
Smart and Adaptive Routing Architecture:
An Internet-of-Things Traffic Manager Based on

Artificial Neural Networks
Amirali Amiri

University of Vienna, Software Architecture Group
University of Vienna, Doctoral School Computer Science

Vienna, Austria
amirali.amiri@univie.ac.at

Uwe Zdun
University of Vienna

Software Architecture Group
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Many studies have been performed on integrating
the Internet of Things (IoT) with cloud services. As these systems
become widely used, quality metrics are of concern. For example,
users might specify access control to restrict their sensitive data
being processed in the cloud. Routers, e.g., API gateways, message
brokers, or sidecars, can provide this access control by blocking
or routing device data to a specific cloud service. However, a static
routing application might not suit the dynamic behavior of IoT
applications well. For example, in a centralized schema, where
all device data is routed to a component for control checking,
performance can be an issue. On the other hand, distributed
routing can harm the reliability of a system, as device data might
be lost due to an unresponsive service. We present the Smart
and Adaptive Routing (SAR) architecture that creates an optimal
reconfiguration solution using a deep neural network based on the
quality metrics of an IoT application. To design our architecture,
we give a background of the published studies and a review
of the gray literature, e.g., practitioner blogs, to categorize the
knowledge in the domain of IoT-cloud traffic management. We
systematically evaluate our approach in an extensive evaluation
of 4500 cases and compare SAR with an empirical data set of
1200 hours. The results show that our approach significantly
improves quality-of-service measures by adapting the IoT-cloud
system at runtime.

Index Terms—Self-Adaptive Systems, Dynamic Routing Archi-
tectures, Internet of Things, Reliability and Performance Trade-
Offs, IoT-Cloud Traffic Management, Artificial Neural Networks

I. INTRODUCTION

The integration of IoT and cloud technologies is becoming
increasingly popular as it enables the analysis of vast amounts
of data and facilitates the development of innovative applica-
tions. Various authors have attempted to document effective
approaches and recurring patterns in the intersection of IoT
and cloud technologies. However, established practices within
the industry are also available in the “gray literature” such as
practitioner blogs, experience reports, and system documenta-
tion. Without a proper knowledge categorization, these sources
provide limited insights into the existing practices as they vary
and rely heavily on personal experience. An architect must
have substantial experience or study a comprehensive set of
knowledge sources to understand the state-of-the-art.

Even for an expert architect, it is hard to consider the
multifaceted design of IoT-cloud integration applications with-
out supporting tools and frameworks. Assume there is a
privacy requirement for an application to restrict the IoT
device data access to specific cloud services, e.g., as imposed
by the general data protection regulation1. In such a case,
dynamic routers in the cloud, e.g., API gateways [33], message
brokers [19] or sidecars [16], [21], [26] can route or block
device data based on specific rules.

Considering the dynamic nature of today’s IoT systems, a
static application, e.g., centralized routing, where all IoT data
is routed to one component for control checking, might not be
suitable. In this example, centralized routing might introduce
additional latency harming the system’s performance. On
the other hand, distributed routing might decrease reliability
requirements, as there might be data loss due to an unavailable
service. A system adaptation at runtime based on the quality-
of-service metrics can help ensure IoT quality requirements.
This paper aims to study the following research questions:

RQ1: What are the patterns and best practices that support
IoT-cloud traffic management, and how are they related to
each other?

RQ2: What is the architecture of an automation framework
that analyses an IoT system at runtime and adapts the system’s
configuration based on quality-of-service metrics?

RQ3: How do the quality-of-service predictions of the chosen
optimal solution compare with the case where one architecture
runs statically, i.e., without adaptation?

The contributions of our research are as follows: Firstly,
we present a knowledge categorization within the IoT-cloud
integration domain and dynamic routing of device data by
summarizing the findings of published studies and a gray
literature review. We categorize the patterns and best practices
into three widely-used architectural patterns. Secondly, we
introduce the Smart and Adaptive Routing (SAR) architecture,

1https://gdpr.eu

https://gdpr.eu

which is a self-adaptive architecture based on the Monitor,
Analyze, Plan, Execute, Knowledge (MAPE-K) loops [6], [7],
[20]. Using an Artificial Neural Network (ANN) [28], SAR
produces an optimal reconfiguration solution for the routing
schema. Thirdly, we provide a novel data set for training the
ANN that consists of 36336300 data points. This data set
considers different runtime configurations and outputs a multi-
criteria optimization [3] of reliability and performance. We
provide a prototypical tool to use the ANN and our concepts.

We evaluate our approach by comparing the SAR reliability
and performance predictions with our empirical data set of
1200 hours in an extensive evaluation of 4500 cases. Our
systematic evaluation shows that SAR leads to significant
increases in reliability and performance in cases where the
wrong architecture is chosen. Even on average, when correct
and incorrect architecture choices are analyzed, SAR gives
13.53% reliability and 28.55% performance improvements.

The structure of the paper is as follows: Section II presents
the overview of our approach. Section III categorizes the
knowledge in the domain of IoT-cloud traffic management.
Section IV gives the details of the SAR architecture. Section V
presents the evaluation, and Section VI discusses the threats
to the validity of our research. We study the related work in
Section VII and conclude in Section VIII.

II. APPROACH OVERVIEW

First, we study the established practices in IoT-cloud traffic
management. We do so by giving a background on the
published literature, and a qualitative grey literature review
[17], [18], e.g., practitioner reports, system documentation,
and technical blogs. Our gray literature review is based on
the Grounded Theory (GT) [12], [13] to formalize current
practitioners’ understanding and architectural concepts of IoT-
cloud traffic management. Then, we categorize the traffic
management best practices into three commonly-used rout-
ing patterns from a high level of abstraction. Having done
this categorization, we introduce the SAR architecture that
automatically adapts between the categorized routing patterns
based on the monitored runtime data. We use an ANN [28] for
regression analysis, i.e., deep learning of our training dataset.
Using these machine-learning techniques, we reduce response
latency and resource costs of our architecture. Moreover, the
ANN allows our architecture to predict measurements for the
runtime data not included in our dataset.

