
muco: A MUSIC COMPUTING LEARNING APPLICATION

Patricia Hu1, 4, Oliver Hödl1, 2, Peter Reichl1, Fares Kayali2, Iris Eibensteiner3, Bernhard Taufner3, Sigrid Schefer-Wenzl3,
and Igor Miladinovic3

1Cooperative Systems Research Group, University of Vienna, Austria firstname.lastname@univie.ac.at
2Centre for Teacher Education, University of Vienna, Austria firstname.lastname@univie.ac.at

3Software Design and Engineering Department, University of Applied Sciences Campus Vienna, Austria
firstname.lastname@fh-campuswien.ac.at

4Institute of Computational Perception, Johannes Kepler University Linz, Austria patricia.hu@jku.at

ABSTRACT

Following a computational approach to music creation can
serve as a transdisciplinary bridge between computer sci-
ence, music and education by providing rich opportunities
for teaching computing skills in interdisciplinary contexts.
Making use of such learning contexts is one of the corner-
stones of STEAM (STEM + Arts) education, a pedagogic
approach focusing on integrating the arts and humanities
into STEM fields. Despite numerous benefits reported in
the literature, the number of STEAM programs integrated
into formal learning contexts remains limited due to vari-
ous integration challenges. In addressing these challenges,
we developed and evaluated a gamified music computing
learning application called muco, using the MVC software
architecture along with React as the front-end, and Node
and MariaDB as back-end technologies. The goal of the
application is to make programming concepts more acces-
sible and comprehensible to a broader public, and to si-
multaneously spark interest in music and music making.
Making use of game mechanics, muco is conceptualised
to teach computational thinking, and more specifically, in-
troductory programming, in non-formal learning contexts.
The usability of the application and impact of interdisci-
plinary learning is evaluated by means of both formative
and summative testing. Results show that the application
provides an engaging learning environment which encour-
ages the exploration of both the computing and music do-
main.

1. INTRODUCTION

There are many parallels between musical and software
artefacts. To a certain extent, music can be considered ‘or-
ganised sound’, containing hierarchical structures formed
by musical events of different levels, each varying in their
degree of abstraction [1, 2]. These inherent structural rela-
tionships and the hierarchical nature in and between musi-
cal patterns offer ample grounds to approach music in an
algorithmic or computational manner [3, 4].

Copyright: © 2022 Hu P. et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

The idea of adopting an algorithmic approach to music
and music making has in fact been explored across mil-
lennia and across cultures [5]. More recently, a number
of researchers have also pointed to the potential of adopt-
ing an analytical approach to music to enrich existing di-
dactic methods in either music or computer science disci-
plines [4, 6]. In the latter case in particular, a systematic
and structured engagement with music can provide a rich
pedagogic context for exploring the creative sides of com-
puting [7, 8].

The field of computational thinking within educational
research and practice is steadily growing, and an increasing
number of countries worldwide are integrating program-
ming education into their national school curricula [9, 10].
As suggested above, music and music education (involving
various aspects of music such as understanding, analysis,
composition etc.) provide many opportunities for teach-
ing computational thinking and programming concepts in
a creative context. This is especially true in the area of
STEAM (STEM + Arts) education.

The muco web application builds on the premise of
bridging two domains - computing and music - to ex-
plore and exploit interdisciplinary potentials for knowl-
edge transfer and learning. The application is intended to
be suitable for beginners of both fields, thus requiring no
prior knowledge in either music or programming.

Likewise, striving to advance the field of STEAM ed-
ucation, the muco application is designed to be used in
non-formal, non-structured pedagogic settings. To encour-
age learning persistence in such contexts, the application
leverages the potential of gamification techniques in or-
der to promote student engagement and motivation, both of
which have been identified as key factors in any learning
process [11]. To this end, the muco application features
selected game elements.

The remainder of this work is structured as follows: af-
ter providing a succinct introduction to the relevant sub-
ject areas in section 2, section 3 illustrates the applied re-
search approach. Next, section 4 presents the muco ap-
plication from both a technical and content-related point
of view. Section 5 then describes the evaluation of the
application, with results being presented and discussed in
section 6. Lastly, section 7 concludes with a summary of
lessons learned and areas for future research.

On a final note, it should be noted that the results pre-

http://creativecommons.org/licenses/by/3.0/


sented herein do not claim to be exhaustive. Rather, the
present work strives to be explorative in nature, pursuing
the overall goal of making computing disciplines more ac-
cessible and comprehensible to a broader audience, while
simultaneously sparking interest in music and making mu-
sic.

