 00°0 £9°L FLO 90T 10°0 88'T 19¢ LET 10°0 90°0T (xewr=) Suopio reatsofodog, O
L8T 80T 10°0 LT 68 PSST 800 £1°0% 96, 098 20°0 0262 (mop) Sunapio [eorgojodot, O
097 LVE 200 £6°9 08F% OF'L 1370 €SI R0°L PGL £0°0 €L°08 (q81y) Surwpio [eorgojodor, O
90z T09% 6L€ 70'2S 0£'8¢ 188 0L6T 0LF9 847 €8 OF 96'99 0013104 oATpI0ddNG O
000 000 00°0 000 100 000 100 700 67 ¥0¢C 018 18'8 SDOM TUIPIP @
P00 €00 90°0 90°0 IO 700 €20 62°0 egL €89 LVTT 9L'TT (-31) soon10/ 0ATI0ddNg @
900 S0°0 60°0 60°0 Te0 ST0 160 96°0 €CTT GLOT 16T 8261 (+3f) s0oma0A PAnI0ddng @
90 970 98°0 260 966 2lT LT°6 G601 eRTT LETL €T°LL 8L'8T () Suepio [eadojodog, @
2T 860 G6'1 G6°T 667 6L L0°8 60°0T €291 991 GI'9C 1r9g (xew) Sutiopio [esr3ojodog, @
80°0T €18 €661 LT91 ST 090 G0T 76°¢ €6'LF LUFF 887TL 89FL [0A9] pressprq [edrdojodor, @
OF'eEr £9°GE F0°L9 GOTL L0660 178 LOTL LE2F PETR 9L0L LETL [049] presaoy [eotgojodo], @
867 €7T 9% 98°F 188 9L°0T VI 90€9 0I'PS 6I'1G @018 8178 (xopur) Surtepio [esrdojodog, @

:@ Numuﬁ:: E~O~u=$.~ m}:.ﬁnQQ OATY vSou :@ Hﬁwun.:: :NOWy:\NN m;,E.HAQQ mb.EﬁMmE :@ 1.&*.:= ::uv uer m\—.GmeQ ®>.~u~v.,%®= :OE@»vaQO
— sdefroa() ou ‘sowong) [y — = TOIRAIDS(() OSUIG ‘SoLTony) 1seq — = sde[roa() I ‘sorong) Iseg — F=picr=d9or=y

JaquInp [e10] 3y} JaAQ AJSAD € Jamsuy pjnoD) UOITeAIIsqQ 9yl SaWI] JO JIaqINN Se UOIJeAlasqQ Yded JO SSAUIAIIRYT 'LV d]qel

(wonog) suonreanSyuo) 1ay3Q pue (dol) ¥ = p ‘6 = d ‘9T = y 10} JUIDIdJ Ul SILIBAY paJapISuU0) Jo

October 2022.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date

4.2:26 K. Hanauer et al.

REFERENCES

[1] D.Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. 2014. Benchmarking for graph clustering

and partitioning. In Proceedings of the Encyclopedia of Social Network Analysis and Mining. Springer.

Yangjun Chen and Yibin Chen. 2008. An efficient algorithm for answering graph reachability queries. In Proceedings

of the 24th International Conference on Data Engineering. Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.),

IEEE Computer Society, 893-902. DOI : https://doi.org/10.1109/ICDE.2008.4497498

James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-label: A topological-folding labeling scheme

for reachability querying in a large graph. In Proceedings of the ACM SIGMOD International Conference on Management

of Data. Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.), ACM, 193-204. DOI : https://doi.org/10.1145/

2463676.2465286

Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. 2006. Fast computation of reachability

labeling for large graphs. In Proceedings of the Advances in Database Technology - EDBT 2006, 10th International Con-

ference on Extending Database Technology. Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes,

Michael Hatzopoulos, Klemens Bohm, Alfons Kemper, Torsten Grust, and Christian Béhm (Eds.), Lecture Notes in

Computer Science, Vol. 3896, Springer, 961-979. DOI : https://doi.org/10.1007/11687238_56

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and distance queries via 2-hop labels.

