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Abstract

Motivated by fairness requirements in communication networks, we introduce a natural variant of

the online paging problem, called min-max paging, where the objective is to minimize the maximum

number of faults on any page. While the classical paging problem, whose objective is to minimize

the total number of faults, admits k-competitive deterministic and O(logk)-competitive randomized

algorithms, we show that min-max paging does not admit a c(k)-competitive algorithm for any function

c. Speci�cally, we prove that the randomized competitive ratio of min-max paging is Ω(log(n)) and

its deterministic competitive ratio is Ω(k log(n)/ log(k)), where n is the total number of pages ever

requested.

We design a fractional algorithm for paging with a more general objective – minimize the value of

an n-variate di�erentiable convex function applied to the vector of the number of faults on each page.

This gives anO(log(n) log(k))-competitive fractional algorithm for min-max paging. We show how to

round such a fractional algorithm with at most a k factor loss in the competitive ratio, resulting in a

deterministic O(k log(n) log(k))-competitive algorithm for min-max paging. This matches our lower

bound modulo a poly(log(k)) factor. We also give a randomized rounding algorithm that results in a

O(log2n logk)-competitive algorithm.

1 Introduction

Paging is a decades-old, classical computer science problem. Suppose a computer process working on n
pages of data has access to two levels of memory: a fast memory, called the cache, that can hold a small

amount k of pages, and a slow memory containing all n pages. Typically, k is much smaller than n, and

initially, all pages are in slow memory. Whenever the process accesses a page, it is read from the cache;

if it is not already in the cache, a page fault occurs, and the page must be brought into the cache, which
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possibly necessitates evicting another page from the cache to make room. This is called serving the request.

In the online setting, each request must be served before the algorithm sees the subsequent request. The

goal is to minimize the total number of page faults incurred while serving a sequence of requests.

The paging problem has found new applications in communication networks, where caching is ubiq-

uitous and is used to minimize energy usage, communication latency, and network tra�c. Consider, for

example, TCP connections that are kept alive on a router [CKZ99] or optical links in recon�gurable data

center topologies [FS19, BFMS21]. Every user application prefers to have an active connection, as re-

establishing a TCP connection or link takes time and slows down communication or computation. An-

other example is content on web pages that is cached in a content delivery network, such as Akamai. In

practice, the cache servers in these networks rely on dynamic, eviction-based algorithms for managing

cache contents that solve the so-called content placement problem [TKR21]. Web pages in the cache have

a clear advantage as they can be served faster to the user than web pages that must be re-fetched from

the server. Ideally, all applications (of the same priority) and all web pages should be treated equally. This

motivates us to propose the study of a fair variant of paging, which we call min-max paging. Its goal is to

minimize the number of page faults on any page, i.e. to minimize the maximum number of page faults of
any single page.

In the online setting, the page requests are revealed one by one without knowledge of the future, so the

description of how to serve each request must depend only on the request sequence thus far and the current

cache contents. Naturally, for many problems, an online algorithm cannot output an optimal solution to

a given instance – something an o�ine algorithm having access to the entire input can produce. The

sub-optimality of an online algorithm is usually measured using competitive analysis. Informally, we say

that an online algorithm has a competitive ratio of c if, on every problem instance, it produces a solution

with (expected) cost at most c times the cost of an optimal solution. For the classic online paging problem

the competitive ratio has been well-studied: It is O(k) for deterministic algorithms [ST85, KMRS86] and

Hk ≈ 0.577+ ln(k) for randomized algorithms [FKL
+

91, MS91].

To the best of our knowledge, the min-max paging problem has not been studied before. While an

e�cient o�ine algorithm for the classical paging problem is known, we neither have an e�cient o�ine

algorithm for min-max paging nor a proof of NP-hardness. In this paper, we focus on the min-max paging

problem in the online setting and give both upper and lower bounds on its competitive ratio.

Our results We �rst propose an algorithm for the fractional paging problem with objective function f ,

where pages can be held in the cache fractionally, subject to having a total volume of at most k pages

at all times. The objective function f is an arbitrary function from an appropriately de�ned subclass of

convex functions applied to the fault vector. Here, the fault vector refers to the n-dimensional vector of

the number of faults incurred on each page, where n is the number of pages. We use the theory of convex

programming and properties of f to analyze our algorithm and establish the following bound.

Theorem 1 (Stated formally as Theorem 19). For the fractional paging problem with objective function f ,
there exists a (2q log(k+1))q-competitive algorithm, provided f grows no faster than a degree-q polynomial.

In particular, when instantiating f to be the q’th power of the q-norm, we get the following bound:

Theorem 2 (Stated formally as Theorem 20). For the fractional paging problem with the objective of mini-
mizing the `q-norm of the fault-vector, there exists a 2q log(k +1)-competitive algorithm.

Note that the above theorem does not give a sensible result for the `∞-norm, which is the objective

function we are interested in. However, using the fact that the `∞-norm of an n-dimensional vector is

well-approximated by its `log(n)-norm, we get the following result.
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Theorem 3 (Stated formally as Theorem 22). For the fractional paging problem with the objective of mini-
mizing the `∞-norm of the fault-vector (a.k.a. fractional min-max paging), there exists an O(log(n) log(k))-
competitive algorithm.

Next, we propose two approaches for rounding solutions of fractional min-max paging algorithms

online and obtain the following two results. Note that the bound of the latter result is better than the former

in the k =ω(logn) regime, and it also rules out a lower bound linear in k for randomized algorithms.

Theorem 4 (Stated formally as Corollary 24). There exists anO(k log(k) log(n))-competitive deterministic

algorithm for min-max paging.

Theorem5. There exists anO(log2n logk)-competitive randomized integral algorithm formin-max paging.

We complement the above upper bounds by the following impossibility results.

Theorem 6 (Stated formally as Theorem 3). Every deterministic algorithm for min-max paging is Ω(k
log(n)/ log(k))-competitive.

Theorem 7 (Stated formally as Theorem 9). Every algorithm for min-max paging isΩ(log(n))-competitive.

Note that we only have a O(log2 k) discrepancy between our deterministic bounds, i.e., the bounds

are tight up to a polylogarithmic in k factor. Moreover, our lower bounds show that min-max paging is

fundamentally more di�cult than classical paging and its several generalizations (see Section 6), which

admit competitive ratios independent of n, the total number of pages.

We now present some intuition why algorithms for the classical paging problem and a simple algorithm

for min-max paging fail to achieve anything better than a trivial competitive ratio for min-max paging.

Algorithms for the classical paging problem are oblivious to the number of faults a single page has incurred

while processing the sequence σ up to a given point in time t. Consider the Least Recently Used (LRU)

algorithm, which evicts the page whose last request was before the requests to other pages in the cache.

Let p0 ∈ P = {p0,p1, . . . ,pn} and assume that n = |P | − 1 = mk is a large multiple of k. The sequence

σ = (p0,p1,p2, . . . ,pk ,p0,pk+1,pk+2, . . . ,p2k ,p0,p2k+1, . . . ,pmk ,p0) will cause the LRU algorithm to fault

m + 1 times on page p0, while the optimal algorithm faults exactly once per page. We pair each request

to p0 with requests to a set of k pages. After processing these k requests, LRU will have ejected p0, so the

next request to p0 will result in a page fault, yielding in a competitive ratio of Ω(n/k).
Another obvious strategy is to greedily keep the k pages which have incurred the most faults thus far

in the cache. In this case, there also exists a request sequence for which the strategy is no better than

n
k -competitive. For simplicity’s sake, let us assume that k = 2. Then the request sequence is constructed

as follows: (1) Request p1,p2,p3 in this order N times, where N is a parameter. (2) Request p4,p5 until

the algorithm includes both of them into the cache. (3) Request p4,p5,p6 in this order N times. (4) Repeat

steps 2 and 3 with pages p7, p8, and p9 next, then with pages p10, p11, and p12, and so on.

After step 3, the greedy algorithm will hold two pages of cost (r+1)N , where r is the number of times

we have repeated steps 2 and 3. In step 2, we request a set of new pages, and the greedy algorithm will

fault on them until they reach cost (r +1)N . During step 3, the algorithm will faultN times on each page,

making it so that it has cost (r+2)N on the pages introduced in step 2. Meanwhile, the cost of the optimal

o�ine algorithm is no greater than N , obtained by immediately adding the pages of step 2 to the cache.

Our techniques Our lower bound of Ω(k log(n)/ log(k)) is established by generalizing the above con-

struction, using the following approach: The adversary �xes a sequence of requests over a set of n pages,

which can be served while keeping the number of faults on any page small. The core idea is to succes-

sively reduce the set of pages that we request in the future in such a way that the algorithm cannot predict
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which pages will stop being requested. A clairvoyant adversary processes the sequence so that she initially

incurs a small number of faults on pages that will be requested many times in the future. This causes the

adversary to have roughly uniform cost over all pages, while the algorithm has one page on which it has

faulted many times.