2. RELATED WORK

2.1 STEAM Education

STEAM (as an acronym of the included disciplines Sci-
ence, Technology, Engineering, Arts and Mathematics) is
a transdisciplinary pedagogic approach focusing on the in-
corporation of liberal arts and the humanities into classical
STEM education. As an emerging educational practice, it
is increasingly gaining importance and recognition within
the pedagogic community [12–14].

The literature on STEAM education reports a wide range
of positive outcomes, with multiple empirical studies
demonstrating improved content acquisition and concep-
tual understanding of scientific topics [15–17], increased
task- or skill-related proficiency [16,18,19] and overall im-
proved motivation and attitudes towards a specific STEM
discipline [8, 14, 16, 19]. Despite these positive effects,
however, researchers have identified recurring issues such
as a lack of shared understanding of the STEAM concept
and differing opinions on the nature and role of arts inte-
gration [13].

Another challenge reported in the literature relates to prac-
tical obstacles hindering effective STEAM program imple-
mentation. In this context, four major problem sources
have been identified by Herro et al. [20], which relate to
adequate pacing and time allocation of STEAM teaching
units, observed student struggles with self-directed learn-
ing, challenges related to content and discipline alignment
as well as teacher collaboration, and issues resulting from
inflexible school policies.

2.2 Computational Thinking and Music

The concept of computational thinking emerged in the
1950s and 1960s in the field of computer science as ‘al-
gorithmic thinking’. In the traditional sense, the term can
be described as a habit of mind of designing and crafting
useful and effective software programs [21].

Since then, a variety of definitions of the term have been
proposed [9, 22], most of which involve the mental con-
cepts of problem reformulation, abstraction and decompo-
sition. Referring to the relation of computational thinking
to programming, it is clear that both are not the same, but
being able to think computationally does facilitate the tran-
sition of problem-solving methods to formalized program-
ming languages [23]. Though the definition and taxonomy
of computational thinking is still evolving [24], the concept
in itself has been met with great enthusiasm by educators
as well as academics, not least due to its contribution in at-
tracting attention to the field of computer science [25, 26].

Likewise, pedagogic scholars and practitioners from both
computing and music fields have pointed to the educational
potential of interdisciplinary overlaps. As indicated above,

musical pieces and software programs mirror each other in
a number of aspects. Building on the idea of approach-
ing music in an analytic manner, a number of researchers
have emphasized parallels not only between musical and
software artefacts, but also between the thought processes
involved in learning and making music and software [3, 4,
6–8].

2.3 Digital Education and Gamification

Digital learning refers to any learning framework or system
involving the use of information and communication tech-
nologies (ICT), including electronic learning (e-Learning)
and mobile learning (m-Learning) [27]. Gamification im-
plies the incorporation of game thinking and game design
techniques to conventionally non-game activities. In the
educational context, this is often applied to increase stu-
dent engagement and improve learning outcomes overall
[28]. Making use of its resources and innovative technolo-
gies, digital learning offers an ideal environment for the
integration of game elements and mechanics.

The idea of using gamification to enhance student en-
gagement and motivation has been applied and studied in
formal and informal education for some time [29]. Both
digital learning and the application of gamification therein
have also led to increased focus and emphasis on the con-
cept of self-directedness or self-directed learning, which
stresses the ability of the student to plan and manage re-
sources independently and apply critical problem-solving
[30].

3. METHODOLOGY

Given the interdisciplinary nature of the present work,
a mixed-methods approach was applied for the different
steps involved in the design, implementation and evalua-
tion of the muco learning application.

First, an iterative prototyping approach was followed for
the design and implementation of the muco application,
with each iteration realising a higher functional scope than
the previous one. Next, the application was evaluated both
qualitatively and quantitatively by means of formative and
summative usability testing.

Formative testing was performed with an earlier pro-
totype version of the muco application, specifically one
which did not involve any gamification mechanics. These
early-stage studies aimed at evaluating the general con-
cept and learning content of the muco application and
were conducted by means of semi-structured expert inter-
views. Interviews provide an appropriate context to ask
open-ended questions on a broad range of topics which
makes them suitable for gaining a deep and nuanced un-
derstanding of a problem [31].

Summative testing tends to focus on task measurements
and related quantitative metrics, and is therefore more ap-
propriate for more advanced development stages [32]. In
the context of the present work, two summative usability
studies were conducted to evaluate the final prototype ver-
sion, which included game mechanics.



