
Journal (2022), 1–00
doi:10.1017/xxxxx

ARTICLE

XPASC: Measuring Generalization in Weak
Supervision by Explainability and Association
Luisa März�,∗,?, Ehsaneddin Asgari∗, Fabienne Braune∗, Franziska Zimmermann◦, and Benjamin
Roth�,†

� Research Group Data Mining and Machine Learning,
Faculty of Computer Science, University of Vienna,
Vienna, Austria

† Faculty of Philological and Cultural Studies,
University of Vienna,
Vienna, Austria

∗ AI Innovation & Pre-Development,
Data:Lab, Volkswagen AG,
Munich, Germany
luisa.k.maerz@gmail.com

? UniVie Docotoral School Computer Science,
Vienna, Austria

◦ CAPE Analytics,
Mountain View, California, United States

(Received 06 May 2022; revised 22 November 2022; accepted xx xxx xxx)

Abstract
Weak supervision is leveraged in a wide range of domains and tasks due to its ability to create massive
amounts of labeled data, requiring only little manual effort. Standard approaches use labeling functions to
specify signals that are relevant for the labeling. It has been conjectured that weakly supervised models
over-rely on those signals and as a result suffer from overfitting. To verify this assumption, we intro-
duce a novel method, XPASC (eXPlainability-Association SCore), for measuring the generalization of
a model trained with a weakly supervised dataset. Considering the occurrences of features, classes and
labeling functions in a dataset, XPASC takes into account the relevance of each feature for the predic-
tions (explainability) of the model as well as the connection of the feature with the class and the labeling
function (association), respectively. The explainability is measured using occlusion in this work. The asso-
ciation in XPASC can be measured in two variants: XPASC-CHI SQUARE measures associations relative
to their statistical significance, while XPASC-PPMI measures association strength more generally.
We use XPASC to analyze KNOWMAN, an adversarial architecture intended to control the degree of
generalization from the labeling functions and thus to mitigate the problem of overfitting. On one hand,
we show that KNOWMAN is able to control the degree of generalization through a hyperparameter. On
the other hand, results and qualitative analysis show that generalization and performance do not relate
one-to-one, and that the highest degree of generalization does not necessarily imply the best performance.
Therefore methods that allow for controlling the amount of generalization can achieve the right degree of
benign overfitting. Our contributions in this study are i) the XPASC score to measure generalization in
weakly-supervised models, ii) evaluation of XPASC across datasets and models and iii) the release of the
XPASC implementation.
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1. Introduction
Many machine learning architectures still require large amounts of labeled training data, result-
ing in static data sets with limited usability for changing data distributions or task definitions.
Manual annotation is both expensive and time-consuming and thus not always practically feasible
or convenient. One way to circumvent this problem is to use weak supervision. Weak supervision
methods utilize different knowledge sources such as knowledge bases, heuristics, or taxonomies to
annotate large amounts of data automatically. The knowledge of the external sources is encoded
in labeling functions, programmatically specified heuristics (e.g., keywords, patterns, database
lookups) that trigger the automatic annotation of a specific output. A labeling function can also
be thought of as a decision rule that is defined based on prior (expert) knowledge. If this rule is
matched, the appropriate output is assigned to the instance. Due to the fact that labeling functions
only consider a narrow context for triggering an annotation, it is likely that some weak labels are
noisy and/or imprecise. Moreover, large sets of weakly annotated instances all follow similar pat-
terns (captured by the same labeling function), and it has been conjectured that weakly supervised
models rely too heavily on the labeling functions and therefore suffer from overfitting (März et al.
2021; Dehghani et al. 2017).

Approaches to tackle the problem of noisy weak labels can be categorized into two main
groups: Those who try to filter out the noisy labels for training (Ren et al. 2020; Sukhbaatar
et al. 2014; Dehghani et al. 2017) and those who try to estimate the accuracy of the labeling
functions or the weak sources (Fu et al. 2020; Ratner et al. 2020). See Zhang et al. (2022a) for
a detailed survey on weak supervision approaches and labeling function modeling. None of them
addresses the problem of overfitting to (or, inversely, generalization from) labeling functions. As
an alternative, we developed KNOWMAN (März et al. 2021), an adversarial architecture with
the objective to shift the focus for the learned representation of a model away from the label-
ing functions towards a more general representation. This is achieved through a hyperparameter
that controls the influence of the labeling functions on the feature representation. KNOWMAN
has explicitly been designed to overcome the problem of overfitting to the noisy labeling func-
tion signals. However, while training in the KNOWMAN-settings increases the prediction quality
for the studied weakly supervised neural networks, it could not be directly evaluated whether the
KNOWMAN actually increases generalization from the labeling functions.

In this study, we present XPASC (eXPlainability-Association SCore) to observe generaliza-
tion from noisy signals in weakly supervised models more closely. The intuition behind the score
is that models suffering from overfitting to labeling functions have a low ability to generalize,
and will heavily rely on features associated with labeling functions for prediction. Generalization
in the scope of this work means the capability of a model to abstract from the labeling func-
tion signals and to learn representations based on various signals and parts of the input. A higher
generalization should ultimately lead to the representation being more robust against mislead-
ing labeling functions and being able to represent the input with as many aspects as possible.
Accordingly, a greater generalization from the weak source indicates a smaller degree of overfit-
ting. In this work we consider the strongly information-carrying surface forms, i.e. the individual
tokens, of an instance as features. By using XPASC the generalization ability of a model, given a
data set, can be measured. The score combines the relevance of each feature for the prediction of
a weakly supervised model (explainability) with the connection of the feature with the class and
the labeling function (association).

To measure prediction relevance of the single features we leverage a method from XAI
(eXplainable AI), namely occlusion. In general, XAI methods aim to give insights into the out-
put of machine learning models to make internal processes more transparent to users. Taking into
account the explainability method is central to the analysis with XPASC, and also represents an
unconventional use case of XAI.
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To compute association in XPASC we propose two different methods: XPASC-CHI SQUARE
which relies on statistical association strength, and XPASC-PPMI which measures the more
general information-theoretic association strength.

Apart from introducing the formal details of XPASC, we study KNOWMAN and WEASEL as
well as two traditional weak supervision approaches, MAJORITY VOTE and SNORKEL-DP (Data
Programming), with respect to their generalization, as measured by XPASC. Our findings show
that the KNOWMAN architecture is able to control the degree of generalization in direct relation
to its hyperparameter λ . In fact, KNOWMAN can get the model to focus more on words that
are associated with the class (generalize more), and even ignore features highly associated with
single, misleading labeling functions.

We have observed that the generalization of a model and its performance are not one-to-one
related, and that at a certain point there can be too much generalization from the weak signals.
Our observations show that the two different association computations, PPMI and CHI SQUARE,
behave analogously in the overall picture. However, we find that the values of the association based
on PPMI are distributed across a larger space. This means that PPMI also takes into account the
”long tail” of data sets and presents the reality in the data more straightforwardly. The values of the
CHI SQUARE-based association, on the other hand, have a denser distribution. So CHI SQUARE
also appears to be more resilient to outliers in the data.