The GT research approach is a methodical process of
deriving theory from data. Throughout the interpretation of
data, the objective is to construct a theory firmly rooted in the
collected data. Data analysis should occur concurrently with
data collection rather than after the fact. Constant comparison
is the primary activity in grounded theory, where the researcher
continually compares new data with pre-existing data and
concepts. Any newly-emerging abstract concepts should also
be compared with pre-existing information. These concepts are
then organized into categories and linked through relations.
The concepts, categories, and properties derived from the

data should guide subsequent research activities. Theoretical
sampling involves actively seeking out new data based on
the outcomes of the previous iteration and determining what
kinds of data should be collected next [22]. This process
continues until Theoretical Saturation is reached, i.e., “the
point in category development at which no new properties,
dimensions, or relationships emerge during analysis” [13].

III. ROUTING ARCHITECTURE PATTERNS

In this section, we present a background of the published
studies and a review of gray literature to categorize the
knowledge in the IoT-cloud traffic management into three
routing architecture patterns. Note that we limit the scope of
our study to cloud-integrated IoT devices, e.g., using digital
twins [23], and study the cloud-based routing of the traffic
generated by such devices. We assume that the data of IoT
devices are processed using the integration platforms, e.g.,
normalized, filtered, and aggregated. Defining and focusing
on a scope provides useful insight as the IoT devices and
platforms are vastly different.

A. Background on Published Studies

There are many studies in the literature on traffic routing.
On the one hand, some studies take a centralized approach
where all traffic is processed and routed centrally, e.g., using
API Gateways [33], event stores as well as event streaming
platforms [33], Message Brokers [19], or any kind of central
service bus, e.g., Enterprise Service Buses [11]. One benefit
of this architecture is that it is easy to manage, understand,
and change as all control logic regarding request flows is
implemented in one component. However, this introduces
the drawback that the design of the internals of the central
entity component is a complex task. Another advantage is
that in an application, which consists of stateful request flow
sequences, the state does not need to be passed between
various distributed components. Nonetheless, services need to
call back to the central entity component to fetch the saved
state of prior stages to proceed with the next step in the request
flow sequence.

On the other hand, some works use distributed approaches,
such as sidecars [16], [21], [26] that attach to services and
rout the incoming calls. In contrast to the central routing
approaches, the traffic management is distributed. Sidecars
offer a separation of concerns since the control logic regarding
request flow is implemented in a different component than the
service. However, they are tightly coupled with their directly
linked services. Sidecars offer benefits whenever decisions
need to be made structurally close to the service logic. One
advantage of this approach is that, compared to central routing,
it is usually easier to implement sidecars since they require less
complex logic to control the request flow of their connected
services. However, it is not always possible to add sidecars,
e.g., when services are off-the-shelf products.

Typically, an application uses a combination of central and
distributed routing schemas based on its need. For example,
consider an API Gateway, two event streaming platforms,

TABLE I: The Investigated Gray Literature Cases

ID Title URL
S1 Understand the Azure IoT Edge runtime and its archi-

tecture
https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2020-11

S2 Connecting IoT devices to the cloud https://www.thoughtworks.com/insights/blog/iot/connecting-iot-devices-cloud
S3 Real-time Data Streaming in IoT: Why and How https://solace.com/blog/real-time-data-streaming-in-iot
S4 Edge to Twin: A scalable edge to cloud architecture

for digital twins
https://aws.amazon.com/de/blogs/iot/edge-to-twin-a-scalable-edge-to-cloud-architecture-for-digital-twins

S5 Understanding edge computing for manufacturing https://www.redhat.com/en/topics/edge-computing/manufacturing
S6 How to use Digital Twins for IoT Device Configura-

tions
https://tributech.io/blog/digital-twins-for-IoT-device-configurations

S7 Understand and use device twins in IoT Hub https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
S8 Mainflux 0.11 — Digital Twin, MQTT Proxy And

More
https://medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-and-more-46bde98635fe

S9 Connecting OPC UA Publisher to Amazon AWS IoT
with MQTT

https://www.prosysopc.com/blog/aws-iot-mqtt-demo

S10 Dataworks: Internet Of Things https://www.dataworks.ie/iot-a-step-by-step-guide-on-how-to-connect-devices-to-the-cloud
S11 Cloud Computing for the Internet of Things (IoT) https://dgtlinfra.com/cloud-internet-of-things-iot
S12 IoT Gateway User Guide https://docs.devicewise.com/Content/Products/GatewayDevelopersGuide/IoT-Gateway-User-Guide.htm
S13 Configuring Envoy as an edge proxy https://www.envoyproxy.io/docs/envoy/latest/configuration/best practices/edge
S14 Google Vulnerability Reward Program (VRP) https://www.envoyproxy.io/docs/envoy/latest/intro/arch overview/security/google vrp
S15 Control your traffic at the edge with Cloudflare https://blog.cloudflare.com/cloudflare-traffic
S16 The Distributed System ToolKit: Patterns for Compos-

ite Containers
https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns

S17 Kong Embedded: A New Way of Deploying Kong
Enterprise on Edge Devices

https://konghq.com/blog/kong-embedded-a-new-way-of-deploying-kong-enterprise-on-edge-devices

S18 NGINX Plus for the IoT: Load Balancing MQTT https://www.nginx.com/blog/nginx-plus-iot-load-balancing-mqtt
S19 Using NGINX with IoT: Ingress to the Edge and

Beyond
https://www.nginx.com/resources/videos/using-nginx-with-iot-ingress-to-the-edge-and-beyond

S20 Cost-effective cloud edge traffic engineering with Cas-
cara

http://cascara.network

and several sidecars, all making routing decisions in the
application. We categorize the traffic manager components
in these studies under dynamic routers [19]. The benefit of
this architecture is that routers can use local information
regarding request routing amongst their connected services.
For instance, if a set of services are dependent on one another
as steps of processing a request, routers can be used to
facilitate dynamic routing. Nonetheless, these routers introduce
an implementation overhead regarding data structures, control
logic, management, deployment, and so on since they are
usually distributed on multiple hosts.

