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Abstract

We propose to use reinforcement learning to
inform transformer-based contextualized link
prediction models by providing paths that are
most useful for predicting the correct answer. This
is in contrast to previous approaches, that either
used reinforcement learning (RL) to directly
search for the answer, or based their prediction
on limited or randomly selected context. Our
experiments on WN18RR and FB15k-237
show that contextualized link prediction models
consistently outperform RL-based answer search,
and that additional improvements (of up to 13.5%
MRR) can be gained by combining RL with a
link prediction model. The PyTorch implemen-
tation of the RL agent is available at https:
//github.com/marina-sp/reinform.

1 Introduction

In link prediction, also known as knowledge graph
(KG) completion, the task is to find missing entries in
a KG, based on other information already contained
in the graph. A common formulation of this problem
is to present incomplete tuples of the form (ex,rq,?)
for which a model is expected to find the missing
entity ey that stands in relation rq to the entity ex. In
this paper we tackle the task of contextualized link
prediction for KGs, where additional information
about ex from its graph neighborhood, later referred
to as context, is engaged in the prediction process.

In contextualized link prediction, two strategies
have been proposed: (1) Search-based, were the
answer entity is expected to be contained in an
existing path, and relevant paths are searched for,
based on the query tuple (Lao et al., 2011; Das
et al., 2018); (2) Prediction-based, where the missing
entity is predicted (out of all known entities) from
a (contextualized) representation of the query tuple

(Bordes et al., 2013; Wang et al., 2019).

Minerva (Das et al., 2018) is a prominent neural
search-based approach for KG completion. In
Minerva, a path search is performed using neural
reinforcement learning (RL), and the entity at the
endpoint of the returned path is taken as the answer
to the query tuple. CoKE (Wang et al., 2019) is an
highly effective neural prediction architecture for
contextualized link prediction in knowledge graphs.
CoKE takes chains of knowledge graph tuples and
predicts missing entities using the Transformer
architecture (Vaswani et al., 2017).

In this work, we explore how to combine the
advantages of both worlds, leveraging search to
provide the most useful information to a prediction
model, which then has the freedom to predict any
missing entity (even if not on a path returned by the
search). This is achieved through the interplay of two
neural networks: a prediction network, which bases
its prediction on a path returned by the path search,
and a path search that provides paths to the prediction
model. We compare two transformer architectures
for the prediction model: Transform-CoKE, that
uses chains of relations only, as in CoKE, and
Transform-InterEnt, an extension of CoKE that
includes intermediate entities in the paths. In addition,
we integrate a RL architecture based on Minerva as
a path search model. However, in order to overcome
the answer accessibility limitation of Minerva and
tailor the search to best benefit the prediction model,
the search model is trained with a modified loss
function that takes the prediction model into account.

Experiments on FB15k237 (Toutanova and Chen,
2015) and WN18RR (Dettmers et al., 2017) show that
RL-based path selection trained in combination with
Transform-Coke consistently yields better results than
performing search only (Minerva) or than providing
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randomly sampled paths as context. The Transform-
InterEnt extension to Transform-CoKE performs
better for FB15k237 but worse for WN18RR than
Transform-CoKE.

2 Related Work
Early approaches to representation-based link pre-
diction were based on knowledge graph embeddings
(Bordes et al., 2013). Predictions for ey are done
solely based on learned vector representations of rq
and ex, which need to encode all relevant information.
(See the survey by Rossi et al. (2021) summarizing
such context-free embedding approaches for link
prediction.) A more versatile approach is to employ
neural models for contextualized link prediction,
which allows for utilizing and combining the infor-
mation of a wider context around the query entity ex.

DeepWalk (Perozzi et al., 2014) applied a language-
modeling approach to paths in a graph, obtaining
static node embeddings. Then, RNN-based models
were used to incorporate context of entities from
KGs and obtain self-sufficient deep contextualized
embeddings (Das et al., 2017; Guo et al., 2019),
as well as an additional component to context-free
embeddings (Wang et al., 2018).

