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ABSTRACT Edge Intelligence (EI) is an emerging computing and communication paradigm that enables
Artificial Intelligence (AI) functionality at the network edge. In this article, we highlight EI as an emerging
and important field of research, discuss the state of research, analyze research gaps and highlight important
research challenges with the objective of serving as a catalyst for research and innovation in this emerging
area. We take a multidisciplinary view to reflect on the current research in AI, edge computing, and
communication technologies, and we analyze how EI reflects on existing research in these fields. We also
introduce representative examples of application areas that benefit from, or even demand the use of EI.

INDEX TERMS Edge intelligence, edge computing, 5G, 6G.

I. INTRODUCTION
Edge Intelligence (EI) is an emerging computing paradigm
that enables AI functionalities at the network edge to better
serve the needs of increasingly intelligent and autonomous
connected objects, connected systems, and connected ser-
vices [1], [2], [3], [4], [5]. EI builds on the development
of powerful AI solutions and the emergence of edge com-
puting as a paradigm that augments computer networks by
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bringing storage, computing, and other functionality close to
the devices that need them. The combination of these devel-
opments, as sought by EI, is challenging the dominant cen-
tralized cloud-based view of AI by allowing intelligence – or
at least some parts of it – to be placed close to the services,
applications, and data sources that would require or benefit
from it, and by overcoming the limitations of the cloud for
many critical applications [6].

Besides challenging the current cloud-based view on AI,
EI brings additional benefits that enable new types of appli-
cations, a new generation of services, and opportunities
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for other innovations [7], [8]. Having intelligence at the
edge minimizes processing latency, which is critical for
applications with short response-time requirements, such as
augmented reality [9] or autonomous vehicles [10], and appli-
cations that are characterized by high data velocity, such as
real-time visual analytics and medical imaging [11], [12],
[13]. Bringing intelligence directly on the network edge can
enhance privacy by limiting the scope of data disclosure,
particularly when distributed models such as federated learn-
ing are adopted [14]. Finally, edge computing implies the
decoupling and distribution of application state and appli-
cation logic across multiple computing resources, marking a
significant shift from today’s cloud-centric application devel-
opment. This, in turn, requires reconsidering software devel-
opment practises, principles and processes to deal with new
forms of architectures and enhances flexibility [15].

Prior literature has failed to examine interactions between
different components of EI and the challenges these interac-
tions pose. Instead, previous research has examined EI solely
from a narrow viewpoint where the focus is on specific AI or
edge challenges, on challenges emerging from specific appli-
cation areas [2], [16], on the implementation in embedded
devices or edge platforms [17], [18], [19], [20], or on com-
paring the cloud and the edge for AI applications [21], [22].
Thus, this article argues for a more holistic understanding of
EI, highlighting EI as an emerging new field, discussing the
state of research, and identifying its key challenges.We exam-
ine EI in a holistic light with the aim of serving as a catalyst
for research in EI. We take a multidisciplinary view to reflect
on the existing research in AI and edge computing, analyze
how EI extends on this research, and identify gaps to establish
a research roadmap for the path forward. To summarize, the
contributions of this paper are:
• Synthesis of key challenges to realize EI, including
critical reflection on what there is already implemented
in the field of edge computing, and intelligent systems,
and how EI goes beyond the state-of-the-art.

• Research roadmap of EI, including a critical analysis
of what the EI should and could really provide to com-
plement the existing systems, and more critically, how it
can enable completely novel applications.

• Practicality of EI by identifying representative exam-
ples of EI verticals that have already been practically
demonstrated and implemented beyond those simply
existing as visions.

II. MOTIVATION FOR EDGE INTELLIGENCE
Large-scale uptake of EI requires application scenarios that
have sufficient business potential to drive deployment while
also posing unique scientific challenges to engage the aca-
demic community. Thus far AI scenarios have largely been
driven by cloud computing scenarios, such as natural lan-
guage processing, and computer vision, among others [21].
In contrast, edge computing has mostly operated on scenar-
ios that are characterized by large-volume data streams and
the need for low latency, such as real-time video analytics

FIGURE 1. Edge Intelligence enables various novel applications.

or cognitive assistance [23], [24]. EI seeks to merge these
strands and to harness AI algorithms that are migrated to
the edge (instead of the cloud) while offering high band-
width and low-latency processing and communications [6],
[21]. This enables novel applications that involve massive
data streams that need to be analyzed and processed in a
time-critical, secure, and latency-bounded manner [1], [2],
[3], [4]. Representative examples of applications that have
already been realized are illustrated in Figure 1 and include
managing robotics and vehicles in a spatio-temporally crit-
ical environment, distributed manufacturing and logistics,
serving users of privacy-critical systems with highly per-
sonal data, and so on. Note that these are not intended as
an exhaustive list of domains where EI is relevant, rather
as diverse examples of applications that have already been
deployed in smart factories and in emerging Internet of
Things solutions – even if some of the deployments remain
highly specific, customized, or rudimentary. Indeed, the use
cases for EI stretch beyond these examples, covering societal
(e.g., environmental monitoring), commercial (e.g., enter-
tainment, logistics, manufacturing) and governmental use
cases (e.g., defense and healthcare) [25]. The envisaged key
industry benefit of EI ultimately pertains to all parts of
the application chain, covering the algorithms, protocols,
enablers, and platform and software engineering method-
ologies that enable the deployment of data-intensive and
low-latency applications across the entire edge-cloud envi-
ronment. Besides offering increased capabilities for intelli-
gence, EI provides opportunities for innovative applications
and services that are impossible to realize without EI. Below
we briefly discuss some of these domains, focusing specifi-
cally on ones where academic or commercial demonstrations
have already been realized. Practical use cases are later pre-
sented in Section V.