SIAM Fournal on Computing 32, 5 (2003), 1338-1355. DOI : https://doi.org/10.1137/S0097539702403098

[6] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms (3rd ed.). MIT Press, Chapter

Elementary Data Structures.

R. W. Floyd. 1962. Algorithm 97: Shortest path. Communications of the ACM 5, 6 (1962), 345. DOI : https://doi.org/10.

1145/367766.368168

Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz von Looz. 2018.

Communication-free massively distributed graph generation. In Proceedings of the 2018 IEEE International Parallel

and Distributed Processing Symposium.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction hierarchies: Faster and sim-

pler hierarchical routing in road networks. In Proceedings of the International Workshop on Experimental and Efficient

Algorithms. Springer, 319-333.

[10] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. 2012. Exact routing in large road networks
using contraction hierarchies. Transportation Science 46, 3 (2012), 388-404.

[11] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. 2020. Faster fully dynamic transitive closure in practice.
In Proceedings of the18th International Symposium on Experimental Algorithms. Simone Faro and Domenico Cantone
(Eds.), Leibniz International Proceedings in Informatics, Vol. 160, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 14:1-14:14. DOI : https://doi.org/10.4230/LIPIcs.SEA.2020.14

[12] Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2021. O’reach: Even faster reachability in large graphs.
In Proceedings of the19th International Symposium on Experimental Algorithms. David Coudert and Emanuele Natale
(Eds.), Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 13:1-13:24. DOI : https://doi.org/10.4230/LIPIcs.SEA.2021.13

[13] H.V.]Jagadish. 1990. A compression technique to materialize transitive closure. ACM Transactions on Database Systems
15, 4 (1990), 558-598. DOI : https://doi.org/10.1145/99935.99944

[14] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. 2012. SCARAB: Scaling reachability computation on large
graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data. K. Selcuk Candan,
Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.), ACM, 169-180. DOI : https://doi.org/10.1145/
2213836.2213856

[15] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-tree: An efficient reachability indexing scheme
for large directed graphs. ACM Transactions on Database Systems 36, 1 (2011), 7:1-7:44. DOI : https://doi.org/10.1145/
1929934.1929941

[16] Ruoming Jin and Guan Wang. 2013. Simple, fast, and scalable reachability oracle. Proceedings of the VLDB Endowment
6,14 (2013), 1978-1989. DOI : https://doi.org/10.14778/2556549.2556578

[17] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: A high-compression indexing scheme for reach-
ability query. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. Association
for Computing Machinery, New York, NY, 813-826. DOI: https://doi.org/10.1145/1559845.1559930

[18] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently answering reachability queries on very large
directed graphs. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Jason Tsong-Li
Wang (Ed.), ACM, 595-608. DOI : https://doi.org/10.1145/1376616.1376677

[19] A.B.Kahn. 1962. Topological sorting of large networks. Communications of the ACM 5, 11 (1962), 558-562. DOI : https:
//doi.org/10.1145/368996.369025

[20] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation. K. Nabeshima, K. Nagasaka, F. Winkler, and A. Szant6 (Eds.), ACM, 296-303.
DOI: https://doi.org/10.1145/2608628.2608664

[2

—

3

=

[4

[laaw}

5

[

7

—

8

[

[9

—

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1007/11687238_56
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/367766.368168
https://doi.org/10.4230/LIPIcs.SEA.2020.14
https://doi.org/10.4230/LIPIcs.SEA.2021.13
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2608628.2608664

O’Reach: Even Faster Reachability in Large Graphs 4.2:27

[21] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved Feb 1,
2021 from http://snap.stanford.edu/data.

[22] F.Merz and P. Sanders. 2014. PReaCH: A fast lightweight reachability index using pruning and contraction hierarchies.
In Proceedings of the European Symposium on Algorithms. A. S. Schulz and D. Wagner (Eds.), Springer, Berlin, 701-712.

[23] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010. Introducing the graph 500. Cray Users
Group 19 (2010), 45-74.