To design an online algorithm one could try to use standard techniques to transform a max-based

objective function into a linear program and solve the corresponding linear program online. However, this

does not work as all known online algorithms for linear programs only work with exclusively packing or
exclusively covering constraints and can not handle a mix of constraints, except for [ABFP13], which cannot

handle box constraints, i.e., an upper bound on the variables as required for paging.

Thus, to solve the online min-max paging problem, we solve a more general problem: We give a

O((q logk)q)-competitive algorithm for a fractional paging problem, which minimizes a convex, di�eren-
tiable function with q-bounded growth and an upper bound constraint (i.e., a box constraint) on each variable.
A function with q-bounded growth behaves like a polynomial function of degree q. To the best of our

knowledge, this problem has not been studied before, and no non-trivial online algorithm is known.

As our cost function is not linear, the combinatorial technique of potential functions used for server

problems with linear cost functions breaks down. Informally, a potential function captures the advantage

accumulated by the adversary at any time, which she can use to make the algorithm “pay” more than

herself in the future. The potential function is a function on the state space of the problem, where the

state of the algorithm, at any time, fully determines its future behavior. The state space is usually a small

set when the objective is linear. On the contrary, in the case of min-max paging, a state must capture the

vector of faults accumulated on each page and its current cache, and there can be multiple fault vectors

for the same current cache, which makes the state space blow up with every request, thus, making the use

of potential functions challenging, messy, and inelegant.

Instead, we build on the work of Azar et al. [ABC
+

16], which minimizes a convex cost function with

linear constraints of row sparsity ρ. Their approach requires the variables xp,j to be unbounded, and for

q-bounded growth functions, it gives an O((q logρ)q)-competitive algorithm.

We also draw on ideas from Bansal et al. [BBN12b], which studied the weighted paging problem with

linear cost functions. They �rst compute a fractional solution using a primal-dual approach and then

show how to round it. As they have a linear cost function, they can show that the rate of increase of

the primal, i.e., the fractional algorithm’s cost, is proportional to the rate of increase of the dual. In our

setting, the cost function is not linear, and we have to use the theory of duality of convex programs and

conjugate duals. To do so, we extend their analysis to the convex program setting, which requires solving

various technical hurdles. This results in a (2q log(k + 1))q-competitive algorithm for fractional paging

with any convex, di�erentiable function with q-bounded growth and box constraints. Furthermore, for

norm-objective functions, more speci�cally for q-norms, we achieve a competitive ratio of 2q logk. Since

the cost function of min-max paging is the `∞-norm of the vector of page-wise costs, we approximate it

by `logn-norm, resulting in a 2e logn log(k +1)-competitive algorithm for fractional min-max paging.

We round our solution deterministically using for every page p a threshold for xpof 1−1/k, resulting

in the upper bound of O(k logn logk). It might be tempting to apply the randomized rounding algorithm

of [BBN12b] directly, but it does not apply as it crucially uses the fact that the cost of the algorithm is

the sum of the fractional values of all pages. Instead, we adapt the scheme of [BNT21] from the weighted

paging setting to the min-max setting. Speci�cally, this requires to “charge” the cost of each rounding step

to each individual page, as opposed to the sum of the changes in the fractional solution over all pages. This

charging to individual pages has not been done before in online paging and might be interesting in other

settings.

In Section 2, we give all de�nitions. In Section 3, we show our lower bounds, in Section 4, we present

and analyze our algorithm for paging with convex objective functions. In Section 5 we round the fractional

algorithm to obtain an O(k log(n) log(k))-competitive deterministic and O(log2(n) log(k))-competitive
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randomized algorithms for (integral) min-max paging. All omitted proofs are given in the appendix.

2 Preliminaries

The problems in this paper are studied in the online setting, where an adversary �xes a request sequence

σ ahead of time, and the requests in this sequence are presented to an algorithm one by one. When the

algorithm receives a new request from the sequence, it can only use its knowledge of the requests seen

thus far to make a decision. In particular, the algorithm does not have any knowledge of future requests.

In this setting, we use competitive analysis [ST85] to measure the quality of an algorithm. In competi-

tive analysis, we study the competitive ratio of an online algorithm, which compares the worst-case ratio

between the cost of the algorithm and the cost of an optimum o�ine solution over all possible σ .

More formally, for a deterministic algorithm ALG, the competitive ratio of ALG is the smallest c ∈ R,

such that for all instances σ of an online minimization problem, we have

ALG(σ )6 c ·OPT(σ ) + d,

where ALG(σ ) is the cost of the algorithm, OPT(σ ) is the cost of the optimum o�ine solution, and d is

some constant independent of σ . We will call an algorithm ful�lling the above de�nition a c-competitive

algorithm. If ALG is a randomized algorithm, then the competitive ratio is de�ned as the smallest c ∈ R
such that

E[ALG(σ )]6 c ·OPT(σ ) + d.

We study a variant of the paging problem called min-max paging. In any paging problem the request

sequence σ is made up of requests to a set of pages P = {p1,p2, . . . ,pn} of size n. We will assume that σ is

of �nite length, denoted by T . The algorithm is given a cache C of size k, which always is a subset of P
and is empty when the algorithm begins processing σ .

When page p is requested during round t, we must add p to the cache C if it is not already contained

in C. If adding the page causes C to be of size k + 1, we must evict a page other than p from the cache

before we are allowed to process the next request. The situation where a request to page p arrives while

p is not in C is called a page fault.
Whenever a page fault occurs, we incur some cost. The objective of the classical paging problem is

to minimize the total number of page faults. In the case of min-max paging, the objective is to minimize

the maximum number of page faults occurring for any page. More precisely, if we let xp,j be a zero-one

variable, which denotes that a page fault occurs upon the j-th request to page p, then we seek to minimize

max
p∈P

∑
j

xp,j ,

where the summation is over all requests to p. We can think of this as minimizing the `∞-norm of the

vector ~c(σ ) = (
∑
j xp1,j , . . . ,

∑
j xpn,j )

>
, whereas the classical paging problem is equivalent to minimizing

the `1-norm of ~c(σ ).
In Section 4 we solve a fractional version of the paging problem for convex objective functions f (x),

where x is the vector consisting of the variables xp,j , under the assumption that f (x) is well behaved. Of

particular interest is the case where f (x) = ‖~c(σ )‖q, i.e. the `q-norm. We refer to this case as q-paging. For

details refer to Section 4.

Remark 8. Paging problems are studied in the eviction cost model, where fetching a page incurs no cost,

and the algorithm pays for evicting a page, and in the fetching cost model, where evicting a page comes

without an associated cost, and the algorithm pays for fetching a page. For min-max paging, the cost of
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these models di�ers by at most 1. Said di�erence occurs on the set of pages contained in the cache at time

T that the algorithm does not have to evict anymore.

Because of this equivalence, we use both models interchangeably in this paper. The lower bounds of

Section 3 use the fetching cost model, and the upper bounds of Section 4 use the eviction cost model, as

the choice of the respective model simpli�es the proofs.

3 Lower Bounds

We show a deterministic lower bound of Ω(k(logn)/ logk) and a randomized lower bound of Ω(logn) (for

k = 2) on the competitive ratio for min-max paging. Our lower bounds are based on a simple construction

that is cleanly demonstrated with k = 2 and can be generalized for k > 2. The interested reader will �nd

complete proof for the deterministic lower bound in the appendix in Section A.

Any deterministic algorithm for min-max paging with cache size k is at least
k−1
2 logk+1n-competitive,

where n is the number of pages.

Theorem 9. The randomized competitive ratio of min-max paging is Ω(logn), where n is the number of
pages when the cache size is k = 2.

By Yao’s principle, it su�ces to exhibit a probability distribution on input instances, forcing every

deterministic online algorithm to perform a factor Ω(logn) worse in expectation than the optimum cost.

Let n = 3m for some large integer m. Our adversarial strategy takes a parameter N � n and is de�ned as

follows.

Algorithm 1 An adversarial strategy for min-max paging

1: Let Lm = {pm0 , . . . ,p
m
n−1} be a set of n = 3m pages.

2: for ` = m to 1 do
3: L`−1←∅.
4: for i = 0 to 3`−1 − 1 do
5: Give N requests to each of p`3i ,p

`
3i+1,p

`
3i+2 in a round-robin manner.

6: p`−1i ← a uniformly random page from {p`3i ,p
`
3i+1,p

`
3i+2}.

7: Add p`−1i to L`−1.

We call each iteration of the outer for-loop a layer and each of the inner for-loop a phase. We number

the layers m,m− 1, . . . ,1.

Lemma 10. The adversary can serve all requests while faulting at most m +N times on every page with
probability one.

Proof. Consider an arbitrary phase of an arbitrary layer `. Let q be the page added to L`−1 at the end of the

phase, and let q1,q2 be the other two pages requested in the phase. On the �rst request to q, the adversary

will add q to its cache and keep it there until the end of the phase. It uses the remaining cache slot to serve

all requests to q1 and q2. Thus, the adversary faults only once on q and N times on q1 and q2 each.

Consider an arbitrary page p. In all phases where p is requested except the last one, the adversary

faults only once on p (p is the page q in the above argument). In the last phase, the adversary faults N
times on p. Every layer contains at most one phase in which p is requested. Since the number of layers is

m, the algorithm faults at most m+N times on p.