Manufacturing, smart hospitals, and related data-
intensive domains produce large data volumes from a high
number of sensors (e.g. manufacturing process monitoring)
and data-intensive instrumentation (e.g. PET scanners in hos-
pitals) [26], [27]. The processing of this data requires a high
computational capacity and EI can provide the necessary
capacity. EI also benefits these domains by driving down
hardware costs and the setup complexity.
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AR assistance for the person operating the equipment
to complete elaborate tasks is a paradigmatic example of
domains that benefit from EI. In this domain, the EI appli-
cation is capable of receiving a real-time video stream
containing the environment (set of pieces and tools, their
orientation, state, etc.) and the interactions performed by the
operator [28]. The application should understand the actions
completed by the operator and next steps, providing a tactile
visual guidance in real time. Nowadays, it is not possible
to equip operators with the required computing power, but
EI can offer the necessary intelligence to support this task
without violating response-time requirements.

Future traffic systems and connected vehicles are fore-
seen to take advantage of EI. Examples include applications
of extended sensors and remote or fully autonomous driving,
that require highly reliable and low-latency data processing
and analysis [29]. While some degree of automation can be
achieved with in-vehicle processing, more advanced algo-
rithms require computational power and resources that are
not available locally. Sensor data collected from cars and
passengers is also an essential element of smart traffic man-
agement. Excessive network dynamics, latency and reliability
constraints hinder efficient management using a centralized
approach, whereas using distributed reasoning with EI can
accommodate and adapt to these challenges.

Generative Internet is, in our view, a candidate for being
the killer application for EI. Indeed, the main impact of
EI results from multi-edge and multi-cloud support. In a
generative Internet, the application logic is generated and
provisioned across the communications, computing, and AI
infrastructure. Dynamic self-management of the communi-
cation network itself is one of the core examples of such
a vision for EI as an automatic and intelligent adaptation
of the network is fundamental for developing an intelligent
Internet that integrate AI across the Internet. However, such
a intelligent, self-aware Internet is still far from our current
state of art, even if early applications of EI move towards
directions of self-aware, dynamic applications as discussed
above.

Common to all of the application areas discussed above
are certain enablers from the edge computing and artificial
intelligence. However, simply applyingAI into edge – or edge
into AI – is not sufficient enough to harness the full presumed
capabilities of EI. Indeed, as will be discussed through several
objectives in Section IV, EI is more than the sum of its parts
(i.e., the combination of edge and AI.)

III. DEFINITIONS
Before discussing the key research challenges and reflecting
on the state of the research with respect to these challenges,
we briefly describe what we mean when we talk about edge
computing, intelligence, and edge intelligence.

A. EDGE COMPUTING
Networking consortia such as ETSI, OpenEdge, and Indus-
trial Internet Consortium (IIC), view the edge as a way to

FIGURE 2. EI as a network of intelligent operations and services.

bring additional capabilities closer to devices with some
differences in the definitions related to the clients and the
networking infrastructure that is expected to be available. For
example, ETSI refers to the availability of cloud computing
capability at the Radio Access Network of cellular opera-
tors [30] whereas IIC sees the edge as the boundary between
digital and physical entities that is delineated by IoT devices.
Academic definitions in turn, consider the edge as a generic
entity that can be seen as a ubiquitous platform, which is
not necessarily restricted to specific resource type capabil-
ity, deployment location, or other characterizing parameters
(such as storage, network, and computing capacity).

B. INTELLIGENCE
Intelligence is complex to define in a general way and as a
result there are hundreds of definitions in the literature. For
our purposes, we follow Legg and Hutter [31] who collected
different definitions for intelligence and found three com-
mon features that characterize intelligence: (i) it belongs to
a subject and measures the subject’s ability to interact with
its environment; (ii) it measures the capability to set and
reach objectives; and (iii) it characterizes the ability to adapt
behaviour in response to the environment.

C. EDGE INTELLIGENCE
refers to the amalgam of edge computing and intelligence.
The definitions for edge computing highlight that EI is sup-
ported through a ubiquitous platform that is not restricted
by specific resource type constraints while being able to
support applications and services, whereas the definitions for
intelligence define this platform to be intelligent by being
able to optimize its behavior and react to changes in its
environment. This definition highlights that EI goes beyond
deploying (artificial) intelligence tools on a platform that is
used to support applications (intelligence on the edge) and
requires that the platform is capable of optimizing behaviour
and reacting to changes in its operational environment. It also
goes beyond the traditional platforms deployed in predefined
locations and evolves towards new distributed architectures
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TABLE 1. Key objectives for EI and comparison to edge computing and intelligent systems.

in which all the involved components collaborate to build
ubiquitous intelligence and to provide composed services to
users, other devices and applications; see Figure 2.

