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This study introduces a new normalization layer termed Batch Layer Normalization (BLN) to reduce the problem of internal covariate
shift in deep neural network layers. As a combined version of batch and layer normalization, BLN adaptively puts appropriate weight
on mini-batch and feature normalization based on the inverse size of mini-batches to normalize the input to a layer during the learning
process. It also performs the exact computation with a minor change at inference times, using either mini-batch statistics or population
statistics. The decision process to either use statistics of mini-batch or population gives BLN the ability to play a comprehensive role
in the hyper-parameter optimization process of models. The key advantage of BLN is the support of the theoretical analysis of being
independent of the input data, and its statistical configuration heavily depends on the task performed, the amount of training data,
and the size of batches. Test results indicate the application potential of BLN and its faster convergence than batch normalization and
layer normalization in both Convolutional and Recurrent Neural Networks. The code of the experiments is publicly available online.1
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1 INTRODUCTION

Deep Neural Networks (DNNs) are extensively utilized across a wide range of domains, including Natural Language
Processing (NLP), Computer Vision (CV), and Robotics applications. They usually consist of deep-stacked layers between
which there is a linear mapping with learnable parameters and a non-linear activation function. Although their deep
and complex structure gives them high representational capacity in learning features, it also makes them challenging
to train where there is a randomness in the parameter initialization of layers and input data. This problem is called
internal covariate shift [13] and occurs in the training of networks when previous layers’ parameters change; the
distribution of inputs for the current layer changes accordingly so that the current layer must constantly adapt to
the new distributions. This problem is particularly severe for deep networks where small changes in deeper hidden
layers are amplified as they propagate through the network, causing significant shifts in deeper hidden layers. Many
normalization methods have been introduced that have some disadvantages and advantages besides reducing the
internal covariate shift. The disadvantages are accounting for a significant part of training time and playing no role in a
1https://github.com/A2Amir/Batch-Layer-Normalization
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hyper-parameter optimization process. On the other hand, advantages come from using a higher learning rate without
vanishing or exploding gradients, acting as a regularizer so that the network enhances its generalization properties,
speeding up training, and creating more reliable models.

In this study, we first provide a survey of the commonly used normalization methods, batch and layer normalization,
in order to fully understand the advantages and disadvantages of each method. Next, we combine batch and layer
normalization into one method termed Batch Layer Normalization (BLN), by which the drawbacks of each method are
overcome, and a new normalization technique is developed that embodies the advantages of both methods. Unlike
previous works that consider the role of normalization methods in the hyperparameter optimization process of a model
as a relatively unexplored parameter, we additionally unify our method with the process of setting hyperparameters
to fine-tune a model. This way, BLN as a normalization layer can play a comprehensive role in the hyperparameter
optimization process of a model, leading to the stabilization and further improvement of the model.

Batch Layer Normalization, as a normalization layer during the learning process, estimates normalization statistics
from the summed inputs to the neurons within a hidden layer across mini-batch and features. At inference times, it
also performs the exact computation with a minor change, using either mini-batch statistics or population statistics.
The decision to use either statistics of mini-batch or population is based on a model’s hyper-parameter optimization
process, giving the new normalization method the ability to play a role in the hyper-parameter optimization process.
We show that BLN works well for the tasks that use convolutional or recurrent layers and improves the training time
and the generalization performance of models.

2 RELATEDWORK

Normalization methods can be classified into three categories [8]. The first category applies normalization to different
dimensions of the output. Three popular instances for that are Layer Normalization [3], in which inputs are normalized
across features; Instance Normalization [29], which normalizes over the spatial locations of the output; and Group
Normalization [32], that performs normalization independently along spatial dimensions and a group of features. The
second category performs direct changes to the original batch normalization method [13]. This category includes
methods such as Ghost BN [10], which performs normalization independently across different splits of batches, and Batch
Re-normalization [12], or Streaming Normalization [17], both of which make some changes to the original algorithm to
use global averaged statistics rather than the current batch statistics. The final category includes methods based on
normalizing weights instead of activations. This category consists of Weight Normalization [24] and Normalization
Propagation [2]. They all rely on dividing weights by their l2 norm and vary only in minor details.