To analyze the algorithm’s performance, let the random variable X`i be the number of the algorithm’s

faults on the randomly chosen page p`i at the beginning of layer `.
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Lemma 11. For every layer ` and every i ∈ {0, . . . ,3` − 1} we have E[X`i ]> (m− `) ·N/2.

Proof. We prove the claim by reverse induction on `. Recall the numbering of phases and observe that

Xmi = 0 for all i ∈ {0, . . . ,n− 1}. Thus, the claim is true for ` =m. Assuming as induction hypothesis that

for every i ∈ {0, . . . ,3` −1} we have E[X`i ]> (m− `) ·N/2, we prove that for every j ∈ {0, . . . ,3`−1 −1} we

have E[X`−1j ]> (m− ` +1) ·N/2.

In any phase, since the cache size is 2 and three pages are requested in a round-robin manner N times

each, the total number of faults is at least 3N/2. This is evident if we consider the behavior of the optimal

algorithm for (usual) paging that always evicts the page needed farthest in the future. Consider the j’th
phase of layer `, and recall that p`−1j is de�ned at the end of this phase. The total number of faults in this

phase is at least 3N/2, and these faults are distributed over the three pages, p`3j ,p
`
3j+1,p

`
3j+2. Since p`−1j

is uniformly random among these three pages, the expected number of faults on p`−1j during layer ` is at

leastN/2. Again, since p`−1j is uniformly random among {p`3j ,p
`
3j+1,p

`
3j+2}, by linearity of expectation we

have,

E[X`−1j ]>
E[X`3j ] +E[X`3j+1] +E[X`3j+2]

3
+
N
2

.

By the induction hypothesis, each of E[X`3j ], E[X
`
3j+1], E[X

`
3j+2] is at least (m−`) ·N/2. Thus, E[X`−1j ]>

(m− ` +1) ·N/2, as required.

Having proven Lemma 10 and Lemma 11, we are ready to prove the claimed lower bound.

Proof of Theorem 9. By Lemma 10, the cost of the adversary’s solution to the random instance generated by

the adversarial strategy is m+N with probability one. Note that at the end of the adversarial strategy, we

are left with the singleton set L0 containing the page p00. The number of faults of the algorithm on page p00
is a lower bound on the algorithm’s cost with probability one. Thus, the algorithm’s expected cost is at least

the expectation of the number of algorithm’s faults on p00. By Lemma 11, this quantity is E[X0
0 ]>mN/2.

Thus, the ratio of the algorithm’s expected cost to the adversary’s cost is at least mN/(2 · (m+N )), which

approaches m/2 = (log3n)/2 as N → ∞. Thus, the competitive ratio of any randomized algorithm for

min-max paging is at least (log3n)/2 =Ω(logn).

4 A Fractional Algorithm for General Paging

We study a general class of convex objective functions for the paging problem to arrive at a competitive

algorithm for min-max paging. Let x ∈ RT be the vector consisting of the variables xp,j in order of ap-

pearance in σ . The objective functions f : RT → R which we consider in this section have the following

properties: (1) f (0) = 0; (2) f (x) is a monotonically increasing function in x; (3) ∇f (x) is monotonically

increasing in each coordinate; and (4) f (x) has q-bounded growth, i.e. there exists a positive integer q such

that for all x ∈ RT+ , 〈∇f (x),x〉 6 qf (x). In particular, any polynomial function of x of degree q will ful�ll

these requirements.

We formulate the general paging problem as an online convex program. Given a convex function

f : Rn+→ R and a matrix A ∈ Rm×n, a general (o�ine) convex programming problem is to minimize f (x)
subject to Ax > 1 and x > 0.

In online convex programming, the rows of the constraint matrix A are revealed one by one, corre-

sponding to the request sequence σ . Upon receiving the tth row At of the constraint matrix, the task of

the algorithm is to increase the variables x until the constraint Atx > 1 is ful�lled. The algorithm is never

allowed to decrease any of the variables in x.
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In the fractional convex program for paging, we denote by pt the page requested in round t. Further-

more, we let r(p, t) indicate the number of requests to page p up to and including round t, and let t(p, j) be

the round during which the page p is requested for the j’th time. As each round corresponds uniquely to a

pair (p, j), we have

∑
p r(p, t) = T . We let B(t) = {p ∈ P |r(p, t)> 1} be the set of distinct pages encountered

up to, and including, round t. The variables xp,j can now take values in the interval [0,1] and indicate the

fraction of the page the algorithm has removed from the cache between the j’th and j + 1’st times it was

requested. Using this notation, the convex program for general paging looks as follows:

minimize f (x)
subject to

∑
p∈P \{pt} xp,r(p,t) > |B(t)| − k ∀t ∈ [T ]

06 xp,j 6 1 ∀p ∈ [n], j ∈ [r(p,T )]
(1)

By using a convex objective function, this formulation generalizes prior work on online paging, including

weighted paging [BBN12b]. Crucially, the box constraint 0 6 xp,j 6 1 means that the online convex

programming framework of [ABC
+

16] can not be used to solve this program.

At the beginning of round t, we are given a new variable xpt ,r(pt ,t), which is initialized to 0 along with

the constraint

∑
p∈B(t)\{pt} xp,r(p,t) > |B(t)| − k. This constraint ensures that after each round t, at least

|B(t)| − k fractional page mass has been ejected, or, equivalently, at most k fractional page mass is inside

the cache. We observe that the variable xp,j will only appear in the constraints corresponding to rounds

t ∈ {t(p, j) + 1, t(p, j) + 2, . . . t(p, j +1)− 1}, i.e. the variable xp,j does not appear in round t(p, j) when it is

requested. This is because we are not allowed to increase xp,j during this round, as page p is required to

be fully inside the cache in round t(p, j), in order to serve the request.

In order to de�ne a dual for the convex program 1, we will need the following de�nition:

De�nition 12. Given a request sequence σ of length T consisting of pages from the set P , we can uniquely,

up to relabeling of pages, de�ne a constraint matrix A ∈ {0,1}T×T as

At,(p,j) =

1 if t ∈ [t(p, j) + 1, t(p, j +1)− 1]
0 otherwise.

In round t, we can determine all non-zero entries, as they only depend on the variables encountered up to

round t. Additionally, we can implicitly set the columns corresponding to future variables to 0. If we order

both the columns and rows by order of appearance, then the constraint matrix will be lower triangular,

see Figure 1 in the appendix.

De�nition 13. Let f : RT+ → R be a convex function. The fenchel dual f ∗ : RT+ → R of f is de�ned as

f ∗(y) = supw∈RT+ (〈w,y〉 − f (w)) , where 〈w,y〉 =
∑T
i=0wi · yi denotes the Euclidean scalar product.

We need the following property of the Fenchel dual in the analysis of our algorithm:

Property 14. The Fenchel dual f ∗(y) : RT+ → R of a convex function f is monotonically increasing in y.

The dual will consist of two sets of T variables each, denoted by yt and zp,j , respectively. We let y
be the vector consisting of the yt ordered increasingly in t and z being the vector consisting of the zp,j
ordered the same way as x.

We will use the following conjugate dual D(y,z) for our primal-dual algorithm. For the convex pri-

mal (1), the conjugate dual is:

maximize D(y,z) =
∑T
t=1(|B(t)| − k)yt −

∑
p,j zp,j − f ∗(A>y − z),

subject to

06 yt ∀t ∈ [T ]
06 zp,j ∀p ∈ [n], j ∈ [r(p,T )] ,
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This dual di�ers from the dual used in [BBN12b] by the inclusion of the Fenchel dual term f ∗(A>y−z)
and from the dual used in [ABC

+
16] by the use of non-uniform coe�cients for the yt variables and the

inclusion of the variables zp,j . The dual will only be used to obtain a lower bound on OPT for the analysis

of our algorithm, and it does not in�uence the primal solution the algorithm produces. It remains to show

that the stated dual ful�lls this property for the convex program (1):

Lemma 15 (Weak Duality). For any feasible x ∈ [0,1]T and y,z ∈ RT+ , we have

f (x)>
∑
t∈[T ]

(|B(t)| − k)yt −
∑
p,j

zp,j − f ∗(A>y − z).

Our online algorithm, given in Algorithm 2 uses a continuous time τ , which is 0 initially and increases

throughout the algorithm. Let τ(t) denote the value of τ when we �nish processing the t’th constraint

and let τ(0) = 0. As all variables are 0 at creation and increase at a rate dependent on τ , we use xp,j(τ),
yt(τ), zp,j(τ) to denote the values of the variables xp,j , yt , zp,j respectively at time τ . Let t(τ) be the unique

t such that τ ∈ [τ(t − 1), τ(t)). The algorithm uses parameters r and sp,j(τ) �xed later. Note that sp,j(τ)
depends on the value of τ , p and j and, thus, is not a constant parameter.

Our algorithm maintains dual variables y and z such that A>y − z 6 δ∇f (x) is approximately ful-

�lled, i.e. , A>y − z 6 rδ∇f (x) for some constant r > 1, which will then appear in the competitive ratio.