Our main contributions in this paper are:

• the proposal and detailed introduction of XPASC to measure generalization from weak
signals

• the evaluation of XPASC across models and data sets
• the confirmation of the hypothesis and functionality of KNOWMAN
• the release of the XPASC implementationa.

The remainder of the paper is structured as follows: After investigating related work in the
fields of weak supervision and overfitting metrics we describe the method the XPASC formally.
Section §4 gives an overview over models and data sets used in this work. The analysis is divided
in quantitative and linguistic results and followed by the conclusion.

2. Related Work
We consider the concepts of overfitting and generalization to be related in that overfitting can
be a result of low generalization. In the weak supervision context, this means that a model that
abstracts little from the labeling functions, i.e. has low generalization, is more likely to overfit to
these misleading signals. In the following we present approaches that focus either on overfitting
or on generalization. Some are tailored to weak supervision, while others deal with overfitting and
generalization in natural language processing in general.

Overfitting of machine learning models has been repeatedly identified as a problem. In machine
learning generally, overfitting means that a model has adapted too much to the training data and
can therefore no longer perform well on newly seen data. Model performance on unseen data or
held-out test sets is therefore typically used as an indicator for overfitting. If the result on unseen
data is much worse than on training data it is likely that the model overfitted to the training data.
Salman and Liu (2019) analyze the training dynamics and the application of models to unseen
data to observe overfitting. Other works measure overfitting by the total number of parameters,
where a low number of parameters indicates less overfitting than a high number of parameters. (Li
et al. 2019) measure overfitting through the number of parameters of a model and its accuracy on
the test set.

ahttps://github.com/LuisaMaerz/XPASC

https://github.com/LuisaMaerz/XPASC
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Roelofs et al. (2019) analyze overfitting caused by test set reuse on a large set of Kaggle com-
petitions. The assumption is that if many models are centered towards one test set, overfitting of
the models to that test set is likely. However, with their experiments they show that there is no
significant overfitting due to test set reuse in Kaggle. Roelofs et al. (2019) provide a simple mea-
surement for the adaptivity gap between the losses on train and test set. Here they use the fact that
Kaggle provides two types of test sets with which this gap can be approximated very well. Unlike
us, they cover overfitting to test set reuse rather than overfitting to labeling functions.

Due to the nature of weak supervision, models may overfit to systematic errors and biases
introduced by the automatic labeling process. Yu et al. (2021) fine tune a pre-trained language
model with weak supervision. This is challenging, because large language models have a higher
risk to overfit due to their large amount of parameters anyways. Errors are more propagated due
to overfitting, which degrades performance and prevents the models from learning properly. Yu
et al. (2021) tackle this issue by contrastive self-training, what can be considered as denoising
in the first place and reduces error propagation and overfitting to the noise. In their experiments,
they use RoBERTa (Liu et al. 2019) and fine-tune a simple classification head. Like us, they use
MAJORITY VOTE (exact match in their work) and SNORKEL-DP for weak labeling. However,
they do not specifically address the impact of overfitting to labeling functions. As in our previous
work with KNOWMAN (März et al. 2021), their model aims at learning better representations
from weakly labeled data. Unlike us, they use a contrastive approach that pulls labels with simi-
lar weak supervision signals closer together and pushes others further away in the feature space,
rather than an adversarial network as in KNOWMAN. In recent work Zhang et al. (2022b) propose
the source-aware Influence Function to understand programmatic weak supervision. By observ-
ing changes in the loss of a model while utilizing the source-aware influence function, they gain
insights in the influence of single data points, labeling functions or weak sources on model per-
formance. Like us, they aim to identify important parts of the input to make the model output
more explainable. Similar to KNOWMAN, they try to reduce the impact of misleading labeling
functions on model training. Although they provide some insight into what influences the training
through the source-aware influence function, they do not use this information to compare different
models, which is different from our work.

Generalization refers to a model’s ability to perform well on unseen data, i.e., a model gener-
alizes well if it overfits only slightly. For example Ratner et al. (2019) consider generalization of
weak supervision sources observable through the estimation error of their trustworthiness. They
claim that the generalization error scales with the number of unlabeled data points and try to mini-
mize the loss for predicting weak labels without loss of generality. By connecting generalization to
the estimation error, generalization is not only observable, but also controllable. Like our metric,
this can be viewed as a formal measurement of generalization. Unlike our metric, their measure
is tightly coupled with their specific weak supervision approach and not generally applicable as a
universal tool to compare generalization across models and data sets.

Many weak supervision approaches try to overcome a lack of generalization by denoising the
weak sources (Ren et al. 2020; Hsieh et al. 2022). In contrast to these approaches, we address the
issue of generalizing from weak supervision sources, instead of denoising them. Fu et al. (2020)
provide a weak supervision framework to model and label data by leveraging different weak super-
vision sources. In addition, they provide a bound for generalization. To do so, they measure the
performance gap between the end model parametrization using outputs of the label model and
the optimal end model parametrization over the true distribution of labels. More efforts can be
mentioned in studying generalization in general, e.g., measuring number of required “strong”
labels (Robinson et al. 2020), studying generalization in algorithmic datasets (Power et al. 2022),
generalization in generative models by measuring the uniqueness of generated sample (Mauri
et al. 2022).

Although there is work on both overfitting and generalization, and both are considered to be
important issues in weak supervision, to the best of our knowledge XPASC is the first universal
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Figure 1. Modules of XPASC: product of eXPlainability and Association. The eXPlainability of a feature of an
instance is calculated by the KL divergence of the class predictions for the entire instance and the instance without
the respective feature. For each instance the explainability for all features is computed and the most important
feature can be obtained. The Association for an instance given a feature is calculated as the difference of the
association of the feature with the class and with the labeling function, which in practice is a matrix lookup. The
matrices are computed in advance and are based on coocurrences of features, classes and labeling functions in
the data corpus.

score measuring overfitting to and generalization from labeling functions in weakly supervised
models. Moreover, since our approach is based on explainability methods, it makes transparent
which features are mainly responsible for overfitting or generalization.

3. The Explainability-Association Score
The goal of XPASC is to measure generalization from weak signals for weakly supervised mod-
els. The intuition behind XPASC is that input parts or features that are most important for the
class prediction of these models are highly associated with the heuristics used for annotating the
training data. This is due to the fact that the model relies too much on the labeling functions and
therefore tends to ignore other valuable signals for classification.

XPASC measures to what degree a model, trained with a weakly labeled data set, can gener-
alize from the information associated with the features, classes and labeling functions present in
the data. Several considerations such as how important featuresb are for the classification and how
much features, classes and labeling functions are correlated are taken into account. Therefore
XPASC is composed of three parts: i) the explainability of each feature for a model, ii) its
association with the class, and iii) its association with the labeling function. Note that both explain-
ability and association contribute equally to XPASC. To calculate explainability, we use occlusion
(Zeiler and Fergus 2014). The association strength is measured either with the PPMI or the CHI
SQUARE-score. See Figure 1 for an illustration of XPASC.