Despite the different normalizationmethods used in various fields, there is a trend in normalizationmethods employed
by different papers over time, as shown in Figure 1. The graph shows that two of the most commonly used normalization
techniques are layer and batch normalization methods from the first and second categories. Accordingly, they became
the fundamental component in most modern architectures [27, 40, 9, 21, 11, 33, 28] and transformers [30, 38, 35, 34]
and have made a successful spread in various areas of deep learning [22, 18, 5].

Batch normalization can be used to manipulate the statistical properties of layer activations. Well-designed statistical
properties can represent the domain-specific information for the distribution of a group of inputs. More explicitly, batch
normalization tries to force the activations of a layer into a gaussian unit distribution at the beginning of training. It
standardizes the activations of DNN intermediate layers with an approach of a three-step computation:
1. Computation of Statistics: the mean and variance of each mini-batch during the training phase are calculated.
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Fig. 1. Trend in using normalization methods [26]

Let 𝑥 denote inputs over a minibatch 𝐵 of size𝑚, 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, each input with a dimension of
(
𝑥 (1) , . . . , 𝑥 (𝑑)

)
.

Batch normalization [13] standardizes the mini-batch data by:
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Then, each dimension of the input is normalized separately:
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where 𝑘 ∈ [1, 𝑑] and 𝑖 ∈ [1, 𝑚]; 𝜇 (𝑘)
𝐵

and 𝜎 (𝑘)
2

𝐵
are the per-dimension mean and variance, and 𝜖 > 0 is a small number

to prevent numerical instability, respectively.
2. Batch Normalization Transform: batch normalization utilizes two additional learnable parameters to reconstitute
a possible reduced representational capacity [17]. Scale parameter 𝛾 ∈ 𝑅 and shift parameter 𝛽 ∈ 𝑅 where 𝛾 and 𝛽 are
subsequently learned in the optimization process.

𝑦
(𝑘)
𝑖

= 𝛾 (𝑘)𝑥 (𝑘)
𝑖
+ 𝛽 (𝑘) (3)

The output of the transform step is then passed to other network layers, while the normalized output remains internal
to the current layer.
3. Inference: the normalization steps depend on mini-batches in the training phase. In the inference phase, however,
this dependence is no longer helpful. Instead, the normalization step in this phase is calculated deterministically. The
population mean 𝐸

[
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]
and variance Var

[
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]
are estimated by calculating the moving averages of the summed

input statistics:
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(5)

Thus, the population statistics are a complete representation of all mini-batches. Therefore, the batch normalization
transform in the inference step becomes:
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where 𝑦 (𝑘) is passed to future layers instead of 𝑥 (𝑘) . Since the parameters are fixed in this transformation, the batch
normalization procedure applies a linear map to the activation.

Batch normalization has several advantages, including improving training stability, which is mainly due to its scale-
invariant property [8, 37, 20, 31], meaning a bad input from the previous layer does not ruin the next layer. Although the
practical success of batch normalization is undeniable and is present in current state-of-the-art architectures pervasively,
its theoretical analysis remains limited. For example, in the case of optimization, most analyses require the model
to be independent of input data, such that the stochastic/mini-batch gradient becomes an unbiased estimator of the
true gradient over a dataset. However, batch normalization typically does not fit this data-independent assumption,
and its optimization usually depends on the sampling strategy and the mini-batch size [22]. Furthermore, batch
normalization still struggles with some problems in certain contexts. For example, the inconsistent operation of batch
normalization between training and inference restricts its suitability in complex networks such as recurrent neural
networks [8, 6, 16, 15, 23, 4].

In order to address the drawbacks of batch normalization, layer normalization was introduced to estimate the
normalization statistics directly from the summed inputs to the neurons within a hidden layer across all features. In
layer normalization, all hidden units in a layer (mostly feature layer) have the same normalization statistics, which can
be different in each training step [8]. In other words, batch normalization converts to layer normalization with only
two steps:
1. Computation of Statistics: the mean and variance used for normalization are computed from all summed inputs to
the neurons on each training step. Let 𝑥 denote inputs over a minibatch 𝐵 of size𝑚, 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, each input
with a dimension of

(
𝑥 (1) , . . . , 𝑥 (𝑑)

)
, where 𝑖 ∈ [1, 𝑚], and 𝑘 ∈ [1, 𝑑]. The mean and variance are computed as follows:
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Then, each sample is normalized such that the elements in the sample have zero mean and unit variance.