IV. OBJECTIVES TO REACH EI
Edge intelligence adds specialized intelligence and special-
ized services to leverage the current and emerging cloud and
local intelligence into a network of intelligent operations
and services. In this section, we reflect on prior research to
identify challenges, summarized in Table 1, that need to be
addressed to fully realize the potential of EI. The analysis
was completed by exploring previous publications to identify
the challenges networks face in providing new specialized
services. Then, we studied how such challenges are being
addressed by edge architectures and AI developments. Thus,
our vision aims towards generalized dynamic EI solutions
over the Internet and in our summary we also incorporate
what is already implemented in the edge or AI fields (mid-
dle columns in Table 1 ), and highlight what is further
needed to fully realise the potential and capabilities of EI (far
right column in Table 1). Naturally, these challenges are not
exhaustive and we have prioritized challenges that we have
encountered in our development of practical EI solutions and
applications.

A. SYSTEMS THAT NEVER SLEEP
Autonomous systems are one of the primary use cases for
EI [48], [49]. In many domains, such as smart cities, medi-
cal monitoring, industrial control systems, or defense, these
systems also cannot be shut down but must operate con-
tinuously. Ensuring these systems can operate consistently
requires access to sufficient resources, and meeting highly
dynamic resource demands. Edge solutions that can intelli-
gently adapt functionality to meet these changing resource

requirements, and software solutions that can scale up to ever-
increasing amounts of devices are critical to achieve this.
It is also important to keep in mind that as the solutions and
underlying compute platforms become more sophisticated
and widely available, the requirements for quality of service
along with expectations for these applications also increase.
Within the smart city context, the problem has evolved from
a ‘‘city that never sleeps’’ paradigm to enabling ‘‘connected
megacities’’ with an increasingly connected life, with more
connected objects and increasingly autonomous systems [50].
The advantage of the new communication technologies, and
the intelligent platforms they provide, is that we allow even
small cities to access added value services and function
exactly like those ‘‘megacities’’ with highly scalable infras-
tructure investments and limited additional costs.

From infrastructure and operator’s point-of-view, systems
that never sleep require the application of Quality-of-Service
(QoS) and Quality-of-Experience (QoE) to become part of
the operational and provisioning decisions [51]. A smart
city, in particular, can be viewed as a ‘‘multiagent cyber-
physical system’’ presenting a synergy between human
agents and intelligent agents – encompassing infrastructure,
transportation systems, waste collection, smart energy sys-
tems, surveillance, security, etc. Not only should the human
agent seamlessly interact with other cyber-physical agents in
the environments, but there is also a tight integration between
the different intelligent agents to achieve a holistic opera-
tion. An example can be provided as the control function
of traffic lights in such a city. For a truly smart operation,
the traffic light not only must keep track of vehicle density
on road but also presence of pedestrians, mobility patterns
derived by external factors such as school or office hours, and
weather changes. A smart city is a formidable example of a
situation where the high level of interaction and ever-growing
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requirements offer new opportunities for a high level of
interaction and more challenging requirements. Moreover,
a sophisticated operation of smart city applications envision
some level of service sentience, i.e. the applications should
operate as per predefined service level agreements (SLAs)
regardless of the time of day. From a practical standpoint,
‘‘never sleeping’’ refers to ensuring high SLA requirements
for different operations of the city, such as energy, surveil-
lance, and security.

The digital transformation processes for worldwide cities
are accelerating, with a focus on sustainability and improving
citizen’s quality of life [52]. Such processes are progressing
together with a constantly growing introduction of sensors
and connected objects, and together with an explosion of data
production. D’Amico et al. [33] explore the main challenges
related to sensors in cities, emphasizing the opportunities
and critical issues of this growing digitalization of urban
context. A city that never sleeps needs to communicatemores,
at more levels, and more frequently. However, a city that
communicates more, at more levels, and more frequently
becomes progressively a smarter city that never sleeps [34].
With more strict requirements in terms of service levels of the
basic connectivity functions and of the basic functions that are
expected from the communication networks.

Serving such networks is not only a question of low
latency and high bandwidth but also presents several other
challenges. Just from software engineering perspective, such
systems must endure and remain resilient towards discon-
nections and outages of individual connected devices. There-
fore, edge intelligence must seamlessly support condition
monitoring, fault detection, network reliability, and essential
resilience functions within its control decisions to not just be
reliable to state changes, but also be reactive.

B. LATENCY OF EXPERIENCES
The efficacy of Edge Intelligence is significantly driven by
the context and requirement of the application that incorpo-
rates it. While edge computing, by nature, can help appli-
cation developers leverage resources closer to the users, the
needs and demands for optimal user experience can differ
significantly for different applications. Mohan et al. [53] find
that three strict human vestibular thresholds guide the latency
requirements of edge-driven applications. Immersive appli-
cations, such as AR/VR, must abide by motion-to-photon
(MTP) latency of ≈20 ms - which requires the sensory input
and interactions to be completely synchronized [54], [55].
Interactive applications, such as gaming or video stream-
ing must operate within perceivable latency (PL) of around
100 ms for optimal QoE [56]. Finally, applications that
require active user inputs and engagements, e.g. teleoperated
surgery, are highly dependent on the human reaction time
(HRT) threshold of 250 ms. Vital applications within the
smart healthcare and smart city domain, like remote surgery,
also fall in this category [23].