3.1 Explainability
The term explainability expresses how important a single feature is for the classification of an
instance, i.e., how the class prediction changes if the feature is omitted, masked or changed. To
determine the importance of each feature of an instance for the classification task, we use the
explainability method of occlusion. The idea for occlusion originally came from computer vision
proposed by Zeiler and Fergus (2014), and since then it has been also used for Natural Language
Processing, e.g., by Harbecke and Alt (2020), or Ancona et al. (2018).

bIn this work, by features we mean the observable tokens of an input instance, in contrast to learned features from a network.
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We perform occlusion in four steps as follows: we pass i) our input instance through our model
and ii) the instance without the feature through the model. Explainability is then computed by
iii) retrieving the prediction probabilities from both, and iv) calculating the Kullback-Leibler-
Divergence (Kullback and Leibler 1951):

DKL(P||Q) = ∑
x∈ X

P(x) log
(

P(x)
Q(x)

)
(1)

where P and Q are discrete probability distributions and X is a shared probability space.
By computing how different two probability distributions are, the Kullback-Leibler-Divergence
indicates how much the occlusion affects the prediction in our case. Accordingly, we define the
explainability of an instance and a feature as:

Sxp(i, f ) = DKL (P(i)||Q(i \ f )) (2)

where P(i) is the model prediction for the entire instance and Q(i \ f ) is the model predic-
tion for the instance with feature f omitted. Note that both predictions are vectors of probability
distributions over the set of possible classes. The smaller this difference of the two probabil-
ity distributions, the less important the feature is for the classification result. In any case, the
Kullback-Leibler-Divergence is between zero and one. The highest explainability is assigned
to the features where the two prediction distributions differ the most, i.e., where the prediction
changes greatly if the feature is omitted.

3.2 Association
Association measures the degree of correlation between observations. To find out how much a
feature is correlated with its class and with its labeling function we calculate two association
matrices with the following shapes:

|C|= classes× f eatures

|L|= labeling f unctions× f eatures

where C is the association matrix for classes and L is the matrix for labeling functions. The
details for the matrix calculation are explained in section 3.2.1 and section 3.2.2. During the
calculation of XPASC, the respective association value is looked up in the matrices for each
feature given its class and its labeling function. To put both associations (feature and class/ feature
and labeling function) in relation we subtract their scores and arrive with the overall association
for a feature given its instance:

Sasc(i, f ) =
N

∑
j=1

(
Cci f −Lli

j f

)
(3)

where we iterate over all matching labeling functions l for instance i. Variable f denotes the
feature, Cci f is the value of the association-matrix with respect to the class label of instance i, ci,
and Lli

j f the value for the j’th matching labeling function, li
y. By computing association that way

the result can either be positive, negative or zero. Depending on the exact result, the score can then
be interpreted directly. The larger (positive) Sasc, the more feature f is associated with the class,
the smaller (negative) Sasc, the more feature f is associated with the labeling function. The closer
the score is to zero, the more similar the association of the feature with the class and the labeling
function.
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Association can be modeled in different ways. We calculate it in two manners: using i) a chi
squared test or ii) the positive pointwise mutual information.

3.2.1 CHI SQUARE-based association
For this option we calculate the association matrices based on univariate feature selection. This
works by selecting the best features based on univariate statistical tests, in our case a chi squared
(χ2) test.

CHI SQUARE(z, f ) =

(
oz f − õz f

)2

õz f
(4)

where f is the feature, z represents a label (either class label or labeling function), oz f is the
absolute frequency of the combination of class/ labeling function and a feature (observed value)
and õz f is the expected value of the absolute frequency of the combination of class / labeling
function and a feature.

The χ2 test measures the dependence between the features and the class/labeling function.
Features with a high CHI SQUARE score are likely to be independent of the class/labeling function
and therefore more irrelevant for the classification. The smaller the CHI SQUARE result, the more
a feature is related to the class/labeling function and, consequently, the more important it is. Note
that the CHI SQUARE association expresses which of the features are most associated with the
class and include positive as well as negative correlation. Thus also negative examples can be
found among the most associated ones, e.g. “brother” can have a very high association with the
“married to” relation, although it is a negative indicator for that relation.

Formulas 5 and 6 define how to calculate one matrix entry for a feature and its corresponding
class/ labeling function.

C CHI SQUARE
c f = CHI SQUARE(c, f ) (5)

L CHI SQUARE
l f = CHI SQUARE(l, f ) (6)

where c is the class, l the labeling function and f the feature.

3.2.2 PPMI-based association
As a second option we calculate the positive pointwise mutual information (Equation 8), where
only the positive results of the pointwise mutual information (Equation 7) are taken into account.
Assuming independence of two variables (in our case: a feature and a class/labeling function)
PMI quantifies the discrepancy between the probability of their coincidence given their individual
distributions and their joint distribution.

PMI( f , z) = log
(

P( f , z)
P( f )P(z)

)
(7)

PPMI( f , z) =

{
PMI, if PMI > 0

0 else
(8)

where f is a feature, z a label (either class label or labeling function), P( f , z) the joint probabil-
ity of a feature and a label, P( f ) the probability of the feature and P(z) the probability of a label.



8 XPASC, März et.al

Formulas 9 and 10 define how to calculate one matrix entry for a feature and its corresponding
class/ labeling function.

CPPMI
c f = PPMI( f , c) (9)

LPPMI
l f = PPMI( f , l) (10)

where c is the class, l the labeling function and f the feature.

3.3 The Combined Score: XPASC
XPASC (eXPlainability Association SCore) combines both explainability and association for one
data set and a model. It measures how important each feature of an instance is and if it is more
correlated with the class or with the labeling function. By multiplying the two measures and
summing up over all instances and features we obtain:

SXPASC(d, m) = 1 +

(
1

N ×M

N

∑
i=1

M

∑
f=1

Sxp(i, f )× Sasc(i, f )

)
(11)

where d is the data set, m is the pre-trained model, N is the number of instances and M is
the number of features. To make sure that XPASC is comparable across models and data sets
we normalize by the data set size (number of instances times the number of features). Multiplying
both components gives small negative values, so we add one to the result to make the final XPASC
value above zero. The multiplication allows to put the importance of a feature in relation to its
association with the class and the labeling function.

The sharpness of the explainability measure could be increased by a temperature hyperparam-
eter γ for putting the focus only on the most relevant features (γ→∞) or equally on all features
(γ→ 0), changing the XPASC formula as follows: (Sxp(i, f )γ)× (Sasc(i, f )). In this work, we
considered the unchanged importance as given by the explainability algorithm (γ = 1).

Thus, a high XPASC indicates that many of the most important features (those that are effec-
tively used for prediction) are correlated with the class instead of the labeling function. We
can conclude that a high XPASC indicates more independence from the labeling functions and
accordingly a greater generalization from the weak source. This also indicates a smaller degree of
overfitting to the weak signals. Note that the results of CHI SQUARE-based XPASC and PPMI-
based XPASC are scaled differently. This is due to their different characteristics, as well as the
specific result values of the two calculations.