𝑥
(𝑘)
𝑖

=
𝑥
(𝑘)
𝑖
− 𝜇 (𝑖)

𝐹√︃
𝜎
(𝑖)2
𝐹
+ 𝜖

(8)

2. Transform: by applying transformation on the normalized inputs using some learned parameters 𝛾 and 𝛽 , the output
could be expressed as 𝐵′ = {𝑦1, 𝑦2, . . . , 𝑦𝑚}, where 𝑦𝑖 = 𝐿𝑁𝛾,𝛽 (𝑥𝑖 ).

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 ≡ 𝐿𝑁𝛾,𝛽 (𝑥𝑖 ) (9)

Layer normalization performs the exact computation at training and inference times and does not require the moving
averages of summed input statistics. In contrast to batch normalization, layer normalization is not subject to any
restriction regarding the size of mini-batches and can be used in pure online mode with the batch size of one. Layer
normalization has also proven to be an effective method for stabilizing the hidden state dynamics in recurrent neural
networks. From an empirical point of view, it shows that it can significantly reduce the training time compared to
previously published techniques [8]. Despite the increasing usage of layer normalization in common neural network
architectures [30, 1, 36] employed for NLP, layer normalization works not as well as batch normalization when used
with convolutional layers. When layers are fully connected, all layers’ hidden units generally contribute similarly to the
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final prediction, and normalizing of summed inputs in a layer works well. However, similar contributions no longer
hold for Convolutional Neural Networks [8].

The following section describes the theoretical assumptions and practical experiments of developing the new
normalization method in overcoming the drawbacks of batch and layer normalization methods and having a new
normalization technique that embodies the advantages of both methods in the area of Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs).

3 METHODOLOGY

This study introduces a new normalization mechanism called BLN, in which batch and layer normalization methods are
combined into one method that overcomes the disadvantages of each method and embraces the advantages of both
of them. In batch settings, where a model is trained on the steps of an entire training set, we would use the whole
training set to normalize the activations, which is impractical in stochastic optimization. Since we use mini-batches in
stochastic gradient training and each mini-batch has estimates for the mean and variance of each activation. Therefore,
the batch normalization authors simplified and used mini-batches statistics for normalization. One issue they did not
consider was the size of mini-batches. As discussed, batch normalization has the problem of small batch size, and its
error increases rapidly as the batch size gets smaller [29]. In contrast to batch normalization, layer normalization is not
subject to any restriction regarding the size of mini-batches and can be used with the batch size of one.

To address this limitation in our new normalization method, we consider the size of mini-batches in calculating
normalization through one essential step, in which activations are independently normalized on mini-batch (Equation.
14) and features (Equation. 15) by having the mean equal to zero and the variance equal to one. Next, these normalized
activations are combined based on a function (the numerator of Equation. 16) of the inverse size of mini-batches, which
acts as a parameter in the range of 𝜖 to 1 − 𝜖 to put the appropriate weights on the normalized activations of mini-batch
(𝑥) and features

( ˆ̂𝑥 ) . The function’s behavior is shown in Figure 2 for the size of mini-batches ranging from 1 to 50. As
shown in Figure 2, increasing the size of the mini-batches increases the weight put on mini-batch normalization, while
its decrease causes an increase in the amount of weight on feature normalization.

Fig. 2. Effect of the numerator of Equation 16. on mini-batch and feature normalization.

To adaptively control the scaling weights for different layers, we divided the numerator of Equation. 16 by the root
mean square of 𝑑 (the last dimensional shape of input), based on the idea presented in the AdaNorm algorithm [35].
The issue of the normalizing equation (Equation. 16) is that a gradient descent optimization does not take into account
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the fact that normalizations occur. To solve this problem, the gradient of loss with respect to model parameters has
to consider the normalizations and their dependence on model parameters. Therefore, we used a pair of learnable
parameters 𝛾, 𝛽 (Equation. 17) that scale and shift the normalized values for each input. Formally, let 𝑥 denote inputs
over a minibatch 𝐵 of size𝑚, 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, each input with a dimension of

(
𝑥 (1) , . . . , 𝑥 (𝑑)

)
, where 𝑖 ∈ [1, 𝑚],

𝑘 ∈ [1, 𝑑], and 𝜖 > 0 is a small number to avoid numerical instability, 𝛾 and 𝛽 are parameters to be learned. We compute
output

{
𝑦𝑖 = 𝐵𝐿𝑁𝛾,𝛽 (𝑥𝑖 )

}
with Algorithm 1.