(a) (b)

Figure 1: (a) Dashboard (with open sidebar) and (b) Collectible Rewards in the muco application

4. MUCO APPLICATION

4.1 Design Rationale

A a starting point, a low-fidelity wireframe was created,
which defined the fundamental structure and navigation of
the application. Figure 1 presents excerpts from this wire-
frame. The design process was guided by Nielsen’s Ten
Usability Heuristics [33] and Shneiderman’s Eight Golden
Rule for Interface Design [34], both of which can be con-
sidered best practice principles in the realm of interface
and usability design.

The most relevant functional requirements included the
choice of a synthesis engine which supports the use of a
general purpose language for teaching programming con-
cepts and a browser-supported text-based editor serving
as the development environment. Taking into account the
design rational of conceptualising muco for use in non-
formal, self-directed learning contexts, a rewards collec-
tion and dynamic module unlocking feature along with se-
lected game elements were also included in the functional
scope.

4.2 Technology Stack

The muco application is realised as a web application us-
ing React 1 in the Front-End, Node 2 and MariaDB 3 in
the Back-End, and the Model-View-Controller (MVC) de-
sign pattern for the software architecture. The implemen-
tation of the muco application was preceded by the defi-
nition of key design and functional requirements, both of
which formed the basis for the choice of application type,
technology stack and software architecture.

With regards to the underlying synthesis engine, the
Tone.js 4 library was chosen as it supports coding mu-
sic in JavaScript, a high-level general purpose language
that is both industry-relevant and beginner-friendly [35].

1 https://reactjs.org/ (accessed 31-10-21)
2 https://nodejs.org (accessed 31-10-21)
3 https://mariadb.org/ (accessed 31-10-21)
4 https://tonejs.github.io/ (accessed 31-10-21)

Tone.js is a web-based audio framework enabling interac-
tive music making in the browser. The library provides
basic objects and methods for creating low-level oscilla-
tors and synthesizers. In addition, the library also features
higher-level monophonic and polyphonic instruments and
samples, as well as methods for adding effects and con-
trolling the scheduling of multiple audio events. For the
realisation of a text-based development environment, both
the Ace Editor 5 and CodePen pens 6 were used, with the
former serving as read-only editors for presentation and il-
lustration purposes and the latter providing an interactive
development environment in which the user could try out
(and run) new programming concepts.

4.3 Learning Modules

From a content and subject matter point of view, the main
focus was centered on the learning modules, which were
developed in two stages. In a first step, the structure for all
modules was drafted as follows:
• Theory component: The first part of each learning mod-

ule presents sound and music related concepts. They
are intended to serve as theoretical constructs that can
be used to illustrate programming concepts that are pre-
sented in the subsequent component.

• Code component: In the second part of each learning
module, specific programming concepts are introduced.
Each concept is explained and illustrated by means of
a concrete code example that is displayed in an editor
component. Each of the code examples also produces an
audio output, which the user can trigger by running the
code.

• Try It Yourself component: In the third part of each learn-
ing module, the user is encouraged to try out the previ-
ously introduced concept by him/herself and/or test him/herself
on the content of the current module. To this end, this
component provides either an interactive development
environment, or a gamified test element.

5 https://ace.c9.io/ (accessed 31-10-21)
6 https://codepen.io/ (accessed 31-10-21)



Figure 2: The general structure of a learning module as il-
lustrated by the first module, titled ’Learning By Playing’.
The yellow area contains the Theory, the orange area the
Code, and the blue area the Try It Yourself component.

Figure 2 presents the general structure described above,
as illustrated by the introductory module titled ’Learning
by Playing’.

In a second step, the actual structure of the learning con-
tents and teaching objectives with regards to the music and
programming concepts were defined and formulated. The
learning content of the application was formalised in such
a way to be suitable for beginners in either field, thus re-
quiring neither musical nor programming prior knowledge.

Table 1 provides an overview of the learning modules
provided in the application, including a list of the music
and programming concepts covered in each module.

4.4 Game Mechanics

With the aim of increasing student engagement and mo-
tivation in self-directed learning contexts, a rewards col-
lection and dynamic module unlocking feature were inte-
grated into the muco application along with selected game
elements. The game elements were implemented in the
form of micro-assignments in the Try It Yourself compo-
nents of each learning module, either as quizzes consisting
of multiple-choice and/or single choice questions or sort-
ing tasks in which the user is asked to bring an unsorted
code script into the right order. To encourage the user to
continue learning, these micro-assignments were linked to
the module unlocking and rewards collection mechanism
in such a way that requires the user to successfully pass an
assignment in order to unlock a new module. In addition,

the rewards were conceptualised to reflect different skill
levels through corresponding badge titles.