The latencies for optimal quality of experience of edge
applications described above do not just include network or

processing latency but latency for the entire end-to-end pro-
cess. For example, out of the 20 ms latency quota of AR/VR
applications, ≈13 ms is reserved for display technology [54]
due to refresh rate, pixel switching, and other functionality.
Therefore, the application processing pipeline only has the
remaining 7 ms to accommodate all communication, process-
ing, modeling, and output formulation. Similarly, a typical
perceived maximum communication and processing latency
for autonomous vehicles is estimated to be below 10 ms and
for remote surgery to be below 150 ms. This period does not
include requirements to perform the data fusion, processing,
and ML necessary for guiding the efficacy of the application.

The integration of AI with edge can introduce or exac-
erbate the existing latency challenges in many use-cases of
EI. For example, industrial control systems harnessing EI
have extremely strict latency requirements [35]. Arjevani and
Shamir [36] conclude that many communication rounds will
be required in AI processing in the edge and still provide
the worst-case optimum in minimum assumption situations.
The raw data acquisition, data analysis and training, and the
continuous feedback loop in ML will introduce much higher
delay simply considering the increased number of communi-
cation rounds.

The dynamic nature of many IoT environments and an
increasing number of connected devices make flexibility and
self-organization are among the most important capabilities
that EI must offer. The main challenge is to design the
optimized EI pipelines, faster and reliable on-the-air commu-
nications, and transparent symbiosis between the edge and
end-user devices. The EI infrastructure should be scalable and
capable of maintaining latency constraints, including the time
required for data processing, model building, and AI/ML.
Network virtualization likely becomes a key element where
dedicated software can be distributed among nodes to make
the best use of the available resources. Sharing fractions of
available data or trained AI/ML models can significantly
reduce the latency for highly dynamic situations and allow
rapid reconfiguration without dropping users’ QoE.

In smart cities, latency requirements are again strongly
tied to application characteristics. While some applications,
such as smart parking or air quality management, can endure
an increased level of latency, there also exist safety-critical
applications, such as smart traffic management, that cannot
accommodate higher latency. Considering the brake reac-
tion time of drivers, pedestrian monitoring and driver noti-
fications systems have to complete their execution under
100 ms, which includes the acquisition of video streams from
the pedestrian crossing, analyzing them to detect potential
accidents, and transmitting a warning signal to the mobile
devices of the affected drivers. A proof-of-concept for such
a system has been successfully deployed on the smart traffic
lights in Vienna urban area and shown to satisfy the latency
quota mentioned above provided that pre-trained lightweight
models are used, and 5G connectivity is available [57].
However, it is an open question whether more dynamic
(and consequently computationally complex) AI models
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(e.g., online, active, or transfer learning) can achieve similar
results.

C. WHERE IS THE EDGE ACTUALLY
The edge’s size and boundaries are essentially dependant on
the used definitions and on the application domain. In a sim-
plistic view, we could consider the edge to be exactly where
the devices are connected. However, dealing with EI, this
view might be different for the model training and inference
phases and can vary in time and space in relation to what
is connected to the network and the exact operational condi-
tions. In practice, the network edge consists of a broad range
of devices, including base stations, servers, IoT sensors and
actuators and personal devices. Their computing capacity,
memory, and storage are limited to some extent, in contrast
to the cloud, where multiple services can operate in tandem.
The connectivity and communication among edge devices are
mainly enabled via the underlying wireless networks that are
highly dynamic and diverse due to their inherited mobility
and spatiotemporal characteristics. In addition, edge devices
utilize several different software stacks ranging from almost
bare metal to sophisticated container systems [15] with vary-
ing adaptation capacity.

In wireless networks, the geographical locations of the
devices and their surroundings affect the communication
reliability, latency, and capacity, and the resources available
for a particular application may not be easily predictable.
In this view, the immediate adoption of training and inference
architectures from cloud to edge can be highly inefficient,
neglecting on-device and communication constraints as well
as the dynamics of the operating environment. Hence, opti-
mizing distributed AI/ML algorithms and developing new
mechanisms accounting for channel dynamics and commu-
nication overhead is of paramount importance. These chal-
lenges include the generalization to unmodeled phenomena
under limited heterogeneous local data and straggling devices
in the training process. The scale of the edge can vary from
a few to thousands depending on time, users, and service
providers. A small indoor environment can e.g. consist of
a few cooperative devices with low-to-no dynamics within
the duration of hours, in which enabling intelligence can be
based on conventional architectures and algorithms. In con-
trast, automated vehicles in an intelligent transport system
are highly susceptible to network dynamics, heterogeneity
and spatiotemporal availability of resources, calling for novel
AI/ML designs.

Thus, edge architectures and platforms must satisfy a
challenging combination of scenarios and applications with
potentially conflicting requirements. On the one hand, from
an economic point of view, operators will be interested in
minimizing the number of edge locations. On the other hand,
edge and fog applications may require many edge instances
or even to distribute the edge among a large set of devices
(including embedded devices towards what is called mist
computing). According to Lan et al. [58] applications can be
classified according to their requirements:

FIGURE 3. Where is the Edge.

• Latency-sensitive applications: Applications with strict
latency requirements can only be achieved by executing
the services at edge locations physically near the source
of the data.

• Autonomous applications: Some applications are
deployed in areas with poor connectivity, so they can
not take advantage of the cloud paradigm.

• Privacy and security applications: Some applications
have to address privacy concerns (e.g. if they manage
health-related information), and they have to store and
manage the data locally.