Algorithm 1 Batch Layer Normalization Transform.

Input: Inputs over a mini-batch: 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑚}, each with a dimension of
(
𝑥 (1) , . . . , 𝑥 (𝑑)

)
; Parameters to be

learned: 𝛾, 𝛽
Output:

{
𝑦𝑖 = 𝐵𝐿𝑁𝛾,𝛽 (𝑥𝑖 )

}
𝜇
(𝑘)
𝐵
← 1

𝑚

∑𝑚
𝑖=1 𝑥

(𝑘)
𝑖

mini batch mean (10)

𝜎
(𝑘)
𝐵
←

√︂
1
𝑚

∑𝑚
𝑖=1

(
𝑥
(𝑘)
𝑖
− 𝜇 (𝑘)

𝐵

)2
+ 𝜖 mini-batch standard deviation (11)

𝜇
(𝑖)
𝐹
← 1

𝑑

∑𝑑
𝑘=1 𝑥

(𝑘)
𝑖

feature mean (12)

𝜎
(𝑖)
𝐹
←

√︂
1
𝑑
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(
𝑥
(𝑘)
𝑖
− 𝜇 (𝑖)

𝐹

)2
feature standard deviation (13)

𝑥
(𝑘)
𝑖
← 𝑥

(𝑘 )
𝑖
−𝜇 (𝑘 )

𝐵

𝜎
(𝑘 )
𝐵

normalize mini-batch (14)

ˆ̂𝑥 (𝑘)
𝑖
← 𝑥

(𝑘 )
𝑖
−𝜇 (𝑖 )

𝐹

𝜎
(𝑖 )
𝐹

normalize features (15)

ˆ̂̂𝑥𝑖 ←
((1−( 1

𝑚
+𝜖)) 𝑥𝑖 )+

(
( 1
𝑚
−𝜖) ˆ̂𝑥𝑖

)
√
𝑑

normalize (16)

𝑦𝑖 ← 𝛾 𝑥𝑖 + 𝛽 ≡ 𝐵𝐿𝑁𝛾, 𝛽 (𝑥𝑖 ) scale and shift (17)

The authors of the batch normalization method generally assume that the normalization of activations depends on
mini-batch statistics during training but is never essential during inference [13]. They used during inference, population
statistics rather than mini-batch statistics. Various studies [8, 6, 16, 15, 23, 4] have been conducted, showing that using
population statistics works well with CNNs, but they do not work well for NLP tasks that use RNNs [6, 25] on account of
the recurrent connection to previous time stamps. For example, in a study [6] used moving batch statistics for different
time steps of RNNs, it was found that the performance of a batch normalization method is significantly lower than
that of a layer normalization method. We also had the experience that a change such as using batch statistics instead
of a global average of summed input statistics in the inference phase of a batch normalization method affects the
performance of a model.

On the other hand, the authors of the layer normalization method assume that the normalization of activations
depends only on mini-batch statistics during training and inference [3]. Thus, it can be inferred that the assumption that
normalizing activations during inference must always depend on the population of the entire training set is not entirely
correct. To address this issue, we also note that previous works have thoroughly investigated the role of normalization
methods in models’ hyper-parameter optimization processes as a relatively unexplored parameter. Therefore, we give
Batch Layer Normalization a role in the hyper-parameter optimization process of a model by selecting between two
Manuscript submitted to ACM
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assumptions for each of all four statistics (42 possible configurations) in Algorithm 1. In the first assumption, for the
normalization of activations during inference, mean or standard deviation is obtained from the corresponding estimated
population statistics by setting True in one of the Equations 18, 19, 20, 21 (see Appendix), where the expectations are
over training mini-batches of size𝑚 and 𝜇𝐵, 𝜎𝐵, 𝜇𝐹 , 𝜎𝐹 are their sample means and standard deviations on mini-batches
and features (Equations 10, 11, 12, 13). In the second, mean or standard deviation is only taken from the statistics
of mini-batch during inference by selecting False in one of the Equations 18, 19, 20, 21 (see Appendix). The selection
process can be assumed as a hyper-parameter optimization process to fine-tune a model, leading to stabilization and
further improvement of the model. Next, the normalization (Equations 22, 23, 24 in Appendix) is applied to each input,
which is further composed with the scaling by 𝛾 and shift by 𝛽 to form a single linear transform that replaces BLN(𝑥𝑖 ).
The described procedure for training a Batch Layer Normalization network is summarized in Algorithm 2.