We observe that if f (x) = c>x, the gradient is c and we get A>y−z 6 c, which is the dual constraint in the

linear program for weighted paging. The reason why this point-wise upper bound is necessary is because,

together with Property 14, it allows us to upper-bound the convex conjugate term f ∗(A>y − z) in D(y,z)
in terms of the primal function f (x). For general w the conjugate f ∗(w) may be arbitrarily large as it is a

convex function in w.

Algorithm 2 A fractional algorithm for min-max paging

Require: r > 0 and sp,j(τ) > 0, sp,j(τ) monotonically decreasing in τ
1: τ← 0
2: for each round t ∈ [T ] do
3: let pt be the page requested in this round

4: xpt ,r(p,t)(τ)← 0, yt(τ)← 0, zpt ,r(p,t)(τ)← 0

5:

dyt(τ)
dτ ← r

6:

dxp,r(p,t)(τ)
dτ ←

sp,r(p,t)(τ)
(
xp,r(p,t)(τ) +

1
k

)
if xp,r(p,t)(τ) < 1

0 otherwise

7:

dzp,r(p,t)(τ)
dτ ←

r if xp,r(p,t)(τ) = 1

0 otherwise

8: Increase τ , yt(τ), xp,r(p,t)(τ) and zp,r(p,t)(τ) for all p ∈ B(t) \ {pt} simultaneously as per the above

di�erential equations until

∑
p∈B(t)\{pt} xp,r(p,t)(τ)> |B(t)| − k

Next, to bound the conjugate term in the dual, it is necessary to obtain a bound on the dual “constraints"

A>y − z, which we obtain by relating the constant growth of yt and zp,j to the exponential growth of the

xp,j :

Lemma 16. Let x̄ denote the value of x after processing the complete request sequence σ , and similarly for ȳ
and z̄. If sp,j(τ) is monotonically decreasing in τ , then

x̄p,j >
1
k

exp
s′p,jr


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j


− 1

 , (2)
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where s′p,j is the minimum value that sp,j(τ) takes on during the execution of the algorithm.

The following is an immediate consequence of the previous lemma and the fact that xp,j 6 1:

Lemma 17. The x(τ(t)) produced by Algorithm 2 throughout its execution are feasible for the primal for all
t ∈ [T ] and the vector (A>ȳ − z̄)p,j 6 r

s′p,j
ln(k +1).

The conjugate of a convex function with bounded growth can be bounded in terms of the original

function and q, using the following lemma:

Lemma 18 ([ABC
+

16]). Let f : RT>0→ R>0 be a monotone, convex, di�erentiable function satisfying f (0) =

0. If there is a q > 1 such that 〈∇f (x),x〉 6 qf (x), then for any 0 < γ < 1, y ∈ RT>0, f
∗(γy) 6 γ

q
q−1 · f ∗(y)

and f ∗(γ∇f (y))6 γ
q
q−1 (q − 1)f (y).

Theorem 19. Let f (x) be a convex function satisfying the requirements stated at the beginning of this section,

and let σ be any request sequence. If we set sp,j(τ) =
∂f (x)
∂xp,j

−1
and r = 1

ln(k+1)(2q ln(k+1))q−1 , then Algorithm 2

produces a (2q log(k + 1))q-competitive solution x̄ for fractional paging with objective function f (x) in an
online manner.

Proof. By weak duality, it su�ces to show that the primal is no larger than O((q log(k + 1))q) times the

dual, which is a lower bound on the cost of an optimal solution x∗ by weak duality. We will bound the

primal and the dual growth rates for each round t. It su�ces to only consider the case Atx(τ) < |B(t)| − k,

as otherwise, the round is �nished, and nothing needs to be done.

The processing of round t begins at time τ(t − 1) and will last until τ(t), so we assume that τ ∈
(τ(t − 1), τ(t)] for the remainder of this proof. Let Ct(τ) = {(p, j) | t(p, j) < t < t(p, j + 1) and xp,j(τ) <
1} be the set of indices of variables xp,j(τ) in round t which correspond to a page that is (partially) in

the cache, i.e., the indices of the variables corresponding to the latest request of a given p, which are

increasing and have not been fully removed from the cache. Similarly, let Dt(τ) = {(p, j) | t(p, j) < t <
t(p, j+1) and xp,j(τ) = 1} be the set of indices of the variables xp,j(τ) which have been fully removed from

the cache since they have been last requested and which correspond to the latest request to a given page

p. Note that |Ct(τ)|+ |Dt(τ)| = |B(t)| −1, as the sets Ct(τ) and Dt(τ) are disjoint and include a variable for

each page except the page pt . While processing the t-th constraint, we have, by the choice of sp,j(τ), and

the fact that xp,j(τ) is constant if (p, j) ∈Dt(τ):

G1 B
df (x)
dτ

=
∑
p,j

∂f (x)
∂xp,j

∂xp,j(τ)

∂τ
=

∑
(p,j)∈Ct(τ)

∂f (x)
∂xp,j

(
sp,j(τ)

(
xp,j(τ) +

1
k

))
(3)

=
∑

(p,j)∈Ct(τ)

(
xp,j(τ) +

1
k

)
6 |B(t)| − k − |Dt(τ)|+

|Ct(τ)|
k

. (4)

The �rst equality is due to the chain rule for vector-valued functions. The second equality uses the de�-

nition of

∂xp,j (τ)
∂τ and the fact that xp,j does not change for (p, j) < Ct(τ). And, the last inequality follows

from the fact that the variables in Dt(τ) are all equal to 1.

Note that only the yt corresponding to round t may increase during round t. For the linear term∑
t(|B(t)| − k)yt(τ)−

∑
p,j zp,j(τ) in the dual, it holds that in round t

G2 B
d
dτ

∑
t

(|B(t)| − k)yt(τ)−
∑
p,j

zp,j(τ)

 = (|B(t)| − k)r −
∑

(p,j)∈Dt(τ)
r = r(|B(t)| − k − |Dt(τ)|). (5)
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We note that the right-hand side of Equation (5) is r-times the �rst term of the right-hand side of

Equation (4). Furthermore,
|Ct(τ)|
k 6 |Ct(τ)| −k+1 = |B(t)| −1− |Dt(τ)| −k+1 = 1

rG2, since |Ct(τ)|> k. By

adding together Equation (5) and the last inequality, we obtain

G1 6 |B(t)| − k − |Dt(τ)|+ |Ct(τ)|/k 6 G2/r +G2/r = 2G2/r. (6)

Since both the primal and the linear term of the dual initially have value 0 at time τ = 0, their overall

competitive ratio after processing all elements will be
2
r . Thus for the choice of r(δ) = δ

ln(k+1) , where δ

is a parameter which we will optimize later, from Equation (6) it follows that

∑
t(B(t)− k)ȳt −

∑
p,j z̄p,j >

δ
2ln(k+1)f (x̄). Plugging sp,j(τ) =

∂f (x)
∂xp,j

−1
and r(δ) = δ

ln(k+1) into the second statement of Claim 17, we obtain

that AT y − z 6 δ∇f (x̄), which allows us to bound the conjugate term of the dual as

f ∗(AT ȳ − z̄)6 f ∗(δ∇f (x̄))6

δ
q
q−1 · (q − 1) · f (x̄) if q > 1,

0 if q = 1,

where the �rst inequality is due to Property 14 and the second inequality uses Lemma 18. Hence the

relationship between the �nal value D(ȳ, z̄) of the dual and the �nal value f (x̄) of the primal is

D(ȳ, z̄) =
∑
t

(|B(t)| − k)ȳt −
∑
p,j

z̄p,j − f ∗(AT ȳ − z̄)>
(

δ
2ln(1 + k)

− δ
q
q−1 · (q − 1)

)
· f (x̄).

The term h(δ) =
(

δ
2ln(k+1) − δ

q
q−1 · (q − 1)

)
is a polynomial in δ, which governs our competitive ratio. The

best competitive ratio is obtained if we �nd δ ∈ (0,1) such that h(δ) is maximized. We �nd a local maximum

at δ∗ = 1
(2q ln(k+1))q−1 , yielding h(δ∗) = 1

(2q ln(k+1))q . By rearranging and weak duality (Lemma 15) we obtain

f (x̄)6 (2q ln(k +1))qD(ȳ, z̄)6 (2q ln(k +1))q f (x∗),

where x∗ is an optimal solution.

The `q-norm does not lie in our class of objective functions, as a coordinate of ∇f (x) can decrease

while we increase all coordinates of x, hence we can not apply Theorem 19 straight away.

Theorem 20. Let q ∈ [1,∞). Then there exists a 2q log(k+1)-competitive algorithm for fractional q-paging
with a cache of size k.

Proof. Let us �x q ∈ [1,∞). We apply Theorem 19 with the target function f (x) =
∑
p∈P

(∑r(p,T )
j=1 xp,j

)q
,

which is the qth power of the `q-norm. This produces a solution x̄, which is (2q log(k +1))q-competitive

for the paging problem with target function f (x).
Let g : R→ R be a monotone function, then a solution x to the paging problem with target function

f (x) will also be a feasible solution to the paging problem with target function g(f (x)). In particular, as g
preserves the standard ordering on the reals, an optimal solution to paging with target function f (x) will

remain an optimal solution to the problem with target function g(f (x)).