Ever since the introduction of the Transformer
(Vaswani et al., 2017) and specifically BERT archi-
tecture (Devlin et al., 2019), a multitude of NLP tasks
and other fields has been benefiting from these ap-
proaches. The power of contextualizing embeddings
with the attention mechanism for KG was shown by
(Wang et al., 2019), where the authors introduced the
CoKE model. To leverage non-linear context, graph
convolution networks have also been applied to graph
neighborhood of ex (Shang et al., 2019; Vashishth
et al., 2019; Bhowmik and de Melo, 2020).

Reinforcement learning has been exploited for the
link prediction task, specifically for finding a path
connecting a query entity with an answer (Xiong
et al., 2017; Das et al., 2018; Godin et al., 2019). To
the best of our knowledge, RL strategies have not yet
been used to benefit a contextualized predictor.

3 Overview
Minerva (Das et al., 2018) is a RL-based approach
to link prediction. It searches for paths in KG from
a source entity to find and answer entity for a given
incomplete query tuple. The last entity of the most
probable path is considered the prediction. For
ranking-based evaluation, the top-N most probable
paths according to the RL agent are generated for eval-
uation. Using this ranking, evaluation metrics such as

Hits@k and MRR can be calculated in a usual fashion.
An LSTM-encoded traversal history and node
embeddings are used to learn a policy with a policy
gradient method REINFORCE (Williams, 1992).

CoKE (Wang et al., 2019) is a Transformer-based
model for either embedding-based link prediction
(trained on pure triples, not paths) or path query
answering (PQA, considering longer paths). In PQA,
the setting is that the model needs to recover the e4
from a path e1,r1,r2,r3,e4, where e4 is unacessible
during prediction. PQA is essentially a multi-hop
reasoning task, since the prediction is always made for
the last element of the path (an entity). The problem
specification in PQA relies on fixed prediction paths
that cannot be changed. In contrast, our setting
uses paths to enhance link prediction, i.e. fill in the
missing position of the triple, where the model has the
freedom to find additional paths to support its decision
(either through sampling on the fly, or through RL).

We use two datasets for our experiments: FB15k-
237 and WN18RR. The former is a subset of
Freebase (Bollacker et al., 2008), a collection of facts
about real-world entities (e.g. celebrities, locations,
events), whereas the latter stems from WordNet
(Miller, 1992) and contains semantic relations
between lexical units of the English language.

Dataset #entities #relations

FB15k-237 14,541 237
WN18RR 40,943 11

4 Experiments
In our experiments, we vary how context paths are
retrieved from the graph. These paths are then given
to one of pretrained Transformer models for entity
prediction: Transform-CoKE with middle entities
omitted and Transform-InterEnt, that uses the full
path, including the middle entities. For a triple
(ex, r, ey), a context path with N relational steps
rxi,exi starting from ey is produced according to the
selected retrieval strategy. E.g., a unmasked input
sequence for Transform-InterEnt with context length
N = 2 then has the form ex,rq,ey,rx1,ex1,rx2,ex2,
with 2 steps rxi,rxi taken from ey.

We compare three context path generation
strategies: sampling generates a sampled context path
(not informed by the query). Minerva takes the most
probable path that Minerva has taken for the query
tuple. RL obtains context returned by the RL agent
trained in conjunction with the prediction model.
The following chapter formalizes our approach to



Model FB15k-237 WN18RR
Name N H@1 MRR H@1 MRR

Minerva 3 0.1056 0.1516 0.3618 0.3942

Transform-CoKE + sampling 2 0.1781 0.2427 0.2208 0.2960
Transform-CoKE + Minerva 3 0.1758 0.2344 0.3816 0.4209
Transform-CoKE + RL 2 0.2191 0.2910 0.3674 0.4312

Transform-InterEnt + sampling 3 0.2238 0.3040 0.2454 0.3065
Transform-InterEnt + Minerva 3 0.2242 0.3041 0.2498 0.3095
Transform-InterEnt + RL 3 0.2241 0.3040 0.3036 0.3552

Table 1: Link prediction Hits@1 and MRR on test set for FB15k-237 and WN18RR. Bold denotes the best metric for
a data set across all models, italic marks where our RL model yields best performance across different context generation
strategies within a specific model variant for one data set.