As shown in Equation. 26, batch normalization [13] suggests that the normalization layer can be placed before
activation functions such as sigmoid or ReLU for both fully-connected and convolutional layers. Therefore, they add
the batch normalization transform before the nonlinearity 𝑔(.), where𝑊 and 𝑏 are learned parameters of a model and
𝑢 is the layer inputs.

𝑧 = 𝑔(𝐵𝑁 (𝑊𝑢 + 𝑏)) (26)

In a study that shows the impact of recent advances in CNN architectures and learning methods [19], the authors
conduct comparative experiments on the ImageNet dataset [22] to understand whether a batch normalization method
should be placed before or after the nonlinearity. The experiment showed that batch normalization placement after the
nonlinearity results in better accuracy. Therefore, we apply the BLN transform after the nonlinearity 𝑔(.) in contrast to
batch normalization.

𝑧 = 𝐵𝐿𝑁 (𝑔(𝑊𝑢 + 𝑏)) (27)

4 EXPERIMENTS

This section aims to first evaluate BLN to the internal covariate shift problem of deep learning layers, second to compare
it to the application of batch and layer normalization method, and finally, draw conclusions from the results about
the applicability of the new method for better solving the problem of internal covariate shift. As mentioned earlier,
batch normalization works well with CNNs and has the problem of not working with small batch sizes and RNNs; in
contrast, layer normalization works well with RNNs and small batch sizes and has the disadvantage of not working
well with CNNs. To test the applicability of our method, both with Convolutional and Recurrent Neural Networks and
different batch sizes, two different challenging experiments were designed. The first is in the image classification area
using the CIFAR-10 [14] dataset, and the second is in the domain of sentiment analysis on the IMDB movie review
dataset. Furthermore, to ensure the validity of the results in each experiment, we use identical architectures, training
hyper-parameters, optimizations, and grid-search algorithms but different normalization methods. For all experiments,
we set 𝜖 in all Equation to be 0.0001 and train all networks from scratch using an Adam optimizer with batch sizes of 1
and 25.

4.1 Classifying CIFAR-10 using CNN

To compare BLN against the other two approaches, batch and layer normalization in image classification and CNNs, we
borrowed the popular LeNet-5 [7] architecture. Since there is no normalization layer in the original LeNet architecture,
we derived a modified model from it (Figure 3) so that a normalization layer is embedded after some layers. By

Manuscript submitted to ACM



8 Ziaee, et al.

replacing the embedded normalization layers in the modified network with one of the discussed normalization methods,
batch, layer, and BLN method, three independent networks were obtained in terms of normalization methods for each
normalizer. Note that hyper-parameters and architectures used in training these networks are the same to ensure that
the effect of these normalizers is compared appropriately.

Fig. 3. Illustration of modified LeNet architecture.

As proof of the challenging experiments, after training each network independently on only 20% of the training
dataset with batch sizes of 1 and 25, we compared their training results, including convergence issues and classification
accuracy, as well as their performances on the whole CIFAR-1O test set. Loss results presented in Figure 4a show
that BLN significantly accelerates the neural network training and accomplishes a step toward reducing the internal
covariant shift problem. In other words, considering the size of mini-batches in the calculation of normalization reduces
the probability of getting stuck in the saturation regime and thus stimulates the training process. Figure 4a also indicates
that batch normalization with a batch size of 25 performs better than layer normalization. This finding notably confirms
that in the case of big batch sizes, batch normalization has been the de facto standard for CNNs. Conversely, using
batch normalization in CNNs significantly degrades the model’s performance when batch size is one.