If we let g(y) = y
1
q

and we let x∗ be an optimal solution to the paging problem with target function

f (x), then g(f (x)) will be the `q-norm and we �nd that g(f (x̄)) 6 g((2q log(k + 1))qf (x∗)) = 2q log(k +
1)g(f (x∗)).

Remark 21. Note that if the gradient of f (x) is 0 at x = 0, then we start the algorithm at ε ·1 for a small

ε > 0 instead, which can be chosen su�ciently small, so it does not in�uence the competitive ratio.
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We use Theorem 20 to show that we can obtain a 2e log(n) log(k + 1)-competitive fractional solution

for∞-paging by reducing it to logn-paging.

Theorem 22. There exists a 2e log(n) log(k +1)-competitive algorithm for fractional min-max paging.

Proof. Let x∗ be the optimal solution to the ∞-paging problem for the request sequence σ . We denote

the cost of this solution by OPT∞. Let x̄ denote the fractional solution obtained using Algorithm 2. By

Theorem 20 and ‖x‖∞ 6 ‖x‖logn 6 e‖x‖∞, we know that this solution has cost

max
p∈P

r(p,T )∑
j=1

x̄p,j 6

∑p∈P

r(p,T )∑
j=1

x̄p,j


logn

1
logn

6 2log(n) log(k +1) ·OPTlogn 6 2e log(n) log(k +1) ·OPT∞,

where OPTlogn denotes the cost of an optimal solution to the logn-paging problem with input σ . This

implies that x̄ is a 2e log(n) log(k +1)-competitive solution for∞-paging.

5 Rounding Fractional Solutions Online

5.1 An O(k log(n) log(k))-competitive Deterministic Algorithm

This section shows how to round a fractional solution for min-max paging to an integral solution online.

The rounding procedure is deterministic and, when coupled with a fractional min-max paging algorithm,

gives a deterministic min-max paging algorithm.

Theorem 23. If there exists an α-competitive algorithm for fractional min-max paging with cache size k,
then there exists a (αk)-competitive deterministic algorithm for min-max paging with cache size k.

Proof. Without loss of generality, we assume that the fractional min-max paging algorithm is lazy. That

is, it loads a page only when the page is requested. Indeed, an arbitrary solution can be converted into a

lazy solution online without increasing the cost by delaying page loads as much as possible.

The deterministic integral algorithm maintains the following invariant: it always has a page p in its

cache whenever the fractional algorithm has more than a 1−1/k fraction of p in its cache. We observe that

the fractional algorithm must always fully have at least one page in its cache: the most recently requested

page. Therefore, at any time, the number of pages p such that the fractional algorithm contains more than

a 1− 1/k fraction of p is less than 1+ (k − 1)/(1− 1/k) = k +1, and therefore, this number is at most k.

Consider an arbitrary request to some page p. If the integral algorithm already has p in its cache, it

ignores the request, whereas the fractional algorithm possibly serves the request by evicting some pages

fractionally. On the other hand, suppose the integral algorithm does not already have p in its cache,

then this implies that the fractional algorithm has at most a 1 − 1/k fraction of p in its cache. After the

fractional algorithm brings p into its cache, the integral algorithm must have a page q in its cache such that

the fractional algorithm has at most a 1−1/k fraction of q in its cache. (Otherwise, the fractional algorithm

has more than a 1−1/k fraction of k+1 pages in its cache, namely, the k pages in the integral algorithm’s

cache and the page p, thus contradicting the observation from the last paragraph.) The integral algorithm

replaces one such page q by p to serve the request and thus, maintains the invariant. In this process, the

integral and the fractional algorithms incur 1 and at least 1/k faults, respectively, on page p.

Thus, at the end of the request sequence, for every page p, the number of faults of the integral algorithm

on p is at most k times the number of faults of the fractional algorithm on p. Thus, the cost of the integral

algorithm is at most k times the cost of the fractional algorithm. Since the latter is at most α times the cost

of the optimum, the cost of the integral algorithm is at most αk times the cost of the optimum solution.
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Corollary 24. There exists a 2ek log(n) log(k+1)-competitive deterministic algorithm for min-max paging.

Proof. Follows from Theorem 22 and Theorem 23.

It is noteworthy that the trick in the proof of Theorem 23 can also be used for the derandomization of

randomized algorithms. Speci�cally, suppose an α-competitive randomized algorithm exists for min-max

paging. Then there also exists a fractional one with the same competitive ratio. Thus, by Theorem 23,

there exists a αk-competitive deterministic algorithm for min-max paging.

5.2 An O(log2(n) log(k))-competitive Randomized Algorithm.

Using a more sophisticated rounding approach, we obtain a randomized algorithm whose competitive ratio

no longer depends linearly on k, in exchange for an additional log(n) factor. This result rules out a lower

bound of Ω(k). This algorithm is of interest in the regime where log(n) 6 k, which is often the case in

applications.

We can obtain a randomized algorithm for min-max paging by using the rounding scheme for weighted

paging of Bansal et al. [BNT21]. The simpli�ed rounding scheme is presented in Algorithm 3. Each online

rounding step only depends on the previous, and current fractional cache states x(t−1) and x(t) as well as

the previous integral cache state and on a parameter β, which indicates how aggressively we eject pages

from the cache. The rounding scheme works for any caching scheme that ful�lls the condition that (1) at any
time t, for any page p , pr , xp(t)− xp(t − 1)> 0 and (2) the total fraction of pages evicted upon any request
is at most 1. Algorithm 2 indeed has these properties, so we can use the rounding scheme as long as we

can relate the rounding costs to our target function, even though we solve a di�erent paging problem than

they do.

Let x be a fractional solution produced by Algorithm 2. After processing round t, the algorithm will

produce a fractional value xp(t) for each page, indicating the fraction of page p in the cache in this round. In

other words, the process of solving the fractional problem online produces, whenever Algorithm 2 �nishes

processing a round at time τ(t), the vector

x(t) =


xp1,r(p,t)(τ(t))

...
xpn,r(p,t)(τ(t))

 .
We let yp(t) = min{β · xp(t),1} be the solution in which every coordinate is scaled up by a factor of β.

The factor β governs how much more aggressively pages are evicted from the cache.

Algorithm 3 may evict pages and incur costs in two separate places. The �rst type we need to account

for is the cost incurred via the random evictions of pages in the for-loop in lines 4-5 of the algorithm. The

second type is the cost incurred by �xing the cache size in lines 6-7 if no page was evicted in the for-loop.

We will bound these costs separately and combine them in our upper bound.

For the �rst type, it is easy to see that the cost incurred for evicting a page in lines 4-5 depends only

on the sequence of fractional values yp(1), yp(2), . . . , yp(T ) that this page takes on and it is independent of

the values yp′ (t) for all t and p′ , p. In particular, the probability yp,j that a page is evicted in lines 4-5,
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Algorithm 3 The randomized rounding scheme of [BNT21] adapted to our problem.

1: procedure Round(x(t),x(t − 1),C(t − 1))
2: if pt < C(t − 1) then . Add the page pt to the cache, if it is not already in it.
3: C(t − 1)← C(t − 1)∪ {pt}
4: for p ∈ C(t − 1) \ {pt} do
5: Evict p from C(t − 1) independently with probability

yp(t)−yp(t−1)
1−yp(t−1)

6: if |C(t − 1)| > k then
7: Evict an arbitrary page p , pt from C(t − 1)
8: C(t)← C(t − 1)

between its j-th and j +1-st request is

t(p,j+1)−1∑
t=t(p,j)+1

Pr[page p is evicted in round t] =
t(p,j+1)−1∑
t=t(p,j)+1

yp(t)− yp(t − 1)
1− yp(t − 1)

Pr[page p is not evicted until round t]

=
t(p,j+1)−1∑
t=t(p,j)+1

yp(t)− yp(t − 1)
1− yp(t − 1)

t−1∏
t′=t(p,j)+1

1−
yp(t′)− yp(t′ − 1)
1− yp(t′ − 1)

=
t(p,j+1)−1∑
t=t(p,j)+1

yp(t)− yp(t − 1)
1− yp(t − 1)

t−1∏
t′=t(p,j)+1

1− yp(t′)
1− yp(t′ − 1)

=
t(p,j+1)−1∑
t=t(p,j)+1

yp(t)− yp(t − 1)
1− yp(t(p, j))

=
yp(t(p, j +1)− 1)
1− yp(t(p, j))

= yp(t(p, j +1)− 1).

The second equation holds because of the independence of the probability of eviction in di�erent rounds;

the fourth holds because it is a telescoping product, and the last equation holds as yp(t(p, j)) = 0. Let Yp,j
be a Bernoulli random variable that is 1 with probability yp(t(p, j +1)−1) and let Yp =

∑
j Yp,j be the sum

of all Yp,j for �xed p. We let these variables track the expected cost of evictions for each page. By linearity

of expectation, we immediately see that

E[Yp] = E


r(p,T )∑
j=1

Yp,j

 =
r(p,T )∑
j=1

Pr[p is evicted between request j and j +1] =
r(p,T )∑
j=1

yp,j 6 β

r(p,T )∑
j=1

xp,j .