5. EVALUATION

5.1 Formative Testing

Taking into account the interdisciplinary aspect of the muco
application, domain experts from the field of music were
selected as interview partners. To this end, five formally
trained musicians were invited as study participants, among
them two performing musicians, one music education stu-
dent, one music teacher and one experimental media and
sound artist. Except for one all participants were in their
twenties (M27, M27, F22, M24, M35). Furthermore, ex-
cept for the experimental musician, none had any prior pro-
gramming knowledge or experience.

The interviews were carried out in a semi-structured man-
ner and followed a conversational rather than inquisitorial
communication style. A time frame of two to three hours
was allocated for each interview to ensure sufficient time
for both hands-on exploration and follow-up questions. At
the beginning of each interview, a short introduction on the
research context was given and informed consent was ob-
tained regarding the collection and further analysis of the
data acquired in the course of the study. Next, each par-
ticipant was asked to introduce her/himself. This was fol-
lowed by questions on expectations towards the muco ap-
plication, which aimed at capturing the interviewees’ first
impression of the general concept. In particular, the pur-
pose of these initial questions was to assess whether the
interdisciplinary context explored in the application was
comprehensible in itself, and whether the pedagogical ap-
proach stimulated curiosity and offered incentives for fur-
ther exploration of the application. The next stage in the
interview featured a hands-on exploration of the applica-
tion in its then-current state, followed by questions on both
the learning content and the perceived usability. The inter-
view then concluded with a discussion on final reflections.

5.2 Summative Testing

Two summative studies were conducted to evaluate the fi-
nal prototype version. Both studies incorporated two eval-
uation tools, that is, the System Usability Scale (SUS) ques-
tionnaire and a custom survey. The former is a standard-
ised usability questionnaire designed for post-study sce-
narios, that is, after completion of a list of tasks in a test
scenario. The questionnaire consists of ten items, each of
which provides a five point Likert scale response option. It
was selected as a research instrument because of its concise
format and sufficient reliability for benchmark comparison
purposes [32]. The latter was designed to gain a better un-
derstanding of certain aspects related to the content and use
of the application and thus to substantiate (or qualify) the
results of the previous formative usability study. Further-
more, it served as a tool for collecting demographic data.

Both studies took place in formal testing environments,
that is, a lecture for non-beginner computer science stu-
dents (n=28) and a research seminar for advanced students
of educational sciences (n=4). A time frame of approx.



Module Title Sound and Music Concepts Code Concepts
Learning By Playing Synthesizer, Oscillation, Sample,

Modulation, Waveshaping, Timbre,
Delays

Variable, Loop, Function, Function
Body, Function Argument, Parame-
ter, Callback

Sound and Waves Sound wave, Oscillation, Sinusoid /
Sine Wave, Oscillator

Variable, Variable Declaration and
Variable Initialization, Object, Ar-
gument

Frequency and Pitch Frequency, Hertz, Pitch, Concert
Pitch

Variable Value, Data Types, Num-
ber, String, Method Chaining

Different Waveforms Fundamental Frequency, Har-
monicity, Overtones/ Partials,
Primary Waveforms (Sine, Square,
Triangle, Sawtooth)

Array, For Loop, Code Comments

Dynamics and Loudness Dynamics, Loudness, Sound
Power, Sound Intensity, Decibel

Introduction to Programming Best
Practices

Table 1: Overview of learning modules provided in the muco application

one hour was allocated in both cases. Most participants in
both test settings were in their twenties. Given their study
background, all participants in the first test group had prior
knowledge and experience in programming. In the second
group, only one participant reported to have some basic
understanding of programming concepts. Surprisingly, the
number of participants who have had some form of formal
music education was relatively high in both groups (39,3%
and 50%, respectively). While gender balance was main-
tained in the second group, the ratio of female to male par-
ticipants in the first group was 1:3.

At the beginning of each study, a short overview of the
research context and study was given. This included a
short illustration of the main structure of the muco ap-
plication. Subsequently, a task list was presented, listing
the tasks which participants were asked to perform prior
to responding to the questionnaire and survey via Google
Forms 7 . Before sending out the links to the application
and Google Forms, informed consent was obtained with
respect to the processing and analysis of the collected data.
Participants were then given 30-45’ for exploring the con-
tent and functionality of the application and for responding
to the Google Forms. Depending on the respective field of
study of each test group, the survey was subjected to slight
modifications.

6. RESULTS

This section presents the results obtained by means of both
formative and summative test procedures. Overall, the re-
sults of the formative studies, that is, the interviews con-
ducted with domain experts from the musical domain, high-
lighted general curiosity and acclaim with respect to the
interdisciplinary learning context, but revealed mixed re-
sponses with regards to the learning content. The results
obtained by means of the two summative studies involving
non-beginner computer science and educational sciences
students revealed mixed results with regards to the over-
all learning and teaching concept and the learning content

7 https://about.google/intl/forms/ (accessed 31-10-21)

provided in the application. The user interface and expe-
rience was praised by study participants in both study for-
mats. The following thematically groups and describes the
results in further detail.