[24] Thomas Reps. 1998. Program analysis via graph reachability. Information and Software Technology 40, 11-12 (1998),
701-726.

[25] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 49-61.

[26] Ralf Schenkel, Anja Theobald, and Gerhard Weikum. 2004. HOPI: An efficient connection index for complex XML doc-
ument collections. In Proceedings of the Advances in Database Technology - EDBT 2004, 9th International Conference on
Extending Database Technology. Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides,
Manolis Koubarakis, Klemens Bohm, and Elena Ferrari (Eds.), Lecture Notes in Computer Science, Vol. 2992, Springer,
237-255. DOI : https://doi.org/10.1007/978-3-540-24741-8_15

[27] B. Scholz, C. Zhang, and C. Cifuentes. 2008. User-input dependence analysis via graph reachability. In Proceedings of
the 2008 8th IEEE International Working Conference on Source Code Analysis and Manipulation. 25-34.

[28] Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. 2017. Reachability querying: Can it be even faster? IEEE Transactions

on Knowledge and Data Engineering 29, 3 (2017), 683-697. DOI : https://doi.org/10.1109/TKDE.2016.2631160

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM Journal on Computing 1, 2 (1972), 146—160.

DOI: https://doi.org/10.1137/0201010

[30] Robert Endre Tarjan. 1976. Edge-disjoint spanning trees and depth-first search. Acta Informatica 6, 2 (1976), 171-185.

[31] Silke Trifll and Ulf Leser. 2007. Fast and practical indexing and querying of very large graphs. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou
(Eds.), ACM, 845-856. DOI : https://doi.org/10.1145/1247480.1247573

[32] Sebastiaan J. van Schaik and Oege de Moor. 2011. A memory efficient reachability data structure through bit vector

compression. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Timos K. Sellis,

Renée]. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis (Eds.), ACM, 913-924. DOI : https://doi.org/10.1145/

1989323.1989419

René Rodrigues Veloso, Loic Cerf, Wagner Meira, and Mohammed J. Zaki. 2014. Reachability queries in very large

graphs: A fast refined online search approach. In Proceedings of the EDBT. 511-522.

[34] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. 2006. Dual labeling: Answering graph reachability

queries in constant time. In Proceedings of the 22nd International Conference on Data Engineering. Ling Liu, Andreas

Reuter, Kyu-Young Whang, and Jianjun Zhang (Eds.), IEEE Computer Society, 75. DOI : https://doi.org/10.1109/ICDE.

2006.53

S. Warshall. 1962. A theorem on boolean matrices. Journal of the ACM 9, 1 (1962), 11-12. DOI : https://doi.org/10.1145/

321105.321107

Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability querying: An independent permutation labeling

approach. The VLDB Journal 27, 1 (2018), 1-26. DOI : https://doi.org/10.1007/s00778-017-0468-3

[37] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and scalable reachability queries on graphs by
pruned labeling with landmarks and paths. In Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management. Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi (Eds.), ACM, 1601-1606.
DOI:https://doi.org/10.1145/2505515.2505724

[38] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2010. GRAIL: Scalable reachability index for large graphs.
Proceedings of the VLDB Endowment 3, 1-2 (2010), 276-284. DOI : https://doi.org/10.14778/1920841.1920879

[39] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2012. GRAIL: A scalable index for reachability queries in very
large graphs. The VLDB journal 21, 4 (2012), 509-534.

[40] Jeffrey Xu Yu and Jiefeng Cheng. 2010. Graph reachability queries: A survey. In Proceedings of the Managing and
Mining Graph Data. Charu C. Aggarwal and Haixun Wang (Eds.), Advances in Database Systems, Vol. 40. Springer,
181-215. DOI : https://doi.org/10.1007/978-1-4419-6045-0_6

[29

—

(33

—_

(35

—

(36

—

Received 15 December 2021; accepted 21 July 2022

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.2. Publication date: October 2022.

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-24741-8_15
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/321105.321107
https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1007/978-1-4419-6045-0_6