RL-based context generation.

4.1 Pretraining paths

Let D be a set of original triples of form (ex,rq,ey)
where ex,ey ∈E are entities and r∈R is a relation.
Similarly to Minerva, we introduce an inversed
relation r−1∈R−1 for every relation r∈R in order to
provide the search models with access to all nodes dur-
ing graph traversal. A reversed triple is added for every
triple during both training and evaluation, resulting in
an extended set D′=D∪{(ey,r−1q ,ex)|(ex,rq,ey)∈
D}. This way, the first position is always the masked
one (for head or tail prediction), while context gen-
eration starts from the last position for any triple from
D′. Pretraining paths are sampled randomly from a
graph constructed from the train triples. For a detailed
description of sampling process see Appendix A.

As a result, a set of yet unmasked chains
is obtained, with the following format:
c = (ex, rq, ey, rx1, ex1, ... , rxN , exN) that are
used directly as input for Transform-InterEnt. For
Transform-CoKE, middle entities are omitted to
fit the expected input structure of a CoKE model
c=(ex,rq,rx1,...,rxN ,exN).

4.2 Pretraining of contextualized predictors

In its essence, the task of link prediction is equivalent
to that of masked language modeling: the model
learns to recover a masked element in a sequence of
items stemming from a limited vocabulary, specifi-
cally the first entity is masked to then be predicted
in a sampled chain c from KG. Despite that only
entities appear in the masked positions and should
be predicted, the predictor’s vocabulary comprises
V = {E ∪R∪R−1} both entities and relations1 as

1The vocabulary further includes BERT-specific tokens
(MASK, CLS, UNK and SEP) that are omitted here.

they are treated as equal elements of a sequence
(same as nouns and verbs are not separated in BERT).
Same vocabulary is used in the RL-search component
to allow for a direct use of its output paths as input
to the predictor.2

In the pretraining phase, the scorer is optimized
to correctly recover a masked entity for a sampled
path. Let hj

k(c) ∈ Rd be the hidden Transformer
representation of the k-th position in the j-th layer
obtained for an input chain c. Then, the pretraining
objective can be written as
L(c)=CrossEntropy(PredHead(hL

0 (c)),c0),
where L is the last encoding layer, c is an unmasked
input path (chain) with the expected entity c0 in
the first position, and PredHead is a one of the
predictor-specific final decision layers PredHead:
Rd 7→R|V |, following the source implementations.3

Hyper-parameter choices, such as the number of
layers and the number of epochs, are modeled after
the PQA setup in the CoKE paper.4

4.3 Training of the RL context selection
On a high level, an RL agent selects the most
probable action according to a learned policy. A
positive feedback (a reward) reinforces a beneficiary
choice of the agent by making all actions that led to
a rewarded state more probable in the future. In our
case, the RL agent chooses which step in a KG to
take next based on the current position, previous steps

2To account for compatibility of Minerva-generated paths
with the transformer predictor, we use the UNK token as a
NO_OP (no operation, stay in the current graph node) token.

3For Transform-InterEnt, the HuggingFace (Wolf et al., 2020)
implementation for BERT is used, PredHead corresponds to an
BertOnlyMLMHead; for Transform-CoKE, it is the last FF
layer in the original terminology.

4Adjusting the hyperparameters to follow the setup of link
prediction model, i.e. increasing the number of Tranformer layers
and epochs, did not yield better performance.



Figure 1: Workflow of the contextualized scorer com-
ponent (I.) and the RL context-search (II.). Bold arrows
represent the edges selected by the RL agent. rq marks the
query triple, m stands for the masked token. a) and b) stand
for two path representations used by Transform-CoKE and
Transform-InterEnt respectively.

taken and the query. It has the same structure and
hyper-parameters as the one in Minerva (based on our
reimplementation)5, except for the reward function
that now aims for a good contextualized prediction,
rather than finding the correct answer.

