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Abstract—Federated learning enables the creation of a central-
ized global model by aggregating updates from the locally trained
models from multiple clients. While powerful, such an architec-
ture is limited to applications where the needs of heterogeneous
clients can be served by a single global model. It does not cater
to the scenarios where each client independently designs its own
model. Task and data heterogeneity inherent to such scenarios
demand each client to specialize in the local setting while still
being able to collaborate and transfer the acquired knowledge to
the rest of the federation without sharing the data or the model.
In this work, we utilize ensemble and collaborative learning to
design a framework that enables the training of personalized
models for heterogeneous clients with different learning capacities
using federated learning. Empirical evaluations performed on the
CIFAR100 dataset demonstrate that our framework is able to
consistently improve the performance of all the participating
models and outperform the independently trained models on
the complete training set without collaboration. We analyze
that all participants benefit from collaborative distillation and
boast an average 1.4% increase in performance. Moreover, a
comparison with the state-of-the-art approaches demonstrates
that our framework outperforms the Federated Learning and
Federation Distillation methods by up to a 2× increase in the
average global accuracy.

Index Terms—Federated learning, knowledge distillation, col-
laborative learning, model heterogeneity, personalized learning.

I. INTRODUCTION

Federated learning (FL) has garnered a lot of attention with
its remarkable ability to collaboratively train a global model
while preserving the privacy of the participating clients [1].
FL runs on the computing continuum as it performs parts
of its computations on user/edge devices and the rest on the
cloud server. Training a global model involves each client
performing a few rounds of local training using its local
data after receiving the copy of the global model and then
compiling and sending the local updates to the parameter
server, where updates from the clients are aggregated to
update the global model. This iterative process continues until
convergence, or the stopping criterion is met. The periodic
exchange of parameters between clients and the server can
quickly become an overhead as the ever-increasing complexity
of modern deep neural networks (DNNs) results in a massive
number of parameters, sometimes reaching up to 96 MB [2].

One of the many challenges faced by FL entails hetero-
geneity that appears in all aspects of the learning process
[3]. Each participating client is assumed to possess different
networking and computational power, which results in system
heterogeneity. This may render a number of devices unable
to train a previously agreed-upon architecture of a centralized
model. The asynchronous scheme of FL and active sampling
introduced in [4][5] can be used to work around this problem;
however, that still requires excluding the resource-constrained
devices which do not meet the criteria.

The second kind of heterogeneity that comes up quite
often is referred to as data heterogeneity or formally known
as the non independent and identically distributed (non-IID)
data problem [6]. The problem of non-IID data distributions
appears because of the fact that the local data on each client
are not sampled from global joint distribution, consequently
leading each client to have a different objective as they may
not share common minimizers. This problem of client-drift
not just degrades the performance of the global model but
may also result in a higher number of communication rounds
[6]. In light of the client drift problem, many approaches
have been proposed mainly from two perspectives. 1) Use of
additional (proxy) data information to address the model drift
issue caused by non-IID data. FedDF [7] utilizes proxy data
in the server to enable ensemble distillation. 2) Learning a
generative network to augment the training process with the
synthetic data as done in [8]. Though the global model is
improved, the inherent heterogeneity among the local models
is not fully addressed by only refining the global model.

In addition to data heterogeneity, we attend to a different
type of heterogeneity that concerns each client requiring an
individual model. Vanilla FL (FedAvg) [1] works under the
assumption that all clients agree on the particular architecture
of a global model. This simple yet critical assumption makes
the collaboration of hundreds of devices possible. However,
many applications, particularly in business-facing settings,
could benefit from each client having their own unique model
well suited to a particular client’s data and resources. For
example, in cross-silo applications where several organizations
collaborate without sharing their private data, it may be more
desirable and beneficial for them to train their personalized
model that fits their needs and distinct specifications. Another



reason why owning a private model may be more appropriate
is privacy and intellectual property concerns. Furthermore, AI
as a service model demands more specialization. Imagine a
typical AI vendor of, e.g., virtual shopping assistants that may
have dozens of clients. Each client model is distinct and solves
a peculiar task. In a conventional setting, each client model
is trained only on the data at its disposal. It would be highly
beneficial if clients trained on their local data could transfer
their acquired knowledge to other clients without sharing their
private data or model. Each client having their own model can
also prove pivotal for addressing the non-IID data problem of
FL since a natural way to tackle statistical heterogeneity is
to have personalized models for each user. Apart from the
non-IID data problem, another issue faced by the FL is the
communication overhead which prohibits the use of large-
sized models as it is proportional to the model sizes [9].