(a) Train and Test loss (b) Train and Test accuracy

Fig. 4. Loss and Accuracy on training and test dataset.

Based on Figure 4b, which shows the experimental results in terms of the training and test accuracy, BLN enables
the model to train faster and achieve higher accuracies of 0.61 and 0.87, while batch normalization achieves 0.09 and
Manuscript submitted to ACM
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0.78 and layer normalization scores 0.34 and 0.73 on the training set with batch sizes 1 and 25, respectively. Moreover,
BLN obtains better test accuracy compared to other normalizers.

Table 1 shows the possible configurations (step 12 of Algorithm 2) for the BLN network trained on either the entire
training dataset or 20% of it with a batch size of 25. These configurations are found using the grid-search approach and
sorted in terms of lower loss and higher accuracy on the entire test dataset. According to Table 1, the training data
size significantly impacts finding the best configuration of the BLN statistics in support of the theoretical analysis of
independent input data and improving the practical results.

Table 1. Configurations of BLN statistics used in CNN task.

20% of the training set used to train
with a batch size of 25

Whole training set used to train
with a batch size of 25

A

𝐸𝐵 Std𝐵 𝐸𝐹 Std𝐹

B

𝐸𝐵 Std𝐵 𝐸𝐹 Std𝐹
1 True True False False False True False False
2 True True False True False True False True
3 True True True True False True True True
4 True True True False False True True False
5 False False False True False False False False
6 False False False False False False False True
7 False False True True False False True True
8 False False True False False False True False
9 False True False True True True False True
10 False True False False True True False False
11 False True True True True True True True
12 False True True False True True True False
13 True False True False True False True False
14 True False True True True False True True
15 True False False True True False False True
16 True False False False True False False False

As shown in part B of Table 1, the first-best possible configuration reveals that when using the whole training data,
the current batch mean (𝐸𝐵 = False) and feature mean (𝐸𝐹 = False) are suitable settings to be used in the inference to
normalize the input to layers of the network. The intuition is that the obtained global mean on batches and features
may not share general information. In contrast, when using 20% of the whole training set (part A of Table 1), the
first-best configuration suggests utilizing the population statistics on batches (𝐸𝐵 = True, Std𝐵 = True) since we are
using a subset of the training dataset and this information can assist the model in converging faster and learning
better. Accordingly, this conclusion can be broadly applied to other statistic configurations of Table 1. For example, the
first-best and second-best configuration of the statistics show no advantage of using the population mean of features in
both cases when the whole data or 20% of it is used.

4.2 Sentiment analysis of IMDB using RNN

To investigate the performance and correlation between the statistical properties of BLN in the NLP domain, a
sentiment analysis task was developed using an RNN with a focus on challenging the intriguing phenomenon that
layer normalization is more effective than batch normalization in the NLP domain [8], against the BLN method. Three
independent networks were obtained by replacing all the normalization layers in the RNN architecture (Figure 5) with
one of the normalization methods discussed. These networks were trained and evaluated on the IMDB movie review
dataset that contains 50,000 reviews divided equally across train and test splits. As a note, the experimental protocol
described in Section 4.1 was used for all experiments.
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Fig. 5. Illustration of proposed RNN architecture.

Figure 6a and 6b show the loss and accuracy of the obtained networks trained on 20% of the training dataset and
evaluated on the whole test dataset with batch sizes of 1 and 25. As shown, BLN offers a per-iteration speedup and
converges faster than batch normalization and even layer normalization, which is the most commonly used normalizer
in the NLP domain. Based on the final results, our BLN normalizer shows significant improvement compared to the
other two normalizers in all train and test evaluation metrics.

(a) Train and Test loss (b) Train and Test accuracy

Fig. 6. Loss and Accuracy on training and test dataset.