4. Weak Supervision Methods and Datasets
For our experiments we study four different weak supervision approaches, KNOWMAN,
MAJORITY VOTE, SNORKEL-DP (Data Programming) (Ratner et al. 2020) and WEASEL
(Cachay et al. 2021). Of those, only KNOWMAN provides an explicit mechanism for control-
ling the degree of generalization from the labeling functions. The latter three methods have been
developed without any mechanism to control generalization.

Experiments are conducted for four classifications tasks: sentiment analysis, spam detection,
detection of the spouse relationship and question classification. Four data sets that are common in
weak supervision are used, which are SPAM, SPOUSE, IMDb and TREC, see Section 4.2.
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Figure 2. KNOWMAN architecture. One iteration for a pass of one batch of inputs. The correct class and labeling
function for the example instance are highlighted. The parameters of C and F are updated together, the labeling
function discriminator D is updated with a separate optimizer. Solid lines indicate forward, dashed lines the back-
ward passes. ∇ indicates the (reversed) gradient. Before entering F the gradient is flipped. The influence of D can
be controlled by hyperparameter λ . Strength of λ equals generalization strength.

4.1 Models
We use a pre-trained DistilBERT language model to encode the input texts. Similar to BERT
(Devlin et al. 2019), DistilBERT is a masked transformer language model, which is a smaller,
lighter, and faster version leveraging knowledge distillation while retaining 97% of BERT’s
language understanding capabilities (Sanh et al. 2019).

To arrive with the DistilBERT input encodings we first tokenize the texts using the DistilBERT
tokenizer. After that, the tokenized input is converted to the DistilBERT transformer encod-
ing, consisting of the input ids as well as the attention mask. We use that representation across
KNOWMAN, SNORKEL-DP and MAJORITY VOTE models.

For WEASEL we encode the input using RoBERTa (Liu et al. 2019), a optimized version of
the BERT language model, because DistilBERT is not supported by WEASEL.

4.1.1 KNOWMAN
In previous work we proposed KNOWMAN (März et al. 2021). The ultimate goal of KNOWMAN
is to learn a feature representation that is invariant to the labeling functions which annotated the
weakly supervised data. We showed that this representation is more general and more robust to
incorrect classes that have been assigned by the labeling functions.

The architecture is designed as an adversarial model and contains three modules: i) a shared
feature extractor F , ii) a classifier C and iii) a labeling function discriminator D. See Figure 2 for
an illustration of the architecture. The classifier C is trained to predict the labels of a downstream
task. The gradient of the loss function is used to optimize the classifier itself as well as the shared
feature extractor. At the same time, the discriminator D is learned to distinguish between the
different labeling functions and should predict which of the labeling functions was responsible
for labeling an instance. The gradient of the discriminators loss function is used to optimize D. In
addition, the reversed gradient of D is used to optimize the feature extractor F . This adversarial
update leads to a weakening of the labeling function discrimination information and therefore to
a better generalization. KNOWMAN uses a hyperparameter λ to control the level of weakening
the signals. Consequently, XPASC allows us to study how changes in λ affect the degree of
generalization of trained KNOWMAN models.

KNOWMAN is implemented as follows: the discriminator D is trained with a separate opti-
mizer than C and F . When D is trained, the parameters of C and F are frozen and vice versa. The
losses for both, the classifier and the discriminator, are computed using negative log-likelihood
(NLL). The classification NLL can be formalized as:
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Table 1. KNOWMAN results on the test sets.

SPAM SPOUSE IMDb

Acc P R F1 Acc

MAJORITY VOTE TF-IDF 0.87 0.12 0.83 0.20 0.65

BLIND KNOWMAN TF-IDF 0.91 0.12 0.76 0.21 0.75

SNORKEL-DP TF-IDF 0.81 0.18 0.63 0.28 0.50

KNOWMAN TF-IDF 0.94 0.16 0.72 0.35 0.77

Fine-tuned DistilBERT 0.92 0.14 0.78 0.24 0.70

MAJORITY VOTE DistilBERT 0.87 0.09 0.90 0.17 0.67

BLIND KNOWMAN DistilBERT 0.86 0.18 0.80 0.29 0.74

SNORKEL-DP DistilBERT 0.88 0.13 0.70 0.23 0.49

KNOWMAN DistilBERT 0.90 0.27 0.67 0.39 0.76

LC(ĉi, ci) =− log P(ĉi = ci) (12)

where ci is the (weakly supervised) annotated class and ĉi is the prediction of the classifier
module C , for a training sample i. Analogously, the NLL for the labeling function discriminator is
defined as:

LD(l̂i, li) =− log P(l̂i = li) (13)

where li is the actual labeling function used for annotating sample i and l̂i is the predicted
labeling function by the discriminator D.

The results of the experiments with KNOWMAN are shown in Table 1. As mentioned above,
we encode the inputs with DistilBERT. In März et al. (2021) we did that for the experiments with
KNOWMAN as well and additionally encoded the input with TF-IDF. Table 1 reports the results
for experiments with both, DistilBERT and TF-IDF encodings. The baselines are a MAJORITY
VOTE model as well a SNORKEL-DP model. The functionality of both models is explained in
section 4.1.2. For DistilBERT encoded input we also trained a fine-tuned DistilBERT model and
utilized it for prediction.

We refer to the KNOWMAN model with a λ value of zero as BLIND KNOWMAN. Setting λ

to zero means disabling the generalization mechanism, because the feature extractor F is blind
for the loss of the discriminator D. KNOWMAN TF-IDF and KNOWMAN DistilBERT refer to
a KNOWMAN model with optimal λ (tuned on the dev set through Bayesian hyperparameter
optimization) for the respective dataset. KNOWMAN is able to outperform the baselines for all
data sets. The only exception is fine-tuned DistilBERT, which performs better for SPAM.

4.1.2 Models without generalization mechanism
We also study three methods with no generalization control. This demonstrates that XPASC
allows highlighting generalization across different approaches. The first method is majority
voting. The second approach follows the data programming paradigm (DP) proposed by Ratner
et al. (2016). The third approach (Cachay et al. 2021), WeaSEL, aims to learn in an end-to-end
fashion from the labeling function output directly.

MAJORITY VOTE. For the majority vote classifier a matrix that holds the mapping between
each labeling function and the corresponding class (the labeling function it is associated with)
is needed. For each instance of the train set it is checked which labeling functions apply. Based
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Table 2. Statistics on data set sizes. Size after filtering is the size of the data sets after instances without labeling
function matches were filtered out.

Data set original size size after filtering percentage of original size labeling functions

SPAM 1586 1382 87.1 10

TREC 4965 4723 95.1% 68

SPOUSE 22254 5734 25.8% 9

IMDb 40000 39998 99.9% 6786

on this information it is looked up which class each matching labeling function would assign to
the instance and if there is a majority for one class among them. If so, the class is assigned. If
not, the class is either chosen at random from among the matching classes, or another special
class is assigned to this instance. After labeling the training data in this way, we use the uncased
DistilBERT model provided by Hugging Face (Wolf et al. 2019) as the prediction model.