In this work, in order to work around the above-mentioned
issues, we employ collaborative learning based on knowledge
distillation to introduce a communication-efficient framework
that facilitates clients with different capacities to train local-
ized models. The motivation for our work stems from the
recognition that traditional FL involving a single shared model
struggles to adapt to all clients, especially when the data
across clients are non-IID. The client-drift issue may render
the global model irrelevant for some users. Thus, a single
global model is inadequate for most practical applications
[10]. Moreover, users may have the incentive to participate
in FL only if the global model is far more accurate than the
local model they can train in isolation on their own data. We
look at FL from the viewpoint of an individual user and ask
the question; how can clients individually improve their local
models and help improve the rest of the users’ models?

Answering this question requires a way of assembling
knowledge from the local models and transferring this infor-
mation to every user without overriding their local character-
istics. Various challenges involved in this work include; 1)
enabling knowledge distillation between a number of clients
without requiring a large pre-trained teacher network. 2)
reducing the communication overhead between the clients and
the server. 3) improving the accuracy of all the participants
through collective knowledge sharing. To overcome the first
two obstacles, we employ collaborative learning-based knowl-
edge distillation (discussed in Section III). Then, to handle the
problem of generating soft target supervision that can boost
the performance of all users with different learning capacities,
we tend to ensemble learning which yields better results when
diversity is present among the output of users [11].

We propose a novel personalized federated learning frame-
work based on collaborative distillation (FedCD). To summa-
rize, Our main contributions are listed as follows:

C1 A new federated learning framework of knowledge
distillation based on collaborative learning is pro-
posed, letting users design models independently.

C2 A communication efficient scheme to share local
model updates with the parameter server based on
online knowledge distillation is introduced.

C3 Parameter server is relieved from the burden of
training a complicated global model as we introduce
a low-complexity ensemble method to dynamically
generate high-quality soft targets for online knowl-
edge distillation.

The remaining of this paper is organized as follows. In
Section II, we touch upon the related work. Section III presents
the concepts which constitute the background. Section IV
shows the architecture overview and the principle of the
proposed FedCD. In Section V, we evaluate the performance
of FedCD and compare it to the state-of-the-art solutions.
Section VI concludes the paper.

II. RELATED WORK

A plethora of research has followed up since the intro-
duction of FL as a privacy-preserving decentralized machine
learning paradigm. Subsequent work mostly tackles the chal-
lenges faced by FL, including data heterogeneity [12] [13] and
reducing communication overhead [14] [15].

Knowledge distillation (KD) has emerged as an effective
solution for tackling the non-IID data problem. Federated
distillation fusion (FedDF) employs KD to improve the global
model; however, requiring that an unlabeled dataset is avail-
able with samples from identical distributions [7]. In order
to reduce the communication overhead, FedDistill uses KD
to allow users to share local logits instead of the model
parameters [16]. FedMD [17] uses public data and involves
two training steps; in the first step, each user’s model is
trained on the public data and then on their private data
and afterward uses knowledge distillation to communicate the
output scores from public data to other users. While these
approaches require auxiliary data, FedGen [8] performs KD
in a data-free manner by training a generator network. These
approaches have demonstrated their efficacy in improving the
performance of the global model. However, the inherent data
and system heterogeneity are not fully addressed by only
improving the global model.

Our approach differs from these methods in the following
aspects: 1) instead of every user agreeing upon a single global
model, each user designs and trains their own personalized
model well suited to their needs. 2) in order to reduce the
communication overhead, each user shares their local logits
instead of the model parameters. 3) an ensemble method
to generate high-quality soft targets is introduced to enable
knowledge distillation.

III. BACKGROUND ON CO-DISTILLATION

Knowledge distillation involves optimizing a student net-
work under the supervision of the teacher network. More
precisely, the loss is defined as the Kullback-Leibler (KL)
divergence, which measures the discrepancy between two
probability distributions, in this case, the difference between
the soften output of the teacher network and student network
as in Equation 1 [18].