We review the gray literature to study the IoT-cloud inte-
gration and the currently-used approaches.

B. Gray Literature Review

Grey literature in software engineering is “any material
about SE that is not formally peer-reviewed nor formally
published” [17], e.g., blog posts, articles, presentations, and
audio-video material [18]. Grey literature is chosen in addi-
tion to the published literature because we wish to include
an understanding of practitioners’ views within this domain
in our research. Such data sources are most representative
of these views. Rainer and Williams [32] describe various
benefits to grey literature sources in software engineering
research, including that these sources “promote the voice of
the practitioner” and “provide information on practitioners’
contemporary perspectives on important topics relevant to
practice and to research.”

To begin the search for a few appropriate and detailed
sources from the grey literature, we rely on the authors’
accounts of established practices. These sources, which are
selected for their suitability, are subsequently employed as

impartial depictions of practices during subsequent analysis.
Table I lists the gray literature cases investigated in this study.

C. Knowledge Categorization

Figure 1 presents the categorization of knowledge in the
domain of IoT-cloud traffic management. The root of our
model is a Traffic Manager. We categorized the centralized
and distributed routing using a Dynamic Router. These routers
include Sidecar and API Gateway. Different patterns provide
gateway functionalities, i.e., Enterprise Service Bus, Message
Gateway, Event Streaming, and Proxy Ambassador. Typical
features of IoT-cloud applications, e.g., security, rate limiting,
load balancing, health monitoring, and data analysis, are
performed in the categorized dynamic routers.

As mentioned, we consider cloud-integrated IoT devices in
this paper. Therefore, the Traffic Manager uses an IoT-Cloud
Integration to communicate with these devices. A Digital Twin
can use Platform Integration or Data Steaming Integration
to update the Device Metadata, Device Data, Device Visu-
alization, and Device Control/Configuration. Typical features
regarding data of IoT devices, e.g., gathering, normalization,
filtering, aggregation, and anomaly detection, are performed.
IoT-Cloud Integration uses IoT-Cloud Communication that
involves IoT devices sending data to cloud services for storage,
processing, and analysis. There are various communication
patterns and practices.

We categorized these patterns into Synchronous Call, Data
Streaming, and Asynchronous Call. Synchronous Call offers
a straightforward means of exchanging data between IoT
and the cloud where the device blocks and waits for the
response. The pattern Data Streaming refers to a continuous

https://docs.microsoft.com/en-us/azure/iot-edge/iot-edge-runtime?view=iotedge-2020-11
https://www.thoughtworks.com/insights/blog/iot/connecting-iot-devices-cloud
https://solace.com/blog/real-time-data-streaming-in-iot
https://aws.amazon.com/de/blogs/iot/edge-to-twin-a-scalable-edge-to-cloud-architecture-for-digital-twins
 https://www.redhat.com/en/topics/edge-computing/manufacturing
https://tributech.io/blog/digital-twins-for-IoT-device-configurations
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://medium.com/mainflux-iot-platform/mainflux-0-11-digital-twin-mqtt-proxy-and-more-46bde98635fe
https://www.prosysopc.com/blog/aws-iot-mqtt-demo
https://www.dataworks.ie/iot-a-step-by-step-guide-on-how-to-connect-devices-to-the-cloud
https://dgtlinfra.com/cloud-internet-of-things-iot
https://docs.devicewise.com/Content/Products/GatewayDevelopersGuide/IoT-Gateway-User-Guide.htm
https://www.envoyproxy.io/docs/envoy/latest/configuration/best_practices/edge
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/security/google_vrp
https://blog.cloudflare.com/cloudflare-traffic
https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns
https://konghq.com/blog/kong-embedded-a-new-way-of-deploying-kong-enterprise-on-edge-devices
https://www.nginx.com/blog/nginx-plus-iot-load-balancing-mqtt
https://www.nginx.com/resources/videos/using-nginx-with-iot-ingress-to-the-edge-and-beyond
http://cascara.network

Device Control/
ConfigurationDevice VisualizationDevice DataDevice Metadata

Platform IntegrationDigital Twin
Data Streaming

Integration

Dynamic Router

Proxy AmbassadorEnterprise Service Bus Messaging Gateway Event Streaming

Hardware
Communication

Module on Device

Containerized
Communication

Module on Device

Asynchrounous Call

API Gateway Sidecar

Data StreamingSynchrounous Call

Publish/Subscribe
PatternMessaging

Event-Based
Communication

Device Protocol
Communication

Module on Device

IoT-Cloud
Integration

Device Connectivity

Traffic Manager

IoT-Cloud
Communication «uses»

«uses» «uses»

«uses»

«uses»

 «uses»

Fig. 1: Knowledge Categorization of IoT-Cloud Traffic Management

flow of data that is generated, transmitted, and received in real-
time. The Asynchronous Call implements the request/response
asynchronously. Messaging is a lightweight transport protocol
for connecting remote devices. Publish/Subscribe Pattern uses
topics to identify messages and route them to publishing and
subscribing clients. Event-based interaction ensures that all
changes to the state are stored as a sequence of events. If a
system utilizes the patterns associated with asynchronous com-
munication, it can lead to interactions that are more loosely
coupled, eliminating the need for point-to-point interactions.

Device Connectivity is used for IoT devices to send data.
A Communication Module on Device can be a Hardware
Communication Module on Device. Since we study cloud-
integrated devices, a Containerized Communication Module on
Device is the focus of our study. These modules use Device
Protocol to gather and transmit data. Note that we do not
consider scenarios where devices communicate directly using
peer-to-peer protocols2.