SNORKEL-DP. We also compare to training models on labels denoised by SNORKEL-DP
(Data Programming) (Ratner et al. 2020). To do this, we use Knodle’s SNORKEL-DP wrapper
(Sedova et al. 2021), where first a generative SNORKEL-DP model is learned, generating weak
labels for the instances, and then a classification model (used for prediction) is trained with those
labels. SNORKEL-DP works with a set of given labeling functions and learns a label model that
focuses on the conflicts and agreements between the labeling functions to estimate their accuracy.
For each labeling function an accuracy value is estimated to weigh their votes on each instance.
Taking into account the weighted labeling functions, the label model can assign a probabilistic
class to each instance and arrives with a weakly supervised data set. As with MAJORITY VOTE,
the prediction model trained on the weak labels is uncased DistilBERT. The cross-entropy loss is
optimzed on the probabilistic SNORKEL-DP labels.

WEASEL. In addition, we train models with WEASEL, an end-to-end model for weak super-
vision that does not take the noisy weak class labels, but the labeling function output as input for
model training (Cachay et al. 2021). The approach produces accuracy scores for each labeling
source (in our case labeling function) and trains both a neural encoder and a downstream model
at the same time on the same loss by using each other’s predicted labels as input. We use the
WEASEL implementation of Zhang et al. (2021), train with the default hyperparameters and use
RoBERTa as an encoder.

4.2 Data sets
For our experiments we use four standard data sets for weak supervision. In addition to the three
binary data sets covered by KNOWMAN (SPAM, SPOUSE, IMDb) we also study one multi class
data set (TREC). While SPAM, TREC and IMDb are classification tasks, SPOUSE addresses
relation extraction.

4.2.1 SPAM
SNORKEL-DP provides a small subset of the YouTube comments data set (Alberto et al. 2015)
where the task is to classify whether a text is relevant to a certain YouTube video or contains
spam. Ten different labeling functions are used to assign the classes, mostly based on keywords
and regular expressions. In contrast to other datasets, no development set is provided for SPAM,
which is not relevant for XPASC but for downstream task training.



12 XPASC, März et.al

4.2.2 TREC
Another text classification data set is TREC which was proposed by (Li and Roth 2002) and
addresses question classification. The data set contains automatically retrieved as well as manu-
ally constructed questions from six different classes. Multiple classes can be assigned for each
instance, but the authors chose to design TREC as a single-class dataset. Therefore, the data set
was manually annotated with one class per instance. However, the result of the initial overlapping
of classes for each instance is that TREC is difficult to learn. We use the version of the data set
provided by Zhang et al. (2021) within the WRENCH framework, containing 68 keyword-based
labeling functions which have been generated by Awasthi et al. (2020).

4.2.3 SPOUSE
This data set addresses a binary relation extraction problem and aims to identify the spouse relation
in text snippets. It has also been created by SNORKEL-DP and is based on the Signal Media One-
Million News Articles Data set (Corney et al. 2016). The nine labeling functions use information
from a knowledge base, keywords and patterns. One peculiarity of this data set is that it is very
skewed, with over 90% of the instances not holding a spouse relation.

4.2.4 IMDb
The largest data set we use is IMDb, which contains movie reviews and is based on the data set
from Maas et al. (2011). We use the IMDb version compiled by Sedova et al. (2021). All of the
labeling functions used for this data set are occurrences of positive and negative keywords from Hu
and Liu (2004). The addressed task for IMDb is binary sentiment analysis, classifying the reviews
as either positive or negative. Unlike for the other two data sets, there are 6800 labeling functions
for IMDb, which constitutes a particular challenge to the SNORKEL-DP denoising framework.

5. Experiments with XPASC
We present here the setup and findings of our analysis of different models, using XPASC. We
evaluated XPASC both quantitatively across all models and with a qualitative feature analysis for
KNOWMAN.

5.1 Evaluation settings
Since we want to calculate the correlations in XPASC on a representative amount of data for
one data set, we use the train sets for the XPASC computations. Moreover, in a practical weak
supervision setting (where XPASC might be used, e.g. for model selection), the existence of
labeled development and test sets cannot be assumed, and the XPASC calculation needs to rely
on weakly labeled training data only.

When using weak supervision to assign classes with labeling functions it can happen that
instances do not have a labeling function match. Especially, for SPAM and SPOUSE many
instances lack a labeling function match. Therefore, we filter out those instances with no label-
ing function matches for all our experiments and arrive with smaller data sets. For IMDb and
TREC the number of instances does only change slightly, since there are very few instances with-
out labeling function matches. Fortunately, the already very small SPAM data set does not get
much smaller after filtering. For SPOUSE, we observe the greatest difference and only 25% of the
original data set remain after filtering. See Table 2 for the data set sizes of the train sets.

In contrast to the results reported in März et al. (2021), we average results across 15 different
seeds for SPAM and SPOUSE and across 5 different seeds for TREC to achieve more stable
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Figure 3. Evaluation of XPASC across baselines and
KNOWMAN models for SPAM. BLIND KNOWMAN is
a KNOWMAN model with λ set to 0. KNOWMAN for
SPAM means a model trained with λ set to 2.
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a KNOWMAN model with λ set to 0. KNOWMAN for
TREC means a model trained with λ set to 0.001.
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Figure 6. Evaluation of XPASC across baselines
and KNOWMAN models for IMDb. BLIND KNOWMAN
means a KNOWMAN model with λ set to 0. KNOWMAN
for IMDb means a model trained with λ set to 0.5.

results. Due to the size of IMDb one XPASC run takes three days. To consume less resources, we
performed one XPASC run with one seed for this data set only.

In our study of KNOWMAN with XPASC, we experiment with different values of λ . As the
hyperparameter λ is intended to control the degree of generalization, this sheds light onto the the
functionality of KNOWMAN. Specifically, it is useful for examining the hypothesis whether the
model is able to generalize from the labeling functions when tuning λ . Our expectation is that the
higher the value chosen for λ , the higher the XPASC result. With the experiments in this paper,
we want to confirm that expectation and validate KNOWMAN with XPASC and vice versa. For
MAJORITY VOTE, SNORKEL-DP and WEASEL we do not have a presumption of the XPASC
result, but assume that the score could be higher than for KNOWMAN because these models have
fewer parameters.
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5.2 Quantitative evaluation
Our quantitative evaluation includes XPASC results across all models mentioned in section 4.1, as
well as the results for different λ values for KNOWMAN. In addition, we evaluated KNOWMAN
with XPASC for both association measures, CHI SQUARE and PPMI.

5.2.1 XPASC results across all models
We calculated XPASC with CHI SQUARE-based association for MAJORITY VOTE, SNORKEL-
DP, WEASEL and KNOWMAN on all data sets.