6.1 Response on Interdisciplinary Concept

In the formative setup, all interviewees expressed great
curiosity about the interdisciplinary learning concept pro-
vided in the application. Despite the general enthusiasm,
however, some misunderstanding on the intended use case
and target user group of the application was perceived.
However, this only concerned one participant.

In the summative setup, in the first group (formed of com-
puter science students), the general concept of combining
music and music related concepts with computer science
and computational thinking in order to teach programming
raised some doubts. Though most respondents praised the
playfulness and the individual features of the application
(the code sonification and the game mechanics, particu-
larly), some respondents did question the exact use case of
the learning application. In the second group, the students
with a background in educational sciences were more wel-
coming of the general concept and particularly highlighted
the Try It Yourself sections in each learning module and
emphasised their importance in the context of learning new
concepts. Participants in both groups praised the playful
and creative approach and game mechanics featured in the
application, with the code sorting tasks attracting the most
acclaim.

6.2 Response on Learning Content

In the formative studies, the response on the structure and
content of the learning modules was mixed, ranging from
very positive to neutral to fairly negative attitudes. Two
participants expressed strong interest and explicitly artic-
ulated they would want to continue using the application
once it featured more learning modules. One participant
reported feeling neutral towards the application, and the
overall teaching concept. Of the remaining two partic-



ipants, one expressed having felt overwhelmed with the
coding-related concepts, and therefore discouraged to use
the application in an informal (i.e. self-directed) learning
context. The other participant was equally unenthusias-
tic, but for the opposite reason, that is, the learning mod-
ules were perceived as too fragmented and incremental. It
should be noted that this participant was the one having
had prior programming knowledge.

The responses in the summative studies were likewise
mixed, ranging from participants describing the content
as advancing too slowly to test users complaining about
the length and complexity of the modules. Both groups
also included participants who explicitly praised the learn-
ing content, emphasising its step-by-step approach and the
text-highlighting feature of important concepts.

6.3 Response on User Experience

In both the formative and summative tests, the responses
on the user experience of the muco application were very
positive, with many participants pointing out the appealing
interface design. Despite these general positive remarks,
however, a number of participants (over all study formats)
expressed they would appreciate some form of visualisa-
tion as a learning aid for certain topics. In particular, sound
waves were mentioned as useful and suitable means for vi-
sualisation purposes.

6.4 SUS Score

As mentioned earlier, the SUS was applied as a research
instrument in the summative tests. For the first participant
group (formed of computer science students), the overall
SUS score obtained amounted to 70.8 (of 100). This is
slightly above the general average score of 68 (at the 50th

percentile), and can thus be considered ’acceptable’ [36].
Note that for the second group (formed of students of ed-
ucational sciences), the SUS score was not computed due
to the small sample size (n=4). Fig. 3 presents the overall
SUS score as broken down into its usability and learnabil-
ity subscores for the first group.

Figure 3: SUS subscores obtained in the formative study
involving computer science students

6.5 Limitations

As with any other research method, expert interviews de-
pict inherent weaknesses, not least due to their qualitative
nature and the resulting risk of obtaining biased, subjec-
tive results. To address this shortcoming, the interviews
conducted in the scope of the present work were comple-
mented with two quantitative techniques, involving a stan-
dardised questionnaire and a broad-based survey. Despite
these efforts, the total number of participants (that is, par-
ticipants from all evaluation studies) remains rather small
(N=37), thus limiting the significance of the results ob-
tained.

Another limitation of this work concerns the character-
istics of the test participants with respect to the follow-
ing two aspects: First, regarding the knowledge and skill
background of test participants, it must be emphasised that
a large number of participants (i.e., those coming from a
computer science study background) already had solid pro-
gramming skills. Second, regarding the gender ratio, the
gender imbalance encountered over all participants (across
all evaluation studies) must be noted, with female partici-
pants accounting for only 27% of total participants.

On a final note, it should be emphasised that the results
presented herein do not claim to be complete or exhaustive.
Particularly, the concerns raised above necessitate the con-
duction of further usability studies with test groups which
are both larger in size and more diverse with respect to both
gender and each individual participants’ background.