It follows that

max
p

E[Yp]6 βmax
p

r(p,T )∑
j=1

xp,j ,

where the right-hand side is β times the cost of the fractional solution x. It remains to relate the left side

of this inequality with E[maxpYp].

Lemma 25. Let Yp,j be Bernoulli random variables which are 1 with probability yp,j . Let Yp =
∑
j Yp,j and

assume there are n such sums, then

E[max
p
Yp]6 e ·max

p
E[Yp] + log(n).
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Proof. Let Y = maxpYp. Using Jensen’s inequality, we get the �rst inequality in the following chain of

inequalities:

exp(E[Y ])6 E[exp(Y )] = E[max
p

exp(Yp)]

6
∑
p

E[exp(Yp)] =
∑
p

r(p,T )∏
j=1

E[exp(Yp,j )]

=
∑
p

r(p,T )∏
j=1

(1− yp,j + eyp,j )6
∑
p

r(p,T )∏
j=1

ee·yp,j

=
∑
p

ee·
∑r(p,T )
j=1 yp,j 6 n ·max

p
ee·E[Yp].

The �rst equality follows as exp is a monotone function, and the second equality follows by the indepen-

dence of the Yp,j . After taking logarithms, we obtain

E[Y ]6 e ·max
p

E[Yp] + log(n),

which yields the desired result.

Therefore, by the above lemma, the expected cost of the �rst type of costs is bounded by

E[max
p
Yp]6O(1) · βmax

p

r(p,T )∑
j=1

xp,j . (7)

Lemma 26 ([BNT21]). Let x be a fractional solution for a general paging problem. The expected cost of resets
is at most 16ke−β/4 ·

∑
p∈P

∑r(p,T )
j=1 xp,j .

By choosing β = 4log(nk) in Lemma 26, the expected total cost of resets for the solution y becomes

16ke− log(nk)
∑
p∈P

r(p,T )∑
j=1

yp,j 6
16
n

∑
p∈P

r(p,T )∑
j=1

yp,j 6
16β
n

∑
p∈P

r(p,T )∑
j=1

xp,j 6 16βmax
p∈P

r(p,T )∑
j=1

xp,j (8)

where the last inequality follows due to the fact that the average cost per page
1
n

∑
p∈P

∑r(p,T )
j=1 xp,j is a

lower bound on the maximum cost of a single page in the solution x.

Crucially, Lemma 26 depends on the following helper lemma:

Lemma 27. Given a fractional solution x to the paging problem, we can �nd a fractional solution x∗ in which
every variable is a multiple of δ = 1

4k , and the cost of which is no more than 3 times the cost of x.

Taking the bounds on the two types of costs, namely Equations (7) and (8), we have shown the follow-

ing:

Theorem5. There exists anO(log2n logk)-competitive randomized integral algorithm formin-max paging.
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6 Further related work

Sleator and Tarjan [ST85] de�ned the framework of online algorithms and competitive analysis, and paging

is one of the earliest problems studied in the online setting. Several deterministic algorithms, such as “Least

Recently Used” (LRU) and “First In First Out” (FIFO), among others, are known to achieve the optimal

deterministic competitive ratio of k [ST85], where k is the maximum number of pages that can be inside

the cache at any point in time. The randomized competitive ratio is known to be Hk , where the upper

bound is due to Achlioptas et al. [ACN00] and the lower bound is due to Fiat et al. [FKL
+

91].

Several practical generalizations of the paging problem have been studied and they are known to have a

deterministic competitive ratio of k [CKPV90, You98] and randomized competitive ratioΘ(logk) [BBN12b,

BBN12a]. These include weighted paging – where pages have arbitrary loading costs, the bit model –

where pages have arbitrary sizes and loading cost proportional to size, the fault model – where pages have

arbitrary sizes but unit loading cost, and generalized paging – where pages have arbitrary loading costs

as well as sizes. Interestingly, all these results are robust in the sense that they all extend to the resource-

augmentation setting, where the adversary has fewer servers than the algorithm. It is noteworthy that

the line of work in search of a randomized algorithm for these paging variants by Bansal, Buchbinder, and

Naor led to the development of the online primal-dual framework for designing fractional algorithms for

online problems, whose solutions can often be rounded to an integral solution online.

A simple-looking but intriguing generalization of paging is the k-server problem de�ned by Manasse,

McGeogh, and Sleator [MMS88], which concerns moving k mobile servers on a metric space to serve

requests while minimizing total movement. (The paging problem is the k-server problem on the uniform

metric over the set of pages.) While Manasse et al. [MMS88] proved a lower bound of k on the deterministic

competitive ratio for every metric space with more than k points, the existence of a k-competitive algorithm

is still unknown, and this is popularly called the k-server conjecture. The best-known k-server algorithm

that works for all metrics called the Work Function Algorithm by Koutsoupias and Papadimitriou [KP95],

achieves a competitive ratio of 2k − 1. For randomized algorithms, surprisingly, neither a better upper

bound than the deterministic 2k − 1 nor a better lower bound of Ω(logk) arising from paging is known.

Koutsoupias [Kou09] presents a more comprehensive discussion on the k-server problem.
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A Further Details for Lower Bounds

This section shows the complete details for the deterministic lower bound for min-max paging. We begin

with a proof of the lower bound for k = 2, which neatly highlights the core construction lying at the heart

of the lower bound.
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Lemma 28. Any deterministic algorithmALG for min-max paging with cache size k = 2 is at leastΩ(logn)-
competitive.

Proof. Suppose n = 3` and let the set of pages be {p1,p2, . . . ,pn}. We construct a bad request sequence σ
for ALG in ` layers. Each layer is further divided into phases. Let N � n be a large integer parameter.

We call the number of page faults incurred by page p up to round t the cost of p at t. Similarly, the cost
of the min-max paging algorithm ALG is the maximum cost over all pages p ∈ P .

We now iteratively construct the adversarial sequence σ , going layer by layer.

Layer 1 will use all pages, that is the set {p1,p2, . . . ,pn}.

• In the �rst phase, we request pages p1, p2, and p3 in such a way that ALG faults on every request,

such a cruel sequence composed of k +1 pages exists for every deterministic algorithm for paging.

We stop this phase once the cost of the algorithm becomes N , which must happen before sending

3N requests. Without loss of generality, we assume that the cost of p1 �rst reaches N , and hence

the costs of p2 and p3 are < N . These costs are the same as the number of requests to the respective

pages because the algorithm always faults.

• In the second phase, we repeat this step with pages p4, p5, and p6. Without loss of generality, we

assume that the cost of p4 is N .

• Repeat this process until the set of pages {p1,p2, . . . ,pn} is exhausted.

In all phases, the adversary always keeps the lowest numbered page, that is pages p1,p4,p7, . . ., respec-

tively, in the cache, incurring a cost of only 1 on them, while the cost of the other pages is at most N . We

promote pages p1,p4,p7, . . . to Layer 2.

Layer 2 with universe of pages {p1,p4,p7, ...,pn−2} is constructed exactly in the same way as Layer 1.

After this layer, the cost of ALG is 2N , whereas the cost of the adversary is 6 N , with costs of pages

p1,p10,p19, . . . having cost 6 2, and we promote them to Layer 3, and so on.

After phase i, the number of pages in the universe becomes n/3i , the cost ofALG becomes iN , whereas

the adversary’s cost is always 6max{N,i}. This gives us the desired lower bound using log3(n) layers by

choosing N > `.

Generalizing the above construction The idea behind the lower bound of Ω(k(logn)/ logk) is as

follows. We generalize the construction above by using n = (k+1)` pages and ` = logk+1n layers. In each

phase, we use k+1 pages and force the cost of the algorithm on one of these pages to increase by N . The

adversary’s cost increases by at most 1 on the page she will promote to the next layer. By using a smarter

o�ine algorithm, the cost of the adversary increases by at most O(N/k) on the k pages of this phase that

will not be promoted. So, in the end, the adversary’s cost isO(`+N/k), whereas the cost of the algorithm

is Ω(N`). We obtain the desired lower bound by choosing N > ck` for a large enough constant c.
For any paging algorithm ALG and any request sequence σ , we de�ne cost(ALG,σ ,p, t) to be the the

number of page faults incurred on page p after processing the �rst t requests of σ . Furthermore, we de�ne

cost(ALG,σ ) = max
p∈P

cost(ALG,σ ,p,T ),

to be the overall cost incurred by ALG while processing request sequence σ .

The optimal o�ine algorithm OPT for min-max paging is not known to us, so we use Algorithm 4

(GreedyLFD) to obtain an upper bound on the cost of OPT. Intuitively, this algorithm avoids increasing

its maximum cost for as long as possible by greedily keeping the most expensive pages in its cache. As

GreedyLFD is an o�ine algorithm, it has access to the complete request sequence σ and can always eject

the page that is furthest in the future. That is, in round t, it ejects the page p ∈ C whose next occurrence
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comes last in the remainder of σ after t. If a page does not occur in the remainder of σ , it is treated as

being in�nitely far in the future, and the algorithm will always prefer to eject this page over one that will

still occur in σ .