The RL agent is trained separately, and uses the
already pretrained transformer during training.6 The
modified reward of the RL agent can be characterized
using following terminology: St = (et,rq,ey) is the
current state of the agent, where et is the entity at
time step t, rq is the relation and ey is the tail entity
of the query; ct is the chain of KG-steps traversed by
the agent. The reward at final time step N then equals

R(SN)=softmax(PredHead(hL
0 (cN)))i,

where PredHead returns the logits over all possible en-
tities of a deep scorer and i is the vocabulary index of
the correct answer entity ex. The summary of the joint

5See Section 2 of (Das et al., 2018) for a formal description of
the agent. We were able to reproduce the results reported in (Das
et al., 2018) with our reimplementation. In the original Minerva
paper, however, only (ex,rq,?) queries are used for evaluation,
i.e., it is only attempted to predict the object, see Section 3.1 "KB
query answering" of (Das et al., 2018). In our experiments we
evaluate on subject and object positions, and Minerva results
drop significantly in this more challenging setting.

6We also experimented with jointly optimizing the prediction
and ML module, but ran into stability issues, yielding worse
results.

architecture is illustrated in Figure 1. Our PyTorch im-
plementation of the RL agent is available at https:
//github.com/marina-sp/reinform.

4.4 Results and Analysis

We evaluate the models with mean reciprocal
rank (MRR) and Hits@1. Table 1 shows that the
prediction-based approach generally outperforms the
search-based approach of Minerva for FB15k-237.
Which path generation mechanism is used makes as
marked difference for Transform-CoKE, and training
the RL model specifically for this setting performs
best by a large margin. Including intermediate
entities in the path processed by the transformer
(Transform-InterEnt) again increases the performance
for all path search strategies (but the differences
between them disappear).

Using learned context paths over random sampling
is generally beneficial in case of WN18RR. With
a path for a test query (tog VB1, deriva-
tionally related form−1, dresser
NN3) extracted by the RL agent (dresser
NN3, derivationally related form−1,
get dressed VB1, derivationally
related form, dresser NN3) the correct
prediction was scored the highest by the Transform-
CoKE, whereas with a randomly sampled one
(dresser NN3, hypernym, supporter
NN3, hypernym−1, hatchet man NN2),
the expected entity tog VB1 was ranked 2267.
The RL-path also exemplifies the ability of the model
to generalize beyond the entities contained in a path,
which Minerva can not per definition.

5 Conclusion

We have shown how to combine path selection
by reinforcement learning with transformer-based
prediction models for contextualized link prediction in
knowledge graphs. This approach achieves strong per-
fomance gains over a recent previous RL model that
directly searches for an answer in the graph. Analysis
indicates that this performance gain is presumably due
to the fact that answer entities often do not lie on paths
found by RL, and need instead be predicted from
the entire pool of entities (not constrained to entities
reached on a path). Our method also shows gains over
using the transformer-based prediction models on
paths randomly selected from around the query entity.
This shows the potential of reinforcement learning to
benefit prediction models that rely on path selection.
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Appendix
A. Pretraining path sampling
For Transform-InterEnt, a pretraining path, or chain
c, with a fixed amount of steps K is sampled by
randomly travesing the graph starting from ey. A step
from ey is a single outgoing edge described by the
labels of the respective edge and target node (rxi,exi).
The same N=K is used when retrieving the context
with an RL agent. The underlying graph consists of
triples from the training set alone. The query triple
(ex,r,ey) itself as well as the backward connection
(ey,r

−1,ex) are excluded from the sampling process
to resemble the evaluation process, where the query
triple is not available during graph traversal. The de-
scribed process is equvalent to the sampling strategy.

For Transform-CoKE, the set of pretraining paths
has mixed lengths 1 <= K <= 5 following the
original implementation. The length of context N
during evaluation, i.e. the number of steps taken
by the RL agent, is however constant. For both
Transform-InterEnt and Transform-CoKE, N is
treated as a hyper-parameter that is determined based
on the development data.