LKD =
1

n

n∑
i=1

T 2KL(pi, qi) (1)



Here n is the batch size, T is the temperature used to make
the target to be soft, providing more information about the
classes similar to the predicted class, whereas p and q represent
the soften probability distribution produced by the teacher and
student network, respectively.

KD mandates transferring knowledge from a pre-trained
teacher network to a student network. However, the online
version of KD, often referred to as collaborative (or Co)
distillation (CD), is free from such requirements and distills
knowledge on the fly from teacher to student network [19].
Teacher knowledge can be constructed in various ways. For
instance, it can be a pre-trained teacher model’s logit or
an ensemble of other student models’ logits, which could
yield better results than individual model predictions [16].
Leveraging this observation, multiple approaches have been
proposed, such as Deep Mutual Learning (DML) [20] and
KDCL [21] that fuse the training process into a simplified
single-stage and treat all networks as students, consequently
enabling knowledge transfer in both ways; from teacher to
student and vice versa. KDCL regards each network as a
student and effectively generates soft targets by combining the
logits from every network. This ensures students with different
learning capacities benefit from collaborative learning. The
loss function is defined as the KL loss to distill the knowledge
of the soft target to each student network.

LCD =
1

n

n∑
i=1

LCEi + λLKDi (2)

Here LCE is the cross-entropy (CE) loss, LKD is KL
divergence between the student and the soft target, and λ is
the tradeoff weight between LCE and co-distillation loss [21].

IV. FEDERATED LEARNING VIA CO-DISTILLATION

A. Problem Statement:
Assume n clients, each with their own private dataset

Dj := xj
i , y

j
i , which may or may not be drawn from the

same distribution, and an independently designed deep neural
network DNNj . It is essential to mention that DNNs can have
different architectures depending upon the specifications of
each client. Furthermore, the weights or the hyperparameters
need to be shared neither with the parameter server nor
among the clients. The objective is to design a collaboration
framework that fuses the training of all networks into a single
step and distills the knowledge accumulated from all models to
improve the performance of DNNj beyond individual effort.

B. FedCD
In our framework, illustrated in Figure 1, there is no

single global model; instead, each user has its own model,
and all models are regarded as student models. Each user
independently trains their model on their private data and
uploads the logits to the parameter server, which is responsible
for generating the supervision by combining the outputs of all
the models. If there are n users, jth user’s logit is defined as
zj . The server generates the teacher logit zt, as in Equation 3.

zt = h(z1, z2, . . . , zn) (3)

Algorithm 1 The FedCD framework for enabling localized
federated learning.
Input:
Output:

1: while not stopping criterion do
2: procedure LOCAL TRAINING( ) ▷ at each user
3: zt = downloadTeacherLogits()
4: for m steps do
5: B, yB ← Dj

6: zj , ŷB ← DNNj(B)
7: lossj ← LCEj

+ λKL(zj , zt)
8: end for
9: Communicate local logits (zj) to the server.

10: end procedure
11: procedure GLOBAL ENSEMBLING( ) ▷ at the server
12: for each user j = 1,2,..., N do
13: zj ← getuserlogits(j)
14: end for
15: zt ← h(z1, z2, ..., zn)
16: end procedure
17: end while

Here h is a function for generating high-quality teacher
logit. We distill the knowledge of teacher logit to each model
as defined in Equation 2. Henceforth, the question of how
much knowledge is distilled to each user boils down to
generating high-quality teacher logit. One approach involves
just averaging the student logits together to find the teacher
logit as accomplished in [17]. Even though the approach is
quite simple, it requires treating all users equally regardless
of how much loss they incur during training. We propose an
effective yet uncomplicated ensemble method for generating
teacher logit, which assigns weights to users depending on
how much loss they incur on a validation set. Consequently,
the problem of finding the best teacher logit is reformulated
as finding the best linear combination of student logits as
illustrated in Equation 4.

min
γ∈Rn

LCE(γ
TZ,y) s.t.