Algorithm 4 The o�ine algorithm GreedyLFD

1: procedure GreedyLFD(σ )

2: C←∅ . Initialize the cache.
3: t← 1
4: for p ∈ P do
5: cp← 0 . Counter variables for the number of faults on page p. At any point in time cp =

cost(GreedyLFD,σ ,p, t).
6: while t < T do
7: if the tth element, say pt , of σ is not in C then
8: cp← cp +1
9: if |C| < k then

10: C← C ∪ {p}
11: else
12: S← {q ∈ C | cq <maxr cr} . Obtain the set of pages whose cost is less than the current

maximum.
13: if S = ∅ then . This happens if all pages in C are of the same cost.
14: S← C
15: Evict q ∈ S which next occurs farthest in the future.

16: t← t +1

Lemma 29. Let σ be a request sequence for min-max paging using k +1 unique pages. Then

cost(GreedyLFD,σ )6
2(len(σ )− 2k − 1)

2k + k(k +1)
+ 2.

Proof. We �x σ to be an arbitrary request sequence of length T using pages from the set P = {p1,p2, . . . ,pk+1}.
Let

ti =min
{
t ∈ [T ] |max

p∈P
cost(GreedyLFD,σ ,p, t)> i

}
be the �rst time GreedyLFD faults on a page for the ith time. We note that at time ti , there is only one

page of cost i.
Furthermore, we note that t1 = 1, as the algorithm starts with an empty cache and t2 > 2k +1, as the

algorithm will fault on the �rst k +1 distinct pages it encounters, and it will then eject the page of cost 1
which occurs farthest in the future. As there are k pages in its cache, at least one page will not occur in

the next k−1 time steps, so the shortest sequence that can cause GreedyLFD to fault two times on a single

page is of length 2k +1.

We now show ti+1 > ti + k +
k(k+1)

2 for all i > 2. Let us �x i > 2 and assume we are currently at time

ti . This means that there exists some page p ∈ P for which cost(GreedyLFD,σ ,p, ti) = i and it is the only

page of cost i. In order to make room for p, GreedyLFD will evict a page of cost at most i − 1 from its

cache. As there are k such pages in the cache at time ti , at least one of them will not occur for the next

k − 1 requests. As there are only k + 1 pages in total, this means that the next page fault occurs at time

ti + k or later.

In general, when the jth page of cost i is added to GreedyLFD’s cache at time ti,j , there are k − j + 1
pages of cost at most i − 1 in its cache, and so the next page fault will not occur until time ti,j + k − j +1,

which gives a lower bound on ti,j+1. Note that ti,1 = ti
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As GreedyLFD’s cost can only increase to i + 1 once it evicts a page of cost i, we �nd that ti+1 must

occur after k pages of cost i have been added to its cache. GreedyLFD can choose which of the k pages of

cost i to evict, so we �nd ti+1 > ti,k + k. This yields

ti+1 > ti,k + k > ti,k−1 + k +1> ti,k−2 + k +1+2> . . .> ti + k +
k∑
i=1

i.

By expanding the recurrence for i > 2, we �nd that

i > (i − 2)
(
k +

k(k +1)
2

)
+2k +1.

Using this expression, we derive an upper bound on cost(GreedyLFD,σ ), by �nding the minimum i

for which len(σ )6 ti . From our expression we �nd that ti > len(σ ) if i > 2(T−2k−1)
2k+k(k+1) +2, and so

cost(GreedyLFD,σ )6
2(len(σ )− 2k − 1)

2k + k(k +1)
+ 2.

Lemma 30. Any deterministic algorithm ALG for min-max paging with cache size k is at least k2 -competitive.

Proof. Let n = k + 1, that is P = {p1,p2, . . . ,pk+1}. We initialize ALG and GreedyLFD with empty caches.

Once ALG’s cache is full, at any time step t, there is always one page that is not present in the cache.

The adversary’s strategy is always to request this page. We call this the cruel strategy. Since ALG is

deterministic, the adversary always knows which page ALG will evict from its cache if a page fault occurs,

so such a sequence must always exist.

Algorithm 5 An algorithm to generate an adversarial sequence for ALG of length T > k + 1, on which

ALG faults T times.

1: output pages p1,p2, . . . ,pk+1
2: i← k +1
3: while i < T do
4: p← the page pi which is currently not in the cache of ALG;

5: output p
6: i← i +1

Let σ be a sequence of length T generated by the cruel strategy of Algorithm 5. We note that σ causes a

page fault at every step, so the total number of page faults incurred by ALG will be T . By a simple averaging

argument, there must be at least one page that has incurred
T
k+1 page faults and so

T
k+1 6 cost(ALG,σ ).

On the other hand, by Lemma 29, GreedyLFD will incur a cost of at most
2(T−2k−1)
2k+k(k+1) + 2 while processing

σ . This immediately yields

cost(OPT,σ )6 cost(GreedyLFD,σ )6
2(T − 2k − 2)
2k + k(k +1)

+ 26
2T

k(k +1)
+ 26

2
k
cost(ALG,σ ) + 2,

and so the competitive ratio is
cost(ALG,σ )
cost(OPT ,σ ) >

k
2 , since the constant vanishes as the cost grows large.
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Algorithm 6 An adversarial strategy for min-max paging

1: Let Lm = {pm0 , . . . ,p
m
n−1} be a set of n = (k +1)m pages.

2: for ` = m to 1 do
3: L`−1←∅.
4: for i = 0 to (k +1)`−1 − 1 do
5: Use the cruel strategy of Algorithm 5 on the set of k +1 pages {p`(k+1)i ,p

`
(k+1)i+1, . . . ,p

`
(k+1)i+k}

until one page, say p′ , has incurred N page faults since the start of this loop.

6: p`−1i ← p′

7: L`−1← L`−1 ∪ {p`−1i }

Finally, we strengthen the lower bound to Ω( k
logk logn), introducing a dependence on the number of

pages. We do this using the strategy presented in Algorithm 6.

Intuitively, our strategy consists of splitting the n = (k+1)m pages into (k+1)m−1 disjoint sets of k+1
variables. We then present the algorithm ALG with a cruel sequence for each set until one of the pages

reaches costN . We repeat this process layer by layer until we obtain one �nal page. ALG will have faulted

mN times on this page, while OPT will have faulted no more than roughly
N
k +m times on any page.

Any deterministic algorithm for min-max paging with cache size k is at least
k−1
2 logk+1n-competitive,

where n is the number of pages.

Proof. We use the strategy de�ned in Algorithm 6 to generate our request sequence. We observe that at

the beginning of iteration ` of the outer for-loop in Algorithm 6, ALG will have faulted (m−`)N times on

each page in {p`0, . . . ,p
`
(k+1)`−1}, because we only add a page to the next level once it has incurred N faults

during the current level. Hence, once ALG has processed the complete sequence provided by Algorithm

6, it has cost mN , witnessed by page p00.

On the other hand, while processing the ith set of variables in the inner loop, the optimal o�ine

algorithm OPT will keep page p′ in its cache. When p′ is requested for the �rst time in this iteration of the

loop, OPT will fault once on p′ . Afterward, p′ will remain in the cache of OPT until the current iteration

of the inner loop �nishes, incurring no more cost.

This shows that OPT will have cost m − ` for each page p`0, . . . ,p
`
(k+1)`−1 at the beginning of the `th

iteration of the outer loop.

During an iteration of the inner loop, we use the remaining k − 1 slots in OPT’s cache, which are not

occupied by p′ , to process the remaining k pages in each iteration. As the cruel sequence causes ALG to

fault on every request and we end it as soon as one page has faulted N times, each of the remaining pages

may be requested N − 1 times. It follows that the sub-sequence σ ′ of the cruel sequence, de�ned on the

remaining k pages, is of length at most k(N−1). By Lemma 29, we get cost(OPT,σ ′)6 2(k(N−1)−2(k−1)−1)
2(k−1)+(k−1)k +

26 2(N−1)
k−1 +2.

Thus we �nd that for any page p, the total cost consists of the level it is raised to plus the cost incurred

while processing σ ′ on its last level and thus cost(OPT ,σ ,p,T )6m+ 2(N−1)
k−1 +2 and so

cost(ALG,ρ)
cost(OPT ,ρ)

>
mN

m+2+ 2(N−1)
k−1

=
(k − 1)mN

(k − 1)(m+2) + 2(N − 1)
.

As N grows large, the right hand side will converge to
(k−1)m

2 = k−1
2 logk+1n.

21



B Deferred Proofs

This section contains some deferred proofs from the paper.

Property 14. The Fenchel dual f ∗(y) : RT+ → R of a convex function f is monotonically increasing in y.

Proof. Indeed, let c ∈ RT+ , then

f ∗(y) = sup
w∈RT+
〈y,w〉 − f (w)6 sup

w∈RT+
〈y,w〉+ 〈c,w〉 − f (w) = f ∗(y + c),

as 〈c,w〉 is always non-negative.