As demonstrated in Figures 6a and 6b, the layer normalization potentially performs better than the batch normalization
in terms of loss and accuracy. This result confirms the discussed assumption that layer normalization in RNNs improves
the model’s performance. Table 2. summarizes the possible configurations (step 12 of Algorithm 2) for the BLN network
trained on either the entire training dataset or 20% of it with a batch size of 25. These configurations are found using
the grid-search approach and sorted in terms of lower loss and higher accuracy on the entire test dataset. Inferring
from this table, we observe that the current batch mean (𝐸𝐵 = False) is a suitable configuration in the normalization
process of the sentiment analysis task and elevates the performance while the global batch mean does not pass general
information to the model or is not helpful at all for RNNs. In contrast, we recommend not using the global mean statistic
obtained from the moving mean of batches when using either the whole training set or a subset of it. This deduction
can broadly be extended to other sets of statistics.

5 DISCUSSION

The experimental results show that BLN converges significantly faster than batch and layer normalization in both
CNN and RNN domains. Figures 4 and 6 also indicate that considering the size of mini-batches when calculating
the normalization can contribute to finding the best statistical configuration, which leads to fast convergence of
BLN. Furthermore, Tables 1 and 2 also show that the assumption that normalization of activations during inference
Manuscript submitted to ACM
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Table 2. Configurations of BLN statistics used in RNN task.

20% of the training set used to train
with a batch size of 25

Whole training set used to train
with a batch size of 25

A

𝐸𝐵 Std𝐵 𝐸𝐹 Std𝐹

B

𝐸𝐵 Std𝐵 𝐸𝐹 Std𝐹
1 False False True False False True False False
2 False False False False False True True False
3 False False True True False True False True
4 False False False True False True True True
5 True False False True False False False True
6 True False True True False False True True
7 True False False False False False False False
8 True False True False False False True False
9 False True True False True True False False
10 False True False False True True True False
11 False True True True True True False True
12 False True False True True True True True
13 True True False False True False False True
14 True True True False True False True True
15 True True False True True False False False
16 True True True True True False True False

must always depend on mini-batch statistics or population statistics is not a solid general assumption and must be
modified according to the task, the amount of training data and the size of batches. These results notably approve that
BLN supports the theoretical analysis of being independent of the input data by configuring its statistics used in the
normalization process strongly based on the task, training data, and batch sizes. Complementary to this main point,
other outcomes can be summarized as follows:

(1) From the first-best configuration in parts A and B of Table 1, taking the global mean and standard deviation of
features (𝐸𝐹 = True, Std𝐹 = True) in CNN normalization is not recommended regardless of training data size. In
summary, the global batch mean is generally a good statistic for normalizing CNNs, when the training data is
small, and vice versa; the current batch mean when the training data is big enough.

(2) The first-best configurations in parts A and B of Table 2 declare that while utilizing the population mean on
batches (𝐸𝐵 = True) in RNN normalization is not a good idea at all, the current mean and standard deviation of
features can help RNNs converge faster.

(3) The first-best configurations in both parts (A and B) of Tables 1 and 2 approve that using the current standard
deviation of features (Std𝐹 = False) in normalization can usually help CNNs and RNNs converge faster.

The limitation of BLN can be reflected in the time spent searching for the best configuration of statistics. This time
can be reduced using the heuristic hyper-parameter tuning methods [39]. In future work, step 12 of Algorithm 2, which
is tailored to overall neural network architecture, can also be extended to the statistics used for each deep neural
network layer.

6 CONCLUSIONS

In this paper, we proposed a novel normalization method called BLN to reduce the internal covariate shift in deep
learning layers and significantly accelerate their training. As a normalization layer, BLN not only exploits the advantages
of the two most commonly used normalizers in the deep learning networks, batch, and layer normalization but also
suppresses their drawbacks. Our proposed method derives its strength during training from appropriate weighting on
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mini-batch and feature normalization based on the inverse size of mini-batches and integrating this normalization in
the network architecture. This guarantees that the normalization is appropriately handled by each optimization method
used to train the network. During inferences times, it also performs the exact computation with a slight modification,
using either mini-batch or population statistics as a decision process to play a comprehensive role in hyper-parameter
optimization of models. BLN’s main advantage is that it supports the theoretical analysis of being independent of the
input data, as its statistical configuration is highly dependent on the task we are performing, the amount of training
data, and the size of batches. We empirically verify that BLN is superior to using batch and layer normalization both
in Convolutional and Recurrent Neural Networks, respectively, which further establishes the generalizability of our
method in different deep learning models.
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APPENDIX

Algorithm 2 Batch Layer Normalization Transform.