D. Routing Patterns

Based on the categorized knowledge in the previous section,
we summarize the routing patterns into three patterns, central
routing, sidecar-based routing, and the dynamic routers. The
schematic of the central routing is shown in Figure 2a.
Gateway is the entry point of the application where data
from IoT devices are gathered. The central entity routes the

2see, e.g., https://husarnet.com/iot

data to appropriate services and checks for security, privacy,
or conformance to any rules. Typically the gateway and
the central entity are combined, e.g., when using an API
gateway [33]. Sidecar-based routing is shown in Figure 2b. A
sidecar [16], [21], [26] is attached to each service and makes
routing decisions at the point of entry. For example, the sidecar
checks for permissions if the service can process the received
device data. The schematic of the dynamic routers [19] is
shown in Figure 2c. Any combination of the above two routing
patterns is represented by the dynamic routers.

IV. ARCHITECTURE DETAILS

We propose a new approach that realizes all three archi-
tecture patterns shown in Figure 2. We hypothesize that a
dynamic self-adaptation between the three architecture pat-
terns is beneficial over any fixed selections. If a traffic and
load change occurs, our approach can dynamically self-adapt
the degrees to which more or less central routing is used
to optimize its impact on quality-of-service measures, e.g.,
performance and reliability, trade-offs. These are important
quality measures because, on the one hand, a central routing of
IoT data can harm performance. On the other hand, distributed
routing can decrease reliability since device data can be lost
due to unavailability of services.

We design the Smart and Adaptive Routing (SAR) archi-
tecture that uses an artificial neural network to adapt between
the routing architecture patterns automatically. SAR is based
on Monitor, Analyze, Plan, Execute, Knowledge (MAPE-

https://husarnet.com/iot

«Host»

IoT Device

«Host»

IoT Device

«Host»

IoT Device

Gateway

«Host»

«Host»«Host»

«Host»

ServiceServiceService

Central Entity

(a) Central Routing

«Host»

IoT Device

«Host»

IoT Device

«Host»

IoT Device

Service

Sidecar

Service

Gateway

«Host»

Sidecar

Service

«Host»

Sidecar

«Host»

(b) Sidecar-Based Routing

«Host»

IoT Device

«Host»

IoT Device

«Host»

IoT Device

Dynamic Router

«Host»

Gateway

«Host»

«Host»

«Host»

ServiceServiceService

Dynamic Router

(c) Dynamic Routers

Fig. 2: Routing Architecture Patterns

K) loops [6], [7], [20] and dynamically adapts between the
architecture patterns on-the-fly. We define a concept called
router and abstract all the controlling logic components, i.e.,
the central entity servicec (e.g., an API gateway), the dynamic
routers, and the sidecars, under the router. This high-level
router abstraction can be used to reconfigure the routing
architecture dynamically. That is, we can change between the
three architecture patterns moving from a centralized approach
with one router to a distributed system with more routers (or
vice versa) to adapt based on the need of an IoT application.

A. Metamodel

Figure 3 presents the metamodel of our architecture. A
Model describes multiple Hosts and Components. Each Com-
ponent is deployed on (up to) one Host at each point in
time, which is any execution environment for these compo-
nents, either physical or virtual, including cloud-integrated
IoT devices such as digital twins [23]. Request models the
request flow, linking a source and a destination component.
There are several different component types. IoT Devices send
Device Data to Gateways. To process these requests, Gateways
send Internal Requests to Routers and Services. Routers and
Services are both Reconfigurable Components, i.e., they are the
adaptation targets. The Configurator Components perform the
reconfiguration. Monitor observes Reconfigurable Components
and the requests that pass the Gateways. Manager manages the
reconfiguration and the Scheduler reschedules the containers.

B. Example of a Routing Configuration

Figure 4 presents a component diagram of a sample con-
figuration, in which dashed lines represent the data flow and
solid lines the reconfiguration control flow of an application.
As shown, IoT devices access the system via a gateway that
publishes monitoring data to the Quality of Service (QoS)
monitor. The configuration manager observes the monitoring
data and triggers a reconfiguration. To do so, the manager
triggers the scheduler to reschedule the containers. Moreover,
the manager calls the visualizer component to visualize the
reconfiguration using PlantUML3.

C. Reconfiguration Activities of the Dynamic Configurator

Figure 5 shows the reconfiguration activities of the dynamic
configurator. The QoS monitor reads monitoring data and
checks for reconfiguration, e.g., when metrics degradations
are observed. Moreover, the reconfiguration can be triggered
periodically or manually by an architect. When a reconfigu-
ration is triggered, the reconfiguration manager consumes the
monitoring data, and chooses a final reconfiguration solution
using an artificial neural network (see Section IV-D for de-
tails). Based on this analysis, the scheduler reschedules the
containers and visualizes the reconfiguration. As mentioned,
our architecture is based on MAPE-K loops [6], [7], [20].
The QoS monitor implements the monitor and analyze stages,
the manager develops the plan, and the scheduler realizes the
execute step. We use our knowledge in Figure 1 as knowledge.

3https://plantuml.com/

https://plantuml.com/

Model

Host

Request

Internal Request Device Data

Component

Configurator Component

Monitor Manager Scheduler Visualizer

Reconfigurable Component

Service Router

IoT Device Gateway

0..1

*

source
1 *

destination1 *

*

1

*

1

Fig. 3: Metamodel of the SAR Architecture

D. Artificial Neural Network

The manager component uses an ANN that predicts a
reconfiguration solution, i.e., the number of routers in an
application, based on the monitoring data. We use the Ten-

sorFlow4 and the Keras sequential model5 to create a deep
neural network [28]. A sequential model has exactly one

4https://www.tensorflow.org/
5https://www.tensorflow.org/guide/keras/sequential model

«IoT Device»

device2

«Visualizer»

visualizer

«IoT Device»

device3

«IoT Device»

device1

Services

Routers

Dynamic Configurator

«Scheduler»

scheduler

«Gateway»

gateway

«Router»

router2

«Router»

router1

«Service»

service3

«Service»

service2

«Service»

service1

«Manager»

manager

«Monitor»

QoS monitor

 Reconfig.