7. CONCLUSION

The present work focuses on the design and implementa-
tion of muco, a web-based music computing learning ap-
plication which builds on the premise of combining mu-
sic and music related concepts with computer science and
computational thinking constructs to teach programming
to beginners through coding music. Exploring and exploit-
ing the potential of such interdisciplinary learning contexts
is one of the principal considerations of STEAM educa-
tion. Despite promising results of STEAM programs re-
ported in the literature, researchers have likewise pointed
to a number of integration challenges hindering large-scale
implementation of STEAM-based curricula in school and
classroom contexts [20]. In addressing these integration is-
sues, the muco application was further conceptualised for
use in non-formal (self-directed) learning contexts. To this
end, the application leverages selected game mechanics to
encourage learning persistence in such contexts [30].

Another issue commonly reported in the STEAM litera-
ture is that concerning the role and extent of arts integra-
tion [13]. Though not specifically addressed, in the course
of conceptualising and defining the learning modules, a
number of fundamental sound and music concepts were
integrated were incorporated in an attempt to balance the
roles of the disciplines considered.

The application was subjected to appropriate evaluation
methods, involving both formative and summative usabil-
ity tests depending on the level of maturity and functional
scope of the respective development stage. Given the inter-



disciplinary nature of the learning concept featured in the
application, test participants included domain experts from
the fields of music, computer science and educational sci-
ences. Formative testing was performed by means of ex-
pert interviews, whereas summative testing relied on the
SUS standardised questionnaire and a custom survey as
research tools. Summarising the results from both study
formats, it can be said that the interdisciplinary learning
context resulting from the combination of music and cod-
ing proves to be suitable for sparking student interest and
motivation, and is therefore deemed worthwhile for further
exploration. Beyond that, mixed responses were observed
with regards to the structure, difficulty and appropriateness
(for beginners) of the actual learning content provided by
the muco application. This aligns with the results of other
scholars who reported on similar interest increasing effects
with STEAM education in a school teaching [12, 19].

The results of the studies conducted also revealed a
(re)structuring of the learning content and a visualisation
feature as potential areas for future work. Though the
overall reaction on the structure and organisation of the
learning content was mixed, dividing and restructuring the
learning modules into smaller content parts would likely
prove helpful and encouraging in the perceived learning
experience. This would be especially true for younger
audiences. Likewise, visualisations in the learning con-
texts can serve as a powerful tool for improving both un-
derstanding and memorisation of complex topics. Espe-
cially when faced with news concepts, visualisation can
strongly accelerate and advance understanding and learn-
ing. For these reasons, the potential for visualisation fea-
tures is subjected to further exploration in future iterations.

Apart from these content and design related issues, on
a broader level, specific knowledge transfer potentials be-
tween the domains of music (including music theory, anal-
ysis and composition) and computing (including computa-
tional and algorithmic thinking, and programming) remain
subject to more extensive empirical research.

Acknowledgments

The authors wish to thank the Center for Technology &
Society (CTS) 8 for the funding received. The CTS is
an inter-university research platform focusing on inter-
and transdisciplinary development of technology, socio-
technical research and inter-university cooperation.

8. REFERENCES

[1] H. K. Taube, “Computation and music,” Sound Musi-
cianship: Understanding the Crafts of Music, 2013.

[2] M. Müller, Fundamentals of music processing: Audio,
analysis, algorithms, applications. Springer, 2015.

[3] S. Laato, S. Rauti, and E. Sutinen, “The role of mu-
sic in 21st century education-comparing programming
and music composing,” in 2020 IEEE 20th Interna-
tional Conference on Advanced Learning Technologies
(ICALT). IEEE, 2020, pp. 269–273.

8 https://cts.wien

[4] A. R. Brown, “Algorithms and computation in music
education,” in The Oxford Handbook of Algorithmic
Music, 2018.

[5] N. Collins, Origins of algorithmic thinking in music,
01 2018, pp. 67–78.

[6] A. Misra, D. Blank, and D. Kumar, “A music context
for teaching introductory computing,” ACM SIGCSE
Bulletin, vol. 41, no. 3, pp. 248–252, 2009.

[7] S. Aaron, A. F. Blackwell, and P. Burnard, “The devel-
opment of sonic pi and its use in educational partner-
ships: Co-creating pedagogies for learning computer
programming,” Journal of Music, Technology & Edu-
cation, vol. 9, no. 1, pp. 75–94, 2016.