The evaluation of SPAM (see Figure 3) shows the highest generalization for WEASEL and the
SNORKEL-DP model achieves the second highest XPASC. Generalization scores for MAJORITY
VOTE and the KNOWMAN model with the optimal λ value of 2 are similar and slightly worse
than for SNORKEL-DP. The generalization of the BLIND KNOWMAN model with the disabled
generalization mechanism is in contrast the lowest. The observations are different for the class
prediction performance of the models. Here WEASEL and KNOWMAN give the highest, whereas
MAJORITY VOTE gives the worst classification accuracy.

For TREC we observe the highest generalization for SNORKEL-DP and WEASEL (see Figure
4). Both achieve low classification numbers, although their performance differs significantly.
SNORKEL-DP achieves the lowest results and WEASEL achieves results similar to BLIND
KNOWMAN and MAJORITY VOTE. MAJORITY VOTE shows a similar classification perfor-
mance as KNOWMAN but much higher generalization. The KNOWMAN models achieve the
best classification performance, but have the lowest XPASC. Unlike for the other data sets, using
KNOWMAN decreases the XPASC value slightly.

The evaluation of SPOUSE (see Figure 5) shows a picture similar to SPAM. Again, SNORKEL-
DP achieves the highest XPASC. The scores of both KNOWMAN models are close to the
generalization score of the WEASEL model. The difference between BLIND KNOWMAN and
KNOWMAN is smaller than in the other data sets. In terms of performance, the models are ranked
differently. Both KNOWMAN models perform better than SNORKEL-DP or MAJORITY VOTE.
Indeed, the performance of SNORKEL-DP is the lowest, while this model has a high generaliza-
tion value. The WEASEL model gives unreasonably low results for both, XPASC and F1 score,
and like Stephan et al. (2022) we assume that this is due to the fact that they did not integrate large
pre-trained language models like RoBERTa in their original work.

For IMDb the results are in agreement with the insights of the other data sets (see Figure
6). Again, SNORKEL-DP gives the highest XPASC and WEASEL the second highest XPASC
result. Since BLIND KNOWMAN and KNOWMAN are only different by a λ value of 0.5, their
generalization scores are close to each other. Again, MAJORITY VOTE reaches a slightly higher
XPASC than the KNOWMAN models. The classification accuracy gives the same ranking as
for SPOUSE, except for the WEASEL model, which performs best on the IMDb data set. Both
KNOWMAN models perform better than SNORKEL-DP and MAJORITY VOTE, while having
smaller XPASC results.

Overall we observe that models without explicit generalization modeling achieve higher
XPASC values than KNOWMAN. This can be explained by the fact that these models employ
a smaller number of layers, thus are less complex and enable greater generalization more eas-
ily. The more complex a model becomes and the more parameters it consists of, the more likely
it is to overfit and thus generalization is more difficult to achieve. Another observation that can
easily be drawn from the plots is that performance and generalization are not related one-to-one.
Indeed, it seems like greater generalization often hinders performance. An explanation for this
correlation may be that more generalization leads to less (over-)fitting, what can also harm perfor-
mance. The works of Bartlett et al. (2019) and Zhang et al. (2020) show that models that overfit
to noisy data still can achieve good performance and that the noise doesn’t harm the performance
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Figure 10. PPMI-based XPASC and accuracy for
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as much as expected. Still, Sanyal et al. (2021) claim that overfitting might not harm the perfor-
mance of a model, but its robustness and that too much overfitting makes a model vulnerable (e.g.
to adversarial attacks).

5.2.2 XPASC results across KNOWMAN models
To figure out if the degree of generalization can be controlled via the hyperparameter λ in the
KNOWMAN models, we calculate XPASC for different λ values. We calculate both, XPASC
CHI SQUARE and XPASC PPMI for SPAM, TREC and SPOUSE. For IMDb we calculate
XPASC CHI SQUARE only, to save resources.

Figures 7 and 8 show the results for SPAM. It can be clearly seen that XPASC increases with
increasing λ . The performance has its peak when using a λ value of 2.0. Both XPASC curves of
the two association options are very similar in their shape, though, we find slightly smaller values
for XPASC CHI SQUARE. To compare the two options for calculating association we draw scatter
plots that depict the performance and generalization per run and seed (see Figures 14 and 15).
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Figure 13. Chi-squared-based XPASC and accuracy for IMDb across different λ values.

For the CHI SQUARE option the accuracy and XPASC scores are clustered clearly recognizable
for each λ value. For PPMI we observe slightly different results. Especially for lower λ s the
distributions are more mixed up. Still, both plots reflect the clustering of XPASC-values according
to the chosen λ -values, and the performance trends, nicely.

The results for TREC (see Figures 9, 10) show that KNOWMAN is sensitive to small values
of the hyperparameter λ in the multi-class setting. Using smaller λ values (in comparison to
binary models) does improve the performance of the TREC model, whereas using greater λ values
is less effective. The model with the best classification performance is trained with λ = 0.001.
With regard to XPASC, one can clearly see from the curve that smaller λ values increase the
generalization to a lesser extent than larger λ values. Moreover, the trends are less clear and
effects are more brittle in this setting.

For SPOUSE, we observe a clear positive correlation of XPASC in relation to larger λ as
well (see Figures 11, 12). Unlike for the SPAM and IMDb the curve is not strictly monotonically
increasing, however. The scatter plots with the distributions of all results across the 15 runs show
that for those λ values that cause the dips in the curve, there are some outliers that cause the
lowerings (see Figures 16 and 17). In general SPOUSE appears more challenging and unstable,
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Figure 14. XPASC-CHI SQUARE and accuracy results
of runs across 15 seeds for SPAM. Different colors indi-
cate different λ values. Numbers in brackets must be
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Figure 15. XPASC-PPMI and accuracy results of
runs across 15 seeds for SPAM. Different colors indi-
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Figure 16. XPASC-CHI SQUARE and accuracy results
of runs across 15 seeds for SPOUSE. Different colors
indicate different λ values. Numbers in brackets must
be multiplied by the subscript value, 10−3.
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Figure 17. XPASC-PPMI and accuracy results of
runs across 15 seeds for SPOUSE. Different colors
indicate different λ values. Numbers in brackets must
be multiplied by the subscript value, 10−4.

having more outliers for both axes, XPASC and F1 score. In terms of performance, the optimum
is reached with a λ value of 0.5 and decreases drastically with λ values being higher than 1.

The XPASC curve for IMDb increases monotonically in relation to λ (see Figure 13). There
are no lowerings or peaks in the XPASC curve for this data set. As for SPOUSE, the best
performance is reached with λ = 0.5 and decreases with λ being higher than 1.