• Context-awareness applications: Distributed applica-
tions that have to use information such as the location or
other local information related to each IoT device. Data
processing and computation are conducted on small
datasets that can be processed locally to avoid overload-
ing the network.

In this scenario, the edge can not be static. Its functionality
has to be distributed among instances in different locations
and even taking advantage of the computing capabilities of
all the devices participating in the network.

Thus, in edge-assisted cloud computing, applications can
take advantage of all the available infrastructure. Cloud sys-
tems can better serve applications requiring low latency while
saving computational and networking resources at core net-
works and data centers. The parts of services that require
low latency or provide functions for reducing data, such as
filtering, fusion or other processing, are beneficial to deploy
at MEC hosts residing at access networks near base stations.
The main benefits are the low end-to-end latency between the
local node and MEC node and the reduced amount of data
that needs to be delivered to data centers. As can be seen, IoT
and smart environments can significantly benefit from MEC
residing at the mobile access networks.

However, the current model where MEC hosts are
deployed at servers located within or near the access network
base stations also has its limitations [39]. In many smart
space and IoT applications, to deal with possible connectivity
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problems and limit the propagation of sensitive data outside
the domain, at least some degree of processing of the sensor
data and the decision-making/control logic is beneficial to
be managed locally on-site [18], [21]. Therefore, in many
scenarios it is beneficial to bring EC capacity within local
IoT clusters, as illustrated in Figure 3. Since it cannot be
expected that local IoT/IoE clusters include devices with
sufficient stability and hardware capacity to accommodate
full-functional MEC host, alternative decentralized solutions
fitting better to the IoT/IoE environments need to be studied.
A vital thrust towards utilizing the full potential of the cloud-
edge continuum is the three-tier edge architecture as proposed
in the present literature [39].

D. UBIQUITOUS USE OF EDGE RESOURCES
Ubiquitous computing and IoT introduce physical
environments as opportunistic playgrounds for distributed
applications. In such environments, EI has a crucial role in
providing context-aware services and maintaining QoE for
users. Key factors for orchestration of the service deployment
and access include user location, computational and com-
munication resources, and application data. In essence, edge
resources must be placed [59], [60], [61] and their resources
allocated [62] in a way that considers such factors and their
trade-offs.

Edge intelligence can provide tools for such orchestration,
considering and predicting user activities and the resulting
fluctuating requirements in terms of multi-tenant resources:
locations, migrating application contexts, providing connec-
tivity, redirecting network traffic and maintenance. With
intelligence, as self-capabilities, the applications become
aware of the edge environment and can continuously negoti-
ate their reliable and robust execution with the help of system
services. Such developments lead to distributed EI where
user, application, and system components intelligently adapt,
offload, relocate, negotiate, and collaborate without a central
authority to become the de-facto architectural model.

Nevertheless, orchestration is a system-wide collaborative
effort [41], where resource management and control func-
tionality is often separated from application functionality,
e.g., data flows, at architectural level [42]. It is clear that the
resource management functionality relies on AI solutions at
large. The AI is to be distributed across the systems, where
we believe EI, in particular, has a role in reducing the gap
between separated functionalities. Therefore, an extensive
set of edge services would be introduced [40], such as ser-
vice discovery, on-demand logical topology and support for
self-configuration, self-optimization, self-healing, and self-
protection. Interoperability issues, such as shared functional-
ity, interaction protocols, and portability should be supported
on a technical level. The resulting distributed operation across
the edge platform calls for distributed lightweight service
provisioning and control mechanisms among the applica-
tions and systems components [39]. Taking a step further,
virtual resource pools, including micro-operator resources,
autonomous vehicles, network infrastructure components,

mobile user devices, and everyday appliances, call for intel-
ligent resource sharing solutions as exemplified by 3C-L and
Tactile internet.

The discussed services require standardization, such as
reference architectures and APIs, edge-specific software, and
service modelling practises that support immersed intelli-
gence. The starting point here would be the ETSI MEC refer-
ence architecture [63], currently under standardization. The
ETSI standards provide the overall edge system architecture,
required system components and their outlined functionality,
set of APIs for system operation, information dissemination
and third-party integration, guidelines and best practises, and
set of Proof-of-concept (PoC) applications currently under
consideration. Such efforts provide a solid base to realized
edge systems, where some of the MEC system components
(e.g., MEC orchestrator) and PoC applications largely are
seen as relying on AI. However, the realization of AI func-
tionalities is open, and EI has not yet been considered as a
built-in capability of the edge system.

Moreover, Frameworks such as Fog05 [64], MobileFog
[65], Distributed data flow (DDF) [66], or FogFlow [67] are
being developed to manage the resources and to simplify the
programming. Ubiquitous applications can take advantage
of these frameworks to handle the different parts of their
life-cycle (such as the development, deployment, execution,
and management) transparently – to be deployed in a dis-
tributed edge architecture without requiring operators and
third party developers to worry about managing the reserva-
tion and orchestration of computing, networking or storage
resources, while satisfying the application requirements in
terms of latency,mobility, heterogeneity, scalability or quality
of service.

E. HIGHLY LOCALIZED INTELLIGENCE
The characteristics of EI solutions depend on a number of
factors. First, the quality of data, in terms of volume, velocity,
and variety; and the availability and location of process-
ing, communication and storage resources restrict the poten-
tial functionality of the EI solution. Further, the functions,
devices, and users to be served by the EI solution at a particu-
lar location set their requirements on, for example, the degree
of autonomy needed. The key questions are: where should
intelligence be deployed, how does the deployed intelligence
adapt to the local environment, and how do the localized
intelligence interact.