N∑
j=1

γj = 1, γj ≥ 0 (4)

Where Z is a matrix containing student logits as columns.
This process is formally described in Algorithm 1. In lines
2-8, each client downloads teacher logits, performs a few
steps of training their models on their local private data
and computes the local logits zj , which are uploaded to
the server. Line 11 contains the method in which the server
ensembles user logits to create teacher logits zt. During the
subsequent iterations, each user downloads the teacher logits
and continues the training with the objective of minimizing
both the CE and KL divergence between the teacher and local
logits as described in Equation 4 until the stopping criterion
is met, i.e., the maximum number of global iterations or users’
accuracy reaches the threshold value.



Fig. 1: Overview of the FedCD framework, which enables each client to train a personalized model. The server aggregates
the local logits to generate the supervision to distill the knowledge to each client. The collaboration of clients equipped with
personalized models helps improve performance.

V. EVALUATION

In this section, we perform a series of experiments to
evaluate our localized federated learning framework (FedCD)
on the benchmark dataset for computer vision, CIFAR100. The
aim of the experiments is to study the effect of model and data
heterogeneity and demonstrate empirically how a collaboration
of users with different learning capacities can help enhance
each other’s performance. Therefore, these experiments in-
volve models with different architectures of varying sizes and
complexity. We compare the performance of our proposed
approach to classical FL of FedAvg [1] and FedDistill, which
is a data-free knowledge distillation-based approach that shares
logit vectors instead of the model parameters [15].

A. Dataset
CIFAR-100 contains 100 classes consisting of 32 x 32 color

images. It is comprised of a training and a test set with 50,000

and 10,000 images, respectively. We follow the approach in [8]
to create IID and non-IID datasets. For the non-IID setting, we
use Dirichlet distribution [22] in which a smaller α indicates
higher data heterogeneity. We model non-IID data distributions
by setting α to 0.5. For our ensemble method to generate
teacher logit and measure the generalizability of students, we
sample a validation set from the training set consisting of 5,000
images, 50 samples per class.

B. Experimental Setup

We follow the ResNet training procedure. We set the learn-
ing rate ∈ {0.001, 0.1}, weight decay to 0.0001, batch size to
64, and the number of global iterations to 200. The parameter
settings for implementing baselines are consistent with their
citation to achieve the best results. We use python alongside
Pytorch (version 1.6.0) as a development environment. And we
use a single GPU, NVIDIA T500, for hardware acceleration.



(a) IID (b) non-IID

Fig. 2: Test accuracy of FedAvg, FedDistll, and FedCD on both IID (left) and non-IID data (right)).

TABLE I: The comparative result of different networks.
FedCD improves the performance of all the networks beyond
their individual capacity.

Model Individual
Accuracy (%) w.r.t. the number of users
2 4 6 8 10

ResNet8 54.80 55.72 55.52 54.66 55.22 54.83
Resnet14 64.35 65.47 64.10 64.44 64,75 64.62
Resnet20 67.68 68.78 68.21 67.86 68.02 68.25
Resnet32 70.05 70.89 70.84 70.63 70.76 70.14
Resnet44 71.64 72.34 71.70 71.93 72.03 71.82
Resnet50 78.73 79.16 79.68 79.77 80.07 80.54
Resnet56 72.08 72.47 72.04 72.70 72.78 72.72
Resnet110 73.14 74.24 73.68 74.06 74.02 73.97
Resnet8x4 71.28 72.59 71.79 72.35 72.26 72.13

Resnet32x4 77.39 79.15 79.04 79.09 78.97 78.82

C. Results

In this section, we evaluate the performance of FedCD and
baselines on the CIFAR100 dataset with IID and non-IID data
distributions. We run 200 global communication rounds with
10 user models. First, we demonstrate the effectiveness of
our localized algorithm where each of the 10 users chooses
a unique ResNet model by comparing the average local test
accuracy of each client as reported in Table I. It contains
the accuracy of each personalized model trained in isolation
on the complete training set and the performance of these
models trained in collaboration with a varying number of
users. We regard the independently trained models as baselines
and compare them with the models trained in collaboration.
We observe that the models trained in collaboration are able to
benefit from the collective knowledge gathered from the rest
of the users, acquire substantial improvements, and outperform
the isolated trained models. We notice that all users benefit
from knowledge distillation. This observation confirms our

TABLE II: FedCD’s average accuracy compared to baselines.