Consume Monitoring Data

 Visualize Reconfig.

Monitoring Data

 Reconfig.

 Reconfig.

Fig. 4: Component Diagram of an Example Configuration
(The dashed represent the data flow and the solid lines the reconfiguration control flow of an application.)

https://www.tensorflow.org/
https://www.tensorflow.org/guide/keras/sequential_model

Schedule ContainersVisualize

Consume Monitoring Data

Choose the Final Reconfig.
Using an ANN

Read Monitoring Data

Time-Interval /
Manual Trigger

 Reconfig. Needed?

[Yes]

 [No]

Fig. 5: Activities of the Dynamic Configurator

input and one output. We give a six-dimensional array of the
monitoring data as input (see details below). The output is the
reconfiguration solution based on the number of routers. One
router indicates the central routing, and more routers specify
distributed routing (see Section III-D). Our sequential model
has 5 densely-connected layers, each with 40 neurons. We use
the standard rectifier linear unit activation function, the mean
squared error loss function, and the Adam optimizer [9] with
a learning rate of 0.001.

One contribution of this study is a data set with 36336300
data points that we use for the training of the deep neural
network. In our prior work [5], we performed a Multi-Criteria
Optimization (MCO) analysis [3] to adapt the reliability
and performance trade-offs of dynamic routing applications.
We observed the incoming call frequency and the current
architecture configuration, i.e., the number of services and
routers in a system (see Figure 4). When metrics degradation
occurred, our approach reconfigured the routing schema, that
is, more centralized or distributed routing, to adjust the trade-
offs. Architects give reliability and performance thresholds and
weights to find the final reconfiguration solution based on the
number of routers. The input of our training data set is all
combinations of the following six monitoring data, and the
output is the result of the MCO analysis for each case.

Let cf be the call frequency, nserv the number of services,
nrout the number of routers, Rth the reliability threshold
based on the number of request loss per second, Pth the
performance threshold as the average processing time of

requests per router, and PW the performance weight, i.e., a
number between 0 and 1 giving the importance of performance
compared to reliability. The importance weights are required
to choose a final reconfiguration solution based on the need of
different applications. For example, giving a higher weight to
performance opts for more distributed routing because of the
parallel processing of requests. We have the following ranges
in our data set (see below for rationale):

3 ≤ nserv ≤ 10 (1)
1 ≤ nrout ≤ nserv (2)
10 ≤ cf ≤ 100 r/s (3)
1.1 ≤ Rth ≤ 2 r/s (4)
35 ≤ Pth ≤ 100ms (5)
0.0 ≤ PW ≤ 1.0 (6)

These values are based on an extensive experiment of 1200
hours in that we measured the quality-of-service metrics of
dynamic routing applications. Our training data set can be
downloaded in the online artifact of this paper to support
reproducibility6. The call frequency of cf = 100 r/s (or even
lower numbers) is chosen in many studies (see, e.g., [14],
[37]). Therefore, we chose different portions between 10 to
100 r/s. As for the number of services nserv, based on our
experience and a survey on existing cloud applications in the
literature and industry [4], the number of cloud services that
are directly dependent on each other in a call sequence is
usually rather low. As a result, we study 3 to 10 services in a
call sequence. For the reliability and performance thresholds,
we studied our empirical data and chose the worst-case sce-
narios for centralized and distributed routing. A performance
weight of 1.0 emphasizes performance, and 0.0 gives weight
to reliability when choosing the final solution.

E. Tool Support

We developed a prototypical tool to demonstrate the SAR
architecture. The tool is available in our online artifact. Fig-
ure 6 shows the tool architecture. Our tool generates artifacts
in the form of Bash7 scripts and configuration files, e.g.,
infrastructure configuration data. These scripts can schedule
containers using the Docker technology8. Additionally, we
provide visualizations by generating diagrams in PlantUML3

to study different scenarios. The frontend of our application
provides the functionalities of the QoS monitor, i.e., to specify
architecture configurations as well as model elements such
as reliability and performance thresholds. This information is
sent to the manager component in the backend that finds the
final reconfiguration solution using a deep ANN. The manager
sends this solution to the scheduler to generate deployment
artifacts. A visualization is created in the backend and shown

6 Published as an open-access artifact: https://zenodo.org/record/7771540
7https://www.gnu.org/software/bash/
8https://www.docker.com/

https://zenodo.org/record/7771540
https://www.gnu.org/software/bash/
https://www.docker.com/

 Artificial Neural Network

«Scheduler»

scheduler

«Docker Container»

«Visualizer»

visualizer

RESTful Backend

Web Frontend

«Monitor»

QoS monitor

«Manager»

manager

«Docker Container»

«Docker Container»«Docker Container»

 Arch.
 Config.

 Final
 Reconfig.
 Solution

Final Config.
Visualizaton

Consume
Monitoring Data

Fig. 6: Tool Architecture Diagram

in the frontend. The frontend is implemented in React9 and
the backend is developed in Node.js10 and Python Flask11.

V. EVALUATION

In this section, we evaluate our architecture by comparing
the ANN model predictions for the SAR adaptations to the
fixed architecture patterns, i.e., central routing, sidecar-based
routing, and dynamic routers (see Section III-D). We use the
empirical results of our experiment, where we measured the
reliability and performance metrics of the fixed architecture
patterns. Note that SAR is neither specific to our experiment
infrastructure nor to our cases. We use our empirical data
(already reported in [4]) to evaluate our architecture.