Overall, we can conclude that it is possible to control the degree of generalization for the
KNOWMAN models by using the respective hyperparameter λ . In addition, the results con-
firm our assumption that XPASC can reflect the generalization of models. As for the evaluation
across all models, it shows that performance and generalization are not the same. The highest
performance is not achieved with the greatest degree of generalization.
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5.2.3 Magnitude of XPASC
The results show that the values for XPASC are very small. This is a consequence of composition
of the formula: On the one hand, the CHI SQUARE and PPMI values are low (often zero or close
to zero) already and the final association value (Formula 3) becomes even smaller due to the
subtraction. On the other hand, the explainability values come from a probability distribution and
therefore range between zero and one. By multiplying these small values, the results become even
smaller. To bring the XPASC to a range with higher magnitude values, we experimented with the
following normalization steps to calculate a scaled version of XPASC:

• scaling the range of the PPMI values between zero and one by using the normalized
pointwise mutual information:

NPMI( f , z) =
PMI( f , z)

h( f , z)
(14)

where the pointwise mutual information in Equation 7 is normalized by h( f , z), with h( f , z)
being the joint self-information −log(P( f , z)).

• scaling the explainability score to range between zero and one by normalizing the explain-
ability of feature f given instance i by the maximum explainability value per instance:

Sxp(i, f ) =
DKL (P(i)||Q(i \ f ))

max ({∀ f ′ ∈ i | DKL (P(i)||Q(i \ f ′))})
(15)

where P(i) is the model prediction for the entire instance and Q(i \ f ) or Q(i \ f ′) is the
model prediction for the instance with feature f or f ′ omitted.

• scaling the distribution of both, explainability and association, to range between zero and
one each by using MinMax scaling:

Xstd =
(X − X .min)

(X .max− X .min)
(16)

Xscaled = Xstd × (max−min) + min) (17)

where X is the array of all values (explainability or association) and min/max indicate the
minimum/maximum value of the array.

This results in larger XPASC values, but normalizing and scaling the values can discard useful
information. To investigate if there is an information loss due to the normalizing of the score, we
compute another scatter plot that depicts the performance and generalization per run and seed for
SPAM after applying the above mentioned steps to XPASC (see Figure 18). As one can clearly
see, the individual characteristics are no longer as distinctly recognizable in the normalized version
of XPASC (right plot) as they had been before (left plot). While the values for the individual
KNOWMAN models used to be clearly separated from each other, the normalization has mixed
them up. We conclude that important information is lost due to the normalization of the values.
For this reason we accept the small values of the original formula in order to be able to optimally
represent all information.
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Figure 18. Original and normalized XPASC-CHI SQUARE and accuracy results of runs across 15 seeds for
SPAM. Different colors indicate different λ values. Numbers in brackets must be multiplied by the subscript value,
10−4.

5.3 Qualitative Feature Analysis
To confirm the functionality of XPASC qualitatively we took a close look at the data and their
linguistic features to find instances that illustrate XPASC and its components.

First, we examined the association matrices to verify that they reflect the actual association
of features, classes and labeling functions. See Tables 3 and 4 for the top five association values
(for both CHI SQUARE and PPMI) of labeling functions and features for SPAM and SPOUSE.
Because of the larger number of labeling functions we did not conduct this analysis for TREC and
IMDb.

With regard to the CHI SQUARE-based association, the association between the labeling func-
tions and the features can be understood easily. Many of the features most associated with their
labeling function would also be considered very relevant by a human. In some cases, the features
are even part of the pattern of the labeling function. For the PPMI-based association the top fea-
tures contain parts of the patterns only rarely. Note, that PPMI is very sensitive to features that
occur only once. These features obtain very high PPMI-based association scores because they
are observed exclusively with a single class or labeling function. However, since these features
all have a low frequency (occur only once), this is not a problem for the calculation of XPASC.
Still, one can find words that are part of common expressions together with the keyword of the
labeling function, e.g. “ALBUM” is associated with “my”. For SPOUSE one can find a lot of
names among the PPMI-based association. To figure out if persons are married it is plausible that
persons names are considered a lot.

The association of features with the classes is not as intuitive as for the labeling functions.
For CHI SQUARE-based association the top ten features are identical for the classes for SPAM
and almost identical for SPOUSE. Note that the CHI SQUARE-association only expresses which
features were particularly relevant for determining the class. However, the correlation of these
features with the class can be both positive (the feature is strongly associated because it gives a
clue to the correct class) and negative (the feature is strongly associated because it gives a clue
to distinguish it from other classes). The association with each class for the TREC data set is
more intuitive in some cases. Words like “odor” or “malawi” are associated with the class “human
being”, “cpr” or “p.m.” with “abbreviation”, what is plausible. On the other hand words like “make
up” are associated with “location”. Since only one gold class could be chosen by the annotators
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Table 3. Top 5 labeling function related features SPAM.

labeling function class CHI SQUARE PPMI

keyword “my” SPAM my, channel, Hey, MY, probably Cyphers, ALBUM,
TOMORROW, READING,
tvcmcadavid.weebly

keyword “subscribe” SPAM me, subscribe, to, subscribers,
subscribe

Del, Rey, Drake, Macklemore,
Pink

link SPAM V, \, STYLE, fight,
’http://youtu.be/9bZkp7q19f0’

scrubs, ./r, MontageParodies,
AND, OTHER

keyword “Please” SPAM plz, please, Please, PLEASE,
school

–, †,| , PLZZ, supporters

keyword “song” HAM song, This, songs, fun, Best spare, upcoming, uk,
rapper.please, worries

regex “Check out” SPAM out, this, on, Check, video act, retain, delightful, system,
rhythm

short comment HAM out, this, on, , and BR, sparkling-heart emoji, won-
derful, LOST?, heart emoji

has person HAM Katy, Perry, Official, Charlie,
Eminem

belle, chanson, lost?, clean,
Eminem

polarity > 0.9 HAM best, photo, Oppa, Yeah, Best MOVES, MAKES, MEH,
SMILE, EVER

subjectivity >= 0.5 HAM only, views, YouTube:, love, out Driveshaft, YEAH, Crazy, Flow,
Ill

Table 4. Top 5 labeling function related features for SPOUSE.

labeling function class CHI SQUARE PPMI

keyword “husband/wife” SPOUSE married, son, wife, husband,
boyfriend

Peck, Veronique, glitters,
Sweeting’s, Body

keyword “husband/wife” left
window

SPOUSE written, wife, husband, con-
spiring, tunnel

Guys, Running, Role, wres-
tle, Off

same last name SPOUSE son, wife, husband, after-
noon, daughter

Dudley, Hales, facilitating,
Thomson, M&F

keyword “married” SPOUSE married, relationship, 2007.,
who, trainer

wakes, Gordon-Levitt, row-
ing, Regardless, minorities

familiar relationship NO SPOUSE son, wife, husband, sister,
daughter

Fire, window, forcing, ribs,
Claims

familiar relationship left win-
dow

NO SPOUSE on, husband, half-brother,
daughter, mother

hopelessness, hairdresser,
sponsoring, Tailyour,
Commandant

regex other relationship NO SPOUSE husband, boyfriend, planted,
Gamble, David

Rita, Ora, Grimshaw, Zeinat,
ordinary

known spouses from database SPOUSE Martin, denim, afternoon,
Gwyneth, Paltrow

lacing, Amicable, exes, shifts,
Basinger

last name known spouses SPOUSE Mara, mirror, tank, Paltrow,
beauties

reported, Radar, spousal, gro-
cery, head-on
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Table 5. Top 10 class related features.