[8] S. Siva, T. Im, T. McKlin, J. Freeman, and B. Magerko,
“Using music to engage students in an introductory
undergraduate programming course for non-majors,”
in Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, ser. SIGCSE ’18.
New York, NY, USA: Association for Computing
Machinery, 2018, p. 975–980. [Online]. Available:
https://doi.org/10.1145/3159450.3159468

[9] V. Barr and C. Stephenson, “Bringing computational
thinking to k-12: What is involved and what is the role
of the computer science education community?” ACM
Inroads, vol. 2, no. 1, p. 48–54, Feb. 2011. [Online].
Available: https://doi.org/10.1145/1929887.1929905

[10] F. J. Garcı́a-Peñalvo, D. Reimann, and C. Maday,
Introducing Coding and Computational Thinking
in the Schools: The TACCLE 3 – Coding Project
Experience. Cham: Springer International Publishing,
2018, pp. 213–226. [Online]. Available: https:
//doi.org/10.1007/978-3-319-93566-9 11

[11] P. Fotaris, T. Mastoras, R. Leinfellner, and Y. Ro-
sunally, “Climbing up the leaderboard: An empirical
study of applying gamification techniques to a com-
puter programming class.” Electronic Journal of
e-learning, vol. 14, no. 2, pp. 94–110, 2016. [Online].
Available: https://eric.ed.gov/?id=EJ1101229

[12] F. Kayali, V. Schwarz, N. Luckner, and O. Hödl,
“Play it again. digitale musikinstrumente im mint-
unterricht,” journal für lehrerInnenbildung jlb, vol. 20,
no. 1, pp. 54–66, 2020. [Online]. Available: https:
//elibrary.utb.de/doi/pdf/10.35468/jlb-01-2020 04

[13] E. Perignat and J. Katz-Buonincontro, “STEAM
in practice and research: An integrative lit-
erature review,” Thinking Skills and Creativity,
vol. 31, pp. 31–43, 2019. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S1871187118302190

[14] O. Shatunova, T. Anisimova, F. Sabirova, and
O. Kalimullina, “STEAM as an innovative educational
technology,” Journal of Social Studies Education
Research, vol. 10, no. 2, pp. 131–144, June 2019.

https://doi.org/10.1145/3159450.3159468
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1007/978-3-319-93566-9_11
https://doi.org/10.1007/978-3-319-93566-9_11
https://eric.ed.gov/?id=EJ1101229
https://elibrary.utb.de/doi/pdf/10.35468/jlb-01-2020_04
https://elibrary.utb.de/doi/pdf/10.35468/jlb-01-2020_04
https://www.sciencedirect.com/science/article/pii/S1871187118302190
https://www.sciencedirect.com/science/article/pii/S1871187118302190


[Online]. Available: https://www.learntechlib.org/p/
216582

[15] G. Ozkan and U. U. Topsakal, “Investigating the
effectiveness of STEAM education on students’
conceptual understanding of force and energy topics,”
Research in Science & Technological Education,
vol. 0, no. 0, pp. 1–20, 2020. [Online]. Available:
https://doi.org/10.1080/02635143.2020.1769586

[16] M. Shamir, M. Kocherovsky, and C. Chung, “A
paradigm for teaching math and computer science con-
cepts in k-12 learning environment by integrating cod-
ing, animation, dance, music and art,” in 2019 IEEE
Integrated STEM Education Conference (ISEC), 2019,
pp. 62–68.

[17] H. Thuneberg, H. Salmi, and F. Bogner, “How
creativity, autonomy and visual reasoning contribute
to cognitive learning in a STEAM hands-on inquiry-
based math module,” Thinking Skills and Creativ-
ity, vol. 29, pp. 153–160, 2018. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/
pii/S1871187118301159

[18] T. McKlin, B. Magerko, T. Lee, D. Wanzer,
D. Edwards, and J. Freeman, “Authenticity and
personal creativity: How earsketch affects student
persistence,” in Proceedings of the 49th ACM
Technical Symposium on Computer Science Education,
ser. SIGCSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 987–992. [Online].
Available: https://doi.org/10.1145/3159450.3159523

[19] A. Xambó Sedó, S. Saue, A. R. Jensenius, R. Støckert,
and Ø. Brandtsegg, “NIME prototyping in teams: A
participatory approach to teaching physical comput-
ing,” in Proceedings of the International Conference on
New Interfaces for Musical Expression. Universidade
Federal do Rio Grande do Sul, 2019, pp. 216–221.

[20] D. Herro, C. Quigley, and H. Cian, “The challenges
of STEAM instruction: Lessons from the field,”
Action in Teacher Education, vol. 41, no. 2,
pp. 172–190, 2019. [Online]. Available: https:
//doi.org/10.1080/01626620.2018.1551159

[21] P. J. Denning, “The profession of it beyond com-
putational thinking,” Commun. ACM, vol. 52, no. 6,
p. 28–30, Jun. 2009. [Online]. Available: https://doi-
org.uaccess.univie.ac.at/10.1145/1516046.1516054

[22] J. M. Wing, “Computational thinking,”
Communications of the ACM, vol. 49,
no. 3, pp. 33–35, 2006. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/wp-
content/uploads/2012/08/Jeannette Wing.pdf

[23] V. J. Shute, C. Sun, and J. Asbell-Clarke, “Demysti-
fying computational thinking,” Educational Research
Review, vol. 22, pp. 142–158, 2017.