A. Evaluation Cases

We systematically evaluate our proposed architecture
through various architecture configurations, call frequencies,
thresholds, and importance weights for reliability and per-
formance. In our empirical data set, the routing patterns are
measured with the following experiment 36 cases:

nserv ∈ { 3, 5, 10 } (7)
nrout ∈ { 1, 3, nserv } (8)

cf ∈ { 10, 25, 50, 100 } r/s (9)

For reliability and performance thresholds and weights, we
start from the lower bounds of our training data set (see
Section IV-D) and study increments of 20% (5 levels for each):

1.1 ≤ Rth ≤ 2 r/s (10)
35 ≤ Pth ≤ 100ms (11)
0.0 ≤ PW ≤ 1.0 (12)

Overall we evaluate 4500 systematic evaluation cases: 36 ex-
periment cases, 5 importance weights, 5 reliability thresholds,
and 5 performance threshold levels.

9https://reactjs.org/
10https://nodejs.org/
11https://flask.palletsprojects.com/en/2.2.x/

B. Results Analysis

We define reliability gain, i.e., RGain, and performance
gain, i.e., PGain, as the average percentage differences of our
predictions compared to those of fixed architectures. These
formulas are based on the Mean Absolute Percentage Error
(MAPE) widely used in the cloud QoS research [38]. Let
Rnrout

and Pnrout
reliability and performance predictions:

RGain =
100%

n
·

∑
c∈Cases

Rc −Rnrout

Rnrout

(13)

PGain =
100%

n
·

∑
c∈Cases

Pc − Pnrout

Pnrout

(14)

Cases are our experiment cases; therefore, n = 36.
Figure 7 shows the reliability and performance gains com-

pared to the predictions of fixed architecture configurations,
i.e., without adaptations. Our adaptive architecture provides
improvements in both reliability and performance gains. As
more importance is given to the reliability of a system, i.e.,
reliability weight increases, our architecture reconfigures the
routers so that the gain in reliability rises as shown by
Figure 7a. Regarding performance, the same trend can be
seen in Figure 7b. A higher performance weight results in a
higher performance gain. On average, when cases with correct
and incorrect architecture choices are analyzed together, our
adaptive architecture provides 13.53% and 28.55% reliability
and performance gains, respectively.

VI. THREATS TO VALIDITY

There are several threats to the validity of our study that we
discuss based on the four threat types by Wohlin et al. [41].

A. Construct Validity

The accurate representation of the intended construct by a
measurement is assessed through construct validity. In this pa-
per, we studied cloud-integrated IoT devices, e.g., for creating
digital twins [23]. The threat remains that other metrics might
affect the results, e.g., latency introduced by communicating
to the IoT device and waiting for a response. Moreover, there

https://reactjs.org/
https://nodejs.org/
https://flask.palletsprojects.com/en/2.2.x/

(a) Reliability Gain (b) Performance Gain

Fig. 7: Reliability and Performance Gains Compared to Fixed Architecture Configurations
(Each point is an average of 36 evaluation cases)

are scenarios that devices directly communicate with each
other using a peer-to-peer communication2. The IoT domain
includes many different devices and platforms that one study
cannot cover all aspects of the domain. Researchers have to
define and focus on a specific scope to provide more useful
insight. More research, probably with real-world devices, is
required for this threat to be excluded.

B. Internal Validity

Internal validity concerns factors that affect the independent
variables concerning causality. To increase internal validity, we
reviewed the gray literature, e.g., practitioner reports produced
independently of our study. This avoids bias, for example,
compared to interviews in which the practitioners would be
aware that their answers might be used in a study. However, the
gray literature review introduces the threat that some important
information might be missing in the reports. We tried to
mitigate this threat by looking at many sources and comparing
them to the published literature to ensure our knowledge
categorization includes all important concepts in the IoT-cloud
integration domain from an architectural view.

Regarding our proposed SAR architecture, the dynamic
routing architecture patterns (see Section III-D) are based on
different technologies. Our adaptive architecture abstracts the
controlling logic component in dynamic routing under a router
concept to allow interoperability between these architectures.
In a real-world system, changing between these technologies
is not always an easy task, but it is not impossible either.
In this paper, we provided a scientific proof-of-concept based
on an experiment with the prototypical implementation of
these technologies. The threat remains that changing between
these technologies in a real-world application might have other
impacts on reliability and performance, e.g., network latency
increasing processing time.

C. External Validity

External validity concerns threats that limit the ability to
generalize the results beyond the experiment. Since we sur-
veyed published studies and reached saturation in the review of
gray literature, our categorized knowledge can be generalized
to many kinds of applications in the IoT-cloud integration
domain. Moreover, we designed our novel SAR architecture
with generality in mind. The threat remains that evaluating our
approach on a different infrastructure may lead to different
results. To mitigate this thread, we systematically evaluated
the proposed architecture with 4500 evaluation cases using the
data of our extensive experiment (see Section V). Moreover,
we used an artificial neural network. We trained it on our
empirical data so that the results can be generalizable beyond
the given experiment cases of 10 to 100 r/s and call sequences
of 3 to 10 services.

D. Conclusion Validity

Conclusion validity concerns factors that affect the ability to
conclude the relations between treatments and study outcomes.
As the statistical method to evaluate the accuracy of our
model’s predictions, we defined reliability and performance
gains based on the Mean Absolute Percentage Error (MAPE)
metric [38] as it is widely used and offers good interpretability
in our research context.

VII. RELATED WORK

This section presents the related work of our study.

A. Architecture-Based Modeling

Numerous approaches have been proposed that study
architecture-based performance prediction. Spitznagel and
Garlan [36] present a general architecture-based model for per-
formance analysis based on queueing network theory. Petriu
et al. [30] present an architecture-based performance analysis

that builds layered queueing network performance models
from a UML description of the high-level architecture of a
system. The Palladio component model [8] allows component
modeling with relevant factors for performance properties and
contains a simulation framework for performance prediction.