Input: Network 𝑁 with trainable parameters 𝜃 ; subset of activations
{
𝑥
(k)
𝑖

}𝑚,𝑑

𝑖=1,𝑘=1
Output: Batch Layer Normalization network for inference, 𝑁 inf

𝐵𝐿𝑁

1 : 𝑁 𝑡𝑟
𝐵𝐿𝑁
← 𝑁 // Training BLN network

2 : for 𝑖 = 1 . . .𝑚 do
3 : Add transformation 𝑦𝑖 = BLN𝛾,𝛽 (𝑥𝑖 ) to 𝑁𝐵𝐿𝑁 𝑡𝑟 ( Algorithm. 1)
4 : Modify each layer in 𝑁 tr

𝐵𝐿𝑁
with input 𝑥𝑖 to take 𝑦𝑖 instead

5 : end for
6 : Train 𝑁 𝑡𝑟

𝐵𝐿𝑁
to optimize the parameters Θ ∪ {𝛾, 𝛽}

7 : 𝑁 inf
𝐵𝐿𝑁
← 𝑁 𝑡𝑟

𝐵𝐿𝑁
// Inference BLN network with frozen parameters

8 : for 𝑘 = 1 . . . 𝑑 do
9 : Set 𝐸𝐵 [𝑥 (𝑘) ] = False, Std𝐵 [𝑥 (𝑘) ] = False, 𝐸𝐹 [𝑥𝑖 ] = False, Std𝐹 [𝑥𝑖 ] = False as initial parameters. For clarity,

True means using population statistics (process multiple training mini-batches 𝐵, each of size𝑚 and average
over them), False means using of current mini-batch statistics.

𝐸𝐵 [𝑥 (𝑘) ] =
{
𝐸

[
𝜇
(𝑘)
𝐵

]
if True

1
𝑚

∑𝑚
𝑖=1 𝑥

(𝑘)
𝑖

False
(18)

Std𝐵 [𝑥 (𝑘) ] =


𝑚

𝑚−1𝐸
[
𝜎
(𝑘)
𝐵

]
if True√︂

1
𝑚

∑𝑚
𝑖=1

(
𝑥
(𝑘)
𝑖
− 𝐸𝐵 [𝑥 (𝑘) ]

)2
+ 𝜖 False

(19)

𝐸𝐹 [𝑥𝑖 ] =
{
𝐸

[
𝜇
(𝑖)
𝐹

]
if True

1
𝑘

∑
𝑥
(𝑘)
𝑖

False
(20)

Std𝐹 [𝑥𝑖 ] =


𝑚

𝑚−1𝐸
[
𝜎
(𝑖)
𝐹

]
if True√︂

1
𝑘

∑ (
𝑥
(𝑘)
𝑖
− 𝐸𝐹 [𝑥𝑖 ]

)2
False

(21)

𝑥
(𝑘)
𝑖
←

𝑥𝑘
𝑖
− 𝐸𝐵 [𝑥 (𝑘) ]

Std𝐵 [𝑥 (𝑘) ]
(22)

ˆ̂𝑥 (𝑘)
𝑖
←

𝑥𝑘
𝑖
− 𝐸𝐹 [𝑥𝑖 ]

Std𝐹 [𝑥𝑖 ]
(23)

10 : end for
11 : In 𝑁

𝑖𝑛𝑓

𝐵𝐿𝑁
, replace the transform 𝑦𝑖 = BLN𝛾,𝛽 (𝑥𝑖 ) with

𝑥𝑖 ←

((
1 −

(
1
𝑚 + 𝜖

))
𝑥𝑖

)
+
((

1
𝑚 − 𝜖

)
ˆ̂𝑥𝑖
)

√
𝑑

(24)

𝑦𝑖 ← 𝛾 𝑥𝑖 + 𝛽 (25)
12 : Use a grid-search algorithm or other hyper-parameter tuning techniques [39] to find the best configuration of
statistics (𝐸𝐵 , Std𝐵 , 𝐸𝐹 , Std𝐹 ) among the possible configurations with lower loss and higher accuracy.
13: Use the best configuration for the rest of the training or fine-tuning and network testing.
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