For example, a smart city needs to consider phenomena
such as weather, air quality, and traffic. The corresponding
data generating processes contain prominent spatio-temporal
dependencies, which are reflected in the collected data.
In some cases, the structure emerging from such spatial
dependencies may be significant enough to affect the result-
ing model. On the positive side, such dependency struc-
tures can offer a way to distribute the model. For example,
Lovén et al. [37] propose a distributed interpolation method
that takes advantage of spatio-temporal dependencies and
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partitions data for local model learning along boundaries
projected on the spatial dimension.

Localization introduces several challenges. Massive-scale
data analysis requires time for data delivery and process-
ing, let alone building complex ML/AI models. Further,
geographically distributed data, even if extensive, does not
always improve the accuracy of the learned models, espe-
cially if local models learn only from local data. Such local
models may be easy and lightweight to implement whenever
they fit the application profile. Still, they can suffer in quality
and generality due to a lack of variety in the local data sets.
To overcome this problem, more delicate model communica-
tion standards and protocols need to be studied. Local models
should exchange information and learn from each other to
improve model quality and generality. It is imperative to
determine what models can effectively be distributed and
trained with highly localized data and how the life-cycle man-
agement of such distributed models can be arranged. Current
promising approaches aim to identify the most significant
updates and minimize communication while maximizing the
knowledge and experience transfer [38]. EI solutions based
on federated learning, such as In-Edge AI [1], solve the
problem by periodically replacing local models with a global
one, but consequently lose out any localized characteristics.

F. EDGE DEVELOPER EXPERIENCE
The ETSI MEC Application Development Community and
PoCs already provide demonstrations in the realization of
edge benefits and practical development aspects, such as
feasibility, interoperability and testing, through a set of
use cases. In addition, available tools for edge software
development are well-established, including DevOps and
MLOps practises with automatized continuous integration
and delivery (CI/CD) on top of virtualization technolo-
gies and based on microservices and serverless computing
paradigms. Platforms for managing and deploying ML/AI
solutions on edge have been proposed (e.g. KubeFlow and
MLFlow). Also, more fine-grained platforms (e.g. Function-
as-a-Service, FaaS) and runtimes for elastic on-demand
serverless computing have appeared, omitting the need to
also focus on infrastructure/platform by application/service
developers [43].

However, already IoT software engineering (SE) as such is
complicated because tools, techniques, and skills in nearly
all areas of modern software development are needed for
developing end-to-end (E2E) systems [15]. A new layer
of complexity appears with EI [21], which influences the
designmethodologies, architectures, tools, best practices, and
the overall software life-cycle. The platforms supporting EI
should provide elastic host service support and tools and
means for straightforward deployment of on-demand soft-
ware components that can exploit reliable, near real-time run-
times and execution environments with fast access to data and
computing resources. EI can also mean another architectural
layer to introduce complexity in system maintenance and
resource sharing across the device-edge-cloud continuum.

Hence, the SE discipline must increasingly address EI as a
building block towards autonomous, adaptive, and intelligent
applications in an opportunistic and elastic online environ-
ment. Such SE discipline could be located in the intersection
of APIs, distributed heterogeneous execution environments,
distributed computing platforms, and AI. Here, the MLOps
practises facilitating automatization of the management,
operation and life-cycle of all types of ML/AI models for the
edge applications atop the edge infrastructure.

As these somewhat different fields require different com-
petencies, a risk is that the developer’s role will become
more complex, as has happened in the context of full-stack
web development [44]. Still, systematic and consolidated
methodologies for software development are needed with
EI integrated from distinct perspectives. A novel EI soft-
ware development process integrates applied ML/AI tech-
niques and software modeling practises in the initial design
phases [40]. ML/AI helps identify and assess the inherent
opportunistic elements in parallel with domain expertise and
provide feedback during the initial stages of the process.
At the system development and deployment stages, EI is
already aware of these aspects and could address them in
operation.

G. INTEGRATION AND INTEROPERABILITY EFFORTS
In contrast to the centralized data center setting, EI needs to
address challenges originating from hardware heterogeneity
and resource management in a highly dynamic and decen-
tralized environment. Therefore, interoperability becomes a
key issue for portability, communication protocols, and data
models. Portability enables EI applications and services to
be deployed to different vendor solutions. Heterogeneous
hardware and low-level communication should be beneath
the provided standardized abstraction levels, e.g. with infras-
tructures and APIs suggested for the application and ser-
vice developers. Requirements assessment, authentication,
resource discovery, system configuration and deployment,
and life-cycle management provided by the IE platform
should have unified interfaces that enable more rapid adop-
tion of IE technologies by vendors and industry. Here, the
ETSI standardization provides well-defined architecture with
a set of functionalities, APIs and development practices as the
background to realize edge systems. Currently, it is unclear
how the EI capabilities can be built into the edge systems,
requiring specifications for further APIs, different software
constructs and system services for integration, with support
from the underlying edge infrastructure. Commonly accepted
practices should be established, considering the existing stan-
dardization and frameworks.