Architecture-based MCO [3] builds on top of these pre-
diction approaches and the application of architectural tac-
tics to search for optimal architectural candidates. Example
MCO approaches supporting reliability and performance are
ArcheOpterix [2], PerOpteryx [10], and SQuAT [31]. Sharma
and Trivedi [34] present an architecture-based unified hier-
archical model for software reliability, performance, security,
and cache behavior prediction. Like our study, those works
focus on supporting architectural design or decision-making.
In contrast to our work, they do not focus on specific kinds
of architecture or architectural patterns. Our approach focuses
on the dynamic routing of IoT-cloud applications.

Vandikas et al. [39] conducted a performance analysis
of their Internet of Things (IoT) framework to evaluate its
behavior under heavy load produced by different amounts of
producers and consumers. The main purpose of the framework
is to allow producers, such as sensors, to publish data streams
to which multiple interested consumers, e.g., external appli-
cations, can subscribe. This publish-subscribe functionality
is realized by a central message broker implemented with
RabbitMQ. In contrast to our work, dynamic data routing
is not considered in this article; moreover, the performance
evaluation of the framework focuses only on a single machine
deployment, which may have led to results that are not easily
generalizable to cloud-based applications.

B. Machine-Learning Approaches

Nafreen et al. [29] study architecture-based reliability mod-
eling by considering learning-enable components using fault-
tolerant machine-learning approaches. Similarly, Kumar et al.
[24] investigate machine-learning techniques to predict soft-
ware reliability. They study 16 software life cycle databases
empirically and evaluate their predictions using mean absolute
error, root mean squared error, correlation coefficient and pre-
cisions. A related research is performed by Wang [40] where
the author studies the reliability of cyber-physical systems
using different machine-learning techniques. Didona et al. [15]
combines analytical models with machine learning approaches
to predict the performance of software systems. These studies
are related to our paper in that they use machine learning
techniques to predict QoS measurements. Unlike our study,
they focus on one aspect, either reliability or performance,
and do not study the trade-offs of these QoS metrics.

C. Studies on Performability

Performability considers the effects of structural changes
in a system, e.g., when a service is unresponsive (impeded
reliability), on the overall performance of the system [35].
This is related to our research as we study the trade-offs
of reliability and performance. Ahamad and Ratneshwer [1]
provide a review on the performability of Safety-Critical

Systems (SCS). They study the available approaches, as well
as the metrics to evaluate the performability of SCS. Moreover,
they define performance and reliability challenges in studying
the SCS. This study is related to our work because it presents
state of the art in performability studies. However, it does not
provide a generalizable framework that can be used in the
dynamic routing of IoT systems.

Mo et al. [27] study the performability analysis of multi-
state sliding window systems. Like our study, they propose
an approach based on multivalued decision diagrams. They
analyze this approach in multiple case studies. Lisnianski et
al. [25] present a Markov multi-state model for large-scale,
highly responsive distributed systems. They provide an ana-
lytical performability model and present a short-term analysis
to prevent performance and reliability decreases. Unlike our
research, none of the above works focus of the IoT-cloud traffic
management specifically.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we set out to answer what the patterns and
best practices that support IoT architectures are, and how
they are related to each other (RQ1), what the architecture
of an automation framework is that analyses an IoT system
at runtime and adapts the system’s reconfiguration using an
optimal solution (RQ2), and how the reliability and perfor-
mance predictions of the chosen optimal solution compare
with the case where one architecture runs statically, i.e.,
without adaptation (RQ3).

For RQ1, we surveyed the published literature as well as
the gray literature and provided knowledge categorization in
the IoT-cloud integration domain. For RQ2, we introduced the
Smart and Adaptive (SAR) architecture that analyzes different
run-time inputs and produces an optimal reconfiguration solu-
tion using a deep neural network. For RQ3, we systematically
evaluated our approach using 4500 evaluation cases based on
the empirical data of our extensive experiment (see Section V).
The results show that the proposed architecture can adapt the
routing pattern in a running IoT system to optimize reliability
and performance. Even on average, where cases with the
right and the wrong architecture choices are analyzed together,
our approach offers a 13.53% reliability gain and a 28.55%
performance gain.

To the best of our knowledge, no architecture has been
presented in the literature that dynamically adjusts reliability
and performance trade-offs, specifically in IoT-cloud traffic
management. The SAR architecture adapts based on triggers,
e.g., change of incoming load frequency or degradation of
monitoring data using an ANN. For our future work, we plan
to extend our novel architecture to consider IoT devices more
in-depth such as deploying artifacts directly on the devices
and covering more aspects of IoT communications, e.g., using
peer-to-peer protocols.

ACKNOWLEDGMENT

This work was supported by FFG (Austrian Research Pro-
motion Agency) project MODIS, no. FO999895431.

REFERENCES

[1] S. Ahamad and Ratneshwer. Some studies on performability analysis of
safety critical systems. Computer Science Review, 39:100319, 2021.

[2] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya. Archeopterix:
An extendable tool for architecture optimization of AADL models. In
ICSE 2009 Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, MOMPES 2009, pages 61–71. IEEE, 2009.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Trans. Software Eng., 39(5):658–683, 2013.

[4] A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical
validation of reliability and performance trade-offs of dynamic routing in
service- and cloud-based architectures. In IEEE Transactions on Services
Computing (TSC), 2021.

[5] A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Automatic adaptation
of reliability and performance tradeoffs in service- and cloud-based
dynamic routing architectures. In IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2021.

[6] P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing
mape-k feedback loops for self-adaptation. In 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 13–23. IEEE, 2015.

[7] P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and
verification of self-adaptive systems with decentralized control. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 11(4):1–35,
2017.

[8] S. Becker, H. Koziolek, and R. Reussner. Model-based performance
prediction with the palladio component model. In Proceedings of the
6th International Workshop on Software and Performance, WOSP ’07,
page 54–65, New York, NY, USA, 2007. ACM.

[9] S. Bock and M. Weiß. A proof of local convergence for the adam
optimizer. In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2019.