Lemma 15 (Weak Duality). For any feasible x ∈ [0,1]T and y,z ∈ RT+ , we have

f (x)>
∑
t∈[T ]

(|B(t)| − k)yt −
∑
p,j

zp,j − f ∗(A>y − z).

Proof. Let b =


B(1)− k

...
B(T )− k

. As x is feasible, it must satisfy Ax > b, which gives b −Ax 6 0, and similarly

from x 6 1, we get x−16 0. As all entries are negative, taking the inner product of these vectors with the

non-negative vectors y and z, respectively, will yield a negative number. Hence, we get the �rst inequality

in the following chain of inequalities:

f (x)> f (x) + y>((|B(t)| − k)1−Ax) + z>(x − 1)

=
T∑
t=1

(|B(t)| − k)yt −
n∑
p=1

r(p,T )∑
j=1

zp,j − (y>Ax − z>x − f (x))

=
T∑
t=1

(|B(t)| − k)yt −
n∑
p=1

r(p,T )∑
j=1

zp,j − (〈A>y − z,x〉 − f (x))

>
T∑
t=1

(|B(t)| − k)yt −
n∑
p=1

r(p,T )∑
j=1

zp,j − sup
w∈RT+

(〈A>y − z,w〉 − f (w))

=
T∑
t=1

(|B(t)| − k)yt −
n∑
p=1

r(p,T )∑
j=1

zp,j − f ∗(A>y − z).

All equalities are obtained via simple rearranging of terms, and the �nal inequality is due to the de�nition

of the supremum.

Lemma 16. Let x̄ denote the value of x after processing the complete request sequence σ , and similarly for ȳ
and z̄. If sp,j(τ) is monotonically decreasing in τ , then

x̄p,j >
1
k

exp
s′p,jr


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j


− 1

 , (2)

where s′p,j is the minimum value that sp,j(τ) takes on during the execution of the algorithm.
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Proof. First, observe that xp,j starts increasing at time τ(t(p, j)), the time at which we �nish processing

the j’th request to p. xp,j keeps increasing until one of the two events happens: xp,j reaches 1, or we get

the next request to p, after which it remains constant till the end. Let τend
denote the time at which either

of these events happens.

For τ ∈ [τ(t(p, j)), τend), we have

dxp,j(τ)

dτ
= sp,j(τ) ·

(
xp,j(τ) +

1
k

)
> s′p,j ·

(
xp,j(τ) +

1
k

)
,

and therefore,

1
s′p,j

d
dτ

ln
(
xp,j(τ) +

1
k

)
=

1
s′p,j · (xp,j(τ) + 1/k)

·
dxp,j(τ)

dτ
> 1.

Integrating over the interval [τ(t(p, j)), τend), we get,

1
s′p,j

ln
(
x̄p,j +1/k

1/k

)
> τend − τ(t(p, j)). (9)

Next, observe that the variable yt starts increasing from 0 at the uniform rate r at time τ(t−1) and stops

increasing at time τ(t). Thus, ȳt = r · (τ(t)− τ(t −1)). Summing over all t from t(p, j) + 1 to t(p, j +1)−1,

we get,

1
r
·


t(p,j+1)−1∑
t=t(p,j)+1

ȳt

 = τ(t(p, j +1)− 1)− τ(t(p, j)). (10)

Finally, consider the variable zp,j . If xp,j stops increasing because the next request to p arrives, then

z̄p,j = 0 and τend = τ(t(p, j +1)− 1). Using Equation (10), we get,

1
r
·


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j

 = τ(t(p, j +1)− 1)− τ(t(p, j)) = τend − τ(t(p, j)).

On the other hand, if xp,j stops increasing because it reaches 1, then zp,j starts increasing from 0 at the

uniform rate r at time τend
, and stops increasing at time τ(t(p, j + 1) − 1). Thus, z̄p,j = r · (τ(t(p, j + 1) −

1)− τend). Again, using Equation (10), we get,

1
r
·


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j

 = (τ(t(p, j +1)− 1)− τ(t(p, j)))− (τ(t(p, j +1)− 1)− τend) = tend − τ(t(p, j)).

Thus, in either case, we have,

1
r
·


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j

 = τend − τ(t(p, j)). (11)

From Inequality (9) and Equation (11), we get,

1
s′p,j

ln
(
x̄p,j +1/k

1/k

)
> τend − τ(t(p, j)) = 1

r
·


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j

 .
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Rearranging, we get,

x̄p,j >
1
k

exp
s′p,jr


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j


− 1

 ,
as required.

Lemma 17. The x(τ(t)) produced by Algorithm 2 throughout its execution are feasible for the primal for all
t ∈ [T ] and the vector (A>ȳ − z̄)p,j 6 r

s′p,j
ln(k +1).

Proof. The �rst statement follows immediately from the de�nition of the algorithm and the fact that we

can always ful�ll the primal constraints, for example, by setting all the variables to 1.

To show the second statement, we note that x̄ 6 1, which with Equation (2) gives us

1
k

exp
s′p,jr


t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j


− 1

6 x̄p,j 6 1.

Taking the left- and right-hand sides gives us, after rearranging and taking logarithms,

t(p,j+1)−1∑
t=t(p,j)+1

ȳt − z̄p,j 6
r

s′p,j
ln(k +1),

where the left hand side is (AT ȳ − z̄)p,j as a 1 only appears in the (p, j)th column of A from row t(p, j)+1
through row t(p, j +1)− 1.

Lemma 27. Given a fractional solution x to the paging problem, we can �nd a fractional solution x∗ in which
every variable is a multiple of δ = 1

4k , and the cost of which is no more than 3 times the cost of x.

Proof. We de�ne our rounded solution x∗ as

x∗p,j =

0 if xp,j <
1
8k ,

min{ 14k d8kxp,je,1} otherwise.

That is, we round every variable xp,j of value less than
1
8k to 0, and every variable of greater value will be

doubled and then rounded up to the nearest multiple of
1
4k .

As each variable’s value is at most doubled and then rounded up, the fractional cost for min-max paging

can at most triple, as each variable in x∗ is no larger than 3 times the corresponding variable in x and the

objective function f (x) in min-max paging satis�es f (cx) = cf (x) for any c ∈ R. It remains to show that

the solution x∗ is feasible.

We note that the only variables whose value in x∗ can decrease during the rounding are those of value

less than
1
8k . The total number of such variables other than pt in a feasible solution is at most k, as

otherwise. ∑
B(t)\{pt}

xp,r(p,t) 6 n− 1− k + 1
8k
k 6 n− k.

Hence we note that the total contribution L of these variables to the constraint of round t is at most
1
8 .

As n − k is an integer, and the fractional algorithm stops ejecting pages as soon as the constraint is

satis�ed, we know that

∑
p∈B(t)\{pt} xp,r(p,t) is integral.
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. . . xp1,7 xp2,9 xp3,3 xp1,8 xp4,5 xp2,10 xp5,3 xp1,9 . . .



...
. . .

...
...

...
...

...
...

...
...

t(p1,7) . . . 0 0 0 0 0 0 0 0 . . .
t(p2,9) . . . 1 0 0 0 0 0 0 0 . . .
t(p3,3) . . . 1 1 0 0 0 0 0 0 . . .
t(p1,8) . . . 0 1 1 0 0 0 0 0 . . .
t(p4,5) . . . 0 1 1 1 0 0 0 0 . . .
t(p2,10) . . . 0 0 1 1 1 0 0 0 . . .
t(p5,3) . . . 0 0 1 1 1 1 0 0 . . .
t(p1,9) . . . 0 0 1 0 1 1 1 0 . . .

.

.

. . . . 0 0 1 0 1 1 1 1 . . .

...
...

...
...

...
...

...
...

...
. . .

Figure 1: An example of the structure of a constraint matrix of the paging problem, corresponding to

the sub-sequence of requests p1,p2,p3,p1,p4,p2,p5,p1 starting at time t′ = t(p1,7). The matrix is lower

triangular, due to the columns being in order of the appearance of variables. In this example, we assume

that the pages p1,p2,p3,p4 and p5 have been requested 6,8,2,4, and 2 times before the appearance of this

sequence respectively.

We further note that the contribution of all variables that are rounded up in this bound must therefore

be at least n− k − 1
8

If any variable xp,j in x ful�lls
1
8 6 xp,j 6

7
8 , then the rounding step will increase this variable by at

least
1
8 , which compensates the value lost by rounding down all small variables.

Otherwise, if we let A = {xp,r(p,t) ∈ B(t) \ {pt} | xp,r(p,t) 6 1
8 } and

∑
x∈A x > 1

8 , then the doubling of

these variables compensates for the rounding down of small variables.

Finally, if neither of these is the case, the variables of size greater than
7
8 must sum up to at most

n − k − L, where L denotes the amount of mass lost by rounding the small variables to 0, and at least

n− k − 2L > n− k − 1. The sum of the rounded-up variables is an integer, as all variables of value greater

than
1
2 are rounded to 1, so we gain at least L from rounding up the large variables.
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