At the extreme, this may lead us to isomorphic IoT archi-
tectures in which the devices, gateways, and cloud are able
to run the same applications and services, allowing flexi-
ble migration of code between any element in the overall
system [15]. Instead of learning different incompatible soft-
ware development methods, one base technology will suffice
and cover all aspects of E2E development. Although fully
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isomorphic IoT systems are still years away, their arrival may
ultimately dilute or even dissolve the boundaries between
the cloud and edge. Isomorphic systems will allow com-
putations to be transferred dynamically and performed on
any level of the cloud-edge architecture that provides the
optimal performance, storage, latency, and energy-efficiency
characteristics.

In parallel with the edge system standardization, data spec-
ifications, models, interfaces, and representations should be
agreed to ensure that concepts and their relationships are
interpreted in the same way in the edge platforms, services,
and applications. While this is impossible to achieve gen-
erally, the data integration and management tasks between
the system, applications and application-specific services can
be standardized, providing common mechanisms for data
integration, discovery and management.

H. SECURE, PRIVATE, RELIABLE, AND RESILIENT EDGE
Edge intelligence inherits the existing security, reliability,
and privacy challenges of edge computing. In addition, mas-
sively interconnected and high-speed communication net-
works introduce amplified security and privacy problems.
Increasingly autonomous systems can attract large-scale
attacks and introduce a wealth of vulnerabilities at different
parts of the interconnected systems. A new category of risks
emerges from possible malicious intelligence. Edge servers
can be considered as aggregating points for all sensors in
a local, possibly unprotected area, providing a single entry
point for malicious entities that can access feeds from mul-
tiple sensors but target attention towards a single server
responsible for handling the operation. For mature and trusted
services, EI needs to be self-learning in all the layers of
communication-related to end-to-end security [2], [45]. This
calls for the careful design of centralization versus decentral-
ized security protocols.

The use of AI also introduces security vulnerabilities [68]
which, if exposed or exploited, can have severe consequences
for EI and connected and derived functions. Computing and
storage resources in the edge will be limited, and deploy-
ing complex AI procedures require higher resources, which
can cause resource exhaustion attacks easier, as discussed
in the case of IoT in [35]. Furthermore, mixing data from
diverse sources can lead to unpredictable entanglements and
hidden feedback loops [68]. Therefore, security validation of
AI procedures and techniques and consequential analysis of
the deployment of AI techniques in edge platforms must be
carried out before enabling the automated EI infrastructure.
Modular and hierarchical distribution of AI tasks can also
minimize security risks.

Trust mechanisms are needed to guarantee the validity
and trustworthiness of the EI devices and data providers.
Distributed Ledger Technologies (DLT), such as Blockchain,
has emerged as a potential solution to provide distributed
and decentralized trust through mutual consensus mecha-
nism among various actors [45]. Safeguards on user pri-
vacy are presently governed by the General Data Protection

Regulation (GDPR) and by the Cybersecurity Regulation
in the EU, and the restrictions of the data usage under the
directives will affect the AI/ML paradigms in EI [2]. These
represent fundamental legal milestones ensuring that privacy
and security are reinforced.

Failure proneness of edge servers is another important
issue that might endanger the overall reliability. Being
deployed in exposed locations without data center-level
advanced support systems increases the potential impact of
hardware failure at the edge, which may risk the EI integrity.
Existing reliability mechanisms such as re-execution or
check-pointing might be infeasible, particularly for real-time
EI [46]. While EI promises more resilience by edge flex-
ibility within critical and transient failures due to network
fluctuations, transparent control and reconfiguration mech-
anisms must be designed and implemented. Currently, there
exist fault tolerance solutions for edge computing infrastruc-
ture [46], and neural network architecture [47]; however, joint
consideration of the two aspects is missing.

The European Union Agency for Cybersecurity ENISA,
has recently defined key research directions and innovation
topics in cybersecurity. Indeed, it is clear that the more con-
nectivity and the more intelligence is available at the edge,
the more the balance between security and utility, privacy
enhancement, and failure proneness need to be studied and
adequately considered. Solutions will emerge from more
intelligent security threat prevention, dynamically change-
able privacy prevention acts, and locally adjusted trust man-
agement. The question about privacy that will remain open in
the future, for instance in 6G, will be that: how personal can
the information be in the time of shared storage, processing
and data economy [69]?

V. EARLY CASE STUDIES
A fundamental enabler for EI is the underlying edge infras-
tructure based on medium- or small-scale edge servers.
Due to the data and computation requirements for AI/ML
and required system services in orchestration and sharing
resources with real-time responsiveness, the placement of
edge components is a crucial concern. However, the resulting
architectures are typically fixed based on mobile networks
and capabilities dictated by many factors, such as core net-
work topology, capacity and traffic, operator policies, and
user mobility. Therefore, intelligent approaches are needed
for scalable edge infrastructure placement in different scenar-
ios. To maintain QoE, extensive sets of real-world parameters
need to be considered for online intelligence. Furthermore,
architecture that dynamically supports such placement is an
important requirement for the hosting software infrastructure.
Belowwe discuss some application use cases for such deploy-
ments. As noted in Section II, EI is relevant for a wide range
of domains and the application scenarios are not meant as
exhaustive list of all possible solutions, rather as examples
that demonstrate the practical benefits and have potential for
uptake. Specifically, we require the application scenarios to
meet two criteria. First, we require the application use cases
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FIGURE 4. Edge nodes setup on Vienna’s chosen intersection and the
integration into the traffic-signal chambers [57].

to be novel representative and concrete examples of already
implemented use cases rather than application domains that
have thus far only been envisioned. Second, the case studies
were chosen to cover three promising application areas for EI
as has been identified in prior surveys [2], [16]: Smart Cities,
Industrial IoT, and Environmental Monitoring.