Settings FedAvg FedDistill FedCD FedCD basic
IID 35.94 34.85 70.78 73.95

non-IID 35.88 20.11 42.92 44.51

intuition that the knowledge distilled from the teacher logit
composed by ensembling the logits from the participating
users helps improve the performance of all models.

Table II compares the performance of our proposed method
with the baselines and demonstrates the superiority of our
approach in both IID and non-IID settings. It is essential
to mention that we use average test accuracy across users
as a metric for comparison purposes since our approach
focuses on personalized local models instead of training a
single global model. Furthermore, for a fair comparison, we
introduce FedCD basic, which restricts each user to have the
same model instead of allowing each user to train a different
model since both the baselines FedAvg and FedDistill involve
training one single global model. For both IID and non-
IID data settings, we can observe from Table II that both
FedCD basic and FedCD outperform the baselines with a
considerable margin (100 and 20-121%, respectively). In the
case of IID, FedCD basic and FedCD report an accuracy
of 73.95 and 70.78, respectively which is an increase of
almost 100% compared to the two baselines. This result
confirms our motivations since the advantage of FedCD is
induced from the knowledge distilled from teacher logit to
local users. This knowledge is otherwise not accessible by
FedAvg and FedDistill because as soon the parameter server
is done aggregating and creating an update of the global model,
the local updates from participating users are discarded.

The performance of both FedAvg and FedDistill deteriorates
in the case of non-IID, whereas in comparison, FedCD is quite



TABLE III: Communication cost (upstream + downstream)
incurred during training in IID settings.

Method FedAvg FedDistill FedCD
Communication cost (MB) 37928.40 16.0 10.24

robust to non-IID data distributions. Although the FedAvg
and FedDistill exhibit similar performance for IID settings,
FedDistill experiences a non-negligible performance drop of
41% in the case of non-IID since it focuses on reducing
the communication overhead; as highlighted in Table II. The
FedCD basic achieves the best performance of 44.51% which
is about 24% higher than FedAvg and 121% higher than the
FedDistil. The slight difference in the performance of FedCD
compared to the FedCD basic is due to the fact that each of
the ten users, in the case of FedCD, is equipped with a model
of varying complexity. This is consistent with the observation
that a student network guided by a complex network yields
superior performance [18]

In Figure 2, we present the learning curves from all the
methods over the range of communication rounds. Fed basic
and FedCD demonstrate similar performance; therefore, we
only present the results from FedCD. The results displayed in
Figure 2 are generally consisted with the Table II. From the
beginning, FedCD is able to constantly outperform FedAvg
and FedDistill on CIFAR100 dataset in both IID and non-IID
cases. We observe that our proposed method shows robustness
at different communication rounds.

Finally, in order to evaluate the communication efficiency,
we compare our proposed method with the baselines with
respect to the communicated bits. We train for 200 iterations
and measure the number of bits communicated both for upload
and download. For each global iteration, FedCD and FedDistill
exchange 64x100 and 100x100 logits for both uplink and
downlink, respectively. On the other hand, FedAvg exchanges
23,705,252 trainable model parameters per iteration. Table III
shows the amount of upstream and downstream communica-
tion required to achieve the best accuracy for each respective
method. We observe that FedCD communicates only 10.24
MB of data, which is a reduction by a factor of 1.6x and
3700x compared to FedDistill and FedAvg, respectively.

VI. CONCLUSION

In this work, we propose FedCD as a personalized FL
framework to improve the performance of FL in the presence
of model and data heterogeneity. The proposed framework
allows clients with different network and computation capa-
bilities to design their own unique models and benefit from
the knowledge shared by the rest of the users. In particular,
FedCD trains a personalized model for each client; clients
share their local logits, which are ensembled by the parameter
server to create teacher logits which are then downloaded by
each client to distill the knowledge from the peers. Empirical
results demonstrate that our approach outperforms the clas-
sical FedAvg and knowledge distillation-based approaches in
both IID and non-IID settings. In future work, we plan to

explore different ensemble methods to generate high-quality
teacher logits and study their effect on the performance and
convergence of FedCD.
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