data set class CHI SQUARE PPMI

SPAM

SPAM subscribe, please, check, out,
my, channel, song, Please, on,
Check

beat, losing, ideas, lies, his-
tory, Driveshaft, YEAH, hot,
Beats!!, STTUUPID

HAM subscribe, please, check,
out, my, will, channel, song,
Please, on

Drake, Macklemore, Pink,
countless, inspire, FYI, free-
dom, speech, Lil, uploaded

TREC

description cleaveland, cavaliers, monar-
chy, added, quisling, reposse-
sion, butcher, handful, spine,
currency

per, chicken, dog, capital,
university, black, island, san,
south, west

entity sailed, talk-show, lends,
surroundings, thalia, shake-
spearean, shylock, airforce,
compiled, won-lost

leader, animals, words, father,
christmas, held, nicknae, law,
only, john

human being builds, resistance, odor,
auh2o, mccain, rifleman, lai,
malawi, zebulon, pike

god, square, mile, gas, strip,
court, basketball, nationality,
rock,month

abbreviation olympic, original, commit-
tee, aids, manufacturer, cpr,
abbreviation, p.m., trinitro-
toluene, equipment

monarchy, added, quisling,
puerto, rico, repossession,
butcher, handful, spine, ’s

location aborigines, adventours, tours,
photosynthesis, makeup,
erykah, badu, m, ayer, bend

said, so, letter, kennedy,
bridge, human, nixon, no,
river, his

numeric value 56-game, streak, graffiti,
quilting, iran-contra, deere,
tractors, cherubs, puerto, rico

square, strip, court, jackson,
basketball, numbers, univer-
sity, john, show

SPOUSE

SPOUSE married, son, wife, husband,
boyfriend, . . . , young, family,
sister, daughter

ringing, Sweeting’s, Body,
Cutting, Crap, Australians,
marches, splashes, Kingi

NO SPOUSE married, son, wife, husband,
boyfriend, . . . , young, family,
younger, sister

ordinary, rank-and-file,
handpicked, Abu, Bakr,
al-Baghdadi, L.L., J.’s,
trendy

IMDB

negative Instead, back, character, too,
much, does, entire, cast, So,
bizarre

Zwarts, Fredrikstad,
Hilarios!10, wawa,
CONSIDERING, Hobb’s,
Smooch, Investigative,
belly-dancers, retirony

positive writing, It’s, most, drag, you,
us, won, Oscar, those, endless

Culpability, Package, slip-
ups, AARP, Symona,
Boniface, Lorch, Lynton,
Tyrrell, Heinie
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Figure 19. Examples from SPOUSE and IMDb where the feature with the highest explainability is shifted from
a misleading labeling function towards the correct class. Association is based on CHI SQUARE and KNOWMAN
uses λ = 4.

during the labeling of the data set, it is likely that some words would also be suitable for another
class that had been in the set of suitable classes associated with the instance. For IMDb the features
are different for both classes and very intuitive for a human. Features like “bizarre” or “Oscar”
clearly point to a certain sentiment.

For PPMI-based association the top ten features are different for all data sets. Again this rank-
ing is not easily interpretable for a human, but reflects the association and co-occurrence in the
weakly supervised data sets. Because of the sensitivity to rare words, we found many features
with the same association score, and the top n features in Table 5 are therefore only an excerpt.

Next, we looked for instances that confirm the functionality of XPASC and KNOWMAN.
Therefore, we compared BLIND KNOWMAN and KNOWMAN with λ = 4. The ultimate and
most challenging requirement for the models would be the following: Shift the focus from features
that are associated with a deceptive labeling function towards features that are associated with the
correct class. Two kinds of information need to be found for that goal: i) a feature that is very
important for the classification (has a very high explainability score) and is associated most with
a misleading labeling function, pointing to the wrong class, in BLIND KNOWMAN and ii) the
KNOWMAN model is able to shift the highest explainability to a feature that is not associated with
the misleading labeling function anymore, but with the correct class. Thus in the KNOWMAN
model the most important feature should be associated with the correct class most. For example in
Figure 19 the first instance should be classified as holding a spouse relation. The most important
feature for BLIND KNOWMAN is father, what actually would lead to the classification of no
spouse. The KNOWMAN model achieves the shift to the feature wife, that is a better indicator for
the spouse relation. The second example in Figure 19 is drawn from IMDb. The review is positive
and the feature ’I’ is associated with the negative class. KNOWMAN manages to shift the focus
to the feature ’GREAT’, what is a better indicator for a positive sentiment.

We also measured this shift of the most important feature quantitatively. For SPAM, we found
a shift is achieved for 12 instances and for SPOUSE 267 instances (both on average across seeds).
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Figure 20. Examples from SPAM and SPOUSE. Highest explainability is shifted from features that are associated
with the labeling function to other features. Association is based on CHI SQUARE and KNOWMAN uses λ = 4.

For IMDb the model manages to shift the misleading feature to the correct one for 7 instances.
This comparison always refers to BLIND KNOWMAN and KNOWMAN with λ = 4.

A better generalization can also be achieved if the focus is shifted from the misleading feature to
another feature that is not associated with the correct class, but at least is no longer associated with
the labeling function. See Figure 20 for examples that illustrate this. The first example, again from
SPOUSE, expresses a no spouse relation, but the most important feature for BLIND KNOWMAN
is husband. Shifting the focus to another word - pouty - KNOWMAN is able to assign the correct
label. The second example is comes from SPAM, where BLIND KNOWMAN considers the most
important feature as subscribed for an instance that actual belongs to the HAM class. Since this
is misleading, KNOWMAN focuses on the emoticon in the instance and assigns the correct label.

In addition, we noticed in the linguistic feature-based analysis that the weak labels for SPOUSE
are very noisy and imprecise. We found many instances where a human annotator would have
assigned another class than the labeling functions assigned.

Overall, the quantitative results can confirm our findings of the qualitative analysis. The
KNOWMAN architecture is able to increase generalization and XPASC is a good indicator for
the generalization ability of models.

6. Conclusion
We presented XPASC, a novel score to measure generalization for weakly supervised models.
Our extensive analysis shows that XPASC is able to reflect the generalization of models given
a dataset and the labeling functions used to perform weak supervision. In addition, we studied
the adversarial approach KNOWMAN, designed to enable the control of generalization in weakly
supervised models. We confirmed the hypothesis that the architecture is able to control the shift
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from labeling functions to other signals by a hyperparameter. We also showed that performance
and generalization do not relate one-to-one and it has to be decided based on the task, dataset
and model, which degree of generalization is desired. XPASC can be used with any pre-trained
weakly supervised model, a dataset and its set of applied labeling functions. Assuming that many
neural models, designed to work with noisy weakly supervised data, are complex and thus suffer
from overfitting, XPASC can serve as an indicator for their ability to fit unseen data. In general
the core components of XPASC, explainability and association, are interchangeable, what makes
the score flexible in practice.
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