Intelligent traffic light solution utilizing EI is imple-
mented in Vienna, Austria, in order to improve traffic safety
[57]. The road sections around dangerous intersections with
low visibility and their surroundings are continuously mon-
itored with video cameras deployed at traffic lights, where
the streaming video is processed locally. Relevant events
such as pedestrians or cyclists entering the road segments
are detected in real-time and nearby drivers are alerted via
a mobile application. The local processing of data not only
reduces response time by avoiding long-distance transfer of
big streaming data but also enables continuous delivery of
the service even if the remote infrastructure is not accessible.
Moreover, the privacy of pedestrians is preserved since the
video recordings never leave the traffic light.

In this case study, single-board Raspberry Pi edge devices
extended with Google’s Coral Edge TPU accelerators have
been integrated into traffic signal chambers (Figure 4). These
nodes run pre-trained TensorFlow Lite models to detect
pedestrians or cyclists and send alerts to nearby drivers’
mobile devices viaMQTT protocol over 5G. Real-world eval-
uation shows that affected drivers can be notified in around
100 ms, 18 ms of which is the processing time of a frame and
the rest is for communication with the guaranteed delivery of
the alert [57].

Automotive EI application for the automotive scenario
is studied at Poznan, Poland, where dynamic management
of autonomous car platooning is supported using rich con-
text information stored in databases. The study focuses on
improving the reliability of intra-platoon wireless communi-
cations that suffer from channel congestion in the 5.9 GHz
frequency band. The utilization of alternative frequency
bands is proposed, such as the TV white spaces or mmWave,
that are dynamically selected based on the additional infor-
mation from databases (e.g. the observed TV signal power
at a specific location). A hierarchical structure of edge

intelligence support is considered, where, depending on the
origin of information and its scope, it can be stored in regional
or local databases or even in distributed form. The initial
findings indicate that it is possible to improve communication
reliability for platooning with EI significantly [70], [71].

Environmental sensing The EDISON project, studied in
Oulu, Finland, proposes an edge-native method and archi-
tecture for distributed interpolation [37]. EDISON assumes a
large fleet of mobile sensors, collecting environmental data.
The mobile nodes are calibrated upon rendezvous with sparse
high-quality fixed sensors, transmitting their data for learning
and inferring with a distributed interpolation model running
at edge nodes. Early simulation studies promise an improve-
ment over baseline distributed methods as well as a global
interpolation model, assuming data is generated by relatively
independent, spatially distributed processes.

Urban-scale air quality sensing is an example of city-
scale application domains that can benefit from edge intel-
ligence. The MegaSense programme at the University of
Helsinki explores how to extend the scale of air quality moni-
toring to support dense and high-resolution information [72].
Air quality is traditionally monitored using professional-
grade measurement stations that are highly expensive to
both deploy and operate. Increasing the monitoring scale
requires integrating sensors of different types, such as low-
cost sensors carried by citizens to industrial-grade sensors
located at industrial sites and in the urban infrastructure with
the professional-grade monitoring stations. Low-cost sensors
tend to suffer from lower accuracy, which can be mitigated
using machine learning-based calibration [73]. The idea in
calibration is to learn a model that can compensate for the
errors in the low-cost sensors. Air quality information tends
to have strong spatial correlations, and thus the calibration
models of sensors in the same spatial area can share infor-
mation instead of learning a separate model for each sensor.
Edge deployments are essential for ensuring the calibration
can operate efficiently, e.g., recent work at the University of
Helsinki has demonstrated how deploying the calibration on
edge can reduce latency andminimize overall communication
bandwidth in city-scale deployments [74].

VI. CONCLUDING REMARKS
Cloudification has so far helped to promote the adoption
of AI/ML methods and develop intelligent applications and
services. Local use of these techniques on edge is now pro-
gressively growing. In the near future, we envisage AI being
pervasive and supporting many aspects of the operations of
future communication networks and their edge. We took a
broad view on emerging EI solutions, discussing the motiva-
tions and applications that will not simply benefit from EI but
will be enabled by EI, and presented some early case studies
in emerging application areas. We also identified aspects that
we consider priorities for the likely R&D and innovation
activities.

Recent large-scale cyber-security incidents and attacks
rely on a traditional communication network and relatively
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non-autonomous interconnected systems and devices.
What could happen with an increasingly intelligent and
autonomous network if not properly instructed to support
privacy, security, reliability, and resilience by design. Con-
sidering the experience of 5G and 5G acceptance, a proper
consideration of these aspects since the early phases of
any beyond 5G development is an absolute necessity. As a
regulatory example, under the EU Commission’s new digital
strategy, additional regulatory actions have been planned,
including creating a specific AI framework addressing safety
and ethical challenges, and the adaptation of existing safety
and liability frameworks to possible new technologies. A ded-
icated extension to future intelligent communication net-
works is essential, with certification schemes for privacy,
security, reliability, and resilience to boost the development of
secure and robust networking environments, while ensuring
that the relevant legislation, initiatives, and policies are fully
respected.
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