[24] T.-C. Hsu, S.-C. Chang, and Y.-T. Hung, “How
to learn and how to teach computational thinking:
Suggestions based on a review of the literature,”
Computers & Education, vol. 126, pp. 296–310,
2018. [Online]. Available: https://doi.org/10.1016/
j.compedu.2018.07.004

[25] CSforALL, “CS for ALL computer science for all
students,” https://www.csforall.org/, 2016, accessed:
2021-07-30.

[26] Computer Science Teachers Association,
“CSTA computer science teachers association,”
https://www.csteachers.org/, 2019, accessed: 2021-
07-30.

[27] S. Kumar Basak, M. Wotto, and P. Belanger, “E-
learning, m-learning and d-learning: Conceptual defi-
nition and comparative analysis,” E-Learning and Dig-
ital Media, vol. 15, no. 4, pp. 191–216, 2018.

[28] K. M. Kapp, The gamification of learning and instruc-
tion: game-based methods and strategies for training
and education. John Wiley & Sons, 2012.

[29] K. Squire and H. Jenkins, “Harnessing the power of
games in education,” Insight, vol. 3, no. 1, pp. 5–33,
2003.

[30] P. Mishra, C. Fahnoe, D. Henriksen, D.-P. R. Group
et al., “Creativity, self-directed learning and the archi-
tecture of technology rich environments,” TechTrends,
vol. 57, no. 1, pp. 10–13, 2013.

[31] J. Lazar, J. H. Feng, and H. Hochheiser, Research
methods in human-computer interaction, 2nd ed.
Morgan Kaufmann, 2017.

[32] J. Sauro and J. R. Lewis, Quantifying the
user experience: Practical statistics for user
research. Morgan Kaufmann, 2016. [Online].
Available: https://www.perlego.com/book/1809426/
quantifying-the-user-experience-pdf

[33] J. Nielsen, “Ten usability heuristics,” 2005.

[34] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs,
N. Elmqvist, and N. Diakopoulos, Designing the user
interface: strategies for effective human-computer in-
teraction. Pearson, 2016.

[35] A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber,
“Collaboration and learning through live coding
(Dagstuhl Seminar 13382),” Dagstuhl Reports, vol. 3,
no. 9, pp. 130–168, 2014. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2014/4420

[36] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical
evaluation of the system usability scale,” International
Journal of Human–Computer Interaction, vol. 24,
no. 6, pp. 574–594, 2008. [Online]. Available:
https://doi.org/10.1080/10447310802205776

https://www.learntechlib.org/p/216582
https://www.learntechlib.org/p/216582
https://doi.org/10.1080/02635143.2020.1769586
https://www.sciencedirect.com/science/article/pii/S1871187118301159
https://www.sciencedirect.com/science/article/pii/S1871187118301159
https://doi.org/10.1145/3159450.3159523
https://doi.org/10.1080/01626620.2018.1551159
https://doi.org/10.1080/01626620.2018.1551159
https://doi-org.uaccess.univie.ac.at/10.1145/1516046.1516054
https://doi-org.uaccess.univie.ac.at/10.1145/1516046.1516054
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/Jeannette_Wing.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/08/Jeannette_Wing.pdf
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
https://www.csforall.org/
https://www.csteachers.org/
https://www.perlego.com/book/1809426/quantifying-the-user-experience-pdf
https://www.perlego.com/book/1809426/quantifying-the-user-experience-pdf
http://drops.dagstuhl.de/opus/volltexte/2014/4420
https://doi.org/10.1080/10447310802205776

	 1. Introduction
	 2. Related Work
	2.1 STEAM Education
	2.2 Computational Thinking and Music
	2.3 Digital Education and Gamification

	 3. Methodology
	 4. muco Application
	4.1 Design Rationale
	4.2 Technology Stack
	4.3 Learning Modules
	4.4 Game Mechanics

	 5. Evaluation
	5.1 Formative Testing
	5.2 Summative Testing

	 6. Results
	6.1 Response on Interdisciplinary Concept
	6.2 Response on Learning Content
	6.3 Response on User Experience
	6.4 SUS Score
	6.5 Limitations

	 7. Conclusion
	 8. References