[10] A. Busch, D. Fuchss, and A. Koziolek. Peropteryx: Automated im-
provement of software architectures. In IEEE International Conference
on Software Architecture ICSA Companion 2019, pages 162–165. IEEE,
2019.

[11] D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
[12] K. Charmaz. Constructing grounded theory: a practical guide through

qualitative analysis. Sage Publications, 2006.
[13] J. Corbin and A. Strauss. Basics of qualitative research: Techniques and

procedures for developing grounded theory. Sage Publications, 1998.
[14] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: Toward

runtime performance anomaly fault localization for infrastructure-as-
a-service clouds. In 6th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 14), 2014.

[15] D. Didona, F. Quaglia, P. Romano, and E. Torre. Enhancing performance
prediction robustness by combining analytical modeling and machine
learning. In Proceedings of the 6th ACM/SPEC International Conference
on Performance Engineering, ICPE ’15, page 145–156, New York, NY,
USA, 2015. Association for Computing Machinery.

[16] Envoy. Service mesh. https://www.learnenvoy.io/articles/service-
mesh.html, 2019.

[17] V. Garousi, M. Felderer, M. V. Mäntylä, and A. Rainer. Benefitting from
the Grey Literature in Software Engineering Research, pages 385–413.
Springer International Publishing, Cham, 2020.

[18] V. Garousi, M. Felderer, and M. V. Mäntylä. Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering. Information and Software Technology, 106:101–121, 2019.

[19] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[20] D. G. D. L. Iglesia and D. Weyns. Mape-k formal templates to
rigorously design behaviors for self-adaptive systems. ACM Transactions
on Autonomous and Adaptive Systems (TAAS), 10(3):1–31, 2015.

[21] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[22] R. B. Johnson and L. Christensen. Educational research: Quantitative,
qualitative, and mixed approaches. Sage Publications, 2019.

[23] D. Jones, C. Snider, A. Nassehi, J. Yon, and B. Hicks. Characterising
the digital twin: A systematic literature review. CIRP Journal of
Manufacturing Science and Technology, 29:36–52, 2020.

[24] P. Kumar and Y. Singh. An empirical study of software reliability
prediction using machine learning techniques. International Journal of
System Assurance Engineering and Management, 3(3):194–208, 2012.

[25] A. Lisnianski, E. Levit, and L. Teper. Short-term availability and
performability analysis for a large-scale multi-state system based on
robotic sensors. Reliability Engineering and System Safety, 205:107206,
2021.

[26] Microsoft. Sidecar pattern. https://docs.microsoft.com/en-us/azure/
architecture/patterns/sidecar, 2010.

[27] Y. Mo, L. Xing, L. Zhang, and S. Cai. Performability analysis of multi-
state sliding window systems. Reliability Engineering and System Safety,
202:107003, 2020.

[28] G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting
and understanding deep neural networks. Digital Signal Processing,
73:1–15, 2018.

[29] M. Nafreen, S. Bhattacharya, and L. Fiondella. Architecture-based
software reliability incorporating fault tolerant machine learning. In
2020 Annual Reliability and Maintainability Symposium (RAMS), pages
1–6, 2020.

[30] D. Petriu, C. Shousha, and A. Jalnapurkar. Architecture-based per-
formance analysis applied to a telecommunication system. IEEE
Transactions on Software Engineering, 26(11):1049–1065, 2000.

[31] A. Rago, S. A. Vidal, J. A. Diaz-Pace, S. Frank, and A. van Hoorn.
Distributed quality-attribute optimization of software architectures. In
Proceedings of the 11th Brazilian Symposium on Software Components,
Architectures and Reuse, SBCARS 2017, pages 7:1–7:10. ACM, 2017.

[32] A. Rainer and A. Williams. Using blog-like documents to investigate
software practice: Benefits, challenges, and research directions. Journal
of Software: Evolution and Process, 31, 08 2019.

[33] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[34] V. S. Sharma and K. S. Trivedi. Architecture based analysis of perfor-
mance, reliability and security of software systems. In Proceedings of the
5th International Workshop on Software and Performance, WOSP ’05,
page 217–227, New York, NY, USA, 2005. Association for Computing
Machinery.

[35] R. Smith, K. Trivedi, and A. Ramesh. Performability analysis: measures,
an algorithm, and a case study. IEEE Transactions on Computers,
37(4):406–417, 1988.

[36] B. Spitznagel and D. Garlan. Architecture-based performance analysis.
In Proc. the 1998 Conference on Software Engineering and Knowledge
Engineering. Carnegie Mellon University, June 1998.

[37] O. Sukwong, A. Sangpetch, and H. S. Kim. Sageshift: managing slas
for highly consolidated cloud. In 2012 Proceedings IEEE INFOCOM,
pages 208–216, 2012.

[38] K. S. Trivedi and A. Bobbio. Reliability and availability engineering:
modeling, analysis, and applications. Oxford University Press, 2017.

[39] K. Vandikas and V. Tsiatsis. Performance evaluation of an iot platform.
In Next Generation Mobile Apps, Services and Technologies (NGMAST),
2014 Eighth International Conference on, pages 141–146. IEEE, 2014.

[40] H. Wang. Research on real-time reliability evaluation of cps system
based on machine learning. Computer Communications, 157:336–342,
2020.

[41] C. Wohlin, P. Runeson, M. Hoest, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Springer, 2012.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

	Introduction
	Approach Overview
	Routing Architecture Patterns
	Background on Published Studies
	Gray Literature Review
	Knowledge Categorization
	Routing Patterns

	Architecture Details
	Metamodel
	Example of a Routing Configuration
	Reconfiguration Activities of the Dynamic Configurator
	Artificial Neural Network
	Tool Support

	Evaluation
	Evaluation Cases
	Results Analysis

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Related Work
	Architecture-Based Modeling
	Machine-Learning Approaches
	Studies on Performability

	Conclusion and Future Work
	References

